[go: up one dir, main page]

WO2012002525A1 - シリコンウェーハの研磨方法 - Google Patents

シリコンウェーハの研磨方法 Download PDF

Info

Publication number
WO2012002525A1
WO2012002525A1 PCT/JP2011/065145 JP2011065145W WO2012002525A1 WO 2012002525 A1 WO2012002525 A1 WO 2012002525A1 JP 2011065145 W JP2011065145 W JP 2011065145W WO 2012002525 A1 WO2012002525 A1 WO 2012002525A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
silicon wafer
final
aqueous solution
weakly basic
Prior art date
Application number
PCT/JP2011/065145
Other languages
English (en)
French (fr)
Inventor
竜一 谷本
晋弥 佐土原
武 多久島
Original Assignee
株式会社Sumco
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Sumco filed Critical 株式会社Sumco
Priority to DE112011102252T priority Critical patent/DE112011102252T5/de
Priority to US13/807,082 priority patent/US20130095660A1/en
Priority to JP2012522710A priority patent/JP5622124B2/ja
Priority to KR1020127031269A priority patent/KR20130014588A/ko
Publication of WO2012002525A1 publication Critical patent/WO2012002525A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • B24B37/044Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor characterised by the composition of the lapping agent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02024Mirror polishing

Definitions

  • the present invention relates to a method for polishing a silicon wafer. Specifically, while supplying a polishing liquid, the silicon wafer and a polishing cloth are relatively rotated to polish at least the surface to be polished among the front and back surfaces of the silicon wafer.
  • the present invention relates to a polishing method for a silicon wafer.
  • CMP polishing the surface of a silicon wafer
  • CMP is performed by relatively rotating a silicon wafer and a polishing cloth while supplying a polishing liquid containing free abrasive grains such as silica particles in an alkaline aqueous solution.
  • CMP is known to provide a high flatness on the surface of a silicon wafer by combining a mechanical polishing action by free abrasive grains and a chemical polishing action by an alkaline aqueous solution.
  • the wafer surface is usually polished through a plurality of stages from rough polishing to final polishing.
  • the initial rough polishing is intended to polish the silicon wafer to the desired thickness, and the thickness of the silicon wafer after polishing is relatively high using a hard polishing cloth such as polyurethane. Polished to reduce variation and flatten.
  • the polishing process may be performed while changing the type of polishing cloth and the size of loose abrasive grains and dividing the polishing amount (removal allowance) of the silicon wafer into a plurality of steps (for example, 1 to 3 steps).
  • Final polishing is performed to improve the roughness of the surface of the silicon wafer, using a soft polishing cloth such as suede and a small size of loose abrasive grains, and a minute surface on the wafer surface called haze. Polishing is performed so as to reduce variation in roughness.
  • This finish polishing process may be divided into a plurality of stages while changing the type of abrasive cloth and the size of loose abrasive grains, as in the rough polishing process.
  • Patent Document 1 a chemical polishing liquid that does not contain an abrasive until after there is no latent scratch (such as micro scratches) generated by finish polishing with loose abrasive grains after finish polishing that includes an abrasive (abrasive grains). It has been proposed to polish a wafer while supplying a polishing cloth to a polishing cloth. Specifically, a wafer that has been final polished using a slurry containing loose abrasive grains is polished for about 30 minutes with a 0.2 wt% NaOH aqueous solution that does not contain an abrasive, and removed to a depth of 5 ⁇ m. Thus, it has been reported that the scratch image almost disappears by polishing the wafer surface.
  • An object of the present invention is to provide a silicon wafer polishing method capable of improving the haze level of the silicon wafer surface.
  • the haze level of the silicon wafer surface obtained by rough polishing can be improved to some extent.
  • the haze level on the surface of the silicon wafer after the final polishing using the loose abrasive grains greatly depends on the average particle diameter of the loose abrasive grains used, and the haze level can be improved as the fine grain size abrasive grains are used.
  • the average grain size of the abrasive grains is reduced, the dispersibility of the abrasive grains in the polishing liquid decreases and the abrasive grains agglomerate, which causes defects due to processing such as scratches on the silicon wafer surface. .
  • polishing can be performed only within the range of the average particle diameter that does not cause aggregation of the abrasive grains, and there is a limit to the haze level that can be improved by the final polishing.
  • the present inventors perform final polishing by polishing (final polishing) using a polishing liquid mainly composed of a weakly basic aqueous solution not containing free abrasive grains.
  • a polishing liquid mainly composed of a weakly basic aqueous solution not containing free abrasive grains.
  • the inventors have completed the present invention based on the following findings. That is, the haze level that can be achieved by final polishing without free abrasive grains depends on the alkali species and the alkali concentration in the chemical polishing liquid, and it is found that the haze value can be reduced by setting the alkali concentration to a low concentration.
  • the present invention has been completed.
  • At least one of the front and back surfaces of the silicon wafer is rotated by relatively rotating the polishing cloth and the silicon wafer while supplying the final polishing liquid containing loose abrasive grains to the polishing cloth. Finish polishing the surface, and after the final polishing, relatively rotating the polishing cloth and the silicon wafer while supplying the polishing cloth with a final polishing liquid mainly composed of a weakly basic aqueous solution containing no free abrasive grains.
  • the alkali concentration of the weakly basic aqueous solution of the final polishing liquid is adjusted to be lower.
  • the alkali concentration of the weakly basic aqueous solution of the final polishing liquid is 0.1 to 1000 ppm when the weakly basic aqueous solution is ammonia water, and the weakly basic aqueous solution is tetrahydroxide.
  • the aqueous solution is 0.1 to 100 ppm in the case of an aqueous methylammonium solution, and 0.1 to 500 ppm in the case where the weakly basic aqueous solution is a mixed aqueous solution of ammonia and ammonium bicarbonate. It is.
  • the invention described in claim 3 is the silicon wafer polishing method according to claim 1 or 2, wherein a water-soluble polymer is added to the final polishing liquid.
  • the water-soluble polymer is one or more of nonionic polymers and monomers, or one or more of anionic polymers and monomers.
  • Item 4. A method for polishing a silicon wafer according to Item 3.
  • the invention according to claim 5 is the method for polishing a silicon wafer according to claim 4, wherein the water-soluble polymer is hydroxyethyl cellulose.
  • the invention according to claim 6 is the silicon wafer polishing method according to claim 1, wherein the polishing cloth used in the final polishing is of a suede type.
  • the alkali concentration of the weakly basic aqueous solution is less than the alkali concentration reaching the haze value of the final polished surface of the silicon wafer.
  • the haze level of the final polished surface of the silicon wafer can be prevented from becoming worse than the haze level of the finished polished surface due to the alkaline etching action of the final polishing liquid containing a weak basic aqueous solution not contained as a main component.
  • the haze level can be further improved.
  • (A)-(c) is the principal part expanded sectional view of the silicon wafer which shows the change of the haze level according to the stage of abrasive grain grinding
  • (A)-(c) is a principal part expanded sectional view of the silicon wafer which shows the change of the haze level with time of the abrasive-free grinding
  • the method for polishing a silicon wafer of the present invention is to rotate the polishing cloth and the silicon wafer relative to each other while supplying a final polishing liquid containing free abrasive grains to the polishing cloth. At least the surface is finish polished, and after the final polishing, the polishing cloth and the silicon wafer are relatively rotated while supplying a final polishing liquid mainly composed of a weakly basic aqueous solution containing no free abrasive grains to the polishing cloth.
  • a final polishing method of the silicon wafer wherein the final polished surface of the silicon wafer has a haze value of the final polished surface of the silicon wafer, the haze value of the final polished surface of the silicon wafer.
  • the alkali concentration of the weakly basic aqueous solution of the final polishing liquid is adjusted to be lower than the value.
  • the point which can improve the haze level of the surface of the silicon wafer by which the silicon wafer is finish-polished by the silicon wafer polishing method of the present invention will be described in detail.
  • the final polishing liquid does not contain free abrasive grains, defects due to processing due to aggregation of free abrasive grains do not occur, and haze due to the limitation of usable abrasive grain size. There are no level restrictions.
  • a polishing liquid mainly composed of a weakly basic aqueous solution is used as a final polishing liquid, and the haze value of the surface of the final polished silicon wafer is the same as that of the final polished silicon wafer. It is important to polish the surface of the silicon wafer by adjusting the alkali concentration of the weakly basic aqueous solution so as to be lower than the haze value of the surface.
  • the secondary polishing and the tertiary polishing as the final polishing including the primary polishing as the rough polishing and performed by using the polishing cloth 13 are polished.
  • FIGS. 5 (a) to 5 (c) the secondary polishing and the tertiary polishing as the final polishing including the primary polishing as the rough polishing and performed by using the polishing cloth 13 are polished.
  • the fourth polishing as the final polishing is an abrasive-free polishing by an alkali etching action of a weakly basic aqueous solution that does not contain the free abrasive grains a.
  • the haze level of the final polished surface of the silicon wafer W is polished longer, the haze value can be lowered than that of the finished polished surface.
  • the weakly basic aqueous solution is one having a low ionization degree when a weakly basic substance is made into an aqueous solution, and is an ammonia aqueous solution, a mixed aqueous solution of ammonia and ammonium hydrogen carbonate, a tetramethylammonium hydroxide aqueous solution, a hydroxide.
  • ammonia aqueous solution a mixed aqueous solution of ammonia and ammonium hydrogen carbonate
