[go: up one dir, main page]

WO2012150805A2 - 플렉시블 염료감응형 태양전지용 Ti-In-Zn-O 투명전극 및 이를 이용한 금속 삽입형 3층 구조 고전도도 투명전극과 이의 제조방법 - Google Patents

플렉시블 염료감응형 태양전지용 Ti-In-Zn-O 투명전극 및 이를 이용한 금속 삽입형 3층 구조 고전도도 투명전극과 이의 제조방법 Download PDF

Info

Publication number
WO2012150805A2
WO2012150805A2 PCT/KR2012/003425 KR2012003425W WO2012150805A2 WO 2012150805 A2 WO2012150805 A2 WO 2012150805A2 KR 2012003425 W KR2012003425 W KR 2012003425W WO 2012150805 A2 WO2012150805 A2 WO 2012150805A2
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
transparent electrode
sensitized solar
solar cell
metal
Prior art date
Application number
PCT/KR2012/003425
Other languages
English (en)
French (fr)
Other versions
WO2012150805A3 (ko
Inventor
허기석
김태원
박재철
김광영
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to CN201280003230.2A priority Critical patent/CN103154301B/zh
Priority to US13/822,700 priority patent/US9570242B2/en
Publication of WO2012150805A2 publication Critical patent/WO2012150805A2/ko
Publication of WO2012150805A3 publication Critical patent/WO2012150805A3/ko
Priority to US15/394,993 priority patent/US10395845B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2036Light-sensitive devices comprising an oxide semiconductor electrode comprising mixed oxides, e.g. ZnO covered TiO2 particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • C23C14/205Metallic material, boron or silicon on organic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/204Light-sensitive devices comprising an oxide semiconductor electrode comprising zinc oxides, e.g. ZnO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • T i -I n-Z n-0 transparent electrode for flexi dye dye-sensitized solar cell, and metal-inserted three-layer structure using the same.
  • the present invention relates to a transparent electrode for a flexible dye-sensitized solar cell and a method for manufacturing the same, and more specifically, to FTCXFluorine.doped tin oxide (ITC) and ITO (Indium-Un oxide) transparent electrode Compared to deposition at room temperature or low temperature, Ti ⁇ In for flexible dye-sensitized solar cells with low surface resistance, high conductivity and permeability, excellent resistance to external bending, improved interfacial properties and improved surface roughness
  • the present invention relates to a -Zn-0 transparent electrode and a method of manufacturing the same, and a metal-inserted three-layer structure high conductivity transparent electrode and a method of manufacturing the same.
  • a dye-sensitized solar cell is a type of solar cell that generates chemical power by using the solar light absorbing ability of the dye.
  • the dye-sensitized solar cell has a wavelength in the range of 300 nm to 2,500 nm, and is approximately 400 ⁇ to 800 Hz. It develops by absorbing the wavelength of.
  • FIG. 1 is a cross-sectional view showing a schematic structure of a conventional dye-sensitized solar cell.
  • Photoelectrode cathode part
  • electrolyte containing metal oxide and dye on transparent glass substrate.
  • a counter electrode anode part. And so on.
  • the photoelectrode present in the form of the porous membrane is Ti0 2 . It consists of an n-type transition metal oxide semiconductor with a wide bandgap such as ZnO and Sn0 2, and a dye of a single molecule layer is adsorbed on this surface.
  • a wide bandgap such as ZnO and Sn0 2
  • a dye of a single molecule layer is adsorbed on this surface.
  • the counter electrode of the anode acts as a catalyst for the redox reaction of ions in the electrolyte and provides electrons to the ions in the electrolyte through redox reactions on the surface. To do.
  • Dye-sensitized solar cells mainly use platinum thin films with excellent catalytic action to improve energy conversion efficiency, and precious metals such as palladium, silver, and gold, which are similar to platinum, and carbon-based electrodes such as carbon black and graphite. Also used.
  • the above-described transparent glass substrate is a transparent conductive oxide film (transparent conductive film) that transmits electrons to an external circuit while enabling solar energy absorption.
  • Transparent Conducting Oxide TC0
  • TC0 Transparent Conducting Oxide
  • Sn (F) 0 2 ) electrode is mainly used.
  • the porous membrane composed of Ti0 2 nanoparticles coated on the FT0 thin film by screen printing method contains many defects inside and on the surface of the nanoparticles, resulting in electron scattering and electron transfer by electron-pore recombination. There is a disadvantage that the efficiency is lowered because the degree of electron and lifetime is reduced and the electron conductivity is low.
  • the interfacial property with the Ti: Dye layer coated on the FT0 is not good, so that the solar cell efficiency and the flexible dye-sensitized solar cell are easily separated from the TC0 and the light absorbing layer. have.
  • the present invention has been made to solve the above-mentioned problem, first, flexible
  • An object of the present invention is to provide a transparent electrode for a dye-sensitized solar cell and a method of manufacturing the same. And a ⁇ 15>
  • the low-temperature phase, or "stand deposited, and then the dye-sensitized solar cell and the transparent electrode provides a method for their preparation has a low surface resistance, high conductivity and permeability for other purposes.
  • Dye is a layer and the interface characteristics between the electrolyte and device stability, surface roughness property capability enhanced dye sense male solar cell and the transparent electrode provides a method for their preparation is another object: ⁇ 16> aheul multiple, 'Ti.
  • Another object of the present invention is to provide a three-layered TCO / metal / TCO transparent electrode having a very high electrical conductivity and a method of manufacturing the same.
  • the present invention is to prepare a flexible transparent substrate; And simultaneously depositing Ti and IZ0 on the substrate or forming a Ti-In—Zn-0 thin film using a Ti-In—Zn-0 single target.
  • Ti-In for flexible dye-sensitized solar cells including Provided is a method for producing a Zn-0 transparent electrode.
  • PES po 1 ye t her sul phone
  • PAR polyacrylate
  • PEI polyetherimide
  • PEN polyethyelenen napthalate
  • PET polyethylene terephthalate
  • PPS poly Phenylene sulfide
  • PPS polyallylate
  • PI polyamide
  • PIiicle polyimide
  • PC polycarbonate
  • TAC cell Rollose acetate propionate
  • CAP any one selected from the group consisting of.
  • the transparent substrate is a constant heat treatment to lower the moisture content rate or at least one of UV ozone or 0 2 plasma pretreatment for improving adhesion to the substrate or Ti; Forming the thin film uses a RF / DC magnetron sputter.
  • the step of forming the thin film ⁇ 24> temperature room temperature
  • Ti-In— Zn— 0 contained in the transparent electrode The composition ratio of the constituent metal elements excluding oxygen, which varies according to the process conditions of the thin film, is Ti 4 ⁇ 34at%. Zn 9-17 at%. It has excellent electrical properties at In 56-79at%, especially with minimum sheet resistance at Ti 8at%, In 76at%, and Zn 16%.
  • the present invention comprises the steps of preparing a transparent substrate; Simultaneously depositing Ti and IZ0 on the transparent substrate or forming a first Ti-In-Zn-0 thin film using a Ti-In-Zn-0 single target; Forming a metal thin film on the first first Ti-In-Zn-0 thin film; And depositing Ti and IZ0 simultaneously on the metal thin film or forming a second Ti-In-Zn-0 thin film using a Ti-In-Zn-0 single target.
  • a method of manufacturing a metal insertion type triple charge high conductivity transparent electrode for a solar cell is provided.
  • the transparent substrate is a glass substrate, a polyether sulfone
  • PES polyacrylonitrile: rate
  • PAR polyacrylate
  • PEI polyether imide
  • PEN polyethylene naphthalate
  • PET polyethyeleneterepthalate
  • PPS Polyphenylene sulfide
