WO2010021126A1 - 糖タンパク質の製造方法及びスクリーニング方法 - Google Patents
糖タンパク質の製造方法及びスクリーニング方法 Download PDFInfo
- Publication number
- WO2010021126A1 WO2010021126A1 PCT/JP2009/003932 JP2009003932W WO2010021126A1 WO 2010021126 A1 WO2010021126 A1 WO 2010021126A1 JP 2009003932 W JP2009003932 W JP 2009003932W WO 2010021126 A1 WO2010021126 A1 WO 2010021126A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- glycoprotein
- amino acid
- sugar chain
- fraction
- group
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K1/00—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
- C07K1/107—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides
- C07K1/113—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides without change of the primary structure
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K1/00—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
- C07K1/107—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides
- C07K1/113—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides without change of the primary structure
- C07K1/1136—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides without change of the primary structure by reversible modification of the secondary, tertiary or quarternary structure, e.g. using denaturating or stabilising agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K1/00—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
- C07K1/06—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K1/00—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
- C07K1/107—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides
- C07K1/1072—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides by covalent attachment of residues or functional groups
- C07K1/1077—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides by covalent attachment of residues or functional groups by covalent attachment of residues other than amino acids or peptide residues, e.g. sugars, polyols, fatty acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K1/00—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
- C07K1/14—Extraction; Separation; Purification
- C07K1/16—Extraction; Separation; Purification by chromatography
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/81—Protease inhibitors
- C07K14/8107—Endopeptidase (E.C. 3.4.21-99) inhibitors
- C07K14/811—Serine protease (E.C. 3.4.21) inhibitors
- C07K14/8135—Kazal type inhibitors, e.g. pancreatic secretory inhibitor, ovomucoid
Definitions
- the present invention relates to a method for producing a glycoprotein having a uniform amino acid sequence, sugar chain structure and higher order structure.
- glycoproteins As various drugs has been underway.
- the sugar chain part of glycoprotein has a function of delaying metabolism from the blood by adding resistance to protease, a function as a signal controlling transport to organelles in cells, and the like. Therefore, by adding an appropriate sugar chain, it is possible to control the blood half-life of the glycoprotein and the intracellular transport.
- EPO erythropoietin
- This glycoprotein is a blood cell differentiation hormone having a function of maintaining the number of erythrocytes in peripheral blood by acting on erythroid progenitor cells and promoting their proliferation and differentiation.
- glycoproteins may be recognized by macrophages in the blood and excreted from the blood even when the sugar chains are incomplete or when different sugar chains are bound.
- glycoproteins are used as pharmaceuticals, it is desirable that sugar chains with a uniform structure be added to the same positions of each protein.
- the present inventors have so far developed a method capable of producing a relatively large amount of a glycoprotein having a uniform amino acid sequence and a sugar chain, using an amino acid whose amino group is protected with a fat-soluble protecting group and a sugar chain asparagine as materials.
- a method capable of producing a relatively large amount of a glycoprotein having a uniform amino acid sequence and a sugar chain using an amino acid whose amino group is protected with a fat-soluble protecting group and a sugar chain asparagine as materials.
- Patent Document 1 an aminated complex-type sugar chain derivative and a glycoprotein that can maintain a sufficient blood concentration were developed (see Patent Document 2). Any glycoprotein is expected to be useful as a pharmaceutical product.
- glycoprotein functions include not only amino acid sequences and sugar chain structures, but also higher order of protein parts.
- the structure is also considered to be closely related.
- Protein conformations are stabilized by hydrogen bonds between amino acid residues, ionic bonds, hydrophobic interactions, SS bonds between cysteine residues, and many proteins have their own conformation. Have. However, bonds other than the SS bond are relatively weak bonds, and the higher-order structure is broken by relatively mild heating or pressurization, and its physiological activity is reduced or lost. This is called protein denaturation. In particular, when the amino acid chain is long, a plurality of structures giving a minimum energy point are generated, so that an abnormal higher-order structure (misfolding) may occur. Also in this case, it is reported that the activity of the protein is changed or lost.
- the present inventors synthesized glycoprotein fragments by the method according to Patent Document 1, and ligated with other peptide fragments by a natural chemical ligation method (Native Chemical Ligation, NCL method), thereby monocyte chemotaxis.
- Protein-3 was synthesized. After folding the synthesized monocyte chemotactic protein-3, the position of the disulfide bond was confirmed by chymotrypsin treatment. As a result, about 90% of the glycoproteins had the disulfide bond formed at the correct position. % Was found to have a disulfide bond formed at a different position (Non-patent Document 1).
- ovomucoid protein a kind of protein contained in egg white, is a glycoprotein whose function and structure have been studied relatively well.
- Ovomucoid is a protein having a molecular weight of about 28,000, has three domains in the molecule, and each domain has inhibitory activity against different proteases.
- the third domain has been studied in detail because it exhibits inhibitory activity even alone. So far, the structure of the third domain derived from 100 or more birds has been reported, and the three-dimensional structure has been clarified by X-ray crystallography.
- the present invention produces glycoproteins having uniform physiological activity in addition to functions based on sugar chains such as blood half-life, that is, glycoproteins having uniform amino acid sequence, sugar chain structure, and higher order structure. It aims to provide a way to do.
- Another object of the present invention is to provide a screening method for selecting a glycoprotein having a predetermined activity from a plurality of types of glycoproteins having different physiological activities, and to provide a mixture of glycoproteins having a desired activity.
- the inventors of the present invention have found that when a third domain of an ovomucoid protein having a uniform amino acid sequence and sugar chain structure is synthesized and folded, a mixture containing a plurality of types of higher-order structures at a certain ratio can be obtained with good reproducibility. I found it. Then, when these were separated and measured for physiological activity, unlike the conventional understanding, there were multiple types of higher-order structures having the same type of physiological activity at a level recognized as relatively high activity; relatively high activity However, it was confirmed that there is a difference in activity depending on the higher-order structure; glycoproteins having different higher-order structures can be separated and purified by column chromatography.
- a non-glycoprotein having a predetermined activity is unfolded and then folded again, it can be converted into a higher-order structure obtained at the above-mentioned fixed ratio, and therefore the unfolding / refolding process is repeated.
- a glycoprotein having a higher order structure having a predetermined activity can be recovered to the maximum extent.
- the present invention A method for producing a glycoprotein having a uniform amino acid sequence, sugar chain structure, and higher order structure, comprising the following steps (a) to (c): (A) folding a glycoprotein having a uniform amino acid sequence and sugar chain; (B) providing a method comprising fractionating the folded glycoprotein by column chromatography; and (c) collecting a fraction having a predetermined activity.
- step (d) (D) a step of unfolding the glycoprotein contained in the fraction not collected in the step (c); (E) refolding the unfolded glycoprotein; (F) fractionating the refolded glycoprotein by column chromatography and collecting the fraction having the predetermined activity; and (g) repeating steps (d) to (f) as necessary. It is preferable that it is further included.
- the present invention also provides A method for screening a glycoprotein having a predetermined physiological activity, comprising the following steps (i) to (iii): (I) folding a glycoprotein having a uniform amino acid sequence and sugar chain; (Ii) providing a method comprising fractionating the folded glycoprotein by column chromatography; and (iii) measuring the activity of each fraction and determining whether it has a predetermined activity.
- the present invention also provides A method for obtaining a glycoprotein mixture having a desired physiological activity, comprising the following steps (A) to (D): (A) a step of folding a glycoprotein having a uniform amino acid sequence and sugar chain; (B) a step of fractionating the folded glycoprotein by column chromatography; (C) a step of measuring the activity of each fraction; and (D) obtaining a mixing ratio of each fraction for obtaining a desired activity and mixing each fraction according to the ratio.
- At least a part of the glycoprotein having a uniform amino acid sequence and sugar chain includes the following steps (1) to (6): (1) Hydroxyl group of a resin (resin) having a hydroxyl group and a carboxyl group of an amino acid whose amino group is protected with a fat-soluble protecting group, or a carboxyl group of an amino acid with an amino group protected with a lipophilic protecting group And esterification reaction; (2) removing the fat-soluble protecting group to form a free amino group; (3) An amidation reaction between the free amino group and a carboxyl group of an amino acid whose amino group is protected with a fat-soluble protecting group, or a carboxyl group of an amino acid with a sugar chain added whose amino group is protected with a fat-soluble protecting group The step of causing; (4) After the step (3), removing the lipophilic protecting group to form
- the glycoprotein further comprises the following step (7): (7) It is preferable to include a step of linking a part of the glycoprotein obtained in the step (6) with another peptide or glycopeptide by a ligation method.
- a glycoprotein having a uniform higher order structure can be obtained, so that there is no variation in blood half-life and intracellular transport.
- a glycoprotein having a predetermined physiological activity can be produced.
- the glycoprotein screening method of the present invention it is possible to select a glycoprotein having a predetermined physiological activity uniformly from a group of glycoproteins in which the physiological activity varies due to different higher-order structures. it can. Since the glycoprotein has a uniform sugar chain structure, the functions based on sugar chains such as blood half-life and transport in cells are also uniform.
- OMSVP3 ovomucoid third domain
- the fragment 1 (thioester body) used for the chemical synthesis of OMSVP3 is shown.
- Fragment 2 (thioester form) used for chemical synthesis of OMSVP3 having a sugar chain is shown.
- Fragment 3 used for chemical synthesis of OMSVP3 is shown.
- combination is shown.
- combination is shown.
- combination is shown.
- level of the connection by the NCL method of the fragment 2 and the fragment 3 is shown.
- level of the connection by the NCL method of the fragment 2 and 3 and the fragment 1 is shown.
- a chromatogram at a wavelength of 220 nm when OMSVP3 having a sugar chain is folded and then separated by HPLC is shown.
- the NMR spectrum of the fraction B of FIG. 10 is shown.
- the CD spectrum of the fraction B of FIG. 10 is shown.
- the measurement result of the inhibitory activity with respect to chymotrypsin of each fraction of FIG. 10 is shown.
- the fragment 2 '(thioester form) used for the chemical synthesis of OMSVP3 having no sugar chain is shown.
- combination is shown.
- level of the connection by the NCL method of the fragment 2 'and the fragment 3 is shown.
- level of the connection by the NCL method of the fragment 2 'and 3 and the fragment 1 is shown.
- a chromatogram at a wavelength of 220 nm when OMSVP3 having no sugar chain is folded and then separated by HPLC is shown.
- the NMR spectrum of the fraction F of FIG. 18 is shown.
- FIG. 19 shows the CD spectrum of fraction F in FIG.
- a calibration curve for fraction F is shown.
- the inhibition rate of fraction AD against chymotrypsin is shown.
- IC 50 values for fractions AD are shown.
- the inhibition rate of fraction EH against chymotrypsin is shown.
- IC 50 values for fractions EH are shown.
- the CD spectrum by the temperature change of the fraction B is shown.
- the CD spectrum by the temperature change of the fraction F is shown.
- the chromatogram in wavelength 220nm in Thermolysin digestion with respect to the fraction B is shown.
- the mass-spectrometry result of the peptide fragment after Thermolysin digestion with respect to the fraction B is shown.
- the chromatogram in wavelength 220nm in Thermolysin digestion with respect to the fraction F is shown.
- the mass-spectrometry result of the peptide fragment after Thermolysin digestion with respect to fraction F is shown.
- the result of the position determination of the disulfide bond by Thermolysin digestion with respect to fraction B is shown.
- the result of the position determination of the disulfide bond by Thermolysin digestion with respect to fraction F is shown.
- a calibration curve of the substrate peptide is shown.
- the substrate peptide Michaelis-Menten plot is shown.
- the reaction rate per unit time of the substrate peptide is shown.
- the “protein” is not particularly limited as long as a plurality of amino acids are bonded by an amide bond, and includes known proteins, novel proteins, and protein variants.
- the protein portion of the glycoprotein obtained by the production method of the present invention has a plurality of amino acids linked by the same amide bond (peptide bond) as that of the natural type.
- the protein in the present specification has a length capable of taking a predetermined higher order structure by folding.
- a “protein variant” is a compound obtained by natural or artificial modification of a protein.
- modification include alkylation, acylation of one or more amino acid residues of a protein. (Eg, acetylation), amidation (eg, C-terminal amidation of protein), carboxylation, ester formation, disulfide bond formation, glycosylation, lipidation, phosphorylation, hydroxylation, binding of label components, etc. It is done.
- peptide is used in the same meaning as protein in principle, but may be used to indicate a part of the protein or a relatively short amino acid chain that does not have a higher-order structure.
- amino acid is used in its broadest sense, and is a natural amino acid such as serine (Ser), asparagine (Asn), valine (Val), leucine (Ler), isoleucine (Ile), alanine.
- Al tyrosine
- Tyr glycine
- Gly lysine
- Lys lysine
- Arg arginine
- His histidine
- aspartic acid Aspartic acid
- Glu glutamic acid
- Glu glutamine
- Gln glutamine
- Thr threonine
- amino acids in the present specification, for example, L-amino acids; D-amino acids; chemically modified amino acids such as amino acid variants and derivatives; norleucine, ⁇ -alanine, ornithine It will be understood that amino acids that are not constituents of proteins in vivo, such as chemically synthesized compounds having amino acid properties known to those skilled in the art, and the like.
- unnatural amino acids include ⁇ -methyl amino acids (such as ⁇ -methylalanine), D-amino acids, histidine-like amino acids (2-amino-histidine, ⁇ -hydroxy-histidine, homohistidine, ⁇ -fluoromethyl-histidine and ⁇ -methyl-histidine, etc.), amino acids with extra methylene in the side chain (“homo” amino acids), and amino acids in which the carboxylic acid functional amino acids in the side chain are replaced with sulfonic acid groups (such as cysteic acid) .
- ⁇ -methyl amino acids such as ⁇ -methylalanine
- D-amino acids histidine-like amino acids (2-amino-histidine, ⁇ -hydroxy-histidine, homohistidine, ⁇ -fluoromethyl-histidine and ⁇ -methyl-histidine, etc.
- amino acids with extra methylene in the side chain (“homo” amino acids)
- the protein portion of the glycoprotein obtained by the production method of the present invention consists entirely of amino acids that are present in the living body as protein or constituent amino acids of the glycoprotein.
- glycoprotein is not particularly limited as long as it is a compound in which at least one sugar chain is added to the protein, and includes known glycoproteins and novel glycoproteins.
- glycopeptide is used in the same meaning as a glycoprotein in principle, but may also refer to a part of a glycoprotein or a sugar chain bound to the above peptide.
- the glycoprotein obtained by the production method of the present invention is a protein having an N-linked sugar chain or an O-linked sugar chain.