  • a tetramethylammonium hydroxide aqueous solution a hydroxide.
  • Examples include tetraethylammonium aqueous solution.
  • ammonia when ammonia is made into an aqueous solution, it becomes ammonium hydroxide, and a part thereof is ionized into ammonium ions and hydroxide ions to show basicity.
  • the haze level can be reduced. This is because a weakly basic aqueous solution with a low alkali concentration flows in the radial direction of the wafer due to rotation of at least one of the silicon wafer and the polishing surface plate in the final polishing process, and the etching action in the depth direction of the silicon wafer. Also, it is presumed that the etching action in the centrifugal direction (wafer radial direction) is given priority, and the convex portions of the concave and convex portions which are haze components on the surface of the silicon wafer are selectively etched to reduce the haze level.
  • the haze level on the surface of the silicon wafer after the final polishing can be further reduced by adding a water-soluble polymer to the final polishing liquid. That is, the water-soluble polymer in the final polishing liquid adheres to the surface of the silicon wafer and functions to suppress the etching reaction.
  • the water-soluble polymer adhering to the convex part of the concavo-convex part which is a haze component on the surface of the silicon wafer is wiped off by contact with the polishing cloth, and the alkali etching of the convex part proceeds. It is presumed that the water-soluble polymer adheres and stays in the recesses of the concavo-convex part, which is a haze component, and the progress of alkali etching with respect to the dent is suppressed, and the selective etching action of the convex part advances.
  • the silicon wafer to be polished for example, a single crystal silicon wafer, a polycrystalline silicon wafer, or the like can be used. Moreover, an epitaxial silicon wafer, an SOI silicon wafer, etc. may be used. Examples of the diameter of the silicon wafer include 100 mm, 125 mm, 150 mm, 200 mm, 300 mm, and 450 mm.
  • the surface of the silicon wafer to be roughly polished may be the front surface, the back surface, or both.
  • rough polishing for example, a hard polishing cloth made of polyurethane or the like is used, and a rough polishing liquid containing loose abrasive grains (colloidal silica, diamond abrasive grains, alumina abrasive grains, etc.) having an average particle diameter of 30 to 100 nm is supplied to the polishing cloth.
  • a polishing liquid containing loose abrasive grains colloidal silica, diamond abrasive grains, alumina abrasive grains, etc.
  • polishing is performed so that the variation in thickness of the polished silicon wafer is small and flattened.
  • the type of polishing cloth and the size of the free abrasive grains contained in the rough polishing liquid may be changed, and the polishing amount of the polished surface of the silicon wafer may be polished in, for example, two or three steps.
  • an alkaline aqueous solution adjusted to pH 8 to pH 13 is desirably used.
  • an alkaline aqueous solution to which a basic ammonium salt, a basic potassium salt, a basic sodium salt or the like is added, or an alkaline carbonate is used.
  • An aqueous solution or an alkaline aqueous solution to which an amine is added is desirable.
  • the rough polishing may be an abrasive-free polishing method that uses a rough polishing liquid made of a high-concentration alkaline aqueous solution that does not contain loose abrasive grains.
  • polishing can be performed using a double-side polishing apparatus that includes a carrier plate that stores a silicon wafer, and an upper surface plate and a lower surface plate to which a polishing cloth sandwiching the carrier plate is attached.
  • a double-side polishing apparatus for example, a sun gear (planetary gear) type or a non-sun gear type that causes the carrier plate to perform a circular motion without rotation can be employed. Thereby, it is possible to achieve not only the wafer surface but also high planarization of the wafer back surface by a single polishing process.
  • an alkaline aqueous solution containing free abrasive grains can be used as the final polishing liquid.
  • what mixed free abrasive grains such as colloidal silica (abrasive grain), a diamond abrasive grain, an alumina abrasive grain, can be employ
  • the to-be-polished surface of a silicon wafer is mainly polished by a mechanical grinding action by free abrasive grains and a chemical action by alkali.
  • the average particle size of the free abrasive grains added to the alkaline aqueous solution for the final polishing liquid may be selected within a particle size range in which the abrasive grains do not aggregate so as not to cause defects due to processing such as micro scratches. It is desirable to use one having a diameter of 10 to 50 nm. If the average particle diameter is less than 10 nm, the dispersibility of the abrasive grains in the polishing liquid is reduced, and the abrasive grains may aggregate to cause defects due to processing such as scratches on the silicon wafer surface.
  • the thickness exceeds 50 nm, the haze value of the surface of the silicon wafer after finish polishing is greatly deteriorated, and even after polishing with a weak basic aqueous solution that does not contain abrasive grains, such as an ammonia aqueous solution as the main ingredient, It becomes difficult to reduce to the required haze level.
  • the average particle diameter is measured by the BET method.
  • the alkaline aqueous solution to be used it is desirable to use an alkaline aqueous solution adjusted to pH 8 to pH 13 as in the case of the rough polishing liquid.
  • the alkaline agent any of basic ammonium salt, basic potassium salt, basic sodium salt is used. Examples include an alkaline aqueous solution to which is added, an alkaline carbonate aqueous solution, an alkaline aqueous solution to which an amine is added, and the like.
  • the finish polishing is performed for the purpose of improving the fine waviness and haze level on the wafer surface, unlike the polishing for adjusting the flatness of the silicon wafer such as rough polishing.
  • SC-1 cleaning surface inspection device
  • a haze level of 2 ppm is produced.
  • a soft polishing cloth is suitable, unlike a hard polishing cloth such as polyurethane for rough polishing.
  • a velor type or a suede type can be adopted.
  • the velor type polishing cloth is a so-called nonwoven fabric having a single-layer structure, and is a three-dimensional porous sheet-like material.
  • Suede type polishing cloth is artificial leather for industrial materials. It is a base layer made of non-woven fabric with three-dimensional structure made of synthetic fiber and special synthetic rubber, and polyester resin, polyether resin, polycarbonate resin with excellent wear resistance. And a surface layer in which a number of fine pores (holes) are formed in a polymer resin.
  • a liquid based on a weakly basic aqueous solution not containing free abrasive grains is used.
  • weakly basic aqueous solution not containing free abrasive grains means that free abrasive grains such as colloidal silica, diamond abrasive grains, and alumina abrasive grains are mixed in the weakly basic aqueous solution that is the main component of the final polishing liquid. That which is not.
  • the final polished surface of the silicon wafer is polished by a chemical action, and it is possible to avoid the occurrence of processing damage due to a mechanical action such as finish polishing using loose abrasive grains.
  • the polishing does not use loose abrasive grains, it is possible to reduce the occurrence of defects due to processing such as micro scratches due to abrasive grain aggregation.
  • the alkali concentration (content of alkali agent) of the weakly basic aqueous solution for the final polishing liquid is adjusted so that the haze value of the final polished surface is lower than the haze value of the final polished surface of the silicon wafer.
  • the alkali concentration is equal to or higher than the concentration value that reaches the haze value of the finished polished surface of the silicon wafer, the etching action on the surface of the silicon wafer is excessively increased, and the haze level of the final polished surface is worse than that of the finished polished surface.
  • the alkali concentration of the weakly basic aqueous solution is desirably adjusted to a range of 0.1 to 1000 ppm. If it is less than 0.1 ppm, the effect of improving the haze level of the finished polished surface is small. Moreover, if it exceeds 1000 ppm, it will be easy to produce surface roughness on the last grinding
  • the haze value tends to deteriorate after the alkali concentration exceeds 500 ppm. Therefore, from the viewpoint of obtaining an effective haze value improving effect, it is particularly desirable to adjust the alkali concentration to a range of 10 to 500 ppm.
  • the alkali concentration of the weakly basic aqueous solution is desirably adjusted to a range of 0.1 to 100 ppm. If it is less than 0.1 ppm, the effect of improving the haze level of the finished polished surface is small. Moreover, if it exceeds 100 ppm, it will be easy to produce surface roughness on the last grinding
  • the haze component (uneven portion of the wafer surface generated by abrasive polishing) on the final polished surface of the silicon wafer can be reduced.
  • the haze value tends to deteriorate from the point when the alkali concentration exceeds 50 ppm. For this reason, it is particularly desirable to adjust the alkali concentration in the range of 1 to 50 ppm from the viewpoint of obtaining an effective haze value improvement effect.
  • the alkali concentration of the weakly basic aqueous solution is desirably adjusted to a range of 0.1 to 500 ppm. If it is less than 0.1 ppm, the effect of improving the haze level of the finished polished surface is small. Moreover, if it exceeds 500 ppm, surface roughness tends to occur on the final polished surface of the silicon wafer due to an excessive alkali etching reaction.
  • the haze value tends to deteriorate from the point when the alkali concentration exceeds 100 ppm. Therefore, from the viewpoint of obtaining an effective haze value improvement effect, it is particularly desirable to adjust the alkali concentration to a range of 10 to 100 ppm.
  • a soft polishing cloth used in finish polishing can be used, and it is particularly desirable to use a suede type polishing cloth.
  • a polishing cloth having a Shore C hardness of 40 ° to 80 ° and a compressive elastic modulus of 60 to 100% as defined by JIS K 6253-1997 / ISO 7619 is suitable.
  • Final polishing is performed by relatively rotating the silicon wafer and the polishing cloth. “Relatively rotate” refers to rotating the silicon wafer, rotating the polishing cloth, or rotating both the silicon wafer and the polishing cloth.
  • the rotation direction of the silicon wafer and the polishing cloth is arbitrary. For example, the rotation directions of the silicon wafer and the polishing cloth when both are rotated may be the same or different.