  • the metal thin film is made of a metal selected from a group of high-conductivity metals including Ag, Cu, Al, An, etc., the 1 Ti-In-Zn-0 thin film, 2 Ti-In-Zn-0 thin film and metal thin film are using sputter of RF / DC magnetron method.
  • the step of forming each of said thin films is performed.
  • Process conditions such as gas volume and ratio, process power, process pressure, and Dts.
  • the 1 Ti-In-Zn-0 thin film is 10 ⁇ 100nm
  • the Ti-In-Zn-0 thin film is formed in a thickness of 30 to 80 nm and the metal thin film is 5 to 25 nm.
  • the present invention provides a metal-inserted three-layer structure high conductivity transparent electrode for a flexible dye-sensitized solar cell, which is manufactured by the method of any one of the above-described methods.
  • the thickness of the transparent electrode is 150 to 3Q0nm.
  • the present invention has the following excellent effects.
  • the present invention it is possible to provide a transparent electrode which can be applied to a flexible substrate and can improve resistance to external bending.
  • the present invention can produce a transparent electrode for a dye-sensitized solar cell having low surface resistance, high conductivity, and permeability despite the deposition at room temperature or low temperature, and by applying a sputtering process, for easy mass production.
  • a transparent electrode for a dye-sensitized solar cell having improved interfacial characteristics, device stability, and surface roughness with a Ti: Dye layer and an electrolyte, and a method of manufacturing the same.
  • a metal insertion type three-layer structure Ti-In-Zn-O / nietal / Ti-In-Zn- having a lower sheet resistance, that is, a very high electric conductivity, compared to the conventional FT0 and ITO. 0 Can produce transparent electrodes. . . ⁇ 50>
  • FIG. 1 is a cross-sectional view showing a schematic structure of a conventional dye-sensitized solar cell.
  • Figure 2 is a Ti-In-Zn 0 eu flexible dye-sensitized solar cell and a transparent electrode metal
  • FIG di the overall process for the production method of the insert-type charging structure 3 a transparent electrode according to an embodiment of the present invention.
  • 3A is a schematic diagram of a deposition process for forming a Ti-In-Zn-0 thin film according to an embodiment of the present invention.
  • 3B is an image of a Ti-In-Zn-0 thin film manufactured according to an embodiment of the present invention.
  • FIG. 5 is a graph showing a change in surface resistance according to Ti content of a Ti—In—Zn-0 thin film according to an embodiment of the present invention.
  • FIG. 6A is a graph showing optical characteristics of a visible light band of a Ti-In—Zn-0 thin film according to an embodiment of the present invention.
  • 6B is a graph showing optical characteristics of an ultraviolet-visible-infrared region of a Ti—In—Zn—0 thin film according to an embodiment of the present invention.
  • ⁇ 5> is AFM of a Ti- ⁇ - ⁇ - ⁇ thin film according to the Ti content according to an embodiment of the present invention
  • This graph shows the surface roughness RR MS value analyzed by.
  • 9B is an image showing a result of an adhesive tape test between a Ti—In-Zn-0 thin film and a Ti: Dye layer according to an embodiment of the present invention.
  • FIG. 10B illustrates a Ti-In-Zn-0 / metal thin film (Ag) / Ti—In- according to another embodiment of the present invention.
  • FIG. 2 is an overall view of a method for manufacturing a transparent electrode for a Ti-In-Zn-0 flexible dye-sensitized solar cell and a metal insertion type three-layer structure transparent electrode according to an embodiment of the present invention.
  • the method of manufacturing a flexible dye-sensitized solar cell transparent electrode includes preparing a flexible transparent substrate (S100) and Ti and IZ0 on the substrate. Simultaneously depositing a Ti-In-Zn-0 thin film to form a thin film (S200), which is another embodiment of the present invention, has a very high conductivity, which is very high in conductivity Ti-In-Zn-0 / Ag or Cu / Ti-In-Zn A step of preparing a transparent structure transparent electrode (S300) is included.
  • polyethersulphone PES
  • polyacryl Poly acrylate: polyacrylate
  • polyetherimide PEI
  • PEN polyethylene naphthalate
  • PET polyethyeleneterepthalate
  • PPS polyphenylene sulfide
  • PI polyamide
  • PI polyimide
  • PC polycarbonate
  • TAC cellulose triacetate
  • AP cellulose acetate propinonate
  • polyethersulphone was used among the transparent substrates.
  • the flexible transparent substrate is heat-treated to a certain degree in order to lower the humidity ⁇
  • the heat treatment rate of 30 minutes to 60 minutes at 603 ⁇ 4 in Aubon lowered the moisture content.
  • the Ti-In-Zn-0 thin film is formed by simultaneously depositing Ti and IZ0 on the substrate (S200).
  • the Ti-In-Zn-0 thin film may be formed by various deposition methods. However, in the preferred embodiment of the present invention, using a sputter of the F / DC magnetron method Ti and IZ0 . Deposition at the same time.
  • FIG. 3 is a schematic diagram of a deposition process for forming a Ti—In-Zn-0 thin film according to an embodiment of the present invention.
  • a predetermined distance is maintained, and Ti to be used as a second target is positioned to face the first target and to maintain a predetermined distance with the transparent substrate.
  • the IZ0 may be made of various composition ratios, but in a preferred embodiment of the present invention has a composition ratio of In 2 0 3 90wt% and ZnO 10 ⁇ %.
  • a plurality of masks having a predetermined interval are formed on the transparent substrate so as to prevent the transparent substrate from being completely exposed.
  • the mask is formed so that a total of 11 transparent substrates are exposed.
  • Ti-In ⁇ Zn-0 thin films having different compositions of IZ0 are formed.
  • the Ti content increases from 1 to ®, and conversely, 11 Ti-In-Zn-0 thin films having a reduced composition ratio are formed.
  • composition ratios of the 11 Ti-In-Zn-0 thin films according to the exemplary embodiment of the present invention are shown in Table 1 below.
  • composition ratio of the element of the present technology Ti ⁇ In—Zn ⁇ 0 thin film is Ti content 4 ⁇ 34at%, Zn content, 9 ⁇ 17at%, In content 56 ⁇ 79% is preferred, as the Ti content increases, Zn content does not change much, but the relatively expensive In content tends to decrease significantly It is possible to manufacture economical transparent electrode for dye-sensitized solar cell.
  • step (S200) to form a thin film according to an embodiment of the present invention can be carried out under various process conditions, in a preferred embodiment of the present invention was carried out at room temperature or low temperature without increasing the temperature.
  • the minimum sheet resistance was shown at composition ratios of Ti 8at%, In 76at%, and Zn 16% (see FIG. 5).
  • Dts in Table 2 means a distance between the transparent substrate and the first and second targets.
  • the transparent substrate is a heat treatment process or a substrate for lowering the moisture content described in an embodiment of the present invention.
  • the process may further include one or more of UV ozone or plasma pretreatment to improve adhesion to the dye layer.
  • the Ti-In-Zn-0 thin film according to the present invention shows thin film characteristics having an amorphous structure over all samples regardless of the composition ratio.
  • FIG. 10B illustrates a total 150 nm thick Ti-In—Zn Z 0 / according to an exemplary embodiment of the present invention.
  • a real electron microscope image of a metal thin film (Ag) / Ti-In-Zn-0 three-layer transparent electrode is shown.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명은 플렉시블 염료감응형 태양전지용 투명전극 및 이의 제조방법에 관한 것으로, 보다 구체적으로는 기존의 높은 증착 온도를 가진 FTO(Fluorine doped tin oxide) 및 ITO(Indium-tin oxide) 투명전극에 비하여, 상온 혹은 저온에서 증착함에도 불구하고, 낮은 면 저항, 높은 전도도 및 투과도, 외부 구부림에 대한 우수한 저항성 및 개선된 계면특성과 향상된 표면 거칠기 성능을 갖는 플렉시블 염료감응형 태양전지용 Ti-In-Zn-O 투명전극 제조방법과 이의 제조방법 및 이를 이용한 금속 삽입형 3층 구조 고전도 투명전극과 이의 제조방법에 관한 것이다.