- erythropoietin, interleukin, interferon- ⁇ , antibody, monocyte chemotaxis examples thereof include a part or all of peptides such as sex factor protein-3 (MCP-3) and ovomucoid protein.
- the sugar chain and the amino acid residue in the protein may be bonded directly or via a linker.
- the binding site between the sugar chain and the amino acid it is preferable that the amino acid is bound to the reducing end of the sugar chain.
- the type of amino acid to which the sugar chain is bound is not particularly limited, and may be bound to either a natural amino acid or a non-natural amino acid.
- the sugar chain is bound to Asn like the N-linked sugar chain, or the O-linked sugar chain Thus, it is preferable to bind to Ser or Thr.
- the glycoprotein obtained by the production method of the present invention has a sugar chain bound to Asn, and an amino acid (X) other than proline is bound to an amide bond (peptide bond) on the C-terminal side of the Asn.
- the amino acid to which the sugar chain is bonded is: two or more carboxyl groups in the molecule such as aspartic acid and glutamic acid.
- amino acids having two or more amino groups in the molecule such as lysine, arginine, histidine, tryptophan; amino acids having hydroxyl groups in the molecule such as serine, threonine, tyrosine; amino acids having a thiol group in the molecule such as cysteine Or an amino acid having an amide group in the molecule, such as asparagine and glutamine.
- amino acids having two or more amino groups in the molecule such as lysine, arginine, histidine, tryptophan
- amino acids having hydroxyl groups in the molecule such as serine, threonine, tyrosine
- amino acids having a thiol group in the molecule such as cysteine
- an amino acid having an amide group in the molecule such as asparagine and glutamine.
- a linker widely used in the art can be used as the linker, for example: —NH— (CO) — (CH 2 ) a —CH 2 — (Wherein, a is an integer and is not limited as long as the desired linker function is not inhibited, but preferably represents an integer of 0 to 4); C 1-10 polymethylene; —CH 2 —R 3 — Wherein R 3 is alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, carbocyclic group, substituted carbocyclic group, heterocyclic group And a group formed by elimination of one hydrogen atom from a group selected from the group consisting of substituted heterocyclic groups); Etc.
- sugar chain refers to a compound in which two or more unit sugars (monosaccharides and / or derivatives thereof) are connected, and one unit sugar (monosaccharide and / or derivatives thereof).
- sugar chains include monosaccharides and polysaccharides (glucose, galactose, mannose, fucose, xylose, N-acetylglucosamine, N-acetylgalactosamine, sialic acid, and complexes thereof contained in the living body.
- Derivatives and a wide variety of sugar chains that are decomposed or derived from complex biomolecules such as degraded polysaccharides, glycoproteins, proteoglycans, glycosaminoglycans, glycolipids, and the like, but are not limited thereto.
- each unit sugar is bound by dehydration condensation by a glycosidic bond.
- the sugar chain may be linear or branched.
- sugar chain also includes sugar chain derivatives.
- sugar chain derivatives include sugars having a carboxyl group (for example, C-1 Oxidized aldonic acid converted to carboxylic acid (for example, D-gluconic acid oxidized D-glucose), uronic acid whose terminal C atom became carboxylic acid (D-glucose oxidized D-glucose) Glucuronic acid)), sugars having amino groups or amino group derivatives (eg acetylated amino groups) (eg N-acetyl-D-glucosamine, N-acetyl-D-galactosamine etc.), amino groups and carboxyls Sugars having both groups (eg, N-acetylneuraminic acid (sialic acid), N-acetylmuramic acid, etc.), deoxygenated sugars (eg, 2-deoxy-D-ribo Scan), sulfated sugar including a sulfuric acid group, including but sugar chains
- the sugar chain of the present invention is preferably a sugar chain that exists as a complex carbohydrate (glycoprotein (or glycopeptide), proteoglycan, glycolipid, etc.) in vivo, and preferably glycoprotein (or sugar in vivo).
- Peptide is an N-linked sugar chain, an O-linked sugar chain, or the like that is a sugar chain bound to a protein (or peptide).
- N-acetylgalactosamine (GalNAc), N-acetylglucosamine (GlcNAc), xylose, fucose and the like are bound to the Ser or Thr of the peptide by an O-glycoside bond.
- a sugar chain is added to this.
- Examples of the N-linked sugar chain include a high mannose (high mannose) type, a complex (complex) type, and a hybrid (hybrid) type, and a complex type is preferable.
- a preferable sugar chain is, for example, a sugar chain represented by the following formula (4).
- R 1 and R 2 are each independently a hydrogen atom or a group represented by formulas (5) to (8). ]
- preferred sugar chains include, for example, in the human body.
- Sugar chains existing as glycoproteins linked to proteins for example, sugar chains described in FEBS LETTERS Vol. 50, No. 3, Feb. 1975
- sugar chains having the same structure types of constituent sugars and those Sugar chains having the same binding mode
- sugar chains that have lost one or more sugars from the non-reducing end thereof for example, sugar chains described in FEBS LETTERS Vol. 50, No. 3, Feb. 1975
- the number of added sugar chains in the glycoprotein is not particularly limited as long as it is 1 chain or more. However, from the viewpoint of providing a glycoprotein having a structure similar to that of a glycoprotein present in the living body, the glycoprotein present in the body. It would be more preferable if the number of additions is about the same.
- a glycoprotein having a uniform amino acid sequence and sugar chain is used.
- the structure of a sugar chain in a glycoprotein is uniform when compared between glycoproteins, the glycosylation site in the peptide, the type of each sugar constituting the sugar chain, the binding order, and the sugar It means that the binding mode between them is the same in at least 90% or more, preferably 95% or more, and more preferably 99% or more of sugar chains.
- the amino acid sequence in the glycoprotein is uniform means that the types of amino acids in the protein, the binding order, and the binding mode between the amino acids are the same when compared between glycoproteins. .
- the glycoprotein may be the same in at least 90% or more, preferably 95% or more, and more preferably 99% or more.
- Glycoproteins with uniform amino acid sequences and sugar chains used in the present invention are peptide production methods known to those skilled in the art, such as solid phase synthesis, liquid phase synthesis, cell synthesis, and methods for separating and extracting naturally occurring ones. It can be produced by incorporating a sugar chain addition step.
- a sugar chain addition step for example, International Publication Nos. WO03 / 008431, WO2004 / 058884, WO2004 / 008431, WO2004 / 058824, WO2004 / 070046, WO2007 / 011055 and the like can be referred to.
- At least a part of a glycoprotein having a uniform amino acid and sugar chain is produced by the following method.
- WO2004 / 005330 pamphlet can also be referred to.
- Carboxyl group is esterified.
- the amino group of the amino acid is protected with a fat-soluble protecting group, self-condensation between amino acids is prevented, and an esterification reaction occurs between the hydroxyl group of the resin and the carboxyl group of the amino acid.
- step (1) (2) the lipophilic protecting group of the ester obtained in step (1) is eliminated to form a free amino group, (3) Amidation reaction of the above free amino group with the carboxyl group of an amino acid whose amino group is protected with a fat-soluble protecting group, or the carboxyl group of an amino acid with a sugar chain added whose amino group is protected with a fat-soluble protecting group Let (4) After step (3), the lipophilic protecting group is removed to form a free amino group. (5) Steps (3) and (4) are repeated as necessary to obtain the desired number of steps. A glycoprotein in which amino acids are linked and one or more sugar chains are added at a desired position can be obtained.
- Examples of the amino acid added with a sugar chain include a sugar chain asparagine in which the sugar chain is N-glycoside bonded to the nitrogen of the amide group of the asparagine side chain, a sugar in which the sugar chain is O-glycoside bonded to the hydroxyl group of the serine or threonine side chain.
- Examples include chain serine or sugar chain threonine.
- the glycoprotein obtained in step (5) has one end bonded to the resin and the other end having a free amino group. Therefore, (6) the desired glycoprotein can be produced by cleaving the ester bond formed in step (1) with an acid.
- the solid phase resin (resin) is usually a resin (resin) used in solid phase synthesis.
- a resin (resin) used in solid phase synthesis.
- Amino-PEGA resin (Merck), Wang resin (Merck), HMPA-PEGA resin (Merck), Trt Chloride resin (Merck), etc. can be used.
- a linker may be present between the amino-PEGA resin (resin) and the amino acid.
- examples of such a linker include 4-hydroxymethylphenoxyacetic acid (HMPA), 4- (4-hydroxymethyl-3 -Methoxyphenoxy) -butylacetic acid (HMPB) and the like.
- the fat-soluble protecting group examples include carbonyl-containing groups such as 9-fluorenylmethoxycarbonyl (Fmoc) group, t-butyloxycarbonyl (Boc) group, allyloxycarbonyl (Alloc) group, acetyl (Ac) group, etc.
- Protecting groups such as an acyl group, an allyl group, and a benzyl group are not particularly limited thereto.
- the fat-soluble protecting group for example, when introducing the Fmoc group, 9-fluorenylmethyl-N-succinimidyl carbonate and sodium hydrogen carbonate can be added and reacted.
- the reaction is carried out at 0 to 50 ° C., preferably at room temperature, for about 1 to 5 hours.
- amino acid protected with a fat-soluble protecting group those obtained by protecting the above-mentioned amino acids by the above method can be used.
- Commercially available products can also be used.
- Fmoc-Glu Fmoc-Gln, Fmoc-Thr, Fmoc-Cys, Fmoc-Met, Fmoc-Phe, Fmoc-Trp, and Fmoc-Pro.
- a known dehydration condensing agent such as 1-mesitylenesulfonyl-3-nitro-1,2,4-triazole (MSNT), dicyclohexylcarbodiimide (DCC), 1,3-diisopropylcarbodiimide (DIPCDI) is used.
- MSNT 1-mesitylenesulfonyl-3-nitro-1,2,4-triazole
- DCC dicyclohexylcarbodiimide
- DIPCDI 1,3-diisopropylcarbodiimide
- the use ratio of the amino acid and the dehydration condensing agent is usually 1 to 10 parts by weight, preferably 2 to 5 parts by weight, with respect to 1 part by weight of the former.
- the esterification reaction is preferably performed, for example, by placing a resin in a solid phase column, washing the resin with a solvent, and then adding an amino acid solution.
- the cleaning solvent include dimethylformamide (DMF), 2-propanol, methylene chloride and the like.
- the solvent that dissolves amino acids include dimethyl sulfoxide (DMSO), DMF, and methylene chloride.
- the esterification reaction is carried out at 0 to 50 ° C., preferably at room temperature, for about 10 minutes to 30 hours, preferably about 15 minutes to 24 hours.
- the elimination of the lipophilic protecting group can be carried out, for example, by treatment with a base.
- a base include piperidine and morpholine.
- a solvent examples include DMSO, DMF, methanol and the like.
- amidation reaction between the free amino group and the carboxyl group of any amino acid whose amino group nitrogen is protected with a fat-soluble protecting group is preferably performed in the presence of an activator and a solvent.
- activator examples include dicyclohexylcarbodiimide (DCC), 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (WSC / HCl), diphenylphosphoryl azide (DPPA), carbonyldiimidazole (CDI).
- DCC dicyclohexylcarbodiimide
- WSC / HCl 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride
- DPPA diphenylphosphoryl azide
- CDI carbonyldiimidazole
- the activator is used in an amount of 1 to 20 equivalents, preferably 1 to 10 equivalents, more preferably 1 to 5 equivalents with respect to any amino acid in which the amino group nitrogen is protected with a fat-soluble protecting group. Is preferred.
- the reaction proceeds even with the above activator alone, but it is preferable to use an amine as an auxiliary agent.
- an amine for example, diisopropylethylamine (DIPEA), N-ethylmorpholine (NEM), N-methylmorpholine (NMM), N-methylimidazole (NMI) and the like can be used.
- DIPEA diisopropylethylamine
- NEM N-ethylmorpholine
- NMM N-methylmorpholine
- NMI N-methylimidazole
- the amount of the adjuvant used is 1 to 20 equivalents, preferably 1 to 10 equivalents, more preferably 1 to 5 equivalents with respect to any amino acid in which the amino group nitrogen is protected with a fat-soluble protecting group. Is preferred.
- the solvent examples include DMSO, DMF, methylene chloride and the like.
- the reaction is carried out at 0 to 50 ° C., preferably at room temperature, for about 10 minutes to 30 hours, preferably about 15 minutes to 24 hours. Also at this time, it is preferable to acetylate and cap the unreacted amino group on the solid phase using acetic anhydride or the like.
- the elimination of the lipophilic protecting group can be carried out in the same manner as described above.
- the acid include trifluoroacetic acid (TFA) and hydrogen fluoride (HF).
- TFA trifluoroacetic acid
- HF hydrogen fluoride
- a highly reactive cationic species may be generated from the lipophilic protecting group used for amino acids and the linker on the resin (resin), so a nucleophilic reagent is added to capture this. It is preferable.
- the nucleophilic reagent include triisopropylsilane (TIS), phenol, thioanisole, ethanedithiol (EDT) and the like.
- a glycoprotein having a uniform amino acid sequence and sugar chain can also be produced by dividing it into several peptide blocks or glycopeptide blocks, which are synthesized by steps (1) to (6) and then linked by the ligation method. .
- the “ligation method” refers to a peptide containing a non-natural amino acid or an amino acid derivative, including the natural chemical ligation method (Native Chemical Ligation, NCL method) described in WO 96/34878. This includes the case where natural chemical ligation is applied. According to the ligation method, a protein having a natural amide bond (peptide bond) at the linking site can be produced.
- Ligation can be performed at any of peptide-peptide, peptide-glycopeptide, and glycopeptide-glycopeptide, but one of the two peptides or glycopeptide to be linked is cysteine at the N-terminus. It is necessary to have a residue and the other has an ⁇ -carboxythioester moiety at the C-terminus.
- each peptide or glycopeptide block have a cysteine residue at the N-terminus, for example, when designing each peptide or glycopeptide block, a cysteine residue contained in a glycoprotein that is finally produced. What is necessary is just to divide
- a peptide or glycopeptide block having an ⁇ -carboxythioester moiety at the C-terminus can be produced using techniques known to those skilled in the art, such as the method described in International Publication No. WO96 / 34878.
- a protected peptide (or glycopeptide) in which the amino acid side chain and the N-terminal amino group are protected is obtained by solid phase synthesis, and the carboxyl group on the C-terminal side is changed.
- PyBOP Benzotriazole-1-yl-oxy-tris-pyrrolidino-phosphonium phosphate
- DIPEA Benzotriazole-1-yl-oxy-tris-pyrrolidino-phosphonium phosphate
- DIPEA DIPEA
- a peptide (or glycopeptide) having an ⁇ -carboxythioester moiety at the C-terminus can be obtained.