  • the polishing amount of the final polished surface of the silicon wafer is preferably more than 0 mm and 80 mm or less.
  • the final polishing is intended to selectively remove only the convex portions of the concavo-convex portions that are haze components on the surface of the silicon wafer that has been subjected to the final polishing. Therefore, the convex portion can be removed with a very small polishing amount of more than 0 to 80 mm and a sufficient haze improvement effect can be obtained.
  • the polishing time may be set so as to be this amount of polishing, and a polishing time of 10 minutes or less is sufficient at the maximum. Thereby, the haze value can be made smaller than the haze value of the finished polished surface.
  • a single wafer polishing apparatus or a batch polishing apparatus that simultaneously polishes a plurality of silicon wafers may be used. Further, single-side polishing of only the front surface or double-side polishing for simultaneously polishing the front and back surfaces of the wafer may be used. Further, the polishing apparatus for final polishing may be changed only for the polishing liquid by continuously using the polishing apparatus for final polishing. However, since the loose abrasive grains used in the final polishing remain on the surface of the polishing cloth, it is necessary to perform a cleaning operation to remove it and a polishing liquid exchange operation. It is particularly desirable to use a polishing apparatus.
  • a water-soluble polymer it is desirable to add a water-soluble polymer to the final polishing liquid. Thereby, the haze level of the silicon wafer after final polishing can be further reduced.
  • the water-soluble polymer one or more of nonionic polymers and monomers or one or more of anionic polymers and monomers are used.
  • the water-soluble polymer it is desirable to use hydroxyethyl cellulose (HEC) or polyethylene glycol (PEG).
  • HEC hydroxyethyl cellulose
  • PEG polyethylene glycol
  • hydroxyethyl cellulose can be obtained with high purity relatively easily and it is easy to form a polymer film on the wafer surface, it has a characteristic that the effect of suppressing the etching reaction by alkali is high.
  • those that promote etching of a silicon wafer with a weakly basic aqueous solution are inappropriate. Only one type of water-soluble polymer may be used, or a plurality of types may be used.
  • a surfactant or an aliphatic alcohol may be used instead of the water-soluble polymer.
  • the surfactant for example, polyoxyethylene alkyl ether can be employed.
  • aliphatic alcohol polyvinyl alcohol etc. are employable, for example.
  • the concentration of the water-soluble polymer in the final polishing liquid may be set in the range of 0.1 to 1000 ppm, and particularly preferably 10 to 100 ppm. Even when hydroxyethyl cellulose is employed as the water-soluble polymer, the addition amount is preferably 10 to 100 ppm. If it is added excessively, the polishing itself may not be performed.
  • a plurality of silicon wafers having a diameter of 300 mm and a crystal orientation (100) subjected to lapping and chamfering are prepared, and the primary polishing corresponding to rough polishing and the pre-stage portion of final polishing are prepared for these silicon wafers.
  • the four-stage polishing comprising the secondary polishing, the tertiary polishing that is the latter part of the final polishing, and the fourth polishing corresponding to the final polishing was performed (flow sheet in FIG. 1).
  • primary polishing was performed by simultaneously polishing the front and back surfaces of the silicon wafer using a primary polishing liquid using a sun gear-free double-side polishing apparatus.
  • a primary polishing liquid a KOH aqueous solution containing 5% by weight of colloidal silica particles (free abrasive grains) having an average particle diameter of 70 nm was used, and the front and back surfaces of the silicon wafer were roughly polished.
  • the polishing amount at this time was 10 ⁇ m on one side.
  • the single-sided mirror polishing apparatus 10 includes a polishing surface plate 11 and a polishing head 12 disposed above the polishing surface plate 11. On the upper surface of the polishing surface plate 11, a polishing cloth 13 made of hard foam urethane pad is attached.
  • the polishing head 12 is fixed to the rotating shaft 14 a of the head driving unit 14, and one silicon wafer W is vacuum-sucked to the polishing head 12 on the lower surface of the polishing head 12.
  • a slurry nozzle 15 for supplying a secondary polishing liquid to the polishing cloth 13 is disposed above the center portion of the polishing surface plate 11.
  • the secondary polishing liquid used was a 0.08 wt% KOH aqueous solution with 0.5 wt% of colloidal silica particles having an average particle diameter of 70 nm added.
  • the polishing head 12 is gradually lowered while rotating the polishing head 12 by the head driving unit 14 via the rotating shaft 14 a, and the silicon wafer W is pressed against the polishing cloth 13.
  • the surface of the silicon wafer W was secondarily polished while supplying the secondary polishing liquid from the slurry nozzle 15 to the polishing pad 13.
  • a front-stage portion of final polishing with a polishing amount of 0.6 ⁇ m was applied to the surface of the silicon wafer W that was subjected to primary polishing.
  • the surface of the silicon wafer W subjected to secondary polishing is subjected to tertiary polishing.
  • tertiary polishing in which 0.5% by weight of colloidal silica particles having an average particle diameter of 35 nm is added to a 0.08% by weight KOH aqueous solution.
  • the surface of the silicon wafer W was subjected to third polishing while supplying the liquid to the polishing cloth 13.
  • a post-finishing portion having a polishing amount of 0.04 ⁇ m was applied to the secondary polished surface of the silicon wafer W.
  • the silicon wafer W subjected to the third polishing is subjected to SC1 cleaning with a predetermined SC1 cleaning liquid. Thereafter, the haze level on the wafer surface was measured. As a result of the measurement, the haze value on the surface of the silicon wafer W was 0.077 ppm.
  • SP2 manufactured by KLA Tencor was adopted as a surface inspection apparatus, and the measurement was performed using the DWO mode (Dark Field Wide Oblique mode, dark field wide oblique incidence mode).
  • the example in which the final polishing is performed in the two stages of the secondary polishing and the tertiary polishing is shown. However, a single-stage polishing process in which the secondary polishing is performed under the tertiary polishing condition may be used.
  • the surface of the silicon wafer W after the third polishing was subjected to fourth polishing (final polishing) using a fourth polishing liquid (final polishing liquid) that does not contain loose abrasive grains.
  • fourth polishing liquid final polishing liquid
  • the Shore C hardness defined by JIS K 6253-1997 / ISO 7619 is 64 °
  • the compressive elastic modulus is used as the polishing cloth 13. Of 63% suede (Chiyoda, Chiyoda Co., Ltd.).
  • the rotation speed of the polishing platen 11 and the polishing head 12 is set to 50 rpm while supplying a polishing solution 13 with a fourth polishing liquid composed of ammonia water containing no free abrasive grains at a rate of 0.4 l / min.
  • the surface of the silicon wafer W was subjected to quaternary polishing under polishing conditions in which the polishing pressure was 100 g / cm 2 , the polishing time was 3 minutes, and the concentration was changed from 0.1 to 1000 ppm. The result is shown in the graph of FIG.
  • the amount of ammonia required to reach a haze value of 0.077 ppm on the wafer surface is about 1000 ppm.
  • the amount of ammonia added to the aqueous ammonia in the final polishing liquid was 100 ppm
  • the haze value of the final polishing surface was 0.065 ppm.
  • Example 2 an aqueous solution of tetramethylammonium hydroxide (TMAH) was adopted as the weakly basic aqueous solution in place of the ammonia water in Example 1, and the silicon wafer W after the third polishing was subjected to the same conditions as in Example 1 The surface was subjected to fourth polishing.
  • TMAH tetramethylammonium hydroxide
  • the results are also shown in the graph of FIG.
  • the addition amount is in the range of 0.1 to 50 ppm, and the silicon wafer W increases with the addition amount.
  • the haze level on the surface decreased.
  • the addition amount of tetramethylammonium hydroxide exceeds 50 ppm, the haze level on the wafer surface also deteriorates as the addition amount increases.
  • this addition amount reaches about 100 ppm, the haze level is the finished polished surface.
  • the haze value of reached is the same as those in the first embodiment, and thus description thereof is omitted.
  • Example 3 a silicon wafer polishing method according to Example 3 of the present invention will be described with reference to the graph of FIG.
  • an aqueous solution of a mixture of ammonia and ammonium hydrogen carbonate (NH 4 HCO 3 ) was used as the weakly basic aqueous solution in place of the aqueous ammonia in Example 1, and the third polishing was performed under the same conditions as in Example 1.
  • Fourth polishing was performed on the surface of the subsequent silicon wafer W.
  • the results are also shown in the graph of FIG.
  • the mixing ratio of ammonia and ammonium bicarbonate is 1: 1 by weight. As is apparent from the graph of FIG.
  • the addition amount of ammonia and ammonium hydrogen carbonate is 0.1 to 100 ppm. In this range, the haze level on the surface of the silicon wafer decreased with an increase in the amount of the alkali agent added. On the other hand, when the addition amount of the mixture of ammonia and ammonium hydrogen carbonate exceeds 100 ppm, the haze level on the wafer surface begins to deteriorate as the addition amount of the mixture increases, and when the addition amount reaches about 500 ppm. The haze level reached the haze value of the finished polished surface.
  • Other configurations, operations, and effects are the same as those in the first embodiment, and thus description thereof is omitted.
  • the fourth polishing (final polishing) is performed using the silicon wafer W that has been subjected to final polishing under the conditions of primary polishing to tertiary polishing performed in Example 1.
  • a main agent of the final polishing liquid for use a quaternary polishing liquid that does not contain free abrasive grains and is composed of ammonia water having a concentration of ammonia (NH 4 + ) of 100 ppm is used.
  • FIG. 4 shows the results of measuring the addition amount of hydroxyethyl cellulose in the final polishing liquid and the haze value of the final polished surface of the silicon wafer W in the DWO mode using a surface inspection apparatus (SP2 manufactured by KLA-Tencor). This is shown in the graph. As is apparent from the graph of FIG.
  • the present invention is useful as a method for producing a silicon wafer for semiconductor devices with reduced surface roughness.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