Description

【명세서】
【발명의 명칭】
플렉시불 염료감응형 태양전지용 T i -I n-Z n-0 투명전극.및 이를 이용 한 금속 삽입형 3층 구조.고전도도 투명전극과 이의 제조방법
[기술분야】
<1> 본 발명은 플렉시블 염료감웅형 태양전지용 투명전극 및 이의 제조방법에 관 한 것으로, 보다 구체적으로는 기존의 높은 증착 은도를 가진 FTCXFluorine .doped tin oxide) 및 ITO(Indium-Un oxide) 투명전극에 비하여, 상온 혹은 저온에서 증 착함에도 불구하고, 낮은 면 저항, 높은 전도도 및 투과도, 외부 구부림에 대한 우 수한 저항성 및 개선된 계면특성과 향상된 표면 거칠기 성능을 갖는 플렉시블 염료 감응형 태양전지용 Tiᅳ In-Zn-0 투명전극과 아의 제조방법 및 이를 이용한 금속 삽 입형 3층 구조 고전도 투명전극과 이의 제조방법에 관한 것이다.
<2>
【배경기술】
<3> 일반적으로, 염료감응형 태양전지는 염료의 태양 광 흡수 능력을 이용하여 화학적으로 발전을 일으키는 태양전지의 일종으로서, 300nm 내지 2,500nm 범위의 파장을 가지는 태양 광 중 대략 400ηηι 내지 800應 범위의 파장을 흡수하여 발전한 다.
<4> 도 1은 종래의 염료 감웅형 태양전지의 개략적 구조를 보여주는 단면 구성도 로서, 통상의 염료 감웅형 태양전지는 크게 . 투명한 유리기판에 금속산화물과 염료 가 포함된 광전극 (음극부), 전해질. 그리고 상대전극 (양극부). 등으로 구성되어 있 다.
<5> 상기 다공질 막의 형태로 존재하는 광 전극은, Ti02. ZnO, Sn02와 같은 넓은 밴드갭을 가진 n형 전이금속산화물 반도체로 구성되고, 이 표면에 단 분자 층의 염 료가 흡착되어 있다. 태양광이 태양 전지에 입사되면 염료 속의 페르미 에너지 부 근의 전자가 태양에너지를 흡수하여 전자가 채워지지 않은 상위 준위로 여기 된다. 이때, 전자가 빠져나간 하위 준위의 빈자리는 전해질 속의 이은이 전자를 제공함으 로써 다시 채워진다. 염료에 전자를 제공한 이온은 상대전극으로 이동하여 전자를 제공받게 된다.
<6> 양극의 상대전극은 전해질 속에 있는 이온의 산화환원 반응의 촉매로 작용하 여 표면에서의 산화 환원 반웅을 통하여 전해질 속의 이온에 전자를 제공하는 역할 을 한다 .
<1> 염료 감응형 태양전지에서는 에너지 변환 효율을 개선 시키기 위하여 촉매 작용이 우수한 백금 박막을 주로 사용하고 있으며 백금과 특성이 비슷한 팔라듐, 은, 금 등의 귀금속과 카본 블랙, 그라파이트와 같은 탄소계 전극을 사용하기도 한 다.
<8> 한편, 상술한 투명한 유리기판은 태양에너지 흡수를 가능케 하면서 외부회로 로 전자를 전달하는 것으로 통상적으로 투명 전도성 산화막 (투명 도전성막
)( Transparent Conducting Oxide, TC0)으로 마련된다. 이는 태양광이 입사하여 전 자와 정공 (hole)을 내는 광흡수충 위에 전극을 덮어 주어야 하기 때문에 전극이 빛 을 차단하면 기능을 발휘할 수 없거나 효율이 떨어지기 때문에 상기의 투명 전도성 산화막 (TC0)을 사용하는 것이다.
<9> 특히, 투명 전도성 산화막 (TC0)으로는 FKXFluoricle doped Tin Oxide,
Sn(F)02) 전극을 주로 사용한다.
<ιο> 하지만, 이러한 F.T0 박막을 증착하기 위하여 대면적의 화학기상증착장치와 같은 고가의 장비에 의해 제조되어, 복잡한 공정과 이에 따른 제작 비용의 증가에 대한 문제점이 있었으며, 원천 물질 특허가 일본의 유수 기업 및 대학에 있어서. 현재는 전량 수입되고 있는 실정이다.
<ii> FT0 박막 위에 스크린 프린팅 방법으로 도포된 Ti02 나노 (nano) 입자로 구성 된 다공질 막은 나노입자 특성상 입자 내부 및 표면에 많은 결함을 포함하여 전자 의 산란과 전자-공공의 재결합에 의한 전자 이동도 및 전자수명이 감소하여 전자전 도도가 낮아 효율이 떨어지는 단점이 있다.
<12> 또한, FT0의 경우 FT0 위에 코팅되는 Ti:Dye 층과의 계면 특성이 좋지 않 아, 태양전지 효율 및 flexible 염료감웅 태양전지의 구부림 시 ᅳ TC0와 광흡수층이 쉽게 박리되는 문제가 발생하고 있다.
<13> 이에, FT0를 대체할 수 있을 정도의 높은 투과도, 낮은 면저항 값을 가지며, 플라스틱 기판이 견딜 수 있을 정도의 상온 증착 혹은 저은 증착이 가능하며, 부가 적으로 Ti:Dye 층과의 계면 특성을 향상시킬 수 있는 새로운 flexible 염료감웅형 . 태양전지용 투명전극의 필요성이 대두 되고 있는 실정이다. '
[발명의 상세한 설명】
【기술적 과제】
<14> . 본 발명은 상술한 문제를 해결하기 위해 창안된 것으로, 먼저, 플렉시블
(flexible)한 기판에 적용 가능하여 외부 구부림에 대한 저항성을 향상시킬 수 있 는 염료감웅형 태양전지용 투명전극 및 이의 제조방법의 제공을 일 목적으로 한다. <15> 또한, 상은 또는 저온에 '서 증착됨에도 불구하고 낮은 면 저항, 높은 전도도 및 투과도를 갖는 염료감응형 태양전지용 투명전극 및 이의 제조방법의 제공을 다 른 목적으로 한다..
<16> 아을러,' Ti:Dye 층 및 전해질과의 계면특성 및 소자 안정성, 표면 거칠기 성 능이 향상된 염료감웅형 태양전지용 투명전극 및 이의 제조방법의 제공을 또 다른 목적으로 한다.
<17> 또한. FT0 및 ΠΌ에 비하여, 그 면저항이 더 낮은. 즉 매우 높은 전기전도도 를 갖는 금속 삽입형 3층구조 TCO/metal/TCO 투명전극 및 이의 제조방법의 제공을 또다른 목적으로 한다.
<18> 본 발명의 목적들은 이상에서 언급한 목적.들로 제한되지 않으며. 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것 이다.
<19>
[기술적 해결방법】
<20> 상술된 목적을 달성하기 위해, 본 발명은 플렉시블 투명기판을 준비하는 단 계 ; 및 상기 기판상에 Ti 및 IZ0를 동시에 증착하거나 Ti-In— Zn-0 단일 타겟을 이 용하여 Ti-In-Zn-0 박막을 형성하는 단계 ;를 포함하는 플렉시블 염료감응형 태양전 지용 Ti-In-Zn-0투명전극꾀 제조방법을 제공한다.
<21> 바람직한 실시예에 있어서, 상기 투명기판은 . 폴리에테르술폰
( PES: po 1 ye t her sul phone), 폴리아크릴레이트 (PAR:polyacrylate), 폴리에테르이미드 (PEI:polyetherimide), 폴리에틸렌나프탈레이트 (PEN:polyethyelenen napthalate), 폴리에틸렌테레프탈레이트 (PET: polyethyeleneterepthalate) , 폴리페닐렌설파이드 (polyphenylene sul fide :PPS) , 폴리아릴레이트 (polyal lylate), 폴리아미드 (PI:polyamide), 폴리이미드 (polyiniicle), 폴리카보네이트 (PC), 셀를로오스 트리아 세테이트 (TAC), 셀롤로오스 아세테이트 프로피오네이트 (cellulose acetate . propinonate:CAP)로 이루어진 군에서 선택된 어느 하나이다.
<22> 바람직한 실시예에 있어서, 상기 투명기판은 함습률을 낮추기 위한 일정은도 열처리 또는 기판이나 Ti; Dye층과의 부착력 향상을 위한 UV ozone 이나 02 플라즈마 전처리 중 하나 이상이 수행되는데, 상기 박막을 형성하는 단계는 RF/DC magnetron 방식의 sputter를 이용한다.
<23> 바람직한 실시예에 있어서, 상기 박막을 형성하는 단계는 - <24> 온도 : 실온,
<25> gas f low(sccm) : Ar - 24.8, 02 - 0.2,
<26> 공정 power (W) : Ti - 100, IZ0 - 200, '
<2?> 공정압력 (Pa) : 0.17, ' . '
<28> Dts(mm) : 150
<29> 과 같은 공정조건을 포함하여 조절가능한 온도조건, 가스량 및 비, 공정 파 워 . 공정 압력 , Dts 에서 수행 가능하다. 여기서 , Ti— In-Zn-0 투명전극을 증착하기 위한 스퍼터링 공정조건으로는 상온에서 250OC 사이의 온도변화, 다양한 Ar/02 가스 비, RF 및 DC 스퍼터링 power, chamer 내에 인가되는 가스의 공정압력 변화, 스퍼 터링 타겟 및 기판과의 거리 조절 등의 조건이. 있다.
<30> 또한, 본 발명은 상술된 어느 하나의 제조방법으로 제조된 것을 특징으로 하 는 플렉시블 염료감웅형 태양전지용 Ti-In-Zn— 0 투명전극을 제공한다. ―
<3i> 바람직한 실시예에 있어서, 상기 플렉시블 염료감웅형 태양전지용 Ti-In-Zn-
0 투명전극에 포함된 Ti-In— Zn— 0 박막의 공정조건에 따라 변화하는 산소를 제외한 구성 금속원소의 조성비가 Ti 4 ~ 34at%. Zn 9 - 17at%. In 56 - 79at%에서 우수한 전기적 특성을 갖는데, 특히 Ti 8at%, In 76at%, Zn 16 %에서 최소의 면저항을 갖 는다.