- the ligation method can be carried out using a technique known to those skilled in the art as described in Patent Document 1 and with reference to the description of Examples described later.
- a first peptide having an ⁇ -carboxythioester moiety represented by —C ( ⁇ O) —SR at the C-terminus and a second peptide having an amino acid residue having an —SH group at the N-terminus are prepared with reference to the above description.
- R is not particularly limited as long as R does not inhibit the thiol exchange reaction and becomes a leaving group in the nucleophilic substitution reaction to the carbonyl carbon, but preferably a benzyl type such as benzyl mercaptan, It can be selected from aryl types such as thiophenol and 4- (carboxymethyl) -thiophenol, alkyl types such as 2-mercaptoethanesulfonic acid salt and 3-mercaptopropionic acid amide.
- the —SH group at the N-terminus of the second peptide may optionally be protected by a protecting group, but this protecting group is deprotected at a desired point until the following ligation reaction, and the — A second peptide having an SH group reacts with the first peptide.
- the protecting group is naturally deprotected under conditions where ligation occurs, such as a disulfide group
- the second peptide protected by the protecting group can be used in the following ligation reaction as it is.
- a solution such as a 100 mM phosphate buffer solution in the presence of a catalytic thiol such as 4-mercaptophenylacetic acid, benzyl mercaptan, and thiophenol as necessary.
- a catalytic thiol such as 4-mercaptophenylacetic acid, benzyl mercaptan, and thiophenol as necessary.
- the reaction is performed at a ratio of about 0.5 to 2 equivalents of the second peptide and about 5 equivalents of catalytic thiol to 1 equivalent of the first peptide.
- the reaction is desirably carried out for about 1 to 30 hours under conditions of pH 6.5 to 7.5 and 20 to 40 ° C.
- the progress of the reaction can be confirmed using a known method combining HPLC, MS and the like.
- a reducing agent such as dithiothreitol (DTT) or tris 2-carboxyethylphosphine hydrochloride (TCEP) is added to suppress side reactions, and if desired, purification is performed, whereby the first peptide and the second peptide are purified.
- DTT dithiothreitol
- TCEP tris 2-carboxyethylphosphine hydrochloride
- a peptide having a carboxythioester moiety (—C ⁇ O—SR) at the C-terminus
- the order of the ligation reaction can be manipulated (Protein Science ( 2007), 16: 2056-2064, etc.), this can be taken into account when performing multiple ligations. For example, when an aryl group, a benzyl group and an alkyl group are present as R, the ligation reaction generally proceeds in this order.
- “higher order structure” of protein means secondary structure such as ⁇ helix or ⁇ sheet structure, structure such as random coil, etc., secondary structure is hydrogen bond, disulfide bond, ionic bond, hydrophobicity It refers to a three-dimensional structure of a protein including a tertiary structure that is spatially folded by interaction or the like to form a stable conformation, and a quaternary structure formed by a plurality of polypeptide chains assembled as subunits.
- the higher order structure of the protein is preferably a structure necessary for the protein to exhibit its function in vivo.
- the higher order structure of the protein can be analyzed by X-ray crystal structure analysis, NMR, or the like.
- the higher order structure of the glycoprotein is uniform means that the higher order structure of the protein portion of the glycoprotein is substantially the same when compared between glycoproteins.
- the fact that the higher order structures are substantially the same means that the structures of at least 90% or more, preferably 95% or more, more preferably 99% or more are uniform.
- a glycoprotein having a uniform higher order structure has a constant quality, and is particularly preferable in fields such as pharmaceutical production and assay. Whether or not the higher-order structure of the glycoprotein contained in a certain fraction is uniform can be confirmed by, for example, NMR analysis, CD measurement, disulfide mapping and the like.
- folding means that the protein portion of a glycoprotein is folded into a specific higher order structure.
- a person skilled in the art can appropriately perform glycoprotein folding according to a known method or a method in accordance with the known method, and examples thereof include a dialysis method, a dilution method, and an inactivation method.
- the dialysis method is a method in which a peptide denaturing agent (unfolding agent) is added in advance, and this is gradually diluted by dialysis and replaced with a buffer or the like to fold the peptide into a predetermined higher order structure.
- the unfolding agent include guanidine hydrochloride and urea.
- the dilution method is a method in which a peptide is folded into a higher-order structure by adding a protein denaturant and then diluting stepwise or at a time with a buffer solution or the like.
- the deactivation method is a method in which a peptide is folded into a higher-order structure by adding a protein denaturant and then adding a second agent that deactivates the denaturant stepwise or at a time.
- the “predetermined physiological activity” can be selected from the physiological activities of glycoproteins having a higher-order structure that are obtained at a certain ratio with good reproducibility when folded.
- Such physiological activity is obtained by folding the target glycoprotein in advance by the same method as in steps (a) and (b) described later, fractionating by column chromatography, and collecting the effluent corresponding to the main peak. And it can obtain
- the main peak means a peak obtained with good reproducibility when the step (a) and the step (b) are repeated.
- the measurement of physiological activity can be performed by a method known to those skilled in the art depending on the glycoprotein of interest.
- step (a) the glycoprotein having a uniform amino acid sequence and sugar chain is folded.
- the solution containing the glycoprotein after folding includes a mixture of glycoproteins having different high-order structures, and those having a predetermined activity and those having no predetermined activity.
- the folded glycoprotein is fractionated by column chromatography.
- the column chromatography is not particularly limited as long as it can separate glycoproteins having different high-order structures.
- HPLC high-performance liquid chromatography
- Conditions such as the stationary phase of the column chromatography, the type of mobile phase, and the outflow rate can be appropriately selected by those skilled in the art according to the glycoprotein to be separated.
- ODS type reverse phase chromatography normal phase A system column, an affinity column, a gel filtration column, an ion exchange column, or the like can be used.
- step (c) the activity of the glycoprotein contained in each fraction of the eluate of column chromatography is measured, and the fraction having a predetermined activity is collected, whereby the amino acid sequence, sugar chain structure, and higher order are recovered.
- a glycoprotein having a uniform structure can be obtained.
- the glycoprotein contained in the fraction not collected in the step (c) is unfolded, (E) refolding the unfolded glycoprotein, (F) fractionating the refolded glycoprotein by column chromatography and collecting the fraction having the desired activity; (G) It is also preferable to repeat (d) to (f) as necessary.
- the fraction containing the glycoprotein that is unfolded in step (d) includes higher-order structures that do not have a predetermined activity.
- a fraction in which two or more glycoproteins having a predetermined activity are mixed does not show a predetermined activity value, and thus is included in the unfolded fraction.
- Glycoprotein unfolding can be performed using methods known to those skilled in the art. For example, a method of adding an unfolding agent (protein denaturant) such as guanidine hydrochloride or urea, or in addition to these, dithio A method of adding a reducing agent such as threitol (DTT) or mercaptoethanol is also included.
- an unfolding agent protein denaturant
- dithio A method of adding a reducing agent such as threitol (DTT) or mercaptoethanol is also included.
- Process (e) and process (f) can be performed by the method similar to the said process (a) thru
- the glycoprotein contained in the fraction not having the predetermined activity is once rewound and refolded so that the predetermined activity is obtained at a certain ratio. Can be converted to a higher-order structure having Thus, a glycoprotein having a higher order structure having a predetermined activity can be recovered to the maximum extent.
- the “glycoprotein screening method” comprises (i) folding a glycoprotein having a uniform amino acid sequence and sugar chain, (Ii) fractionating the folded glycoprotein by column chromatography; (Iii) The activity of each fraction is measured to determine whether it has a predetermined activity.
- Process (i) and process (ii) can be performed similarly to the said process (a) and process (b).
- a glycoprotein solution after folding a glycoprotein having a uniform amino acid sequence and sugar chain contains a plurality of glycoproteins having a higher order structure. Therefore, after fractionation by column chromatography, the activity of each fraction is measured, and by determining whether or not it has a predetermined activity, only a glycoprotein having a uniform higher-order structure having a predetermined physiological activity is obtained. Can be selected and purified.
- the present invention provides a method for obtaining a glycoprotein mixture having a desired physiological activity.
- the method comprises (A) folding a glycoprotein having a uniform amino acid sequence and sugar chain, (B) fractionating the folded glycoprotein by column chromatography; (C) measuring the activity of each fraction, (D) Obtaining a mixing ratio of each fraction capable of obtaining a desired activity, and mixing each fraction according to the ratio.
- Process (A) and process (B) can be performed similarly to the said process (a) and process (b).
- steps (A) and (B) it is possible to obtain a glycoprotein having a predetermined activity and having a uniform amino acid sequence, sugar chain structure, and higher order structure. Therefore, it is possible to obtain a glycoprotein mixture having a desired physiological activity by mixing them at a predetermined ratio.
- Embodiments of the present invention may be described with reference to schematic diagrams, but in the case of schematic diagrams, they may be exaggerated for clarity of explanation.
- terms such as first, second, etc. are used to represent various elements, it is understood that these elements should not be limited by those terms. These terms are only used to distinguish one element from another, for example, the first element is referred to as the second element, and similarly, the second element is the first element. Can be made without departing from the scope of the present invention.
- VydacC-18 (5 ⁇ m, 4.6 ⁇ 250 mm, 10 ⁇ 250 mm), VydacC-8 (5 ⁇ m, 10 ⁇ 250 mm), and VydacC-4 (5 ⁇ m, 4.6 ⁇ 250 mm) were used.
- the Fmoc group was then deprotected using a 20% piperidine / DMF solution (2 mL) for 20 minutes. After washing with DMF, the reaction was confirmed by Kaiser Test, and the subsequent peptide chain elongation was performed by sequentially condensing amino acids using the method shown below.
- Amino-protected amino acids include Fmoc-Pro, Fmoc-Arg (Pbf), Fmoc-Tyr (tBu), Fmoc-Glu (OtBu), Fmoc-Met, Fmoc-Thr (tBu), Fmoc-Cys (Trt ), Fmoc-Ala, Fmoc-Pro, Fmoc-Lys (Boc), Fmoc-Pro, Fmoc-Tyr (tBu), Fmoc-Glu (OtBu), Fmoc-Ser (tBu), Fmoc-Cys (Trt), Fmoc -Asp (OtBu), Fmoc-Val, Fmoc-Ser (tBu), Fmoc-Val, Fmoc-Ala, Fmoc-Ala, and Boc-Leu-OH.H in which the last amino acid can be removed with an acid.
- the obtained peptide (23-residue peptide having a protecting group described in SEQ ID NO: 1) 39 mg, 10 ⁇ mol
- MS4A benzyl mercaptan
- benzyl mercaptan 35.5 ⁇ L, 0.3 mmol
- DMF solvent 1.35 mL
- argon After stirring for 1 hour at ⁇ 20 ° C. under a stream of air, PyBOP (26 mg, 50 ⁇ mol) and DIPEA (8.5 ⁇ L, 50 ⁇ mol) were added and stirred for 2 hours. After stirring, an excess amount of diethyl ether was added to the reaction solution to precipitate the compound, followed by filtration. Thereafter, the precipitate was dissolved in DMF.
- Fmoc-Phe (96.9 mg, 0.25 mmol), MSNT (74 mg, 0.25 mmol) and N-methylimidazole (14.9 ⁇ l, 0.188 mmol) were dissolved in DCM (1 mL) to obtain a solid phase synthesis column. And stirred at room temperature for 2 hours. After stirring, the resin was washed with DCM and DMF, and the Fmoc group was treated with a 20% piperidine / DMF solution (1 mL) for 20 minutes for deprotection. After washing with DMF, the reaction was confirmed by Kaiser Test, and subsequent peptide chain elongation was performed by sequentially condensing amino acids using the method shown below.
- Amino group-protected amino acids include Fmoc-Asn, Fmoc-Cys (Trt), Fmoc-Lys (Boc), Fmoc-Asn, Fmoc-Gly, Fmoc-Tyr (tBu), Fmoc-Thr (tBu), Fmoc -Lys (Boc), and on the solid phase resin, Fmoc-Lys (Boc) -Thr (tBu) -Tyr (tBu) -Gly-Asn-Lys (Boc) -Cys (Trt) -Asn-Phe A 9-residue peptide (SEQ ID NO: 3) having a protecting group was obtained.
- the obtained peptide (14-residue glycosylated peptide described in SEQ ID NO: 4 having a protecting group) (11.7 mg, 3 ⁇ mol), MS4A (10 mg) and benzyl mercaptan (10.6 ⁇ L, 0.09 mmol) were mixed in a DMF solvent.
- the mixture was stirred for 1 hour at ⁇ 20 ° C. in an argon stream at 0.41 mL, PyBOP (7.8 mg, 15 ⁇ mol) and DIPEA (2.6 ⁇ L, 15 ⁇ mol) were added, and the mixture was stirred for 2 hours. After stirring, an excessive amount of diethyl ether was added to the reaction solution to precipitate the compound. After filtration, the precipitate was dissolved in DMF.
- the Fmoc group was then deprotected using a 20% piperidine / DMF solution (2 mL) for 20 minutes. After washing with DMF, the reaction was confirmed by Kaiser Test, and the subsequent peptide chain elongation was performed by sequentially condensing amino acids using the method shown below.
- Amino-protected amino acids include Fmoc-Lys (Boc), Fmoc-Gly, Fmoc-Phe, Fmoc-His (Trt), Fmoc-Ser (tBu), Fmoc-Leu, Fmoc-Thr (tBu), Fmoc -Leu, Fmoc-Thr (tBu), Fmoc-Gly, Fmoc-Asn, Fmoc-Ser (tBu), Fmoc-Glu (OtBu), Fmoc-Val, Fmoc-Val, Fmoc-Ala, Fmoc-Asn, Using Cys (Trt), Cys (Trt) -Asn-Ala-Val-Val-Glu (OtBu) -Ser (tBu) -Asn-Gly-Thr (tBu) -Leu-Thr (tBu) ) -Leu-Ser (tBu) -His (
- phosphate buffer solution pH 7.5, containing 6M guanidine hydrochloride
- the 33-residue glycosylated peptide described in SEQ ID NO: 9 was also obtained under the following conditions. Fragment 3 (19-residue peptide described in SEQ ID NO: 7) 1.9 mg (1 ⁇ mol) and fragment 2 (14-residue glycosylated peptide having a protecting group whose C-terminus is benzylthioester described in SEQ ID NO: 5) 3.2 mg (1 ⁇ mol) of 2 types each was put into an Eppendorf tube, dissolved in 247.5 ⁇ L of 0.1% phosphate buffer solution (pH 7.5, containing 6M guanidine hydrochloride), and then put into one Eppendorf tube. Combined.