 無砥粒の弱塩基性水溶液が主剤の最終研磨液を使用し、仕上げ研磨面を最終研磨する。その際、最終研磨液の主剤として、最終研磨面のヘイズ値がウェーハの仕上げ研磨面のヘイズ値より低くなるアルカリ濃度の弱塩基性水溶液を用いる。

Description

シリコンウェーハの研磨方法
 この発明は、シリコンウェーハの研磨方法、詳しくは研磨液を供給しながら、シリコンウェーハと研磨布とを相対的に回転させて、シリコンウェーハの表裏面のうち、被研磨面となる少なくとも表面を研磨するシリコンウェーハの研磨方法に関する。
 近年、シリコンウェーハの表面を研磨する方法としては、シリカ粒子などの遊離砥粒をアルカリ性水溶液中に含有させた研磨液を供給しながら、シリコンウェーハと研磨布とを相対的に回転させて行うCMP(化学的機械的研磨)が一般的である。CMPは、遊離砥粒による機械的研磨作用と、アルカリ性水溶液による化学的研磨作用とを複合させ、シリコンウェーハの表面に高い平坦度が得られることで知られている。CMP処理では、通常、粗研磨から仕上げ研磨へと複数の段階を経てウェーハ表面が研磨される。
 初期段階の粗研磨は、所望とする厚みまでシリコンウェーハを研磨することを目的とし、ポリウレタンなどの硬質の研磨布を用いて研磨速度が比較的速い条件で、研磨後のシリコンウェーハの厚さのバラツキを小さく、平坦化するように研磨される。この粗研磨工程では、研磨布の種類や遊離砥粒サイズを変更し、シリコンウェーハの研磨量(取り代)を複数段階(例えば1~3段階)に分けながら研磨処理されることもある。
 仕上げ研磨は、シリコンウェーハの表面の粗さを改善することを目的に行われ、スエードのような軟質の研磨布および微小サイズの遊離砥粒を使用し、ヘイズと呼ばれるウェーハ表面上の微小な面粗さのバラツキを低減するように研磨される。この仕上げ研磨工程も粗研磨工程と同様に、研磨布の種類や遊離砥粒サイズを変更しながら、複数段階に分けてなされる場合もある。
 しかしながら、遊離砥粒を含む研磨液(スラリー)を用いて仕上げ研磨を実施した場合、ある程度のウェーハ表面の粗さを改善することはできるものの、研磨液中の遊離砥粒の凝集を原因として、シリコンウェーハの表面には、加工起因の欠陥であるマイクロスクラッチが発生していた。
 一方、特許文献1では、研磨材(砥粒)を含む仕上げ研磨後、遊離砥粒による仕上げ研磨により発生した潜傷(マイクロスクラッチなど)が存在しなくなるまで、研磨材を含まない化学的研磨液を研磨布に供給しながらウェーハを研磨することが提案されている。具体的には、遊離砥粒を含むスラリーを使用して仕上げ研磨したウェーハについて、研磨材を含まない0.2重量%のNaOH水溶液により約30分の研磨を行って、深さ5μmまで除去するようにウェーハ表面を研磨することにより、スクラッチ像がほぼ消滅することが報告されている。
特許第3202305号公報
 しかしながら、特許文献1のような、遊離砥粒を含まない化学的研磨液を使用し、仕上げ研磨後のシリコンウェーハの表面を潜傷が存在しなくなるまで研磨した場合、ウェーハ表面が等方性エッチングされてしまい、遊離砥粒を含む仕上げ研磨直後のシリコンウェーハに比べて、シリコンウェーハの表面のヘイズレベルが悪化する現象が発生する問題があった。
 この発明は、シリコンウェーハ表面のヘイズレベルを改善できるシリコンウェーハの研磨方法を提供することを目的としている。
 一般的に行われる遊離砥粒を含む研磨液を使用して仕上げ研磨を行えば、粗研磨で得られたシリコンウェーハ表面のヘイズレベルをある程度まで向上させることができる。しかしながら、遊離砥粒を用いた仕上げ研磨後のシリコンウェーハ表面のヘイズレベルは、使用する遊離砥粒の平均粒径に大きく依存し、微小径サイズの砥粒を使用するほどヘイズレベルの向上が図れるものの、砥粒の平均粒径を小さくすれば研磨液中の砥粒の分散性が低下して砥粒が凝集してしまい、シリコンウェーハ表面へのスクラッチなどの加工起因の欠陥を引き起こす問題がある。このため、遊離砥粒を含む研磨液を使用した仕上げ研磨では、砥粒の凝集を生じない平均粒径の範囲内でしか研磨が行えず、仕上げ研磨により改善できるヘイズレベルに限界があった。
 本発明者らは、上述した仕上げ研磨におけるヘイズレベルの問題を解決すべく、遊離砥粒を含まない弱塩基性水溶液を主剤とした研磨液を用いて研磨(最終研磨)することで、仕上げ研磨したシリコンウェーハ表面のヘイズ成分である凹凸部の凸部を選択的にエッチングして除去することを想起し、鋭意研究の結果、以下の知見に基づき本発明を完成させるに至った。
 すなわち、遊離砥粒を含まない最終研磨によって達成できるヘイズレベルは、化学的研磨液中のアルカリ種およびアルカリ濃度に依存し、低濃度のアルカリ濃度とすることにより、ヘイズ値を低減できることを突き止め、この発明の完成に至った。
 請求項1に記載の発明は、遊離砥粒を含む仕上げ研磨液を研磨布に供給しながら、該研磨布とシリコンウェーハとを相対的に回転させて、該シリコンウェーハの表裏面のうち、少なくとも表面を仕上げ研磨し、該仕上げ研磨後、遊離砥粒を含まない弱塩基性水溶液を主剤とした最終研磨液を研磨布に供給しながら、該研磨布と前記シリコンウェーハとを相対的に回転させて、該シリコンウェーハの仕上げ研磨された面を最終研磨するシリコンウェーハの研磨方法であって、前記シリコンウェーハの最終研磨された面のヘイズ値が、該シリコンウェーハの仕上げ研磨された面のヘイズ値より低くなるように、前記最終研磨液の弱塩基性水溶液のアルカリ濃度を調整したシリコンウェーハの研磨方法である。
 請求項2に記載の発明は、前記最終研磨液の弱塩基性水溶液のアルカリ濃度は、該弱塩基性水溶液がアンモニア水の場合には0.1~1000ppm、該弱塩基性水溶液が水酸化テトラメチルアンモニウム水溶液の場合には0.1~100ppm、該弱塩基性水溶液がアンモニアと炭酸水素アンモニウムとの混合水溶液の場合には0.1~500ppmである請求項1に記載のシリコンウェーハの研磨方法である。
 請求項3に記載の発明は、前記最終研磨液には、水溶性高分子が添加された請求項1または請求項2に記載のシリコンウェーハの研磨方法である。
 請求項4に記載の発明は、前記水溶性高分子は、ノニオン系のポリマーおよびモノマーのうちの1種もしくは複数種、または、アニオン系のポリマーおよびモノマーのうちの1種もしくは複数種である請求項3に記載のシリコンウェーハの研磨方法である。
 請求項5に記載の発明は、前記水溶性高分子は、ヒドロキシエチルセルロースである請求項4に記載のシリコンウェーハの研磨方法である。
 請求項6に記載の発明は、前記最終研磨で使用される研磨布は、スエード型のものである請求項1に記載のシリコンウェーハの研磨方法である。
 この発明のシリコンウェーハの研磨方法によれば、シリコンウェーハの最終研磨時、弱塩基性水溶液のアルカリ濃度を、シリコンウェーハの仕上げ研磨面のヘイズ値に達するアルカリ濃度未満としたので、遊離砥粒を含まない弱塩基性水溶液を主剤とした最終研磨液のアルカリエッチング作用を原因として、シリコンウェーハの最終研磨面のヘイズレベルを、仕上げ研磨面のヘイズレベルより悪化しないようにすることができる。
 また、最終研磨液に水溶性高分子を添加した場合には、ヘイズレベルをさらに改善することができる。
この発明に係る実施例1のシリコンウェーハの研磨方法を示すフローシートである。 この発明に係る実施例1のシリコンウェーハの研磨方法に用いられる片面鏡面研磨装置の正面図である。 この発明に係る実施例1~実施例3のシリコンウェーハの研磨方法における最終研磨液への種類別のアルカリ剤の添加量と、ヘイズレベルとの関係を示すグラフである。 この発明に係る実施例1のシリコンウェーハの研磨方法における最終研磨液へのヒドロキシエチルセルロースの添加量とヘイズレベルとの関係を示すグラフである。 (a)~(c)は、従来のシリコンウェーハの研磨方法における有砥粒研磨の段階別のヘイズレベルの変化を示すシリコンウェーハの要部拡大断面図である。 (a)~(c)は、この発明に係るシリコンウェーハの研磨方法における無砥粒研磨の経時的なヘイズレベルの変化を示すシリコンウェーハの要部拡大断面図である。
 以下、この発明の実施例を具体的に説明する。
 この発明のシリコンウェーハの研磨方法は、遊離砥粒を含む仕上げ研磨液を研磨布に供給しながら、該研磨布とシリコンウェーハとを相対的に回転させて、該シリコンウェーハの表裏面のうち、少なくとも表面を仕上げ研磨し、該仕上げ研磨後、遊離砥粒を含まない弱塩基性水溶液を主剤とした最終研磨液を研磨布に供給しながら、該研磨布と前記シリコンウェーハとを相対的に回転させて、該シリコンウェーハの仕上げ研磨された面を最終研磨するシリコンウェーハの研磨方法であって、前記シリコンウェーハの最終研磨された面のヘイズ値が、該シリコンウェーハの仕上げ研磨された面のヘイズ値より低くなるように、前記最終研磨液の弱塩基性水溶液のアルカリ濃度を調整したシリコンウェーハの研磨方法である。
 ここで、この発明のシリコンウェーハの研磨方法により、シリコンウェーハの仕上げ研磨されたシリコンウェーハの表面のヘイズレベルを改善可能な点について詳述する。
 この発明のシリコンウェーハの研磨方法では、最終研磨液には遊離砥粒が含まれていないので、遊離砥粒の凝集による加工起因の欠陥は発生せず、使用可能な砥粒サイズの制限によるヘイズレベルの制約を受けることがない。
 特に、この発明のシリコンウェーハの研磨方法では、最終研磨液として弱塩基性水溶液を主剤とした研磨液を使用し、最終研磨されたシリコンウェーハの表面のヘイズ値が、仕上げ研磨されたシリコンウェーハの表面のヘイズ値より低くなるように弱塩基性水溶液のアルカリ濃度を調整して、シリコンウェーハの表面を研磨することが肝要となる。
 しかも、図5(a)~図5(c)に示すように、粗研磨としての1次研磨を含み、研磨布13を使って行われる仕上げ研磨としての2次研磨および3次研磨は、研磨液中に遊離砥粒aが含まれた有砥粒研磨である。そのため、研磨後のヘイズレベルは、仕上げ研磨時の遊離砥粒aの粒径に依存する。したがって、長時間研磨しても砥粒サイズを変更しない限り、シリコンウェーハWの研磨面のヘイズレベルの低下は望めない。
 しかしながら、図6(a)~図6(c)に示すように、最終研磨としての4次研磨は、遊離砥粒aを含まない弱塩基性水溶液のアルカリエッチング作用による無砥粒研磨であるため、シリコンウェーハWの最終研磨面のヘイズレベルは長く研磨するほど、仕上げ研磨面よりもヘイズ値を低下させることができる。
 ここで、弱塩基性水溶液とは、弱塩基性物質を水溶液にするときの電離度が小さいものであり、アンモニア水溶液、アンモニアと炭酸水素アンモニウムとの混合水溶液、水酸化テトラメチルアンモニウム水溶液、水酸化テトラエチルアンモニウム水溶液などが挙げられる。例えば、アンモニアを水溶液にすると水酸化アンモニウムになり、その一部がアンモニウムイオンと水酸化物イオンに電離して塩基性を示す。電離する水酸化アンモニウムはごく一部であって、残りは水酸化アンモニウムとして水中に存在する。したがって、実効的に効く水酸化物イオンは強塩基性物質を用いた場合に比べて少ないので、エッチング速度は比較的緩やかである。また、弱塩基性物質は、金属イオンが非常に少ない高純度品の入手が容易である。