<32> 또한 , 본 발명은 투명기판을 준비하는 단계 ; 상기 투명기판상에 Ti 및 IZ0를 동시에 증착하거나 Ti-In-Zn— 0 단일 타겟을 이용하여 제 1 Ti -In-Zn-0 박막을 형성 하는 단계 ; 상기 제 1 제 1 Ti-In-Zn-0 박막 상부에 금속 박막을 형성하는 단계 ; 및 상기 금속 박막의 상부에 Ti 및 IZ0를 동시에 증착하거나 Ti-In-Zn-0 단일 타겟을 이용하여 제 2 Ti- In-Zn-0 박막을 형성하는 단계;를 포함하는 플텍시블 염료감웅형 태양전지용 금속 삽입형 3충 구조 고전도 투명전극의 제조방법을 제공한다.
<33> 바람직한 실시예에 있어서ᅳ 상기 투명기판은 유리기판, 폴리에테르술폰
( PES: o 1 ye t her sul hone), 폴리아크릴:레이트 (PAR:polyacrylate), 폴리에테르이미드 (PEI:polyetherimide), 폴리에틸렌나프탈레이트 (PEN:polyethyelenen napthalate), 폴리에틸렌테레프탈레이트 (PET: polyethyeleneterepthalate) , 폴리페닐렌설파이드 (polyphenylene sulf ide:PPS) . 폴리아릴레이트 (polyallylate), 폴리아미드 (PI:polyamide), 폴리이미드 (polyimkle), 플리카보네이트 (PC), 셀롤로오스 트리아 세테이트 (TAC), 셀를로오스 아세테이트 프로피오네이트 (cellulose acetate propinonate:CAP)로 이루어진 군에서 선택된 어느 하나이다. <34> ' 바람직한 실시예에 있어서, 상기 금속 박막은 Ag, Cu, Al, An 등을 포함하는 고전도도 금속그룹에서 선택된 금속으로 이루어지며 , 상기 게 1 Ti-In-Zn-0 박막, 제 2 Ti-In-Zn-0 박막,및 금속 박막은 RF/DC magnetron 방식의 sputter를 이용한다.
<35> 바람직한 실시예에 있어서ᅳ 상기 각각의 박막을 형성하는 단계는.
<36> 〈제 1 Ti-In-Zn-0박막 및 제 2 Ti-Ιη-Ζη—Ο박막 >
<37> 온도 : 실온, gas flow(sccm) : Ar - 24.8, 02 ᅳ 0.2, 공정 power(W) : Ti
- 100, IZ0 - 200, 공정압력 (Pa) : 0.17,Dts(mm) : 150
<38> <금속박막>
<39> - 은도 : 실온, gas f low(sccm) : Ar - 20, 공정 power(W) : 고전도금속 一
100, 공정압력 (Pa) : 0.14,Dts(mm) : 150
<40> 과 같은 공정조건을 포함하여 조절 가능한 온도조건,.가스량 및 비, 공정 파 워, 공정 압력, Dts 에서 수행 가능하다.
<4i> 바람직한 실시예에 있어서, 상기 게 1 Ti-In-Zn-0 박막은 10~100nm, 상기 제 2
Ti-In-Zn-0 박막은 3O80皿 그리고 상기 금속 박막은 5~25nm의 두께로 형성된다.
<42> 또한, 본 발명은 상술된 어느 한 항의 제조방법으로 제조된 것을 특징으로 하는 플렉시블 염료감응형 태양전지용 금속 삽입형 3층 구조 고전도 투명전극을 제 공한다.
<43> 바람직한 실시예에 있어서, 상기 투명전극의 두께는 150 내지 3Q0nm이다. <44>
【유리한 효과】
<45> 본 발명은 다음과 같은 우수한 효과가 있다ᅳ
<46> 먼저, 본 발명에 의하면 플렉시블 (flexible)한 기판에 적용가능하여 외부 구 부림에 대한 저항성을 향상시킬 수 있는 투명전극을 제공할 수 있다.
<47> 또한, 본 발명에 의하면 상온 또는 저온에서 증착됨에도 불구하고 낮은 면 저항, 높은 전도도 및 투과도를 갖고, 스퍼터링 공정을 적용, 양산적용이 용이한 염료감웅형 태양전지용 투명전극을 생산할 수 있다.
<48> 아울러, 본 발명에 의하면 Ti:Dye 층 및 전해질과의 계면특성 및 소자 안정 성, 표면 거칠기 성능이 향상된 염료감응형 태양전지용 투명전극 및 이의 제조방법 의 제공할 수 있는 효과가 있다.
<49> 또한, 본 발명에 의하면 종래의 FT0 및 ITO에 비하여 , 그 면저항이 더 낮은 즉 매우 높은 전기전도도를 갖는 금속 삽입형 3층구조 Ti-In-Zn-O/nietal/ Ti-In- Zn-0 투명전극을 생산할 수 있다. . . <50>
【도면의 간단한 설명】
<51> 도 1 은 종래의 염료 감응형 태양전지의 개략적 구조를 보여주는 단면 구성 도다.
<52> 도 2 는 본 발명의 일실시 예에 따른 Ti-Inᅳ Zn-0 플렉시블 염료감응형 태양 전지용 투명전극 및 금속삽입형 3충구조 투명전극의 제조방법에 대한 전체 공정도 디".
<53> 도 3a 은 본 발명의 일실시 예에 따른 Ti-In-Zn-0 박막 형성을 위한 증착 공 정의 개략도다
<54> . 도 3b 은 본 발명의 일실시 예에 따른 제조된 Ti-In-Zn-0 박막의 이미지이 다.
<55> 도 4는 본 발명의 일실시 예에 따른 제조된 Ti-In-Zn-0 박막의 각각의 구성 원소인 Ti. In, Zn'원소의 박막내 조성범위를 나타내는다이어그램이다.
<56> 도 5는 본 발명의 일실시 예에 따른 Ti— In-Zn-0 박막의 Ti 함량에 따른 면 저항변화를 나타낸 그래프다.
<57> 도 6a 는 본 발명의 일실시 예에 따른 Ti-In— Zn-0 박막의 가시광선 영역 대 의 광학적 특성을 보여주는 그래프다.
<58> 도 6b 는 본 발명의 일실시 예에 따른 Ti— In-Zn— 0 박막의 자외선-가시광선- 적외선 영역 대의 광학적 특성을 보여주는 그래프다.
<5 > 도 7은 본 발명의 일실시 예에 따른 Ti 함량에 따른 Ti-Ιη-Ζη-Ο 박막의 AFM
으로 분석한 표면거칠기 RRMS 값을 보여주는 그래프다.
<60> 도 8은 본 발명의 일실시 예에 따른 Ti-In— Zn—0 박막의 Ti 함량에 따른 XRD
데이터를 보여주는 그래프다.
<6i> 도 9a은 본 발명의 일실시 예에 따른 Ti-Inᅳ Zn-0 박막과 플렉시블 PES 기판 과의 부착력 tape test 결과를 보여주는 이미지다.
<62> 도 9b은 본 발명의 일실시 예에 따른 Ti— In-Zn-0 박막과 Ti:Dye 층과의 부착 력 tape test 결과를 보여주는 이미지다.
<63> 도 10a은 본 발명의 다른 실시 예에 따른 Ti— In-Zn-O/금속 박막 (Ag)/Ti— In-
Zn一 03충 구조 투명전극의 모식도를 나타낸다.
<64> 도 10b은 본 발명의 다른 실시 예에 따른 Ti-In-Zn— 0/금속 박막 (Ag)/Ti— In-
Zn-03층 구조 투명전극의 실제 전자현미경 이미지를 나타낸다.
<65> 도 11는 본 발명의 다른 실시 예에 따른 Ti-In— Zn-0/금속 박막 (Ag)/Ti— In- Zn-0 3층 구조 박막의 각 층의 다양한 두께쎄 따른 면 저항 및 투과도 거동 및 바 람직한 실시예를 나타내는 그래프다.
<66> 도 12는 본 발명의 다른 실시 예에 따른 IT0 투명전극 및 Ti— In-Zn— 0/금속 박막 (Ag)/Ti-In-Zn— 0 3층 구조 투명전극의 외부 구부림에 대한 초기저항변화 그래 프를 나타낸다. ,
<67>
【발명의 실시를 위한 최선의 형태】
<68> 본 발명에서 사용되는 용어는 가능한 현재 널리 사용되는 일반적인 용어를 선택하였으나, 특정한 경우는 출원인이 임의로 선정한 용어도 있는데 이 .경우에는 단순한 용어의 명칭이 아난 발명을 실시하기 위한 구체적인 내용에 기재되거나 사 용된 의미를 고려하여 그 의미가 파악되어야 할 것이다.
<69> 이하, 첨부한 도면에 도시된 바람직한 실시 예들을 참조하여 본 발명의 기술 적 구성을 상세하게 설명한다. .
<70> 먼저, 도 2는 본 발명의 일실시 예에 따른 Ti-In-Zn-0 플렉시블 염료감응형 태양전지용 투명전극 및 금속삽입형 3층구조 투명전극의 제조방법에 대한 전체 공 정도다.
<71> 도 2를 참조하여 설명하면 ..본 발명의 일실시 예에 따른 플렉시블 염료감웅 형 태양전지용 투명전극의 제조방법은 플렉시블 투명기판을 준비하는 단계 (S100) 및 상기 기판상에 Ti 및 IZ0를 동시에 증착하여 Ti-In-Zn-0 박막을 형성하는 단계 (S200), 본 발명의 다른 실시예인 전기적 특성이 매우 우수한 초고전도도 Ti-In- Zn-0/Ag 혹은 Cu/Ti-In-Zn-03충구조 투명전극을 제조하는 단계 (S300)를 포함한다.
<72> 한편, 상기 플렉시블 (flexible) 투명기판을 준비하는 단계 (S100)는 유연성을 갖는 다양한 투명기판을 이용할 수 있으나, 본 발명의 일실시 예에 있어서는 폴리 에테르술폰 (PES:polyethersulphone), 폴리아크릴레이트 (PAR:polyacrylate) , 폴리에 테르이미드 (PEI:polyetherimide), 폴리에틸렌나프탈레이트 (PEN:polyethyelenen napthalate), 폴리에틸렌테레프탈레이트 (PET: polyethyeleneterepthalate) , 폴리페 닐렌설파이드 (polyphenylene sulf ide:PPS), .폴리아릴레이트 (polyal lylate), 폴리아 미드 (PI:polyamide), 폴리이미드 (polyimide) , 폴리카보네이트 (PC), 셀롤로오스 트 리아세테이트 (TAC), 셀롤로오스 아세테이트 프로피오네이트 (cellulose acetate propinonate AP)로 이루어진 군에서 선택된 어느 하나를 이용하였다.