- Fragment 3 (19-residue peptide described in SEQ ID NO: 7) 1.9 mg (1 ⁇ mol)
- a 56-residue glycosylated peptide (SEQ ID NO: 10) could be obtained under the following conditions.
- fragment 1 23-residue peptide whose C-terminus is benzylthioester described in SEQ ID NO: 2
- Were placed in an Eppendorf tube dissolved in 247.5 ⁇ L of a 0.1% phosphate buffer solution (pH 7.5, containing 8M guanidine hydrochloride), and then combined into one Eppendorf tube.
- the reaction time can be appropriately changed (for example, 24 hours) by tracking the reaction by HPLC and mass spectrometry and confirming that the molecular weight change and mass retention time of the peak have changed by HPLC.
- NMR measurement of fraction B Fraction B after lyophilization was dissolved in 5% D 2 O / H 2 O (300 ⁇ l), and 2D TOCSY was measured at 25 ° C., 60 ms, 600 MHz.
- the NMR spectrum is shown in FIG. CD measurement of fraction B: Fraction B after lyophilization was dissolved in distilled water and CD measurement was performed.
- the apparatus used was JASCO J-820. The measurement region was in the range of 180 nm to 260 nm.
- the CD spectrum is shown in FIG. From FIG. 11, it was confirmed that glycopeptides having the same higher order structure were highly purified only by separation by HPLC.
- fragment 2 ′ the fragment corresponding to fragment 2 of the example (hereinafter referred to as “fragment 2 ′”) does not have a sugar chain as shown in FIG.
- the Fmoc group was then deprotected using a 20% piperidine / DMF solution (2 mL) for 20 minutes. After washing with DMF, the reaction was confirmed by Kaiser Test, and the subsequent peptide chain elongation was performed by sequentially condensing amino acids using the method shown below.
- Amino group-protected amino acids include Fmoc-Asn, Fmoc-Cys (Trt), Fmoc-Lys (Boc), Fmoc-Asn, Fmoc-Gly, Fmoc-Tyr (tBu), Fmoc-Thr (tBu), Fmoc -Lys (Boc), Fmoc-Asn, Fmoc-Asp (OtBu), Fmoc-Ser (tBu), Fmoc-Gly, and the last amino acid is Boc-Cys (Thz) -OH whose protecting group can be removed with an acid (233.3 mg, 1 mmol) was used.
- SEQ ID NO: 11 A 14-residue peptide (SEQ ID NO: 11) having a protecting group of -Cys (Trt) -Asn-Phe was obtained.
- the 33-residue glycosylated peptide described in SEQ ID NO: 14 was also obtained under the following conditions. 1.6 mg (0.96 ⁇ mol) of the fragment 2 ′ (14-residue peptide having a protecting group whose C-terminus is a benzylthioester described in SEQ ID NO: 12) and 1.9 mg (0. 96 ⁇ mol) were put in Eppendorf tubes, dissolved in 247.5 ⁇ L of 0.1% phosphate buffer solution (pH 7.5, containing 6M guanidine hydrochloride), and then combined into one Eppendorf tube. 1% thiophenol (5 ⁇ L) was added, and the reaction was performed at room temperature.
- 0.1% phosphate buffer solution pH 7.5, containing 6M guanidine hydrochloride
- the 56-residue glycosylated peptide described in SEQ ID NO: 15 was also obtained under the following conditions. 0.6 mg (0.17 ⁇ mol) of the 33-residue peptide described in SEQ ID NO: 14 and 1.1 mg (0.41 ⁇ mol) of fragment 1 (23-residue peptide in which the C-terminus described in SEQ ID NO: 2 is a benzylthioester) Each of the two was placed in an Eppendorf tube, dissolved in 247.5 ⁇ L of a 0.1% phosphate buffer solution (pH 7.5, containing 8M guanidine hydrochloride), and then combined into one Eppendorf tube.
- a 0.1% phosphate buffer solution pH 7.5, containing 8M guanidine hydrochloride
- the reaction time can be appropriately changed (for example, 24 hours) by tracking the reaction by HPLC and mass spectrometry and confirming that the molecular weight change and mass retention time of the peak have changed by HPLC.
- NMR measurement of fraction F Fraction F after freeze-drying was dissolved in 5% D 2 O / H 2 O (300 ⁇ l), and 2D TOCSY was measured at 25 ° C., 80 ms, 600 MHz.
- the NMR spectrum is shown in FIG. CD measurement of fraction F: Fraction F after lyophilization was dissolved in distilled water and CD measurement was performed. The apparatus used was JASCO J-820. The measurement region was in the range of 180 nm to 260 nm.
- the CD spectrum is shown in FIG. From FIG. 19, it was confirmed that glycopeptides having the same higher order structure were highly purified only by HPLC separation.
- Example 2 Measurement of physiological activity [Measurement of physiological activity of glycosylated OMSVP3 (fractions A to D)]
- the OD280 of each solution was measured, 20 ⁇ L of sample solution with a constant protein concentration contained in the solution was added, and the inhibitory activity was measured.
- final reaction concentrations are a sample concentration of 2.5 ⁇ M, an enzyme concentration of 0.33 ⁇ g / mL, and a substrate concentration of 172 ⁇ M.
- This reaction solution was incubated at 37 ° C. for 10 minutes, and then 5 ⁇ L of 4N hydrochloric acid was added to stop the reaction. The same operation was repeated three times, and the average value and standard deviation of the decomposition rates were calculated. The results are shown in FIG.
- the OD280 of each solution was measured, 20 ⁇ L of sample solution with a constant protein concentration contained in the solution was added, and the inhibitory activity was measured.
- final reaction concentrations are a sample concentration of 2.5 ⁇ M, an enzyme concentration of 0.33 ⁇ g / mL, and a substrate concentration of 172 ⁇ M.
- This reaction solution was incubated at 37 ° C. for 10 minutes, and then 5 ⁇ L of 4N hydrochloric acid was added to stop the reaction. The same operation was repeated three times, and the average value and standard deviation of the decomposition rates were calculated. The results are shown in FIG.
- Example 3 Measurement of physiological activity (derivation of IC 50 ) [Derivation of IC 50 of glycosylated OMSVP3 (fractions A to D)] A 14-residue peptide (SEQ ID NO: 16) (1.5 mg) having a protecting group synthesized in Reference Example 1 (described later) was added to 1 mL of 0.1 M phosphate buffer (pH 8.0, containing 0.1 mg / mL BSA). 1 mM solution was prepared. It diluted to 0.34 mM using the absorptiometer (solution 1).
- the decomposition rate per unit time was calculated from the peak area on the HPLC of the reaction product.
- FIG. 23 shows a graph plotting the inhibition rate against each inhibitor concentration. Similarly, for the fractions A, C and D, the concentration of the inhibitor was plotted so as to sandwich the concentration at which the enzyme activity was inhibited by 50%. The graph of the result is shown (FIG. 23). IC 50 values of glycosylated OMSVP3 (fractions A to D) calculated based on this graph are shown in the graph (FIG. 24).
- FIG. 25 shows a graph plotting the inhibition rate against each inhibitor concentration. Similarly, for the fractions E, G and H, the concentration of the inhibitor was plotted so as to sandwich the concentration at which the enzyme activity was inhibited by 50%. The graph of the result is shown (FIG. 25). IC 50 values of OMSVP3 (fractions E to F) having no sugar chain calculated based on this graph are shown in the graph (FIG. 26).
- Example 4 Measurement of thermal stability A cell for CD measurement was filled with distilled water and measured at room temperature. With this measurement value as a blank, all subsequent measurement values were calculated by subtracting the blank value.
- Thermal stability of glycosylated OMSVP3 (fraction B) Fraction B was dissolved in 300 ⁇ L of distilled water and measured at room temperature. After the measurement was completed, the sample was immersed in a thermostatic chamber with the cell filled in the cell, and a temperature variable experiment was performed. First, a cell immersed in a thermostat at 50 ° C. for 10 minutes was allowed to stand at room temperature for 10 minutes, and measurement was performed. Thereafter, the same operation was performed up to 90 ° C., and the CD spectrum was measured. The results are shown in FIG.
- Fraction F was dissolved in 300 ⁇ l of distilled water and measured at room temperature. After the measurement was completed, the sample was immersed in a thermostatic chamber with the cell filled in the cell, and a temperature variable experiment was performed. First, a cell immersed in a thermostat at 50 ° C. for 10 minutes was allowed to stand at room temperature for 10 minutes, and measurement was performed. Thereafter, the same operation was performed up to 90 ° C., and the CD spectrum was measured. The results are shown in FIG.
- Example 5 Disulfide mapping of ovomucoid third domain
- the synthesized OMSVP3 has three disulfide bonds. Disulfide bonds are formed during protein folding, and the formation process is an equilibrium reaction. Therefore, it is considered that disulfide bond formation occurs at a position different from that of the natural protein.
- OMSVP3 (Fraction B) synthesized this time was a single compound from the results of NMR and inhibitory activity evaluation, and was expected to form a disulfide bond at the same position as the native protein. Therefore, in order to confirm that fraction B surely forms a disulfide bond at the same position as natural, the following examination was conducted.
- Fraction F (0.4 mg) obtained in Example 1 was reacted with cyanogen bromide (1 mg / mL) in 40% acetonitrile, 2% TFA aqueous solution at 37 ° C. under light-shielding conditions overnight. .
- the ovomucoid third domain having glycoprotein was folded and fractionated by HPLC (FIG. 10), and the third domain having no sugar chain was folded and fractionated by HPLC ( FIG. 18) was relatively similar with four peaks.
- the intensity of activity was fraction A> fraction B> fraction D> fraction C, fraction F> fraction E> fraction H> fraction G (FIGS. 13 and FIG. 21)
- Example 3 it is similar to fraction A> fraction B> fraction C> fraction D, fraction E> fraction F> fraction G> fraction H (FIGS. 23 to 26). From this, it was seen that those having the same higher order structure were eluted in the same order.
- glycoproteins as pharmaceuticals
- pharmaceuticals that have a constant physiological activity and a half-life in blood by purifying and separating only those with a constant higher-order structure in a state where a sugar chain is added to the protein.
- the method of the present invention makes this possible.
- the Fmoc group was then deprotected using a 20% piperidine / DMF solution (2 mL) for 20 minutes. After washing with DMF, the reaction was confirmed by Kaiser Test, and the subsequent peptide chain elongation was performed by sequentially condensing amino acids using the method shown below.
- Amino group-protected amino acids include Fmoc-Asn, Fmoc-Cys (Trt), Fmoc-Lys (Boc), Fmoc-Asn, Fmoc-Gly, Fmoc-Tyr (tBu), Fmoc-Thr (tBu), Fmoc -Lys (Boc), Fmoc-Asn, Fmoc-Asp (OtBu), Fmoc-Ser (tBu), Fmoc-Gly, the last amino acid being Boc-Cys (Thz) -OH (233.3 mg, 1 mmol) Was used.
- SEQ ID NO: 11 A 14-residue peptide (SEQ ID NO: 11) having a protecting group of -Cys (Trt) -Asn-Phe was obtained.
- 95% TFA, 2.5% TIPS, 2.5% H 2 O solution (3 mL) was stirred at room temperature for 2 hours.
- the resin was removed by filtration, and the filtrate was concentrated under reduced pressure.
- reaction rate per unit time was calculated from the peak area on the HPLC of the reaction product (FIG. 37). Table 4 shows the reciprocal of the reaction rate with respect to the reciprocal of each substrate concentration.
- the production method of the present invention makes it possible to obtain a glycoprotein having a uniform higher-order structure in addition to the amino acid sequence and sugar chain structure. Since the glycoprotein obtained by the production method of the present invention has a uniform higher order structure, it not only has no variation in blood half-life and intracellular transport, but also has a predetermined physiological activity. Moreover, according to the present invention, it is possible to control the mixture of glycoproteins to have a desired activity. Therefore, the production method of the present invention can be used particularly for the development of pharmaceuticals using glycoproteins.
- SEQ ID NO: 1 is an amino acid sequence having a protecting group of fragment 1.
- SEQ ID NO: 2 is an amino acid sequence of fragment 1 having a benzylthioester group.
- SEQ ID NO: 3 is an amino acid sequence having a protecting group of fragment 2.
- SEQ ID NO: 4 is an amino acid sequence having a protecting group, to which a sugar chain is added, of fragment 2.
- SEQ ID NO: 5 is an amino acid sequence having a benzylthioester group and a protecting group, to which a sugar chain is added, of fragment 2.
- SEQ ID NO: 6 is an amino acid sequence having a protecting group of fragment 3.
- SEQ ID NO: 7 is the amino acid sequence of fragment 3.
- SEQ ID NO: 8 is an amino acid sequence having a protecting group to which a sugar chain is added.
- SEQ ID NO: 9 is an amino acid sequence to which a sugar chain has been added.
- SEQ ID NO: 10 is an amino acid sequence to which a sugar chain is added of sugar chain added OMSVP3.
- SEQ ID NO: 11 is an amino acid sequence having a protecting group of fragment 2 '.
- SEQ ID NO: 12 is an amino acid sequence having a benzylthioester group and a protecting group in fragment 2 '.
- SEQ ID NO: 13 is an amino acid sequence having a protecting group.
- SEQ ID NO: 14 is an amino acid sequence.
- SEQ ID NO: 15 is the amino acid sequence of OMSVP3 with no sugar chain added.