 しかしながら、例えば、弱塩基性水溶液を充填したエッチング槽内にシリコンウェーハを浸漬させ、その表面をアルカリエッチングする処理を行っても、シリコンウェーハの表面のヘイズ成分である凹凸部の凸部を選択的にエッチングする作用は殆ど得られない。
 低アルカリ濃度に調整した弱塩基性水溶液を研磨液として使用し、かつウェーハ表面を研磨処理することにより、ヘイズレベルを低減することができる。これは、最終研磨処理中のシリコンウェーハおよび研磨定盤のうち、少なくとも1つの回転により、低アルカリ濃度の弱塩基性水溶液がウェーハの径方向に流動し、シリコンウェーハの深さ方向に対するエッチング作用よりも遠心方向(ウェーハ径方向)のエッチング作用が優先され、シリコンウェーハの表面のヘイズ成分である凹凸部の凸部が選択的にエッチングされ、ヘイズレベルが低減されるものと推測される。
 一方、NaOHやKOHなどの電離度が1に近い強塩基性水溶液を使用した場合、これらの強塩基性物質を水溶液にすれば、ナトリウムイオン(カリウムイオン)と水酸化物イオンに完全に電離する。このため、シリコンに対するエッチング作用が強すぎて、シリコンウェーハの表面のヘイズ成分である凹凸部の凸部を選択的にエッチングする作用は得られず、凹凸部の全体が均一に等方エッチングされてしまい、最終研磨面のヘイズレベルは仕上げ研磨面のヘイズレベルよりむしろ悪化してしまうことになる。また、不純物として金属イオンが残留する欠点もある。
 また、この発明のシリコンウェーハの研磨方法では、最終研磨液に水溶性高分子を添加することで、最終研磨後のシリコンウェーハの表面のヘイズレベルをさらに低減させることができる。すなわち、最終研磨液中の水溶性高分子はシリコンウェーハの表面に付着し、エッチング反応を抑制する働きがある。このため、シリコンウェーハの表面のヘイズ成分である凹凸部の凸部に付着した水溶性高分子は研磨布との接触により拭き取られ、凸部のアルカリエッチングが進行し、一方、シリコンウェーハ表面のヘイズ成分である凹凸部の凹部内には水溶性高分子が付着して滞留し、凹部に対するアルカリエッチングの進行が抑制され、凸部の選択的エッチング作用が進行すると推測される。
 研磨対象とするシリコンウェーハとしては、例えば単結晶シリコンウェーハ、多結晶シリコンウェーハなどを採用することができる。また、エピタキシャルシリコンウェーハ、SOIシリコンウェーハなどでもよい。シリコンウェーハの直径としては、例えば100mm、125mm、150mm、200mm、300mm、450mmなどが挙げられる。
 粗研磨されるシリコンウェーハの面は、表面、裏面およびこれらの両方でもよい。粗研磨では、例えばポリウレタン製などの硬質の研磨布を使用し、平均粒径30~100nmの遊離砥粒(コロイダルシリカ、ダイヤモンド砥粒、アルミナ砥粒など)を含む粗研磨液を研磨布に供給しながら、研磨後のシリコンウェーハの厚さのバラツキを小さく、平坦化するように研磨される。粗研磨工程は、研磨布の種類や粗研磨液に含まれる遊離砥粒のサイズを変更し、シリコンウェーハの被研磨面の研磨量を、例えば2段階または3段階に分けて研磨してもよい。
 粗研磨液としては、pH8~pH13に調整されたアルカリ性水溶液を用いることが望ましく、アルカリ剤として、塩基性アンモニウム塩、塩基性カリウム塩、塩基性ナトリウム塩などが添加されたアルカリ性水溶液、または炭酸アルカリ性水溶液、またはアミンが添加されたアルカリ性水溶液などが望ましい。なお、粗研磨は、遊離砥粒を含まない高濃度アルカリ性水溶液からなる粗研磨液を使用する無砥粒研磨方式であってもよい。
 ウェーハ表裏面を粗研磨する場合は、シリコンウェーハを収納するキャリアプレートと、このキャリアプレートを挟む研磨布を貼張した上定盤および下定盤とを備えた両面研磨装置を用いて研磨することが望ましい。両面研磨装置としては、例えばサンギヤ(遊星歯車)方式のもの、または、キャリアプレートに自転をともなわない円運動をさせる無サンギヤ方式のものを採用することができる。これにより、一度の研磨処理でウェーハ表面だけでなく、ウェーハ裏面の高平坦化までを達成することができる。
 仕上げ研磨において、遊離砥粒を含むアルカリ性水溶液を仕上げ研磨液とすることができる。例えば、アルカリ性水溶液中に、コロイダルシリカ(砥粒)、ダイヤモンド砥粒、アルミナ砥粒などの遊離砥粒が混入されたものを採用することができる。これにより、シリコンウェーハの被研磨面は、主に遊離砥粒によるメカニカルな研削作用と、アルカリによるケミカル作用により研磨される。
 仕上げ研磨液用のアルカリ性水溶液に添加される遊離砥粒の平均粒径は、マイクロスクラッチなどの加工起因の欠陥を発生させないように、砥粒が凝集しない粒径範囲で選定すればよく、平均粒径が10~50nmのものを使用することが望ましい。平均粒径が10nm未満では、研磨液中の砥粒の分散性が低下して砥粒が凝集して、シリコンウェーハ表面へのスクラッチなどの加工起因の欠陥を引き起こす恐れがある。50nmを超えれば、仕上げ研磨後のシリコンウェーハの表面のヘイズ値が大きく悪化し、その後に砥粒を含まない弱塩基性水溶液、例えばアンモニア水溶液を主剤とする無砥粒研磨を行っても、現状要求されるヘイズレベルにまで低減することが困難となる。平均粒径はBET法により測定されたものである。
 使用するアルカリ性水溶液としては、粗研磨液と同様に、pH8~pH13に調整されたアルカリ性水溶液を用いることが望ましく、アルカリ剤として、塩基性アンモニウム塩、塩基性カリウム塩、塩基性ナトリウム塩の何れかなどが添加されたアルカリ性水溶液、または炭酸アルカリ性水溶液、またはアミンが添加されたアルカリ性水溶液などを例示できる。
 なお、仕上げ研磨は、粗研磨のようなシリコンウェーハの平坦度を調整する研磨とは異なり、ウェーハ表面の微小なうねりやヘイズレベルの改善を目的として実施するものである。現状では、仕上げ研磨されたシリコンウェーハを洗浄(SC-1洗浄)後、ウェーハ表面を表面検査装置(KLA-Tencor社製、SP2を用いたDWOモード)で評価した場合で、0.03~0.2ppmのヘイズレベルのものが製造される。
 仕上げ研磨用の研磨布としては、粗研磨用のポリウレタンなどの硬質の研磨布とは異なり、軟質の研磨布が適している。具体的には、ベロアタイプやスエードタイプのものを採用することができる。ベロアタイプの研磨布は、単層構造のいわゆる不織布であり、立体的な構造の多孔質シート状材料である。スエードタイプの研磨布は、いわば工業材料用の人工皮革で、合成繊維および特殊合成ゴムにより形成した立体構造の不織布からなる基体層と、耐摩耗性に優れたポリエステル樹脂、ポリエーテル樹脂、ポリカーボネート樹脂等の高分子樹脂に多数の微細なポア(孔)を形成した表面層とから構成したものである。
 最終研磨液としては、遊離砥粒を含まない弱塩基性水溶液を主剤としたものを採用している。ここで、「遊離砥粒を含まない弱塩基性水溶液」とは、最終研磨液の主剤である弱塩基性水溶液中に、コロイダルシリカ、ダイヤモンド砥粒、アルミナ砥粒などの遊離砥粒が混入されていないものをいう。これにより、シリコンウェーハの最終研磨面は、ケミカル作用により研磨され、遊離砥粒を用いた仕上げ研磨のようなメカニカル作用による加工ダメージの発生を回避することができる。しかも、遊離砥粒を利用しない研磨であるため、砥粒凝集に起因したマイクロスクラッチなどの加工起因の欠陥発生も低減することができる。
 最終研磨液用の弱塩基性水溶液のアルカリ濃度(アルカリ剤の含有量)は、最終研磨された面のヘイズ値が、シリコンウェーハの仕上げ研磨された面のヘイズ値より低くなるように調整される。アルカリ濃度が、シリコンウェーハの仕上げ研磨面のヘイズ値に達する濃度値以上では、シリコンウェーハの表面のエッチング作用が過度に高まり、最終研磨面のヘイズレベルが仕上げ研磨面より悪化する。
 最終研磨液の弱塩基性水溶液がアンモニア水の場合において、弱塩基性水溶液のアルカリ濃度は、0.1~1000ppmの範囲に調整することが望ましい。0.1ppm未満では、仕上げ研磨面のヘイズレベルの改善効果が小さい。また、1000ppmを超えれば、過度のアルカリエッチング反応によりシリコンウェーハの最終研磨面に面荒れを生じ易い。0.1~1000ppmの範囲であれば、シリコンウェーハの仕上げ研磨面のヘイズ成分(有砥粒研磨により発生したウェーハ面の凹凸部分)を低減することができる。なお、アンモニア水の場合は、アルカリ濃度が500ppmを超えたあたりからヘイズ値が悪化していく傾向がある。そのため、効果的なヘイズ値の改善効果を得る観点からは、アルカリ濃度を10~500ppmの範囲に調整することが特に望ましい。
 最終研磨液の弱塩基性水溶液が水酸化テトラメチルアンモニウム水溶液の場合において、弱塩基性水溶液のアルカリ濃度は、0.1~100ppmの範囲に調整することが望ましい。0.1ppm未満では、仕上げ研磨面のヘイズレベルの改善効果が小さい。また、100ppmを超えれば、過度のアルカリエッチング反応によりシリコンウェーハの最終研磨面に面荒れを生じ易い。0.1~100ppmの範囲であれば、シリコンウェーハの仕上げ研磨面のヘイズ成分(有砥粒研磨により発生したウェーハ面の凹凸部分)を低減することができる。なお、水酸化テトラメチルアンモニウム水溶液の場合は、アルカリ濃度が50ppmを超えたあたりからヘイズ値が悪化していく傾向がある。そのため、効果的なヘイズ値の改善効果を得る観点からは、アルカリ濃度を1~50ppmの範囲に調整することが特に望ましい。
 最終研磨液の弱塩基性水溶液がアンモニアと炭酸水素アンモニウムとの混合水溶液の場合において、弱塩基性水溶液のアルカリ濃度は、0.1~500ppmの範囲に調整することが望ましい。0.1ppm未満では、仕上げ研磨面のヘイズレベルの改善効果が小さい。また、500ppmを超えれば、過度のアルカリエッチング反応により、シリコンウェーハの最終研磨面に面荒れを生じ易い。なお、アンモニアと炭酸水素アンモニウムとの混合水溶液の場合は、アルカリ濃度が100ppmを超えたあたりからヘイズ値が悪化していく傾向がある。そのため、効果的なヘイズ値の改善効果を得る観点からは、アルカリ濃度を10~100ppmの範囲に調整することが特に望ましい。
 最終研磨用の研磨布としては、仕上げ研磨で使用される軟質の研磨布を採用することができ、特に、スエードタイプの研磨布を採用することが望ましい。理由は定かではないが、本発明者らは、ベロアタイプよりスエードタイプの方がヘイズレベルの改善効果が高いことを確認している。具体的には、JIS K 6253-1997/ISO 7619により規定されたショアC硬度で40°~80°、圧縮弾性率が60~100%の研磨布などが適している。
 最終研磨(粗研磨および仕上げ研磨も同じ)は、シリコンウェーハと研磨布とを相対的に回転させることにより行われる。「相対的に回転させる」とは、シリコンウェーハを回転させる、研磨布を回転させる、あるいはシリコンウェーハと研磨布との両方を回転させることをいう。シリコンウェーハおよび研磨布の回転方向は任意である。例えば、両方を回転させる場合のシリコンウェーハと研磨布との回転方向は、同一でも異なってもよい。