<73> 그러나 본 발명의 가장 바람직한 실시 예에 있어서는 상기 투명기판들 중 폴 리에테르술폰 (PES:polyethersulphone)을 이용하였다. <74> 한편, 플렉시블한 상기 투명기판은 함습를을 낮추기 위해 일정은도로 열처리 되는데ᅳ 본 발명의 바람직한 실시 예에 있어서는 오본에서 60¾로 30분 ~ 60분 열 처리하여 함습률을 낮추었다.
<75> 물론, 상기 방법 외에 함습를을 낮추기 위한 다양한 방법이 사용될 수 있음 은 물론이다.
<76> 또한, 기판 혹은 Ti;Dye층과의 부착력 향상을 위하여 UV ozone 혹은 02 플라 즈마 전처리 되는데 ᅳ 본 발명의 바람직한 실시 예에 있어서는, 02 플라즈마를 이용, 02 50sccm, 공정압력 20mTorr, 플라즈마 power 150W, 90초 전처리하여 , 부착력 특성 을 향상시켰다.
<77> 다음으로 상기 기판상에 Ti 및 IZ0를 동시에 증착하여 Ti-In-Zn-0 박막을 형 성하는 단계 (S200)로, 다양한 증착 방식으로 상기 Ti-In-Zn-0 박막을 형성할 수 있 으나, 본 발명의 바람직한 실시 예에 있어서는 F/DC magnetron 방식의 sputter를 이용하여 Ti 및 IZ0를.동시에 증착하였다.
<78> 이에 대해 본 발명의 일실시 예에 따른 Ti— In-Zn-0 박막 형성을 위한 증착 공정의 개략도인 도 3을 참조하여 상세히 설명하면, 먼저 제 1 타겟으로 사용될 IZ0 를 상기 투명기판과 일정거리가 유지되도록 위치시키고, 제 2 타겟으로 사용될 Ti를 상기 제 1 타겟과 대향되고 상기 투명기판과 일정거리가 유지되도록 위치시킨다.
<79> 이때, 상기 IZ0는 다양한 조성비로 이루어질 수 있으나, 본 발명의 바람직한 실시 예에 있어서는 In20390wt% 및 ZnO 10^%의 조성비를 갖는다.
<80> 한편, 상기 투명기판상에는 상기 투명기판이 완전히 노출되지 않도록 하기 위하여 일정간격의 마스크 (mask)가 복 수개 형성되어 있다.
<81> 본 발명의 바람직한 실시 예에 있어서는 상기 투명기판이 총 11개소가 노출 되도록 상기 마스크를 형성하였다.
<82> 이후, 상기 RF magnetron 방식의 Combinatorial sputter를 이용하여 Ti 및
IZ0를 동시에 증착하게 되면, 상기 투명기판의 노출부부분인 ① ~ ⑩은 상기 TL 및
IZ0의 조성이 각각 다른 Ti-Inᅳ Zn-0 박막이 형성된다.
<83> 즉, ①에서 ®쪽으로 갈수록 Ti 함량이 증가하게 되며, 반대로 In 함량이 감 소된 조성비를 갖는 11개의 Ti-In-Zn-0 박막이 형성된다.
-<84> 이와 관련하여 본 발명의 일실시 예에 따른 상기 11개의 Ti -In-Zn— 0 박막의 조성비는 아래 [표 1]과 같다
<85> 이와 관련하여, 본 대상기술인 Tiᅳ In— Znᅳ 0 박막의 원소의 구성비는 Ti 함량 4 ~ 34at%, Zn 함량, 9 ~ 17at%, In 함량 56 ~ 79 %안 것이 바람직한데, Ti 함량 증가에 따라서,.. Zn 함량은 큰 변화가 없으나, 상대적으로 값비싼 In 함량은 크게 줄어드는 경향을 보여, 경제적인 염료감웅 태양전지용 투명전극 제작이 가능하다.
<86> 【표 1】
Figure imgf000011_0001
<87>
<88> 한편, 본 발명의 일실시 예에 따른 박막을 형성하는 단계 (S200)는 다양한 공 정 조건하에서 아루어질 수 있으나, 본 발명의 바람직한 실시 예에 있어서는 온도 상승없이 상온 또는 저온에서 수행하였으며. 고진공 (Low 10— 6Pa) 상태에서 박막을 형성하였다. 실제로 최소의 면저항을 나타내는 Ti-In-Zn— 0 조성비는 공정조건에 따 라서 변화하는 산소를 쎄외하고, 구성 금속원소의 조성비는. Ti 8at%, In 76at%, Zn 16 %의 조성비에서 최소의.면저항을 나타냈다 [도 5 참조].
<89> 아울러 , 본 발명의 바람직한 실시 예에 따른 박막 형성 조건을 아래 [표 2]
에 정리하였다.
<90> 【표 2】
Figure imgf000011_0002
<9I>
<92> 이때, 상기 [표 2]의 Dts는 상기 투명기판과 제 1 및 제 2 타겟과의 거리를 의 미한다.
<93> 또한, 제조된 Ti-In— Zn-0 박막의 두께는 염료감웅형 태양전지용 투명전극으 로서, 우수한 면저항, 투과도 특성을 나타낼 수 있도록, 최소 두께 150 - 300nm 두 께 범위로 제작한다..
<94> 투명전극의 두께가 lOOnni 이하인 경우에는, 면저항이 ΙΟΟΩ /口 이상으로 매 우 높아지고, 플렉시블 염료감웅형 태양전지에 적용시, Ti;Dye층과의 sealing 및 플렉시블 기판의 수분 침투 등의 문제가 발생하여, lOOnm 이하의 얇은 박막은 이용 할 수 없기 때문이다. 특히, Ti-In-Zn-0 박막의 두께가 50讓 이하인 경우에는, 투 과도는 90% 이상으로 우수하나, 면저항이 500 Ω/ᄆ 이상으로 매우 커서, 압축식 터 치패널용으로는 이용이 가능하지만ᅳ 고효율 염료감웅형 태양전지에는 이용할 수 없 다.
【발명의 실시를 위한 형태】
<95> 이하에서는 본 발명의 다른 실시 예에 따른 제조된 Ti-In— Zn-0 박막을 이용 하여 금속삽입형 3층구조형 플렉시블 염료감웅형 태양전지용 투명전극의 제조방법 에 대해 상세히 설명한다.
<96> 먼저, 본 발명의 다른 실시 예에 따른 전기적 특성이 .매우 우수한 초고전도
도 Ti-In-Zn-0/Ag 혹은 Cu/Ti-In-Zn-0 3층구조 투명전극의 제조방법은 투명기판을 준비하는 단계, 상기 투명기판상에 Ti 및 IZ0를 동시에 증착하여 게 1 Ti-In-Zn-0 박막을 형성하는 단계, 상기 제 1 Ti-In-Zn-0 박막 상부에 Au 및 Cu 등의 금속 박막 을 형성하는 단계 및 상기 금속막의 상부에 Ti 및 IZ0를 동시에 증착하여 제 2 Ti- In-Zn-0 박막을 형성하는 단계를 포함한다.
<97> 이때, 상기 투명기판은 다양한 투명기판을 이용할 수 있음은 물론이나. 본 발명의 바람직한 실시 예에 있어서는 유리기판, 폴리에테르술폰 ( PES: po 1 ye t he r sit 1 phone ) , 폴리아크릴레이트 (PAR:polyacrylate) , 폴리에테르이미드 (PEI'-polyetherimide) , 폴리에틸렌나프탈레이트 (PEN:polyethyelenen napthalate) , 폴리에틸렌테레프탈레이트 (PET: polyethyeleneterepthalate) , 폴리페닐렌설파이드 (polyphenylene sul f ide-'PPS) , 폴리아릴레이트 (polyallylate) . 폴리아미드 (PI:polyaniide), 폴리이미드 (polyii ide), 폴리카보네이트 (PC). 셀를로오스 트리아 세테이트 (TAC), 셀를로오스 아세테이트 프로피오네이트 (cellulose acetate propinonate AP)로 이루어진 군에서 선택된 어느 하나를 이용하였다.
<98> 아울러 상기 투명기판은 본 발명의 일실시 예에서 설명한 함습를을 낮추기 위한 열처리 공정 또는 기판.이나 Ti ; Dye층과의 부착력 향상을 위하여 UV ozone이 나 플라즈마 전처리 중 하나 이상을 더 수행하는 공정을 포함할 수 있다.
<99> 그리고 상기 제 1 및 제 2 Ti-In-Zn-0 박막을 형성하는 단계는 본 발명의 일실 시 예에서 설명한 바와 동일하다. 그러나, 금속박막이 삽입된 고전도도 투명전극의 경우, 태양전지용 투명전극으로 이용될 수 있도록, Ag 및 Cu 동의 금속이 삽입된 3 층구조 투명전극의 총 두께가 상기 제 1 및 제 2 Ti-In-Zn-0 박막 및 삽입되는 금속 의 두께를 포함하여, 150 ~ 300nm 두께 사이에서 최적화 될 수 있도록 투명전극을 제조해야 한다. .
상술된 바와 같이 투명전극의 두께가 lOOnm 이하인 경우에는, 면저항이 100 Ω/D 이상으로 매우 높아지고, 플렉시블 염료감웅형 .태양전지에 적용시,. Ti;Dye층 과의 sealing 및 플렉시블 기판의 수분 침투 등의 문제가 발생하여, lOOnm 이하의 얇은 박막은 이용할 수 없기 때문이다.
한편, 본 발명의 다른 실시 예에 따른 상기 금속 박막을 형성하는 단계는 다 양한 방식으로 형성될 수 있으나, 본 발명의 바람직한 실시 예에 있어서는 RF magnetron 방식의 Combinatorial sputter를 이용하였'다.