- SEQ ID NO: 16 is an amino acid sequence having a protecting group, which is a substrate for chymotrypsin.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Gastroenterology & Hepatology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Peptides Or Proteins (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
Description
アミノ酸配列、糖鎖構造、及び高次構造が均一な糖タンパク質を製造する方法であって、以下の工程(a)~(c):
(a)アミノ酸配列及び糖鎖が均一な糖タンパク質をフォールディングさせる工程;
(b)前記フォールディングさせた糖タンパク質をカラムクロマトグラフィーによって、分画する工程;及び
(c)所定の活性を有する画分を回収する工程
を含む、方法を提供する。
前記工程(c)の後に、
(d)前記工程(c)で回収されなかった画分に含まれる糖タンパク質をアンフォールディングさせる工程;
(e)前記アンフォールディングさせた糖タンパク質を再度フォールディングさせる工程;
(f)前記再度フォールディングさせた糖タンパク質をカラムクロマトグラフィーによって分画し、前記所定の活性を有する画分を回収する工程;及び
(g)必要に応じて(d)から(f)を繰り返す工程
をさらに含むことが好ましい。
所定の生理活性を有する糖タンパク質をスクリーニングする方法であって、以下の工程(i)~(iii):
(i)アミノ酸配列及び糖鎖が均一な糖タンパク質をフォールディングさせる工程;
(ii)前記フォールディングさせた糖タンパク質をカラムクロマトグラフィーによって分画する工程;及び
(iii)各画分の活性を測定し、所定の活性を有するか否か判定する工程
を含む方法を提供する。
所望の生理活性を有する糖タンパク質混合物を得る方法であって、以下の工程(A)~(D):
(A)アミノ酸配列及び糖鎖が均一な糖タンパク質をフォールディングさせる工程;
(B)前記フォールディングさせた糖タンパク質をカラムクロマトグラフィーによって分画する工程;
(C)各画分の活性を測定する工程;及び
(D)所望の活性を得るための各画分の混合比率を求め、当該比率に従って各画分を混合する工程
を含む方法を提供する。
アミノ酸配列及び糖鎖が均一な糖タンパク質は、少なくともその一部が以下の工程(1)~(6):
(1)水酸基を有する樹脂(レジン)の水酸基と、脂溶性保護基でアミノ基が保護されたアミノ酸のカルボキシル基、又は脂溶性保護基でアミノ基が保護された糖鎖付加したアミノ酸のカルボキシル基とをエステル化反応させる工程;
(2)前記脂溶性保護基を脱離して遊離アミノ基を形成させる工程;
(3)前記遊離アミノ基と、脂溶性保護基でアミノ基が保護されたアミノ酸のカルボキシル基、又は脂溶性保護基でアミノ基が保護された糖鎖付加したアミノ酸のカルボキシル基とをアミド化反応させる工程;
(4)前記工程(3)の後、脂溶性保護基を脱離して遊離アミノ基を形成させる工程;及び
(5)前記工程(3)及び(4)の工程を1回以上繰り返す工程;および
(6)前記工程(1)で形成されたエステル結合を酸で切断する工程
を含む方法によって製造されることが好ましい。
前記工程(1)~(6)によって前記アミノ酸配列及び糖鎖が均一な糖タンパク質の一部が製造される場合であって、当該糖タンパク質が、さらに、以下の工程(7):
(7)前記工程(6)で得られた糖タンパク質の一部と、他のペプチド又は糖ペプチドとを、ライゲーション法によって連結する工程
を含むことが好ましい。
-NH-(CO)-(CH2)a-CH2-
(式中、aは整数であり、目的とするリンカー機能を阻害しない限り限定されるものではないが、好ましくは0~4の整数を示す。);
C1-10ポリメチレン;
-CH2-R3-
(ここで、R3は、アルキル、置換されたアルキル、アルケニル、置換されたアルケニル、アルキニル、置換されたアルキニル、アリール、置換されたアリール、炭素環基、置換された炭素環基、複素環基及び置換された複素環基からなる群より選択される基から水素原子が1つ脱離して生ずる基である);
等を挙げることができる。
(3)上記遊離アミノ基と、脂溶性保護基でアミノ基が保護されたアミノ酸のカルボキシル基、又は脂溶性保護基でアミノ基が保護された糖鎖付加したアミノ酸のカルボキシル基とをアミド化反応させ、
(4)工程(3)の後、脂溶性保護基を脱離して遊離アミノ基を形成させ
(5)工程(3)及び(4)の工程を必要に応じて繰り返すことにより、所望の数のアミノ酸が連結し、所望の位置に1つ以上の糖鎖が付加した糖タンパク質を得ることができる。なお、糖鎖付加したアミノ酸としては、例えば、アスパラギン側鎖のアミド基の窒素に糖鎖がN-グリコシド結合した糖鎖アスパラギン、セリン又はトレオニン側鎖の水酸基に糖鎖がO-グリコシド結合した糖鎖セリン又は糖鎖トレオニンが挙げられる。
(e)前記アンフォールディングさせた糖タンパク質を再度フォールディングさせ、
(f)前記再度フォールディングさせた糖タンパク質をカラムクロマトグラフィーによって分画し、前記所望の活性を有する画分を回収し、
(g)必要に応じて(d)から(f)を繰り返すことも好ましい。
(ii)前記フォールディングさせた糖タンパク質をカラムクロマトグラフィーによって分画し、
(iii)各画分の活性を測定し、所定の活性を有するか否か判定する。
(B)前記フォールディングさせた糖タンパク質をカラムクロマトグラフィーによって分画し、
(C)各画分の活性を測定し、
(D)所望の活性を得られる各画分の混合比率を求め、当該比率に従って各画分を混合することを含む。
また、本明細書において用いられる「含む」との用語は、文脈上明らかに異なる理解をすべき場合を除き、記述された事項(部材、ステップ、要素、数字など)が存在することを意図するものであり、それ以外の事項(部材、ステップ、要素、数字など)が存在することを排除しない。
異なる定義が無い限り、ここに用いられるすべての用語(技術用語及び科学用語を含む。)は、本発明が属する技術の当業者によって広く理解されるのと同じ意味を有する。ここに用いられる用語は、異なる定義が明示されていない限り、本明細書及び関連技術分野における意味と整合的な意味を有するものとして解釈されるべきであり、理想化され、又は、過度に形式的な意味において解釈されるべきではない。
本発明の実施態様は模式図を参照しつつ説明される場合があるが、模式図である場合、説明を明確にするために、誇張されて表現されている場合がある。
第一の、第二のなどの用語が種々の要素を表現するために用いられるが、これらの要素はそれらの用語によって限定されるべきではないことが理解される。これらの用語は一つの要素を他の要素と区別するためのみに用いられているのであり、 例えば、第一の要素を第二の要素と記し、同様に、第二の要素は第一の要素と記すことは、本発明の範囲を逸脱することなく可能である。
図1に示される3つのフラグメントをそれぞれ合成した後、NCL法によってライゲーションを行って、アミノ酸配列及び糖鎖が均一なsilver pheasantのオボムコイド第3ドメインを合成した。フラグメント1~3を図2~4に示す。
1H-NMRはBrukerのAVANCE 600(600MHzと表記)で測定した。ESIマススペクトル測定には、Brucker DaltonicsのEsquire3000plus.を用いた。
CDスペクトル測定には、JASCOのJ-820、J-805を用いた。
RP-HPLC分析装置はWaters社製のものを、UV検出器はWaters製のWaters486とphotodiode array detector(Waters 2996)とWaters2487を、カラムはCadenza column(Imtakt Corp.,3μm,4.6×75mm)とVydacC-18(5μm,4.6×250mm,10×250mm),VydacC-8(5μm,10×250mm),VydacC-4(5μm,4.6×250mm)を使用した。
固相合成用カラムに2-Chlorotrityl resin(143mg、200μmol)を入れ、塩化メチレン(DCM)、で十分に洗浄した。別途、Fmoc-Leu(212.1mg、0.6mmol)とDIPEA(272.1μL、1.6mmol)をDCM(1.2mL)に溶解させたものを、樹脂の入った固相合成用カラムに入れ、室温で2時間攪拌した。攪拌後、樹脂をDCM:MeOH:DIPEA=17:2:1、DCM、DMFを用いて洗浄した。次いで、Fmoc基を20分20%ピペリジン/DMF溶液(2mL)を用いて脱保護した。DMFで洗浄後、Kaiser Testにより反応を確認し、その後のペプチド鎖の伸長は以下に示す方法を用いて、順次アミノ酸を縮合させた。
次いで、別の固相合成用カラムにAmino-PEGA resin(メルク社製)(1g、50μmol)を入れ、塩化メチレン(DCM)、DMFで十分に洗浄した後、DMFで十分に膨潤させた。4-ヒドロキシメチル-3-メトキシフェノキシ酪酸(HMPB)(0.125mmol)、TBTU(0.125mmol)及びN-エチルモルホリン(0.125mmol)をDMF(1ml)に溶解させてカラムに入れ、室温で2時間攪拌した。樹脂をDMF及びDCMで十分に洗浄し、Kaiser Testで反応を確認した。Kaiser Test陰性(-)であることを確認し、樹脂をDCMで1時間膨潤させた。HMPB-PEGA resinを得、これを固相合成用の固相担体として用いた。
次いで、固相合成用カラムに2-Chlorotrityl resin(200μmol)を入れ、塩化メチレン(DCM)、で十分に洗浄した。別途、Fmoc-Cys(Trt)(351.4mg、0.6mmol)とDIPEA(272.1μL、1.6mmol)をDCM(1.2mL)に溶解させたものを、樹脂の入った固相合成用カラムに入れ、室温で2時間攪拌した。攪拌後、樹脂をDCM:MeOH:DIPEA=17:2:1、DCM、DMFを用いて洗浄した。次いで、Fmoc基を20分20%ピペリジン/DMF溶液(2mL)を用いて脱保護した。DMFで洗浄後、Kaiser Testにより反応を確認し、その後のペプチド鎖の伸長は以下に示す方法を用いて、順次アミノ酸を縮合させた。
フラグメント3(配列番号7に記載の19残基ペプチド)1.9mg(1μmol)とフラグメント2(配列番号5に記載のC末端がベンジルチオエステルである保護基を有する14残基の糖鎖付加ペプチド)3.2mg(1μmol)との二種類を同じエッペンチューブにいれ、0.1%りん酸緩衝溶液(pH7.5、6M グアニジン塩酸塩含有)485μLに溶解させた後、25℃にてチオフェノール(15μL)を加え、室温で反応を行った(図8の0h)。24時間後、反応終了をHPLCで確認した後(図8の24h)、反応溶液をHPLC(Cadenza column CD18(Imtakt Inc.)、3mm、75x4.6mm、展開溶媒A:0.09%TFA水溶液 B:0.1%TFA アセトニトリル:水=90:10 グラジエントA:B=80:20→40:60(アセトニトリルのグラジエント:18%→54%) 15分 流速1.0mL/min)にて精製した(図8の精製後)。その後凍結乾燥を行い、Cys(Thz)-Gly-Ser-Asp-Asn(Oligosaccharide)-Lys-Thr-Tyr-Gly-Asn-Lys-Cys-Asn-Phe-Cys-Asn-Ala-Val-Val-Glu-Ser-Asn-Gly-Thr-Leu-Thr-Leu-Ser-His-Phe-Gly-Lys-Cysの保護基を有する33残基糖鎖付加ペプチド(配列番号8)を得た。
フラグメント3(配列番号7に記載の19残基ペプチド)1.9mg(1μmol)とフラグメント2(配列番号5に記載のC末端がベンジルチオエステルである保護基を有する14残基の糖鎖付加ペプチド)3.2mg(1μmol)との二種類をそれぞれエッペンチューブにいれ、0.1%りん酸緩衝溶液(pH7.5、6M グアニジン塩酸塩含有)247.5μLに溶解させた後、ひとつのエッペンチューブに合わせた。25℃にて1%チオフェノール(5μL)を加え、室温で反応を行った。反応をHPLCと質量分析で追跡し、7時間後にHPLCでフラグメント3の消失を確認した。その後0.2Mのメトキシアミン水溶液を系中がpH4付近になるまで加えてN末端のCysを脱保護した。6時間後反応の終了を質量分析で確認し、反応溶液をHPLC(Cadenza column CD18(Imtakt Inc.)、3mm、75x4.6mm、展開溶媒A:0.09%TFA水溶液 B:0.1%TFA アセトニトリル:水=90:10 グラジエントA:B=80:20→40:60(アセトニトリルのグラジエント:18%→54%) 15分 流速1.0mL/min)にて精製した。その後凍結乾燥を行い、配列番号9の33残基糖鎖付加ペプチドを得た。
ESI-MS:Calcd for C208H329N47O95S4:[M+4H]4+1284.28,Found.1284.5
フラグメント2とフラグメント3をライゲーションすることによって調製した33残基糖鎖付加ペプチド(配列番号9)1.3mg(0.25μmol)とフラグメント1(配列番号2に記載のC末端がベンジルチオエステルである23残基ペプチド)1.3mg(0.50μmol)との二種類を同じエッペンチューブにいれ、0.1%りん酸緩衝溶液(pH7.5、8M グアニジン塩酸塩含有)485μLに溶解させた後、25℃にてチオフェノール(15μL)を加え、室温で反応を行った(図9の0h)。54時間後、反応終了をHPLCで確認した後(図9の54h)。反応溶液をHPLC(Cadenza column CD18(Imtakt Inc.)、3mm、75x4.6mm、展開溶媒A:0.09%TFA水溶液 B:0.1%TFA アセトニトリル:水=90:10 グラジエントA:B=80:20→40:60(アセトニトリルのグラジエント:18%→54%)15分 流速1.0mL/min)にて精製した(図9下段)。その後凍結乾燥を行い、Leu-Ala-Ala-Val-Ser-Val-Asp-Cys-Ser-Glu-Tyr-Pro-Lys-Pro-Ala-Cys-Thr-Met-Glu-Tyr-Arg-Pro-Leu-Cys-Gly-Ser-Asp-Asn(Oligosaccharide)-Lys-Thr-Tyr-Gly-Asn-Lys-Cys-Asn-Phe-Cys-Asn-Ala-Val-Val-Glu-Ser-Asn-Gly-Thr-Leu-Thr-Leu-Ser-His-Phe-Gly-Lys-Cysの56残基糖鎖付加ペプチド(配列番号10)を得た。
配列番号9に記載の33残基糖鎖付加ペプチド1.3mg(0.25μmol)とフラグメント1(配列番号2に記載のC末端がベンジルチオエステルである23残基ペプチド)1.3mg(0.50μmol)との二種類をそれぞれエッペンチューブに入れ、0.1%りん酸緩衝溶液(pH7.5、8M グアニジン塩酸塩含有)247.5μLに溶解させた後、ひとつのエッペンチューブに合わせた。反応をHPLCと質量分析で追跡し、30時間後に、反応溶液をHPLC(Cadenza column CD18(Imtakt Inc.)、3mm、75x4.6mm、展開溶媒A:0.09%TFA水溶液 B:0.1%TFA アセトニトリル:水=90:10 グラジエントA:B=80:20→40:60(アセトニトリルのグラジエント:18%→54%)15分 流速1.0mL/min)にて精製した。
このようにして調製した56残基糖鎖付加ペプチド(配列番号10)0.5mg(65.2nmol)をエッペンチューブに取り、0.6Mトリス緩衝液(pH=8.7、0.6Mグアニジン塩酸塩、6mM EDTA含有)100μLに溶解した。蒸留水500μLを加え希釈して、糖鎖を有するオボムコイド第3ドメインをフォールディングさせた。
36時間後、反応の進行をHPLCと質量分析にて確認した後、HPLC(Cadenza column CD18(Imtakt Inc.)、3mm、75x4.6mm、展開溶媒A:0.09%TFA水溶液 B:0.1%TFA アセトニトリル:水=90:10 グラジエントA:B=80:20→40:60(アセトニトリルのグラジエント:18%→54%)15分 流速1.0mL/min)にて精製した。高次構造を有したLeu-Ala-Ala-Val-Ser-Val-Asp-Cys-Ser-Glu-Tyr-Pro-Lys-Pro-Ala-Cys-Thr-Met-Glu-Tyr-Arg-Pro-Leu-Cys-Gly-Ser-Asp-Asn(Oligosaccharide)-Lys-Thr-Tyr-Gly-Asn-Lys-Cys-Asn-Phe-Cys-Asn-Ala-Val-Val-Glu-Ser-Asn-Gly-Thr-Leu-Thr-Leu-Ser-His-Phe-Gly-Lys-Cysの56残基糖鎖付加ペプチド(配列番号10)が含まれる4つの画分A~Dを得た(図10)。
A;Found.1532.5,1915.2,2553.2
B;Found.1532.5,1915.2,2553.2
C;Found.1532.6,1915.3,2553.2
D;Found.1532.7,1915.4,2553.3