 最終研磨の際、シリコンウェーハの仕上げ研磨面の研磨量は、0Åを超えて80Å以下とすることが望ましい。すなわち、最終研磨は、仕上げ研磨されたシリコンウェーハの表面のヘイズ成分である凹凸部の凸部のみを選択的に除去しようとするものである。そのため、0Åを超えて80Å以下という極僅かな研磨量で凸部を除去することができ、十分なヘイズ改善効果が得られる。研磨時間もこの研磨量となるように設定すればよく、最大でも10分間以下の研磨時間で十分である。これにより、仕上げ研磨面のヘイズ値よりもヘイズ値を小さくすることができる。
 シリコンウェーハの最終研磨(粗研磨および仕上げ研磨も同じ)では、枚葉式の研磨装置を使用しても、複数枚のシリコンウェーハを同時に研磨するバッチ式の研磨装置を使用してもよい。また、表面のみの片面研磨でも、ウェーハ表裏面を同時に研磨する両面研磨でもよい。さらに、最終研磨用の研磨装置は、仕上げ研磨用の研磨装置を継続して使用して研磨液のみ変更するようにしてもよい。しかしながら、仕上げ研磨で使用した遊離砥粒が研磨布の表面に残留し、これを除去する洗浄操作や、研磨液交換作業などを行う必要があるため、仕上げ研磨用のものとは異なる最終研磨専用の研磨装置を使用することが特に望ましい。
 最終研磨液には、水溶性高分子を添加した方が望ましい。これにより、最終研磨後のシリコンウェーハのヘイズレベルを、さらに低減することができる。
水溶性高分子には、ノニオン系のポリマーおよびモノマーのうちの1種もしくは複数種、または、アニオン系のポリマーおよびモノマーのうちの1種もしくは複数種などを使用する。
 水溶性高分子としては、ヒドロキシエチルセルロース(HEC)、ポリエチレングリコール(PEG)を使用することが望ましい。特に、ヒドロキシエチルセルロースは、高純度のものを比較的容易に入手でき、ウェーハ表面で高分子膜を形成し易いため、アルカリによるエッチング反応を抑制する効果が高いという特性を有する。ただし、各種の水溶性高分子のうち、弱塩基性水溶液によるシリコンウェーハのエッチングを促進させるものは不適当である。水溶性高分子は、1種類だけを使用しても、複数種類を使用してもよい。
 また、水溶性高分子に代えて、界面活性剤または脂肪族アルコールでもよい。界面活性剤としては、例えば、ポリオキシエチレンアルキルエーテルなどを採用することができる。また、脂肪族アルコールとしては、例えば、ポリビニルアルコールなどを採用することができる。
 最終研磨液中の水溶性高分子の濃度は、0.1~1000ppmの範囲で設定すればよく、特に10~100ppmが好ましい。水溶性高分子としてヒドロキシエチルセルロースを採用した場合も、添加量10~100ppmが好ましい。過剰に添加すれば、研磨そのものが行えなくなってしまうおそれがある。
 ラッピングおよび面取り加工が施された、直径300mm、結晶方位(100)のシリコンウェーハを複数枚準備し、これらのシリコンウェーハに対して、粗研磨に該当する1次研磨と、仕上げ研磨の前段部分となる2次研磨と、仕上げ研磨の後段部分となる3次研磨と、最終研磨に該当する4次研磨とからなる4段階の研磨を施した(図1のフローシート)。
 1次研磨工程では、無サンギヤ方式の両面研磨装置を用い、1次研磨液を使用してシリコンウェーハの表裏面を同時に研磨する1次研磨を実施した。1次研磨液には、平均粒径70nmのコロイダルシリカ粒子(遊離砥粒)が5重量%添加されたKOH水溶液を使用し、シリコンウェーハの表裏面を粗研磨した。このときの研磨量は、片面で10μmとした。
 次に、1次研磨されたシリコンウェーハWの表面に対して、遊離砥粒を含む2次研磨液を供給しながら、片面鏡面研磨装置により2次研磨を施した。
 図2に示すように、片面鏡面研磨装置10は、研磨定盤11と、その上方に配置された研磨ヘッド12とを備えている。研磨定盤11の上面には、硬質発泡ウレタンパッド製の研磨布13が貼着されている。研磨ヘッド12はヘッド駆動部14の回転軸14aに固定され、研磨ヘッド12の下面にはシリコンウェーハWが1枚、研磨ヘッド12に真空吸着されている。また、研磨定盤11の中央部の上方には、2次研磨液を研磨布13に供給するスラリーノズル15が配置されている。2次研磨液は、0.08重量%のKOH水溶液に、平均粒径が70nmのコロイダルシリカ粒子が0.5重量%添加したものを使用した。
 2次研磨時には、回転軸14aを介して、ヘッド駆動部14により研磨ヘッド12を回転させながらこれを徐々に下降させ、シリコンウェーハWを研磨布13に押圧する。この状態で、スラリーノズル15から2次研磨液を研磨布13に供給しながら、シリコンウェーハWの表面を2次研磨した。これにより、シリコンウェーハWの1次研磨された表面に、0.6μmの研磨量とした仕上げ研磨の前段部分を施した。
 次に、2次研磨されたシリコンウェーハWの表面を3次研磨する。具体的には、2次研磨で使用した片面鏡面研磨装置10を用い、0.08重量%のKOH水溶液に、平均粒径が35nmのコロイダルシリカ粒子が0.5重量%添加された3次研磨液を研磨布13に供給しながら、シリコンウェーハWの表面を3次研磨した。これにより、シリコンウェーハWの2次研磨された表面に、研磨量0.04μmとした仕上げ研磨の後段部分を施した。
 次いで、3次研磨されたシリコンウェーハWに、所定のSC1洗浄液によるSC1洗浄を施す。その後、ウェーハ表面のヘイズレベルを測定した。測定の結果、シリコンウェーハWの表面のヘイズ値は0.077ppmであった。ヘイズ値の測定には、表面検査装置として、KLA Tencor社製、SP2を採用し、そのDWOモード(Dark Field Wide Obliqueモード、暗視野ワイド斜め入射モード)を使用して測定した。なお、本実施例では、仕上げ研磨を2次研磨、3次研磨の二段階で行った例を示したが、3次研磨条件で2次研磨を行う一段研磨処理であってもよい。
 次に、3次研磨後のシリコンウェーハWの表面を、遊離砥粒を含まない4次研磨液(最終研磨液)を用いて4次研磨(最終研磨)した。具体的には、1次研磨~3次研磨で使用した片面鏡面研磨装置10を用い、研磨布13として、JIS K 6253-1997/ISO 7619により規定されたショアC硬度が64°、圧縮弾性率が63%のスエード製のもの(千代田株式会社製のシーガル)を使用した。
 4次研磨時には、遊離砥粒を含有しないアンモニア水からなる4次研磨液を、0.4リットル/分で研磨布13へ供給しながら、研磨定盤11および研磨ヘッド12の回転速度が50rpm(回転方向は反対向き)、研磨圧が100g/cm、研磨時間が3分間で、しかも濃度を0.1~1000ppmで変化させた研磨条件で、シリコンウェーハWの表面を4次研磨した。その結果を、図3のグラフに示す。図3のグラフは、最終研磨後のシリコンウェーハWの表面のヘイズ値が、仕上げ研磨面のヘイズ値(0.077ppm)に達するまでに必要となるアルカリ剤の添加量(アルカリ濃度)の違いを確認する試験の結果である。ヘイズ値の測定には、表面検査装置(KLA-Tencor社製、SP2を用いたDWOモード)を使用した。また、最終研磨面のヘイズ値を測定する前に、シリコンウェーハWの表面を所定のSC1洗浄液により洗浄した。
 図3のグラフから明らかなように、最終研磨液がアンモニア水の場合には、ウェーハ表面のヘイズ値が0.077ppmに達するまでに必要なアンモニアの添加量は約1000ppmとなる。例えば、最終研磨液のアンモニア水に添加されたアンモニアの添加量が100ppmのとき、最終研磨面のヘイズ値は0.065ppmであった。
 次に、同じく図3のグラフを参照して、この発明の実施例2に係るシリコンウェーハの研磨方法を説明する。
 実施例2では、実施例1のアンモニア水に代わる弱塩基性水溶液として、水酸化テトラメチルアンモニウム(TMAH)の水溶液を採用し、実施例1と同じ条件で、3次研磨後のシリコンウェーハWの表面を4次研磨した。その結果を、同じく図3のグラフに示す。
 図3のグラフから明らかなように、最終研磨液が水酸化テトラメチルアンモニウムの水溶液の場合には、その添加量が0.1~50ppmの範囲で、その添加量の増大に伴いシリコンウェーハWの表面のヘイズレベルが低下した。一方、水酸化テトラメチルアンモニウムの添加量が50ppmを超えた時点からその添加量の増大につれ、ウェーハ表面のヘイズレベルも悪化し、この添加量が約100ppmに達した時、ヘイズレベルは仕上げ研磨面のヘイズ値に達した。
 その他の構成、作用および効果は、実施例1と同じであるので説明を省略する。
 次に、同じく図3のグラフを参照して、この発明の実施例3に係るシリコンウェーハの研磨方法を説明する。
 実施例3では、実施例1のアンモニア水に代わる弱塩基性水溶液として、アンモニアと炭酸水素アンモニウム(NHHCO)との混合物の水溶液を採用し、実施例1と同じ条件で、3次研磨後のシリコンウェーハWの表面に対して4次研磨を行った。その結果を、同じく図3のグラフに示す。なお、アンモニアと炭酸水素アンモニウムとの混合割合は、重量比で1:1である。
 図3のグラフから明らかなように、最終研磨液が、アンモニアと炭酸水素アンモニウム(NHHCO)との混合水溶液の場合には、アンモニアと炭酸水素アンモニウムとの添加量が0.1~100ppmの範囲において、このアルカリ剤の添加量の増大に伴いシリコンウェーハの表面のヘイズレベルが低下した。一方、アンモニアと炭酸水素アンモニウムとの混合物の添加量が100ppmを超えた時点から、この混合物の添加量の増大に伴いウェーハ表面のヘイズレベルも悪化し始め、その添加量が約500ppmに達した時、そのヘイズレベルは仕上げ研磨面のヘイズ値に達した。
 その他の構成、作用および効果は、実施例1と同じであるので説明を省略する。
 次に、図4のグラフを参照して、この発明の実施例4に係るシリコンウェーハの研磨方法を説明する。
 最終研磨における水溶性高分子の添加の有効性を確認するため、実施例1で行った1次研磨~3次研磨の条件で仕上げ研磨されたシリコンウェーハWを用い、4次研磨(最終研磨)用の最終研磨液の主剤として、遊離砥粒を含まず、アンモニア(NH )の濃度が100ppmのアンモニア水からなる4次研磨液を用い、これに、ヒドロキシエチルセルロース(HEC;水溶性高分子)を添加し、その添加量を変化させて研磨実験を3回(1回目;▲、2回目;●、3回目;◆)行った。他の4次研磨条件は実施例1と同じである。
 最終研磨液中のヒドロキシエチルセルロースの添加量と、シリコンウェーハWの最終研磨面のヘイズ値とを、表面検査装置(KLA-Tencor社製、SP2)を使用し、DWOモードで測定した結果を図4のグラフに示す。
 図4のグラフから明らかなように、ヒドロキシエチルセルロースの添加量が0.1~1000ppmのとき、大幅にシリコンウェーハWのヘイズレベルが低下することが確認された。
 その他の構成、作用および効果は、実施例1と同じであるので説明を省略する。
 この発明は、表面粗さが低減した半導体デバイス用シリコンウェーハの製造方法として有用である。
13 研磨布、
W シリコンウェーハ、
a 遊離砥粒。