이때 상기 금속은 Al, Au 등의 다양한 금속을 이용하여,박막을 형성할 수 있 음은 물론이나, 본 발명의 바람직한 실시 예에 있어서는 kg 또는 Cu를 이용하여 상 기 금속 박막을 형성하였다ᅳ 특히. 이러한 Ag 또는 Cu 등의 얇은 금속 박막은 산화 물 투명전극 사이에 삽입, 금속 특유의 연성을 증가시켜, 외부 스트레스에 의한 기 판 구부림시. 투명전극의 구부림에 대한 저항성을 증가시켜주는 역할을 수행한다. 한편, 상기 박막들을 형성하기 위한 공정 조건을 아래 [표 3]에 정리하였다.
【표 3]
Figure imgf000013_0001
이때, 상기 [표 3]의 Dts는 상술한 바와 동일하다.
아울러, 3충구조 투명전극 박막들의 총 두께는 일반적인 태양전지용 투명전 극의 두께 허용치인 300nm 이하에서 조절되어야 하며 . 본 발명의 바람직할 실시 예 에 있어서는 상기 제 1 Ti-In-Zn-0 박막은 lOlOOnni, 상기 게 2 Ti-In-Zn一 0 박막은 30~80nm 그리고 상기 금속 박막은 5~25ηιτι의 두께로 형성하였다. 고전도도 3층구조 투명전극의 총 두께의 바람직한 실시예는 15(K300nm이다.
이하에서는 첨부된 도면을 참조하여 본 발명에 따른 효과에 대해 상세히 설 명한다 .
먼저 . 도 4는 본 발명의 일실시 예에 따른 제조된 Ti— In-Zn-0 박막의 각각의 구성원소인 Ti, In, Zn 원소의 박막내 조성범위를 나타내는 다이어그램이다. 도 4에 서 Ti 함량은 Ti 방향으로 접근 시. 증가하게 되며, 이렇게 되면 동시쎄 In 함량 은 줄어들게 되지만, 한편 Zn 함량은 In 할량 변화에 비해서는 큰 변화는 없다. 이 것은 Ti-In— Zn-0 박막에서 Ti 함량이 증가할수록 값비싼 희토류 In 함량을 즐일수 있어. IT0에 비하여 경제적인 염료감웅 태양전지용 투명전극 제작이 가능함을 나타 낸다. 、
도 5는 본 발명의 일실시 예에 따른 Ti-In-Zn-0 박막의 Ti 함량에 따른 면 저항변화를 나타낸 그래프다.
도 5를 참조하면. Ti가 많이 함유될수록 값비싼 In소모량을 줄여줄 수 있지 만 저항이 높아지는 경향을 보이고 있으며, Ti가 8at% 정도일 때 면 저항이 가장 낮은 수치 (19ohm/sQ)를 보여주기 때문에 본 발명의 바람직한 실시 예에 있어서는 상기 투명기판상에 Ti-In-Zn-0박막 형성시 8 at% Ti 함량을 갖도록 하였다. 실험결 과. Ti-In-Zn-0의 경우, 공정조건에 따라서 변화하는 산소를 제외한 구성 금속원소 의 조성비는 실험 결과 상, Ti 8at , In 76at%. Zn 16 %의 조성비에서 최소의 면 저항을 가지는 플렉시블 염료감응형 태양전지용 투명전극의 제조가 가능하였다. ^ 한편 , 도 6a 는 본 발명의 일실시 예에 따른 Ti-In-Zn-0 박막의 가시광선영 역 대의 광학적 특성을 보여주는 그래프미며. 도 6b 는 본 발명의 일실시 예에 따 른 Ti— Inᅳ Zn-0 박막의 자외선 -가시광선-적외선 영역 대의 광학적 특성을 보여주는 그래프다.
일반적인 태양전지의 경우, 태양 광이 입사될 때 높은 투과도를 요구하고 있 다, '
본 발명의 일실시 예에 따른 Ti— In-Zn-0 박막의 경우. 도 6a 및 5b에서 알 수 있듯이 가시광 및 근적외선 영역 대에서 80%이상의 높은 투과도를 보이고 있으 며, 특정 파장영역에서는 95% 이상의 고 투과도를 보이고 았다.
도 7은 본 발명의 일실시 예에 따른 Ti 함량에 따른 Ti-In-Zn-0 박막의 표면 거칠기 I½s 값을 보여주는 그래프이다.
도 7을 참조하면. 본 발명에 따른 Ti-In-Zn-0 박막은 Ti함량에 큰 영향 없이 2nm(RMS) 이하의 낮은 표면 거칠기를 나타내고 있으며, 이는 박막의 표면 거칠기가 상당히 편평한 (flat) 상태임을 의미한다.
도 8은 본 발명의 일실시 예에 따른 Ti-In-Zn-0.박막의 Ti함량에 따른 XRD 데이터를 보여주는 그래프이다.
<ι ΐ8> 도 8을 참조하면, 본 발명에 따른 Ti-In-Zn-0 박막은 조성비와 상관없이 전 샘플에 걸쳐 비정질 구조를 가지는 박막 특성을 보여주고 있다.
<119> 이는 상기 박막이 결정질 구조를 가지게 되면 외부 구부러짐에 대한 저항성 이 낮아서 박막 내 crack 및 dislocation 등의 결함이 생기게 되나, 본 발명의 일 실시 예에 따른 Ti-In-Zn-0 박막은 비정질 구조로서. brittle 한 결정질 세라믹 박 막에 비하여 구부러짐에 대한 향상된 저항성을 갖고 박막 내 크렉 또는 dislocation 등의 결함의 발생을 방지할 수 있는 우수한 효과가 있음을 나타낸다. <120> 도 9a은 본 발명의 일실시 예에 따른 -Ti-In-Zn-0 박막과 플렉시블 PES 기판 과의 부착력 tape test 결과를 보여주는 이미지다ᅳ
<i2i> 도 9b은 본 발명의 일실시 예에 따른 Ti— Inᅳ Zn-0 박막과 Ti:Dye 충과의 부착 력 tape test 결과를 보여주는 이미지다.
<|22> 도 9a 및 b를 참조하면, PES 기판위에 증착된 Ti-In-Zn-0 박막은 스카치 테 이프에 의하여 제거되지 않았으며, 또한. Ti-In-Zn— 0 박막에 코팅된 Ti;Dye paste 또한 스카치 테이프 테스트 결과. 제거되지 않았다. 이러한 결과는 Ti-In-Zn— 0 박 막이 스카치 테이프에 비해. PES 기판 및 Ti 나노 결정소재 /염료층과의 부착력이 매 우 우수함을 나타내주는 결과이다.
<123> 도 10a는 본 발명의 다른 실시 예에. 따른 유리 기판 상에 Ti-In— Zn-
0(10~100nm 두께 ) /Ag(5~25nm 두께 ) /Ti-In— Zn— 0(3C卜 80nm 두께 ) 3층 구조 투명전극의 모식도를 나타낸다.
<|24> 도 10b는 본 발명의 바람직한 실시 예에 따른 총 150nm 두께의 Ti-In— Znᅳ 0/
금속 박막 (Ag)/Ti-In-Zn-0 3층 구조 투명전극의 실제 전자현미경 이미지를 나타낸 다.
<125> 도 11는 본 발명의 다른 실시 예에 따른 Ti-In-Zn-0/금속 박막 (Ag)/Ti-In-
Zn-0 3층 구조 박막의 각 충의 다양한 두께에 따른 면 저항 및 투과도 거동 및 바 람직한 실시예를 나타내는 그래프다.
<126> 도 11을 참조하면, 본 발명의 바람직한 실시 예에 따른 Ti-In-Zn-
0 ( lOOnm ) / Ag ( 8nm ) /T i - 1 n-Zn-0 ( 42nm ) 3중 구조 박막은 6.63ohi)i/sq의 낮은 면 저항을 보이고 있으며, 아울러 투과도에 있어서도 최고 90>에 가까운 높은 투과도를 보이 고 있음을 알 수 있다,
<127> 도 12는 본 발명의 다른 실시 예에 따른 Ti-In-Zn-0/금속 박막 (Ag)/Ti-In-
Zn-03층 구조 투명전극의 외부 구부림에 대한 초기저항변화 그래프를 나타낸다. <128> 도 12에 도시된 바와 같이 외부 구부림에 대한 저항력 시험장치로 평가를 한 결과, 플렉시블 PES 기판 위에 증착된 ITO 박막의 경우에는 초기저항에 비하여, 그 면저항이 150사이클 아후, 6배 정도 상승하여, 플렉시블 염료감웅 태양전자에 사용 하기 어려우나, 본 발명에서 제안한 Tiᅳ In— Zn-0 박막의 경우, 동일한 외부 구부림 시험 조건 (시편 사이즈 30 X 1 丽, 시편 양끝단 직선 거리 25瞧, bending speed : 20隱 /sec, bending 거리 5麵)하에서, 저항 변화치가 거의 없어. 외부 구부림에 대한 기게적 저항치가 기존 IT0 박막에 비하여 매우 우수함을 확인할 수 있으며, 플렉시블 염료감웅형 태양전지에 매우 적합한 투명전극 임을 확인할 수 있었다.
<129> 결과적으로 본 발명의 실시 예들에 따른 플렉시블 염료감웅형 태양전지용 투 명전극은 기본적으로 Ti— In- -0 박막이 비정질이며, Ag와 같은 얇은 금속박막을 삽입하여. 기판의 연성을 증가시키게 되어, 플렉시블 (flexible)한 기판에 적용시, 외부구부림에 대한 저항성을 크게 향상시킬 수 있으며 , 상온 또는 저온에서 증착됨 에도 불구하고 높은 전도도 및 투과도를 갖고 비교적 저렴한 비용으로 염료감응형 태양전자용 투명전극을 생산할 수 있다.
<130> 그리고 투명전극에 Ti 을 함유하고 있어, 기존의 FT0 투명전극에 비하여,
Ti:Dye 염료층 및 전해질과의 계면특성 및 부착력, 표면'거칠기 성능이 더욱 향상 된 염료감응형 태양전지용 투명전극 및 이의 제조방법의 제공할 수 있는 효과가 있 다. .
<i3i> 아울러 기존의 ΙΤ0 및 FT0가 갖는 면 저항 (15〜 25Q/sq)에 비하여, 면 저항
δΩ/sq 이하를 갖는 우수한 효과가 있어 고효율 염료감웅 태양전지 제조에 적합한 투명전극이다.
<132>
<133> 이상에서 살펴본 바와 같이 본 발명은 바람직한 실시 예를 들어 도시하고 설 명하였으나, 상기한 실시 예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양 한 변경과 수정이 가능하다 할 것이다.
<134>
<135>
<136>