図9下段から図10へのピークの変化、および、質量の減少は、上述のフォールディング工程により、ジスルフィド結合が形成されたことを示す。
画分BのCD測定:凍結乾燥後の画分Bを蒸留水に溶かしCD測定を行った。装置はJASCOのJ-820を用いた。測定領域は180nm~260nmの範囲で行った。CDスペクトルを図12に示す。
図11より、HPLCによる分離のみで、同一の高次構造を有する糖ペプチドが高度に精製されることが確認された。
実施例と同様に、3つのフラグメントをそれぞれ合成した後、NCL法によるライゲーションを行って、糖鎖を有しないsilver pheasantのオボムコイド第3ドメインを合成した。フラグメント1及びフラグメント3は、実施例と同様に合成した。比較例で、実施例のフラグメント2に対応するフラグメント(以下「フラグメント2’」という。)は、図14に示すとおり糖鎖を有しない。
固相合成用カラムに2-Chlorotrityl resin(143mg、200μmol)を入れ、塩化メチレン(DCM)、で十分に洗浄した。別途、Fmoc-Phe(232.4mg、0.6mmol)とDIPEA(272.1μL、1.6mmol)をDCM(1.2mL)に溶解させたものを、樹脂の入った固相合成用カラムに入れ、室温で2時間攪拌した。攪拌後、樹脂をDCM:MeOH:DIPEA=17:2:1、DCM、DMFを用いて洗浄した。次いで、Fmoc基を20分20%ピペリジン/DMF溶液(2mL)を用いて脱保護した。DMFで洗浄後、Kaiser Testにより反応を確認し、その後のペプチド鎖の伸長は以下に示す方法を用いて、順次アミノ酸を縮合させた。
このようにして調製したフラグメント2’(配列番号12に記載のC末端がベンジルチオエステルである保護基を有する14残基ペプチド)1.6mg(0.96μmol)と、実施例にて合成したフラグメント3 1.9mg(0.96μmol)との二種類を同じエッペンチューブにいれ、0.1%りん酸緩衝溶液(pH7.5、6M グアニジン塩酸塩含有)495μLに溶解させた後、チオフェノール(5μL)を加え、室温で反応を行った(図16の0h)。18時間後、反応終了をHPLCで確認した後(図16の18h)、反応溶液をHPLC(Cadenza column CD18(Imtakt Inc.)、3mm、 75x4.6mm、展開溶媒A:0.09%TFA水溶液 B:0.1%TFA アセトニトリル:水=90:10 グラジエントA:B=80:20→40:60(アセトニトリルのグラジエント:18%→54%)15分 流速1.0mL/min)にて精製した(図16の精製後)。その後凍結乾燥を行い、Cys(Thz)-Gly-Ser-Asp-Asn-Lys-Thr-Tyr-Gly-Asn-Lys-Cys-Asn-Phe-Cys-Asn-Ala-Val-Val-Glu-Ser-Asn-Gly-Thr-Leu-Thr-Leu-Ser-His-Phe-Gly-Lys-Cysの保護基を有する33残基ペプチド(配列番号13)を得た。
+1171.9、Found.1171.5
フラグメント2’(配列番号12に記載のC末端がベンジルチオエステルである保護基を有する14残基ペプチド)1.6mg(0.96μmol)と、実施例にて合成したフラグメント3 1.9mg(0.96μmol)との二種類をそれぞれエッペンチューブにいれ、0.1%りん酸緩衝溶液(pH7.5、6M グアニジン塩酸塩含有)247.5μLに溶解させた後、ひとつのエッペンチューブに合わせた。1%チオフェノール(5μL)を加え、室温で反応を行った。反応をHPLCと質量分析で追跡し、6時間後にHPLCでフラグメント3の消失を確認した。その後0.2Mのメトキシアミン水溶液を系中がpH4付近になるまで加えてN末端のCysを脱保護した。6時間後反応の終了を質量分析で確認し、反応溶液をHPLC(Cadenza column CD18(Imtakt Inc.)、3mm、75x4.6mm、展開溶媒A:0.09%TFA水溶液 B:0.1%TFA アセトニトリル:水=90:10 グラジエントA:B=80:20→40:60(アセトニトリルのグラジエント:18%→54%)15分 流速1.0mL/min)にて精製した。
ESI-MS:Calcd for C146H227N43O50S4:[M+3H]3+1171.9、Found.1171.5
このようにして調製した33残基ペプチド(配列番号14)0.6mg(0.17μmol)と実施例で合成したフラグメント1(配列番号2に記載のC末端がベンジルチオエステルである23残基ペプチド)1.1mg(0.41μmol)との二種類を同じエッペンチューブにいれ、0.1%りん酸緩衝溶液(pH7.5、8M グアニジン塩酸塩含有)485μLに溶解させた後、チオフェノール(15μL)を加え、室温で反応を行った(図17の0h)。45時間後、反応終了をHPLCで確認した後(図17の45h)、反応溶液をHPLC(Cadenza column CD18(Imtakt Inc.)、3mm、 75x4.6mm、展開溶媒A:0.09%TFA水溶液 B:0.1%TFA アセトニトリル:水=90:10 グラジエントA:B=80:20→40:60(アセトニトリルのグラジエント:18%→54%)15分 流速1.0mL/min)にて精製した。その後凍結乾燥を行い、Leu-Ala-Ala-Val-Ser-Val-Asp-Cys-Ser-Glu-Tyr-Pro-Lys-Pro-Ala-Cys-Thr-Met-Glu-Tyr-Arg-Pro-Leu-Cys-Gly-Ser-Asp-Asn-Lys-Thr-Tyr-Gly-Asn-Lys-Cys-Asn-Phe-Cys-Asn-Ala-Val-Val-Glu-Ser-Asn-Gly-Thr-Leu-Thr-Leu-Ser-His-Phe-Gly-Lys-Cysの56残基ペプチド(配列番号15)を得た(図17下段)。
配列番号14に記載の33残基ペプチド0.6mg(0.17μmol)とフラグメント1(配列番号2に記載のC末端がベンジルチオエステルである23残基ペプチド)1.1mg(0.41μmol)との二種類をそれぞれエッペンチューブにいれ、0.1%りん酸緩衝溶液(pH7.5、8M グアニジン塩酸塩含有)247.5μLに溶解させた後、ひとつのエッペンチューブに合わせた。1%チオフェノール(5μL)を加え、室温で反応を行った。反応をHPLCと質量分析で追跡し、30時間後に、反応溶液をHPLC(Cadenza column CD18(Imtakt Inc.)、3mm、75x4.6mm、展開溶媒A:0.09%TFA水溶液 B:0.1%TFA アセトニトリル:水=90:10 グラジエントA:B=80:20→40:60(アセトニトリルのグラジエント:18%→54%)15分 流速1.0mL/min)にて精製した。その後凍結乾燥を行い、配列番号15に記載の56残基糖鎖付加ペプチドを得た。
ESI-MS:Calcd for C257H400N70O84S7:[M+4H]4+1510.7,Found.1510.6
このようにして調製した56残基ペプチド(配列番号15)0.4mg(66.2nmol)をエッペンチューブに取り、0.6Mトリス緩衝液(pH=8.7、0.6Mグアニジン塩酸塩、6mM EDTA含有)100μLに溶解した。蒸留水500μLを加え希釈し、糖鎖のないオボムコイド第3ドメインをフォールディングさせた。
36時間後、反応の進行をHPLCと質量分析にて確認した後、HPLC(Cadenza column CD18(Imtakt Inc.)、3mm、75x4.6mm、展開溶媒A:0.09%TFA水溶液 B:0.1%TFA アセトニトリル:水=90:10 グラジエントA:B=80:20→40:60(アセトニトリルのグラジエント:18%→54%)15分 流速1.0mL/min)にて精製し、高次構造を有したLeu-Ala-Ala-Val-Ser-Val-Asp-Cys-Ser-Glu-Tyr-Pro-Lys-Pro-Ala-Cys-Thr-Met-Glu-Tyr-Arg-Pro-Leu-Cys-Gly-Ser-Asp-Asn-Lys-Thr-Tyr-Gly-Asn-Lys-Cys-Asn-Phe-Cys-Asn-Ala-Val-Val-Glu-Ser-Asn-Gly-Thr-Leu-Thr-Leu-Ser-His-Phe-Gly-Lys-Cysの56残基ペプチド(配列番号15)が含まれる4つの画分E~Hを得た(図18)。
E;Found.1207.7、1509.3、2012.0
F;Found.1207.6、1509.3、2012.0
G;Found.1207.7、1509.3、2012.0
H;Found.1207.8、1509.3、2012.0
図17下段から図18へのピークの変化、および、質量の減少は、上述のフォールディング工程により、ジスルフィド結合が形成されたことを示す。
画分FのCD測定:凍結乾燥後の画分Fを蒸留水に溶かしCD測定を行った。装置はJASCOのJ-820を使用した。測定領域は180nm~260nmの範囲で行った。CDスペクトルを図20に示す。
図19より、HPLCによる分離のみで、同一の高次構造を有する糖ペプチドが高度に精製されることが確認された。
画分F(1mg)をBSA(0.1mg/ml)を含むpH8.0の0.1Mリン酸バッファー(1ml)に溶かし、この溶液を希釈して165μM、82.5μM、41.3μM、20.6μMの濃度の画分Fを調製した。各濃度の溶液のOD280をそれぞれ3回ずつ測定し、平均値化したものを表1および図22に示した。
[糖鎖付加OMSVP3(画分A~D)の生理活性の測定]
0.1Mりん酸緩衝液(pH=8.0、0.01%α-キモトリプシン、0.01%牛血清アルブミン含有)の酵素溶液、及び、0.1Mりん酸緩衝液(pH=8.0、517μMの参考例1(後述)で合成した保護基を有する14残基ペプチド(配列番号16)、0.01%牛血清アルブミン含有)の基質溶液を調製し、各々20μLをエッペンチューブに加えた。この溶液に、実施例1で得られた画分A~Dそれぞれを凍結乾燥した後、0.1Mりん酸緩衝液(pH=8.0、0.01%牛血清アルブミン含有)に溶解させ、各溶液のOD280を測定し、溶液中に含まれるタンパク質濃度を一定としたサンプル液20μLを加え、阻害活性を測定した。この際の、最終的な反応濃度は、サンプル濃度2.5μM、酵素濃度0.33μg/mL、基質濃度172μMである。この反応液を、37℃で10分間インキュベートした後、4N塩酸を5μL加え反応を停止した。同様の操作を3回繰り返し、それぞれ分解率の平均値及び標準偏差を算出した。結果を図13に示す。
0.1Mりん酸緩衝液(pH=8.0、0.01%α-キモトリプシン、0.01%牛血清アルブミン含有)の酵素溶液、及び、0.1Mりん酸緩衝液(pH=8.0、517μMの参考例1(後述)で合成した保護基を有する14残基ペプチド(配列番号16)、0.01%牛血清アルブミン含有)の基質溶液を調製し、各々20μLをエッペンチューブに加えた。この溶液に、実施例1で得られた画分E~Hそれぞれを凍結乾燥した後、0.1Mりん酸緩衝液(pH=8.0、0.01%牛血清アルブミン含有)に溶解させ、各溶液のOD280を測定し、溶液中に含まれるタンパク質濃度を一定としたサンプル液20μLを加え、阻害活性を測定した。この際の、最終的な反応濃度は、サンプル濃度2.5μM、酵素濃度0.33μg/mL、基質濃度172μMである。この反応液を、37℃で10分間インキュベートした後、4N塩酸を5μL加え反応を停止した。同様の操作を3回繰り返し、それぞれ分解率の平均値及び標準偏差を算出した。結果を図21に示す。
[糖鎖付加OMSVP3(画分A~D)のIC50の導出]
参考例1(後述)で合成した保護基を有する14残基ペプチド(配列番号16)(1.5mg)を、0.1Mリン酸緩衝液(pH8.0、0.1mg/mL BSA含有)1mLに溶解させ、1mMの溶液を調製した。吸光度計を用いて0.34mMになるように希釈した(溶液1)。キモトリプシン(1mg)を0.1Mリン酸緩衝液(pH8.0、0.1mg/mL BSA含有)1mLに溶解させ、この溶液を10倍希釈し、さらにその溶液を10倍希釈することを繰り返して0.2μg/mLになるよう調製した(溶液2)。画分Bを、0.1Mリン酸緩衝液(pH8.0、0.1mg/mL BSA含有)100μLに溶解させ、吸光度計を用いて65nMになるように希釈した。これを希釈して58.5nM,52nM,45.5nM,39nM,32.5nM,26nM,19.5nM,13nM,6.5nMの溶液を作った(溶液3)。氷上で十分に冷やした溶液1を80μL、溶液2,3を40μlずつ同じエッペンチューブに移し、37℃で1時間インキュベートした。1時間後、1Nの塩酸を16μL加えることで反応を停止させた。反応液20μLを、バッファー80μLと混合させ計100μLとし、HPLCによる測定に用いた。反応生成物のHPLC上のピーク面積から単位時間当たりの分解率(単位時間当たりの反応速度)を計算した。図23は各阻害剤濃度に対する阻害率をプロットしたグラフを示す。同様に画分A,CおよびDに対しても阻害剤の濃度が酵素の活性を50%阻害する濃度を挟むようにプロットした。その結果のグラフを示す(図23)。このグラフを元に算出した糖鎖付加OMSVP3(画分A~D)のIC50値をグラフに示す(図24)。
参考例1(後述)で合成した保護基を有する14残基ペプチド(配列番号16)(1.5mg)を、0.1Mリン酸緩衝液(pH8.0、0.1mg/mL BSA含有)1mLに溶解させ、1mMの溶液を調製した。吸光度計を用いて0.34mMになるように希釈した(溶液1)。キモトリプシン(1mg)を0.1Mリン酸緩衝液(pH8.0、0.1mg/mL BSA含有)1mLに溶解させ、この溶液を10倍希釈し、さらにその溶液を10倍希釈することを繰り返して0.2μg/mLになるよう調製した(溶液2)。画分Fを、0.1Mリン酸緩衝液(pH8.0、0.1mg/mL BSA含有)100μLに溶解させ、吸光度計を用いて65nMになるように希釈した。これを希釈して58.5nM,52nM,45.5nM,39nM,32.5nM,26nM,19.5nM,13nM,6.5nMの溶液を作った(溶液3)。氷上で十分に冷やした溶液1を80μL、溶液2,3を40μLずつ同じエッペンチューブに移し、37℃で1時間インキュベートした。1時間後、1Nの塩酸を16μL加えることで反応を停止させた。反応液20μLを、バッファー80μLと混合させ計100μLとし、HPLCによる測定に用いた。反応生成物のHPLC上のピーク面積から単位時間当たりの分解率(単位時間当たりの反応速度)を計算した。図25は各阻害剤濃度に対する阻害率をプロットしたグラフを示す。同様に画分E,GおよびHに対しても阻害剤の濃度が酵素の活性を50%阻害する濃度を挟むようにプロットした。その結果のグラフを示す(図25)。このグラフを元に算出した糖鎖のないOMSVP3(画分E~F)のIC50値をグラフに示す(図26)。
CD測定用のセルを蒸留水で満たし、室温のまま測定した。この測定値をブランクとして以降の測定値は全てこのブランクの数値を差し引いて計算した。
[糖鎖付加OMSVP3(画分B)の熱安定性]
画分Bを蒸留水300μLに溶解し室温で測定した。測定終了後、試料をセルに満たしたままセルごと恒温槽に浸し温度可変実験を行った。はじめに50℃の恒温槽に10分間浸しておいたセルを10分間室温に静置し測定を行った。以降90℃まで同様の操作をしてCDスペクトルを測定した。結果を図27に示す。
画分Fを蒸留水300μlに溶解し室温で測定した。測定終了後、試料をセルに満たしたままセルごと恒温槽に浸し温度可変実験を行った。はじめに50℃の恒温槽に10分間浸しておいたセルを10分間室温に静置し測定を行った。以降90℃まで同様の操作をしてCDスペクトルを測定した。結果を図28に示す。
合成したOMSVP3は3本のジスルフィド結合を有している。ジスルフィド結合はタンパク質のフォールディングの際に形成され、その形成過程は平衡反応である。そのため天然型タンパク質とは異なる位置でのジスルフィド結合形成も生じると考えられる。
今回合成したOMSVP3(画分B)はNMRおよび阻害活性評価の結果から単一化合物であり、天然型タンパク質と同じ位置でジスルフィド結合を形成していると予想された。そこで画分Bが確かに天然と同じ位置でジスルフィド結合を形成しているか確認するために以下の検討を行った。
実施例1で得られた画分B(0.4mg)に対して臭化シアン(1mg/mL)を、40%アセトニトリル、2%TFA水溶液中、37℃、遮光条件化で一晩反応させた。これを凍結乾燥させHPLC(VyDAC column C4(Imtakt Inc.)、3μm、4.5×250mm展開溶媒A:0.09%TFA水溶液B:0.1%TFA アセトニトリル:水=90:10 グラジエントA:B=80:20→40:60(アセトニトリルのグラジエント:18%→54%)30分 流速1.0ml/min)で精製して画分Iを得た。
ESI-MS:Calcd for C318H494N74O130S6:[M+4H]4+,1907.5,Found.1907.4
ESI-MS:
画分II;Calcd for C35H54N10O13S2:[M+2H]2+,444.8,Found 444.7
画分III;Calcd for C25H37N7O8:[M+H]+,564.4,Found 564.4
画分IV;Calcd for C114H187N19O64S2:[M+3H]3+,971.6,Found 971.5