Claims (6)

  1.  遊離砥粒を含む仕上げ研磨液を研磨布に供給しながら、該研磨布とシリコンウェーハとを相対的に回転させて、該シリコンウェーハの表裏面のうち、少なくとも表面を仕上げ研磨し、
     該仕上げ研磨後、遊離砥粒を含まない弱塩基性水溶液を主剤とした最終研磨液を研磨布に供給しながら、該研磨布と前記シリコンウェーハとを相対的に回転させて、該シリコンウェーハの仕上げ研磨された面を最終研磨するシリコンウェーハの研磨方法であって、
     前記シリコンウェーハの最終研磨された面のヘイズ値が、該シリコンウェーハの仕上げ研磨された面のヘイズ値より低くなるように、前記最終研磨液の弱塩基性水溶液のアルカリ濃度を調整したシリコンウェーハの研磨方法。
  2.  前記最終研磨液の弱塩基性水溶液のアルカリ濃度は、
     該弱塩基性水溶液がアンモニア水の場合には0.1~1000ppm、
     該弱塩基性水溶液が水酸化テトラメチルアンモニウム水溶液の場合には0.1~100ppm、
     該弱塩基性水溶液がアンモニアと炭酸水素アンモニウムとの混合水溶液の場合には0.1~500ppmである請求項1に記載のシリコンウェーハの研磨方法。
  3.  前記最終研磨液には、水溶性高分子が添加された請求項1または請求項2に記載のシリコンウェーハの研磨方法。
  4.  前記水溶性高分子は、ノニオン系のポリマーおよびモノマーのうちの1種もしくは複数種、または、アニオン系のポリマーおよびモノマーのうちの1種もしくは複数種である請求項3に記載のシリコンウェーハの研磨方法。
  5.  前記水溶性高分子は、ヒドロキシエチルセルロースである請求項4に記載のシリコンウェーハの研磨方法。
  6.  前記最終研磨で使用される研磨布は、スエード型のものである請求項1に記載のシリコンウェーハの研磨方法。
PCT/JP2011/065145 2010-07-02 2011-07-01 シリコンウェーハの研磨方法 WO2012002525A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112011102252T DE112011102252T5 (de) 2010-07-02 2011-07-01 Verfahren zum Polieren von Siliziumwafern
US13/807,082 US20130095660A1 (en) 2010-07-02 2011-07-01 Method for polishing silicon wafer
JP2012522710A JP5622124B2 (ja) 2010-07-02 2011-07-01 シリコンウェーハの研磨方法
KR1020127031269A KR20130014588A (ko) 2010-07-02 2011-07-01 실리콘 웨이퍼의 연마 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-152088 2010-07-02
JP2010152088 2010-07-02

Publications (1)

Publication Number Publication Date
WO2012002525A1 true WO2012002525A1 (ja) 2012-01-05

Family

ID=45402227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065145 WO2012002525A1 (ja) 2010-07-02 2011-07-01 シリコンウェーハの研磨方法

Country Status (5)

Country Link
US (1) US20130095660A1 (ja)
JP (1) JP5622124B2 (ja)
KR (1) KR20130014588A (ja)
DE (1) DE112011102252T5 (ja)
WO (1) WO2012002525A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015152152A1 (ja) * 2014-03-31 2015-10-08 ニッタ・ハース株式会社 半導体基板の研磨方法
JP2015185674A (ja) * 2014-03-24 2015-10-22 株式会社フジミインコーポレーテッド 研磨方法およびそれに用いられる研磨用組成物
JP2015220370A (ja) * 2014-05-19 2015-12-07 株式会社Sumco シリコンウェーハの製造方法及びシリコンウェーハ
WO2015194136A1 (ja) * 2014-06-18 2015-12-23 株式会社フジミインコーポレーテッド シリコンウェーハの研磨方法、研磨用組成物および研磨用組成物セット
WO2016031310A1 (ja) * 2014-08-29 2016-03-03 株式会社Sumco シリコンウェーハの研磨方法
WO2019017407A1 (ja) * 2017-07-21 2019-01-24 株式会社フジミインコーポレーテッド 基板の研磨方法および研磨用組成物セット
JP2020027834A (ja) * 2018-08-09 2020-02-20 株式会社フジミインコーポレーテッド シリコンウェーハ研磨用組成物
JP2020092275A (ja) * 2015-02-12 2020-06-11 株式会社フジミインコーポレーテッド シリコンウェーハの研磨方法および表面処理組成物
JP2021192449A (ja) * 2016-03-01 2021-12-16 株式会社フジミインコーポレーテッド シリコン基板の研磨方法および研磨用組成物セット
JP7040591B1 (ja) 2020-12-16 2022-03-23 株式会社Sumco シリコンウェーハの研磨方法及びシリコンウェーハの製造方法
TWI765063B (zh) * 2017-07-14 2022-05-21 日商信越半導體股份有限公司 研磨方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6343160B2 (ja) * 2014-03-28 2018-06-13 株式会社フジミインコーポレーテッド 研磨用組成物
JP6635088B2 (ja) * 2017-04-24 2020-01-22 信越半導体株式会社 シリコンウエーハの研磨方法
CN112652526A (zh) * 2020-12-14 2021-04-13 西安奕斯伟硅片技术有限公司 一种硅片抛光方法和硅片