Claims

【청구의 범위】
【청구항 1】
ᅳ플렉시블 투명기판을 준비하는 단계; 및
상기 기판상에 Ti 및 IZ0를 동시에 증착하거나 Ti-In-Zn-0 단일 타켓을 이용 하여 Ή-Ιη-Ζη-O 박막을 형성하는 단계;를 포함하는 플렉시블 염료감응형 태양전지 용 Ti-In-Znᅳ 0투명전극의 제조빙;법.
【청구항 2】
제 1 항에 있어서,
상기 투명기판은 폴리에테르술폰 (PES:polyethersulphone), 폴리아크릴레이트 (PAR:polyacrylate), 폴라에테르이미드 (PEI :polyether imide), 폴리에틸렌나프탈레 이트 ( PEN: po 1 ye t hye 1 enen nap t ha 1 a t e ), 폴리에틸렌테레프탈레이트 ( PET : polyethyeleneterepthalate) , 폴리페닐렌설파이드 (polyphenylene sul f ide-'PPS) . 폴 리아릴레이트 (polyallylate). 폴리아미드 (PI :polyaniide) , 폴리이미드 (polyimicle) , 폴리카보네이트 (PC), 셀를로오스 트리아세테이트 (TAC). 셀를로오스 아세테이트 프 로피오네이트 (eel lulose acetate propinonate:CAP)로 이루어진 군에서 선택된 어느 하나인 것을 특징으로 하는 플렉시불 염료감웅형 태양전지용 Ti— In-Zn-0 투명전극 의 제조방법.
【청구항 3】
제 2 항에 있어서,
상기 투명기판은 함습률을 낮추기 위한 일정온도 열처리 또는 기판이나 Ti;Dye층과의 부착력 향상을 위한 UV ozone 이나 02 플라즈마 전처리 중 하나 이상 이 수행되는 것을 특징으로 하는 플렉시블 염료감웅형 태양전지용 Ti-In-Zn-0 투명 전극의 제조방법 .
【청구항 4】
제 1 항에 있어서,
상기 박막을 형성하는 단계는 RF/DC magnetron 방식의 sputter를 이용하는 것을 특징으로 하는 플렉시블 염료감웅형 태양전지용 Tiᅳ Ιη-Ζη— 0 투명전극의 제조 방법 ·
【청구항 5】 .
제 4 항에 있어서,
상기 박막을 형성하는 단계는
온도 : 실은, ,
gas flow(sccm) : Ar ᅳ 24.8. 02 - 0.2, 공정 power (W) : Ti - 100, IZ0 - 200.
공정압력 (Pa) : 0.17,
Dts (觀 1) : 150
과 같은 공정조건을 포함하여 조절가능한 온도조건, 가스량 및 비 , 공정 파 워, 공정 압력, Dts 에서 수행 가능한 것을 특징으로 하는 플렉시블 염료감응형 태 양전지용 Ti-In-Zn-0 투명전극의 제조방법.
[청구항 6】
제 1 항 내지 제 5 항 중 어느 한 항의 제조방법으로 제조된 것을 특징으로 하는 플렉시블 염료감웅형 태양전지용 Ti— In-Zn-0 투명전극.
【청구항 7】
제 6 항에 있어서,
상기 플렉시블 염료감웅형 태양전지용 Ti-In-Zn— 0 투명전극에 포함된 Ti-In_ Zn-0 박막의 공정조건에 따라 변화하는 산소를 제외한 구성 금속원소의 조성비가 Ti 4 ~ 3'4at%, Zn 9 ~ 17at%, In 56 ~ 79at%에서 우수한 전기적 특성을 갖는 것을 특징으로 하는 플렉시블 염료감웅형 태양전지용 Ti-In-Zn— 0 투명전극 .
【청구항 8】
. 7 항에 있어서.
상기 플렉시블 염료감웅형 태양전지용 Ti-In-Zn— 0 투명전극에 포함된 Ti-In- Zn-0 박막의 공정조건에 따라 변화하는 산소를 제외한 구성 금속원소의 조성비가 Ti 8at%, In 76at%, Zn 16at%에서 최소의 면저항을 갖는 것을 특징으로 하는 플렉 시블 염료감웅형 태양전지용 Ti-In-Zn— 0 투명전극. .
【청구항 -9】
투명기판을 준비하는 단계 상기 투명기판상에 Ti 및 IZ0를 동시에 증착하거나 Ti-In-Zn-0 단일 타겟을 이용하여 제 1 Ti-In-Zn-0 박막을 형성하는 단계 ;
상기 제 1 제 1 Ti-In-Zn-0 박막 상부에 금속 박막을 형성하는 단계 ; 및 상기 금속 박막의 상부에 Ti 및 IZ0를 동시에 증착하거나 Ti-In— Zn-0 단일 타겟을 이용하여 제 2 Ti-In-Zn-0 박막을 형성하는 단계;를 포함하는 플렉시블 염료 감웅형 태양전지용 금속 삽입형 3층 구조 고전도 투명전극의 제조방법.
[청구항 10】
제 9 항에 있어서 ,
상기 투명기판은 유리기판, 폴리에테르술폰 (PES:polyethersulphone), 폴리아 크릴레이트 (PAR:polyacrylate). 폴리에테르이마드 (PEI :polyetheriniide) , 폴리에틸 렌나프탈레이트 ( PEN: po 1 ye t hy e 1 enen napthalate), 폴리에틸렌테레프탈레이트 ( PET: polyethyeleneterepthalate) , 폴리페닐렌설파이드 (polyphenylene sulf ide'-PPS) . 폴 리아릴레이트 (polyallylate), 폴리아미드 (PI :polyaniide) , 폴리이미드 (polyimi(le) . 폴리카보네이트 (PC), 셀롤로오스 트리아세테이트 (TAC),' 셀를로오스 아세테이트 프 로피오네이트 (cellulose acetate propinonate :CAP)로 이루어진 군에서 선택된 어느 하나인 것을 특징으로 하는 플렉시블 염료감웅형 태양전지용 금속 삽입형 3충 구조 고전도 투명전극의 제조방법 .
【청구항 11】
제 9 항에 있어서.
상기 금속 박막은 Ag, Cu, Al . Au 를 포함하는 고전도도 금속그룹에서 선택 된 금속으로 이루어지는 것을 특징으로 하는 플렉시블 염료감웅형 태양전지용 금속 삽입형 3층 구조 고전도 투명전극의 제조방법 . -
[청구항 12】
제 9 항에 있어서 ,
상기 제 1 제 1 Ti-In-Zn-0 박막ᅳ 제 2 제 1 Ti-In-Zn-0 박막 및 금속 박막은 RF magnetron 방식의 sputter를 이용하는 것을 특징으로 하는 플렉시블 염료감응형 태 양전지용 금속 삽입형 3층 구조 고전도 투명전극의 제조방법 .
【청구항 13] 제 12 항에 있어서,
상기 각각의 박막을 형성하는 단계는
<제1 Ti-In-Zn-0박막 및 제 2 Ti-Ιη—Ζη-Ο박막 >
은도 : 실온,
. gas f low(sccm) : Ar - 24.8, 02 - 0.2, 공정 power (ft') : Ti - 100, IZ0 - 200,
공정압력 (Pa) : 0.17,
Dts (腿 1) : 150
<금속박막>
온도 : 실온, .
gas f low(sccm) : Ar - 20, '
공정 power (W) : 고전도금속 - 100,
공정압력 (Pa) : 0.14,
Dts (mm) : 150
과 같은 공정조건을 포함하여 조절 가능한 온도조건. 가스량 및 비, 공정 파 워, 공정 압력, Dts 에서 수행 가능한 것을 특징으로 하는 플렉시블 염료감웅형 태 양전지용 금속 삽입형 3층 구조 고전도 투명전극의 제조방법 .
【청구항 14】
제 9 항에 있어서,
상기 제 1 Ti-In-Zn-0 박막은 10~100讓, 상기 제 2 Ti-In-Zn-0 박막은 30~80nm 그리고 상기 금속 박막은 5~25nm의 두께로 형성되는 것을 특징으로 하는 투명전극 의 제조방법 . .
【청구항 15】
제 9 항 내지 제 14 항 중 어느 한 항의 제조방법으로 제조된 것을 특징으로 하는 플렉시블 염료감응형 태양전지용 금속 삽입형 3층 구조 고전도 투명전극.
[청구항 】
제 15.항에 있어서,
상기 투명전극의 두께는 150 내지 300nm인 것을 특징으로 하는 플렉시블 염 료감웅형 태양전지용 금속 삽입형 3층 구조 고전도 투명전극 .
PCT/KR2012/003425 2011-05-02 2012-05-02 플렉시블 염료감응형 태양전지용 Ti-In-Zn-O 투명전극 및 이를 이용한 금속 삽입형 3층 구조 고전도도 투명전극과 이의 제조방법 WO2012150805A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280003230.2A CN103154301B (zh) 2011-05-02 2012-05-02 用于染料敏化太阳能电池的柔性Ti-In-Zn-O透明电极、使用它的高电导率的插入有金属的三层透明电极及其制造方法
US13/822,700 US9570242B2 (en) 2011-05-02 2012-05-02 Flexible Ti—In—Zn—O transparent electrode for dye-sensitized solar cell, and metal-inserted three-layer transparent electrode with high conductivity using same and manufacturing method therefor
US15/394,993 US10395845B2 (en) 2011-05-02 2016-12-30 Flexible Ti—In—Zn—O transparent electrode for dye-sensitized solar cell, and metal-inserted three-layer transparent electrode with high conductivity using same and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110041687A KR101232717B1 (ko) 2011-05-02 2011-05-02 Ti-In-Zn-O 투명전극 및 이를 이용한 금속 삽입형 3층 구조 고전도도 투명전극과 이의 제조방법
KR10-2011-0041687 2011-05-02