画分V;Calcd for C123H196N20O66S2:[M+3H]3+,1026.0,Found 1025.9
画分VI;Calcd for C64H93N15O22S2:[M+2H]2+,744.8,Found 745.0
実施例1で得られた画分F(0.4mg)に対して臭化シアン(1mg/mL)を、40%アセトニトリル、2%TFA水溶液中、37℃、遮光条件化で一晩反応させた。これを凍結乾燥させHPLC(VyDAC column C4(Imtakt Inc.)、3μm、4.5×250mm 展開溶媒A:0.09%TFA水溶液 B:0.1%TFA アセトニトリル:水=90:10 グラジエントA:B=80:20→40:60(アセトニトリルのグラジエント:18%→54%)30分 流速1.0ml/min)で精製して画分VIIを得た。
ESI-MS: Calcd for C256H392N70O85S6:[M+4H]4+,1501.6,Found.1501.5
ESI-MS:
画分VIII;Calcd for C35H54N10O13S2:[M+2H]2+,444.8,Found 444.7
画分IX;Calcd for C25H37N7O8:[M+H]+,564.4,Found 564.4
画分X;Calcd for C52H85N15O19S2:[M+2H]2+,644.8,Found 644.9
画分XII;Calcd for C64H93N15O22S2:[M+2H]2+,744.8,Found 744.9
これらのことから、本発明のフォールディング工程、分画工程、及び、回収工程によって、アミノ酸配列、糖鎖構造、及び、高次構造が均一な糖タンパク質を製造することができることが示された。また、OMSVP3の場合において、本発明の分画工程において最大ピークとして得られた画分は、天然と同じジスルフィド結合を有し、かつ、高活性の画分であり、所望の構造及び所望の活性を有する糖タンパク質を効率よく製造することができた。なお、このことは、他の糖タンパク質を製造する場合において、最大ピークの画分が所望の活性ないし所望の構造でないものであったとしても、所望の活性を有するその他の画分を適宜回収することにより、やはり、所定の活性を有する、アミノ酸配列、糖鎖構造、及び、高次構造が均一な糖タンパク質を製造することができるものであり、本発明が実施可能であることをなんら妨げるものではない。
しかしながら、画分Bと画分FのCDスペクトルは一致せず、両者の高次構造が異なることが示された(図12と図20)。このことは、糖鎖付加が、糖鎖を有しないタンパク質のフォールディングに対して歪みを与えることなどによって、タンパク質の高次構造に変化をもたらしうることを示す。
タンパク質のこのような高次構造の変化は、基質との結合のしやすさ等にも影響する点で、生理活性に影響を与えうることが予想され、また、糸球ろ過体の通過しやすさ等にも影響する点で、血中半減期にも影響を与えうることが予想される。このことから、糖タンパク質を医薬品として用いる際には、タンパク質に糖鎖を付加した状態で高次構造が一定のもののみを精製分離することにより、生理活性及び血中半減期を一定とする医薬を製造することが重要であるところ、本発明の方法はこれを可能にするものである。
[基質ペプチドの合成]
固相合成用カラムに2-Chlorotrityl resin(143mg、200μmol)を入れ、塩化メチレン(DCM)、で十分に洗浄した。別途、Fmoc-Phe(232.4mg、0.6mmol)とDIPEA(272.1μL、1.6mmol)をDCM(1.2mL)に溶解させたものを、樹脂の入った固相合成用カラムに入れ、室温で2時間攪拌した。攪拌後、樹脂をDCM:MeOH:DIPEA=17:2:1、DCM、DMFを用いて洗浄した。次いで、Fmoc基を20分20%ピペリジン/DMF溶液(2mL)を用いて脱保護した。DMFで洗浄後、Kaiser Testにより反応を確認し、その後のペプチド鎖の伸長は以下に示す方法を用いて、順次アミノ酸を縮合させた。
ESI-MS:Calcd for C64H95N19O23S2:[M+2H]2+,782.34,Found.782.2
合成した14残基ペプチド(配列番号16)1.5mgを、0.1Mリン酸緩衝液(pH8.0、BSA(0.1mg/mL)含有)1mLに溶解し、この溶液を希釈して0.6mM、0.4mM、0.2mM、0.1mMの基質濃度の溶液を調製した。各濃度の溶液のOD280をそれぞれ3回ずつ測定し、平均値化したものを表2および図35に示した。
合成した14残基ペプチド(配列番号16)3.1mgを、0.1Mリン酸緩衝液(pH8.0、BSA(0.1mg/mL)含有)1mLに溶解し、2mMの溶液を調製した。これを希釈して1.6mM、1.2mM、0.8mM、0.4mM、0.2mM、0.1mM、0.05mMの濃度の基質溶液を調製した。またキモトリプシン(1mg)を0.1Mリン酸緩衝液(pH8.0、BSA(0.1mg/mL)含有)1mLに溶解し、この溶液を10倍希釈し、さらにその溶液を10倍希釈することを繰り返して0.1μg/mLになるよう調製した。氷上で十分に冷やした各濃度の基質溶液を50μL、酵素溶液を50μLずつ同じエッペンチューブに移し、37℃で30分インキュベートした。30分後、1Nの塩酸を10μL加えることで反応を停止させた。反応液20μLを、緩衝液80μLと混合させ計100μLとし、HPLCによる測定に用いた。反応生成物のHPLC上のピーク面積から単位時間当たりの分解率(単位時間当たりの反応速度)を計算した(図36)。表3に各基質濃度に対する反応速度を示す。
合成した14残基ペプチド(配列番号16)1.5mgを、0.1Mリン酸緩衝液(pH8.0、BSA(0.1mg/mL)含有)1mLに溶解し、1mMの溶液を調製した。これを希釈して1mM、500μM、333μM、250μM、200μMの濃度の基質溶液を調製した。またキモトリプシン(1mg)を0.1Mリン酸緩衝液(pH8.0、BSA(0.1mg/mL)含有)1mLに溶解し、この溶液を10倍希釈し、さらにその溶液を10倍希釈することを繰り返して0.1μg/mLになるよう調製した。氷上で十分に冷やした各濃度の基質溶液を50μL、酵素溶液を50μlずつ同じエッペンチューブに移し、37℃で30分インキュベートした。30分後、1Nの塩酸を10μL加えることで反応を停止させた。反応液20μLを、バッファー80μLと混合させ計100μLとし、HPLCによる測定に用いた。反応生成物のHPLC上のピーク面積から単位時間当たりの分解率(単位時間当たりの反応速度)を計算した(図37)。表4に各基質濃度の逆数に対する反応速度の逆数を示す。
Claims (6)
- アミノ酸配列、糖鎖構造、及び高次構造が均一な糖タンパク質を製造する方法であって、以下の工程(a)~(c):
(a)アミノ酸配列及び糖鎖が均一な糖タンパク質をフォールディングさせる工程;
(b)前記フォールディングさせた糖タンパク質をカラムクロマトグラフィーによって、分画する工程;及び
(c)所定の活性を有する画分を回収する工程
を含む、方法。 - 前記工程(c)の後に、
(d)前記工程(c)で回収されなかった画分に含まれる糖タンパク質をアンフォールディングさせる工程;
(e)前記アンフォールディングさせた糖タンパク質を再度フォールディングさせる工程;
(f)前記再度フォールディングさせた糖タンパク質をカラムクロマトグラフィーによって分画し、前記所定の活性を有する画分を回収する工程;及び
(g)必要に応じて(d)から(f)を繰り返す工程
をさらに含む、請求項1に記載の方法。 - 所定の生理活性を有する糖タンパク質をスクリーニングする方法であって、以下の工程(i)~(iii):
(i)アミノ酸配列及び糖鎖が均一な糖タンパク質をフォールディングさせる工程;
(ii)前記フォールディングさせた糖タンパク質をカラムクロマトグラフィーによって分画する工程;及び
(iii)各画分の活性を測定し、所定の活性を有するか否か判定する工程
を含む方法。 - 所望の生理活性を有する糖タンパク質混合物を得る方法であって、以下の工程(A)~(D):
(A)アミノ酸配列及び糖鎖が均一な糖タンパク質をフォールディングさせる工程;
(B)前記フォールディングさせた糖タンパク質をカラムクロマトグラフィーによって分画する工程;
(C)各画分の活性を測定する工程;及び
(D)所望の活性を得るための各画分の混合比率を求め、当該比率に従って各画分を混合する工程
を含む方法。 - 前記アミノ酸配列及び糖鎖が均一な糖タンパク質は、少なくともその一部が以下の工程(1)~(6):
(1)水酸基を有する樹脂(レジン)の水酸基と、脂溶性保護基でアミノ基が保護されたアミノ酸のカルボキシル基、又は脂溶性保護基でアミノ基が保護された糖鎖付加したアミノ酸のカルボキシル基とをエステル化反応させる工程;
(2)前記脂溶性保護基を脱離して遊離アミノ基を形成させる工程;
(3)前記遊離アミノ基と、脂溶性保護基でアミノ基が保護されたアミノ酸のカルボキシル基、又は脂溶性保護基でアミノ基が保護された糖鎖付加したアミノ酸のカルボキシル基とをアミド化反応させる工程;
(4)前記工程(3)の後、脂溶性保護基を脱離して遊離アミノ基を形成させる工程;及び
(5)前記工程(3)及び(4)の工程を1回以上繰り返す工程;および
(6)前記工程(1)で形成されたエステル結合を酸で切断する工程
を含む方法によって製造される、請求項1から4のいずれか1項に記載の方法。 - 前記工程(1)~(6)によって前記アミノ酸配列及び糖鎖が均一な糖タンパク質の一部が製造される場合であって、当該糖タンパク質が、さらに、以下の工程(7):
(7)前記工程(6)で得られた糖タンパク質の一部と、他のペプチド又は糖ペプチドとを、ライゲーション法によって連結する工程
を含む方法によって製造される、請求項5に記載の方法。
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010525594A JP5530358B2 (ja) | 2008-08-19 | 2009-08-18 | 糖タンパク質の製造方法及びスクリーニング方法 |
EP09808062.5A EP2330114B1 (en) | 2008-08-19 | 2009-08-18 | Glycoprotein production method and screening method |
DK09808062.5T DK2330114T3 (da) | 2008-08-19 | 2009-08-18 | Fremgangsmåde til fremstilling af glycoprotein og fremgangsmåde til screening |
AU2009283678A AU2009283678B2 (en) | 2008-08-19 | 2009-08-18 | Glycoprotein production method and screening method |
RU2011110430/04A RU2520240C2 (ru) | 2008-08-19 | 2009-08-18 | Способ получения гликопротеина и способ скрининга |
ES09808062.5T ES2646119T3 (es) | 2008-08-19 | 2009-08-18 | Método de producción de glicoproteína y método de selección |
CA2734124A CA2734124C (en) | 2008-08-19 | 2009-08-18 | Glycoprotein production method and screening method |
CN2009801323996A CN102124024A (zh) | 2008-08-19 | 2009-08-18 | 糖蛋白质的制造方法以及筛选方法 |
US13/059,649 US20110262945A1 (en) | 2008-08-19 | 2009-08-18 | Glycoprotein production method and screening method |
BRPI0917298A BRPI0917298B8 (pt) | 2008-08-19 | 2009-08-18 | método de produção de glicoproteína e método de rastreamento de glicoproteína |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-211144 | 2008-08-19 | ||
JP2008211144 | 2008-08-19 | ||
JP2009029206 | 2009-02-11 | ||
JP2009-029206 | 2009-02-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010021126A1 true WO2010021126A1 (ja) | 2010-02-25 |
Family
ID=41707017
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/003932 WO2010021126A1 (ja) | 2008-08-19 | 2009-08-18 | 糖タンパク質の製造方法及びスクリーニング方法 |
Country Status (14)
Country | Link |
---|---|
US (1) | US20110262945A1 (ja) |
EP (1) | EP2330114B1 (ja) |
JP (1) | JP5530358B2 (ja) |
KR (1) | KR20110067097A (ja) |
CN (1) | CN102124024A (ja) |
AU (1) | AU2009283678B2 (ja) |
BR (1) | BRPI0917298B8 (ja) |
CA (1) | CA2734124C (ja) |
DK (1) | DK2330114T3 (ja) |
ES (1) | ES2646119T3 (ja) |
HU (1) | HUE037238T2 (ja) |
PT (1) | PT2330114T (ja) |
RU (1) | RU2520240C2 (ja) |
WO (1) | WO2010021126A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013047846A1 (ja) * | 2011-10-01 | 2013-04-04 | 株式会社糖鎖工学研究所 | 糖鎖付加ポリペプチドおよび当該ポリペプチドを含む医薬組成物 |
WO2014080730A1 (ja) | 2012-11-22 | 2014-05-30 | 株式会社糖鎖工学研究所 | 糖鎖付加リンカー、糖鎖付加リンカー部分と生理活性物質部分とを含む化合物またはその塩、及びそれらの製造方法 |
WO2014084110A1 (ja) | 2012-11-30 | 2014-06-05 | 株式会社糖鎖工学研究所 | 糖鎖付加リンカー、糖鎖付加リンカーと生理活性物質とを含む化合物またはその塩、及びそれらの製造方法 |
US10053499B2 (en) | 2013-03-29 | 2018-08-21 | Glytech, Inc. | Polypeptide having sialylated sugar chains attached thereto |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201031749A (en) * | 2009-02-10 | 2010-09-01 | Otsuka Chemical Co Ltd | IgG-Fc fragment and method for manufacturing the same |
CN102415478B (zh) * | 2011-12-12 | 2014-07-02 | 北京和利美生物科技有限公司 | 一种可促进微量元素吸收的离子配位体、复合微量元素饲料添加剂及其制备方法 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996034878A1 (en) | 1995-05-04 | 1996-11-07 | The Scripps Research Institute | Synthesis of proteins by native chemical ligation |
WO2003008431A1 (fr) | 2001-06-19 | 2003-01-30 | Otsuka Chemical Co.,Ltd. | Methode de production d'un derive d'asparagine de chaines des sucres |
WO2004005330A1 (ja) | 2002-07-05 | 2004-01-15 | Otsuka Chemical Co., Ltd. | 糖鎖アスパラギンを有する糖ペプチドの製造法及び該糖ペプチド |
WO2004008431A1 (en) | 2000-04-28 | 2004-01-22 | Labarbera Anthony L | System for generating percussion sounds from stringed instruments |