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11243072A (ja) * 1998-02-26 1999-09-07 Mitsubishi Materials Silicon Corp 半導体基板の研磨終了時のリンス液及びこれを用いたリンス法
JPH11330024A (ja) * 1998-05-15 1999-11-30 Mitsubishi Materials Silicon Corp 半導体基板の研磨終了時の研磨反応停止液及びこれを用いた研磨停止方法
JP2004128089A (ja) * 2002-09-30 2004-04-22 Fujimi Inc 研磨用組成物及びそれを用いたシリコンウエハの研磨方法、並びにリンス用組成物及びそれを用いたシリコンウエハのリンス方法
JP2006005246A (ja) * 2004-06-18 2006-01-05 Fujimi Inc リンス用組成物及びそれを用いたリンス方法
JP2006352043A (ja) * 2005-06-20 2006-12-28 Nitta Haas Inc 半導体研磨用組成物

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07102541B2 (ja) 1989-12-28 1995-11-08 ミサワホーム株式会社 木製パネル用枠組の製造装置
US6685757B2 (en) * 2002-02-21 2004-02-03 Rodel Holdings, Inc. Polishing composition
US6849548B2 (en) * 2002-04-05 2005-02-01 Seh America, Inc. Method of reducing particulate contamination during polishing of a wafer
US6875087B2 (en) * 2003-05-13 2005-04-05 Novellus Systems, Inc. Method for chemical mechanical planarization (CMP) and chemical mechanical cleaning (CMC) of a work piece
JP2007027488A (ja) * 2005-07-19 2007-02-01 Komatsu Electronic Metals Co Ltd 半導体ウェーハの研磨方法
DE102010010885B4 (de) * 2010-03-10 2017-06-08 Siltronic Ag Verfahren zum Polieren einer Halbleiterscheibe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11243072A (ja) * 1998-02-26 1999-09-07 Mitsubishi Materials Silicon Corp 半導体基板の研磨終了時のリンス液及びこれを用いたリンス法
JPH11330024A (ja) * 1998-05-15 1999-11-30 Mitsubishi Materials Silicon Corp 半導体基板の研磨終了時の研磨反応停止液及びこれを用いた研磨停止方法
JP2004128089A (ja) * 2002-09-30 2004-04-22 Fujimi Inc 研磨用組成物及びそれを用いたシリコンウエハの研磨方法、並びにリンス用組成物及びそれを用いたシリコンウエハのリンス方法
JP2006005246A (ja) * 2004-06-18 2006-01-05 Fujimi Inc リンス用組成物及びそれを用いたリンス方法
JP2006352043A (ja) * 2005-06-20 2006-12-28 Nitta Haas Inc 半導体研磨用組成物

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015185674A (ja) * 2014-03-24 2015-10-22 株式会社フジミインコーポレーテッド 研磨方法およびそれに用いられる研磨用組成物
US10249486B2 (en) 2014-03-31 2019-04-02 Nitta Haas Incorporated Method for polishing semiconductor substrate
KR20160138128A (ko) * 2014-03-31 2016-12-02 니타 하스 인코포레이티드 반도체 기판의 연마 방법
KR102380782B1 (ko) * 2014-03-31 2022-03-29 니타 듀폰 가부시키가이샤 반도체 기판의 연마 방법
WO2015152152A1 (ja) * 2014-03-31 2015-10-08 ニッタ・ハース株式会社 半導体基板の研磨方法
JP2015198112A (ja) * 2014-03-31 2015-11-09 ニッタ・ハース株式会社 半導体基板の研磨方法
JP2015220370A (ja) * 2014-05-19 2015-12-07 株式会社Sumco シリコンウェーハの製造方法及びシリコンウェーハ
JP2016004953A (ja) * 2014-06-18 2016-01-12 株式会社フジミインコーポレーテッド シリコンウェーハの研磨方法、研磨用組成物および研磨用組成物セット
KR20170015879A (ko) 2014-06-18 2017-02-10 가부시키가이샤 후지미인코퍼레이티드 실리콘 웨이퍼의 연마 방법, 연마용 조성물 및 연마용 조성물 세트
WO2015194136A1 (ja) * 2014-06-18 2015-12-23 株式会社フジミインコーポレーテッド シリコンウェーハの研磨方法、研磨用組成物および研磨用組成物セット
TWI660417B (zh) * 2014-06-18 2019-05-21 日商福吉米股份有限公司 矽晶圓之研磨方法、研磨用組成物及研磨用組成物套組
JP2016051763A (ja) * 2014-08-29 2016-04-11 株式会社Sumco シリコンウェーハの研磨方法
WO2016031310A1 (ja) * 2014-08-29 2016-03-03 株式会社Sumco シリコンウェーハの研磨方法
US9956663B2 (en) 2014-08-29 2018-05-01 Sumco Corporation Method for polishing silicon wafer
JP2020092275A (ja) * 2015-02-12 2020-06-11 株式会社フジミインコーポレーテッド シリコンウェーハの研磨方法および表面処理組成物
US11897081B2 (en) 2016-03-01 2024-02-13 Fujimi Incorporated Method for polishing silicon substrate and polishing composition set
JP7273912B2 (ja) 2016-03-01 2023-05-15 株式会社フジミインコーポレーテッド シリコン基板の研磨方法および研磨用組成物セット
JP2021192449A (ja) * 2016-03-01 2021-12-16 株式会社フジミインコーポレーテッド シリコン基板の研磨方法および研磨用組成物セット
TWI765063B (zh) * 2017-07-14 2022-05-21 日商信越半導體股份有限公司 研磨方法
CN110914958A (zh) * 2017-07-21 2020-03-24 福吉米株式会社 基板的研磨方法及研磨用组合物套组
JP7227132B2 (ja) 2017-07-21 2023-02-21 株式会社フジミインコーポレーテッド 基板の研磨方法および研磨用組成物セット
JP7566062B2 (ja) 2017-07-21 2024-10-11 株式会社フジミインコーポレーテッド 基板の研磨方法および研磨用組成物セット
JPWO2019017407A1 (ja) * 2017-07-21 2020-06-25 株式会社フジミインコーポレーテッド 基板の研磨方法および研磨用組成物セット
KR20200029568A (ko) * 2017-07-21 2020-03-18 가부시키가이샤 후지미인코퍼레이티드 기판의 연마 방법 및 연마용 조성물 세트
WO2019017407A1 (ja) * 2017-07-21 2019-01-24 株式会社フジミインコーポレーテッド 基板の研磨方法および研磨用組成物セット
KR102617007B1 (ko) 2017-07-21 2023-12-27 가부시키가이샤 후지미인코퍼레이티드 기판의 연마 방법 및 연마용 조성물 세트
US11124675B2 (en) 2017-07-21 2021-09-21 Fujimi Incorporated Method of polishing substrate and polishing composition set
CN110914958B (zh) * 2017-07-21 2023-08-11 福吉米株式会社 基板的研磨方法及研磨用组合物套组
JP2020027834A (ja) * 2018-08-09 2020-02-20 株式会社フジミインコーポレーテッド シリコンウェーハ研磨用組成物
JP7330676B2 (ja) 2018-08-09 2023-08-22 株式会社フジミインコーポレーテッド シリコンウェーハ研磨用組成物
KR20230062646A (ko) * 2020-12-16 2023-05-09 가부시키가이샤 사무코 실리콘 웨이퍼의 연마 방법 및 실리콘 웨이퍼의 제조 방법
JP2022095132A (ja) * 2020-12-16 2022-06-28 株式会社Sumco シリコンウェーハの研磨方法及びシリコンウェーハの製造方法
WO2022130696A1 (ja) * 2020-12-16 2022-06-23 株式会社Sumco シリコンウェーハの研磨方法及びシリコンウェーハの製造方法
JP7040591B1 (ja) 2020-12-16 2022-03-23 株式会社Sumco シリコンウェーハの研磨方法及びシリコンウェーハの製造方法
KR102733796B1 (ko) 2020-12-16 2024-11-25 가부시키가이샤 사무코 실리콘 웨이퍼의 연마 방법 및 실리콘 웨이퍼의 제조 방법

Also Published As

Publication number Publication date
JPWO2012002525A1 (ja) 2013-08-29
US20130095660A1 (en) 2013-04-18
KR20130014588A (ko) 2013-02-07
JP5622124B2 (ja) 2014-11-12
DE112011102252T5 (de) 2013-05-02

Similar Documents

Publication Publication Date Title
JP5622124B2 (ja) シリコンウェーハの研磨方法
JP5754659B2 (ja) シリコンウェーハの研磨方法
TWI585840B (zh) Manufacturing method of semiconductor wafers
JP5585652B2 (ja) シリコンウェーハの研磨方法
KR101947614B1 (ko) 반도체 웨이퍼의 제조 방법
JP5493956B2 (ja) 半導体ウェーハの製造方法
JP3317330B2 (ja) 半導体鏡面ウェーハの製造方法
JP3617665B2 (ja) 半導体ウェーハ用研磨布
JP2013258227A (ja) 半導体ウェーハの製造方法
KR20020017910A (ko) 재생웨이퍼를 반도체웨이퍼로 변환시키는 방법
CN111095491B (zh) 硅晶片的双面抛光方法
JP2012235072A (ja) ウェーハ表面処理方法
JP4366928B2 (ja) 片面鏡面ウェーハの製造方法
JP6747376B2 (ja) シリコンウエーハの研磨方法
JP2011187956A (ja) 半導体ウェハの研磨方法
CN113614198A (zh) 包含具有硅-硅键的材料的研磨对象物的研磨方法
WO2006035865A1 (ja) 半導体ウェーハの製造方法及び半導体ウェーハ
JP2009135180A (ja) 半導体ウェーハの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800987

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012522710

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127031269

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13807082

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120111022522

Country of ref document: DE

Ref document number: 112011102252

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11800987

Country of ref document: EP

Kind code of ref document: A1