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/822,700 A-371-Of-International US9570242B2 (en) 2011-05-02 2012-05-02 Flexible Ti—In—Zn—O transparent electrode for dye-sensitized solar cell, and metal-inserted three-layer transparent electrode with high conductivity using same and manufacturing method therefor
US15/394,993 Division US10395845B2 (en) 2011-05-02 2016-12-30 Flexible Ti—In—Zn—O transparent electrode for dye-sensitized solar cell, and metal-inserted three-layer transparent electrode with high conductivity using same and manufacturing method therefor

Publications (2)

Publication Number Publication Date
WO2012150805A2 true WO2012150805A2 (ko) 2012-11-08
WO2012150805A3 WO2012150805A3 (ko) 2013-01-03

Family

ID=47108129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/003425 WO2012150805A2 (ko) 2011-05-02 2012-05-02 플렉시블 염료감응형 태양전지용 Ti-In-Zn-O 투명전극 및 이를 이용한 금속 삽입형 3층 구조 고전도도 투명전극과 이의 제조방법

Country Status (4)

Country Link
US (2) US9570242B2 (ko)
KR (1) KR101232717B1 (ko)
CN (1) CN103154301B (ko)
WO (1) WO2012150805A2 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101232717B1 (ko) * 2011-05-02 2013-02-13 한국생산기술연구원 Ti-In-Zn-O 투명전극 및 이를 이용한 금속 삽입형 3층 구조 고전도도 투명전극과 이의 제조방법
KR101477037B1 (ko) * 2013-07-31 2014-12-31 주식회사 상보 표면구조화 azo 글래스 투명전극과 이중 코팅 금속 기판을 구비한 금속 플렉시블 염료감응 태양전지 및 그 제조방법
CN104992840B (zh) * 2014-12-29 2018-08-07 中国科学院物理研究所 量子点敏化太阳电池及其制备方法
CN106868464A (zh) * 2017-01-04 2017-06-20 兰州空间技术物理研究所 一种导电高透光柔性薄膜窗口材料

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10100303A (ja) 1996-06-07 1998-04-21 Nippon Sheet Glass Co Ltd 透明導電膜付き基板およびそれを用いた表示素子
JP2000067657A (ja) * 1998-08-26 2000-03-03 Internatl Business Mach Corp <Ibm> 赤外線透過に優れた透明導電膜及びその製造方法
US6743488B2 (en) * 2001-05-09 2004-06-01 Cpfilms Inc. Transparent conductive stratiform coating of indium tin oxide
CN100585752C (zh) * 2003-05-20 2010-01-27 出光兴产株式会社 非晶透明导电膜及其原料溅射靶、非晶透明电极衬底及其制造方法、及液晶显示器用滤色器
KR100621918B1 (ko) * 2004-06-10 2006-09-14 학교법인 포항공과대학교 투명 전도성 나노막대를 전극으로 포함하는 발광소자
US20060214567A1 (en) * 2005-03-25 2006-09-28 Yongchun Luo Organic electroluminescent element
DE102006046312B4 (de) 2006-09-29 2010-01-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Solarzellen mit stabilem, transparentem und leitfähigem Schichtsystem
US20100084011A1 (en) * 2008-09-26 2010-04-08 The Regents Of The University Of Michigan Organic tandem solar cells
KR100986159B1 (ko) * 2008-12-22 2010-10-07 한국기계연구원 에너지 전환 효율이 향상된 유기 태양전지 및 이의 제조방법
KR20110001206A (ko) * 2009-06-29 2011-01-06 주식회사 미성포리테크 염료 감응형 태양 전지 및 그 제조 방법
KR20120062341A (ko) 2010-12-06 2012-06-14 한국전자통신연구원 산화인듐아연 투명 도전막 및 이의 제조방법
KR101232717B1 (ko) * 2011-05-02 2013-02-13 한국생산기술연구원 Ti-In-Zn-O 투명전극 및 이를 이용한 금속 삽입형 3층 구조 고전도도 투명전극과 이의 제조방법
BE1020676A3 (fr) * 2012-05-08 2014-03-04 Agc Glass Europe Dispositif photonique organique.

Also Published As

Publication number Publication date
US10395845B2 (en) 2019-08-27
KR20120123990A (ko) 2012-11-12
US9570242B2 (en) 2017-02-14
KR101232717B1 (ko) 2013-02-13
US20140109957A1 (en) 2014-04-24
WO2012150805A3 (ko) 2013-01-03
CN103154301A (zh) 2013-06-12
US20170110257A1 (en) 2017-04-20
CN103154301B (zh) 2015-06-10

Similar Documents

Publication Publication Date Title
CN107994118B (zh) 钙钛矿太阳能电池、双层金属电极及其制备方法
CN104979037B (zh) 一种热稳定性增强的透明导电薄膜及其制备方法和应用
KR101680928B1 (ko) 투명 전도성 산화물, 금속 및 산화물의 조합에 기초한 투명 전극
CN102779944B (zh) 一种透明导电薄膜
JP5458271B2 (ja) 色素増感太陽電池およびその製造方法
JP2005108467A (ja) 透明導電性シートおよびそれを用いた光増感太陽電池。
CN106252515A (zh) 一种含防渗透碳薄膜的高效稳定钙钛矿电池及其制备方法
JP3506080B2 (ja) 半導体電極およびその製造方法
US10395845B2 (en) Flexible Ti—In—Zn—O transparent electrode for dye-sensitized solar cell, and metal-inserted three-layer transparent electrode with high conductivity using same and manufacturing method therefor
Bu A simple annealing process to obtain highly transparent and conductive indium doped tin oxide for dye-sensitized solar cells
JP2005285472A (ja) 光電変換装置
TWI413130B (zh) Solar cells with positive transparent conductive oxide
JP2010055935A (ja) 色素増感型太陽電池
JP2019050106A (ja) 透明電極、それを用いた素子、および素子の製造方法
CN102544388B (zh) 一种基于碳纳米管/银/掺铝氧化锌结构的柔性电极
KR20150075173A (ko) 투명 전도성 산화물과 은 나노 와이어를 포함하는 투명 전극 및 그 제조방법
CN101267007A (zh) 超薄石墨片作衬底的碲化镉太阳电池
CN103203912B (zh) 一种新型azo镀膜玻璃及其制备工艺
KR20120036655A (ko) 차단층을 포함하는 염료감응태양전지
CN102255052A (zh) 基于azo/碳纳米管/azo结构的柔性电极及其制备方法
CN216749949U (zh) 一种基于铋基金属电极的钙钛矿太阳能电池
CN113140353A (zh) 柔性透明导电膜及其制备方法和应用
Ginley et al. Development of solution-processed nanowire composites for opto-electronics
CN111816769A (zh) 钙钛矿电池及其制备方法
JP2012113839A (ja) 色素増感型太陽電池用金属薄膜、及び色素増感型太陽電池素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280003230.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12779302

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13822700

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12779302

Country of ref document: EP

Kind code of ref document: A2