WO2004058824A1 (ja) | 2002-12-26 | 2004-07-15 | Otsuka Chemical Co., Ltd. | 3分岐型糖鎖アスパラギン誘導体、該糖鎖アスパラギン、該糖鎖およびそれらの製造方法 |
WO2004058984A1 (ja) | 2002-12-24 | 2004-07-15 | Otsuka Chemical Co., Ltd. | 糖鎖アスパラギン誘導体、糖鎖アスパラギンおよび糖鎖ならびにそれらの製造法 |
WO2004070046A1 (ja) | 2003-02-04 | 2004-08-19 | Otsuka Chemical Co., Ltd. | 糖鎖アスパラギン誘導体の製造方法 |
WO2005010053A1 (ja) | 2003-07-28 | 2005-02-03 | Otsuka Chemical Co., Ltd. | アミノ化複合型糖鎖誘導体及びその製造方法 |
WO2007011055A1 (ja) | 2005-07-19 | 2007-01-25 | Otsuka Chemical Co., Ltd. | 糖鎖誘導体の製造方法、構造解析方法、及び糖鎖誘導体 |
JP2008050344A (ja) * | 2006-07-27 | 2008-03-06 | Sanyo Chem Ind Ltd | タンパク質のリフォールディング方法 |
JP2008520190A (ja) * | 2004-10-22 | 2008-06-19 | アムジェン インコーポレーテッド | 組換え抗体をリフォールディングする方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5231168A (en) * | 1988-09-16 | 1993-07-27 | Statens Seruminstitut | Malaria antigen |
EP0678102A1 (en) * | 1993-01-08 | 1995-10-25 | The Upjohn Company | Process for the purification and refolding of human respiratory syncytial virus fg glycoprotein |
RU2400490C2 (ru) * | 2003-12-03 | 2010-09-27 | Биодженерикс Аг | Гликопэгилированный гранулоцитарный колониестимулирующий фактор |
US20070254836A1 (en) * | 2003-12-03 | 2007-11-01 | Defrees Shawn | Glycopegylated Granulocyte Colony Stimulating Factor |
US7879799B2 (en) * | 2006-08-10 | 2011-02-01 | Institute For Systems Biology | Methods for characterizing glycoproteins and generating antibodies for same |
US9234044B2 (en) * | 2009-04-20 | 2016-01-12 | Kyowa Hakko Kirin Co., Ltd | Agonistic anti-CD40 IGG2 antibodies having amino acid mutations introduced therein |
-
2009
- 2009-08-18 BR BRPI0917298A patent/BRPI0917298B8/pt not_active IP Right Cessation
- 2009-08-18 JP JP2010525594A patent/JP5530358B2/ja active Active
- 2009-08-18 RU RU2011110430/04A patent/RU2520240C2/ru active
- 2009-08-18 WO PCT/JP2009/003932 patent/WO2010021126A1/ja active Application Filing
- 2009-08-18 CA CA2734124A patent/CA2734124C/en active Active
- 2009-08-18 CN CN2009801323996A patent/CN102124024A/zh active Pending
- 2009-08-18 HU HUE09808062A patent/HUE037238T2/hu unknown
- 2009-08-18 US US13/059,649 patent/US20110262945A1/en not_active Abandoned
- 2009-08-18 DK DK09808062.5T patent/DK2330114T3/da active
- 2009-08-18 PT PT98080625T patent/PT2330114T/pt unknown
- 2009-08-18 EP EP09808062.5A patent/EP2330114B1/en active Active
- 2009-08-18 ES ES09808062.5T patent/ES2646119T3/es active Active
- 2009-08-18 AU AU2009283678A patent/AU2009283678B2/en not_active Ceased
- 2009-08-18 KR KR1020117005717A patent/KR20110067097A/ko not_active Application Discontinuation
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996034878A1 (en) | 1995-05-04 | 1996-11-07 | The Scripps Research Institute | Synthesis of proteins by native chemical ligation |
WO2004008431A1 (en) | 2000-04-28 | 2004-01-22 | Labarbera Anthony L | System for generating percussion sounds from stringed instruments |
WO2003008431A1 (fr) | 2001-06-19 | 2003-01-30 | Otsuka Chemical Co.,Ltd. | Methode de production d'un derive d'asparagine de chaines des sucres |
WO2004005330A1 (ja) | 2002-07-05 | 2004-01-15 | Otsuka Chemical Co., Ltd. | 糖鎖アスパラギンを有する糖ペプチドの製造法及び該糖ペプチド |
WO2004058984A1 (ja) | 2002-12-24 | 2004-07-15 | Otsuka Chemical Co., Ltd. | 糖鎖アスパラギン誘導体、糖鎖アスパラギンおよび糖鎖ならびにそれらの製造法 |
WO2004058824A1 (ja) | 2002-12-26 | 2004-07-15 | Otsuka Chemical Co., Ltd. | 3分岐型糖鎖アスパラギン誘導体、該糖鎖アスパラギン、該糖鎖およびそれらの製造方法 |
WO2004070046A1 (ja) | 2003-02-04 | 2004-08-19 | Otsuka Chemical Co., Ltd. | 糖鎖アスパラギン誘導体の製造方法 |
WO2005010053A1 (ja) | 2003-07-28 | 2005-02-03 | Otsuka Chemical Co., Ltd. | アミノ化複合型糖鎖誘導体及びその製造方法 |
JP2008520190A (ja) * | 2004-10-22 | 2008-06-19 | アムジェン インコーポレーテッド | 組換え抗体をリフォールディングする方法 |
WO2007011055A1 (ja) | 2005-07-19 | 2007-01-25 | Otsuka Chemical Co., Ltd. | 糖鎖誘導体の製造方法、構造解析方法、及び糖鎖誘導体 |
JP2008050344A (ja) * | 2006-07-27 | 2008-03-06 | Sanyo Chem Ind Ltd | タンパク質のリフォールディング方法 |
Non-Patent Citations (8)
Title |
---|
BATEMAN ET AL., JOURNAL OF MOLECULAR BIOLOGY, vol. 305, 2001, pages 839 - 849 |
FEBS LETTERS, vol. 50, no. 3, February 1975 (1975-02-01) |
LU ET AL., JOURNAL OF AMERICAN CHEMICAL SOCIETY, vol. 118, 1996, pages 8518 - 8523 |
PROTEIN SCIENCE, vol. 16, 2007, pages 2056 - 2064 |
SHUN SASAOKA ET AL.: "Tosaka Ovomucoid no Gosei Kenkyu", 87TH ANNUAL MEETING OF CHEMICAL SOCIETY OF JAPAN IN SPRING KOEN YOKOSHU 2, 2007, pages 1231 - 1H4-47, XP008143259 * |
YAMAMOTO ET AL., JOURNAL OF AMERICAN CHEMICAL SOCIETY, vol. 130, 2008, pages 501 - 510 |
YASUHIRO KAJIHARA ET AL.: "Hito Fukugogata Tosa o Motsu Kogata To Tanpakushitsu no Kagaku Gosei", DAI 49 KAI SYMPOSIUM ON THE CHEMISTRY OF NATURAL PRODUCTS, SYMPOSIUM PAPERS, 2007, pages 637 - 642, XP008143260 * |
YASUHIRO KAJIHARA ET AL.: "Yuki Gosei ni yoru Tosa Oyobi To Tanpakushitsu no Gosei Gijutsu no Doko", BIOTECHNOLOGY JOURNAL, vol. 6, 2006, pages 299 - 305, XP008143265 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013047846A1 (ja) * | 2011-10-01 | 2013-04-04 | 株式会社糖鎖工学研究所 | 糖鎖付加ポリペプチドおよび当該ポリペプチドを含む医薬組成物 |
JPWO2013047846A1 (ja) * | 2011-10-01 | 2015-03-30 | 株式会社糖鎖工学研究所 | 糖鎖付加ポリペプチドおよび当該ポリペプチドを含む医薬組成物 |
US10358470B2 (en) | 2011-10-01 | 2019-07-23 | Glytech, Inc. | Glycosylated polypeptide and pharmaceutical composition containing same |
WO2014080730A1 (ja) | 2012-11-22 | 2014-05-30 | 株式会社糖鎖工学研究所 | 糖鎖付加リンカー、糖鎖付加リンカー部分と生理活性物質部分とを含む化合物またはその塩、及びそれらの製造方法 |
WO2014084110A1 (ja) | 2012-11-30 | 2014-06-05 | 株式会社糖鎖工学研究所 | 糖鎖付加リンカー、糖鎖付加リンカーと生理活性物質とを含む化合物またはその塩、及びそれらの製造方法 |
US10053499B2 (en) | 2013-03-29 | 2018-08-21 | Glytech, Inc. | Polypeptide having sialylated sugar chains attached thereto |
Also Published As
Publication number | Publication date |
---|---|
JP5530358B2 (ja) | 2014-06-25 |
AU2009283678B2 (en) | 2014-01-16 |
AU2009283678A1 (en) | 2010-02-25 |
US20110262945A1 (en) | 2011-10-27 |
PT2330114T (pt) | 2017-11-17 |
ES2646119T3 (es) | 2017-12-12 |
EP2330114A4 (en) | 2014-02-26 |
RU2520240C2 (ru) | 2014-06-20 |
BRPI0917298B8 (pt) | 2021-05-25 |
RU2011110430A (ru) | 2012-10-10 |
DK2330114T3 (da) | 2017-11-20 |
JPWO2010021126A1 (ja) | 2012-01-26 |
CN102124024A (zh) | 2011-07-13 |
BRPI0917298A2 (pt) | 2015-11-17 |
CA2734124C (en) | 2018-06-05 |
KR20110067097A (ko) | 2011-06-21 |
EP2330114B1 (en) | 2017-08-16 |
EP2330114A1 (en) | 2011-06-08 |
CA2734124A1 (en) | 2010-02-25 |
BRPI0917298B1 (pt) | 2021-01-12 |
HUE037238T2 (hu) | 2018-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DK2767545T3 (en) | Method of peptide preparation | |
JP5530358B2 (ja) | 糖タンパク質の製造方法及びスクリーニング方法 | |
CA2829314C (en) | Method for producing glycopeptide having sialyl sugar chain, sialyl sugar chain-added amino acid derivative to be used in same, and glycopeptide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980132399.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09808062 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009283678 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010525594 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 2734124 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2009283678 Country of ref document: AU Date of ref document: 20090818 Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2009808062 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009808062 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1598/CHENP/2011 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 20117005717 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011110430 Country of ref document: RU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13059649 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: PI0917298 Country of ref document: BR Kind code of ref document: A2 Effective date: 20110218 |