WO2009085935A2 - Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same - Google Patents
Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same Download PDFInfo
- Publication number
- WO2009085935A2 WO2009085935A2 PCT/US2008/087402 US2008087402W WO2009085935A2 WO 2009085935 A2 WO2009085935 A2 WO 2009085935A2 US 2008087402 W US2008087402 W US 2008087402W WO 2009085935 A2 WO2009085935 A2 WO 2009085935A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polypeptide
- seq
- enhancing activity
- preferred aspect
- sequence
- Prior art date
Links
- 108090000765 processed proteins & peptides Proteins 0.000 title claims abstract description 540
- 102000004196 processed proteins & peptides Human genes 0.000 title claims abstract description 528
- 229920001184 polypeptide Polymers 0.000 title claims abstract description 524
- 230000001461 cytolytic effect Effects 0.000 title claims abstract description 187
- 230000002708 enhancing effect Effects 0.000 title claims abstract description 132
- 102000040430 polynucleotide Human genes 0.000 title claims abstract description 117
- 108091033319 polynucleotide Proteins 0.000 title claims abstract description 117
- 239000002157 polynucleotide Substances 0.000 title claims abstract description 117
- 238000000034 method Methods 0.000 claims abstract description 166
- 150000007523 nucleic acids Chemical class 0.000 claims abstract description 39
- 102000039446 nucleic acids Human genes 0.000 claims abstract description 36
- 108020004707 nucleic acids Proteins 0.000 claims abstract description 36
- 108090000623 proteins and genes Proteins 0.000 claims description 163
- 125000003729 nucleotide group Chemical group 0.000 claims description 143
- 239000002773 nucleotide Substances 0.000 claims description 142
- 102000004190 Enzymes Human genes 0.000 claims description 108
- 108090000790 Enzymes Proteins 0.000 claims description 108
- 108091026890 Coding region Proteins 0.000 claims description 105
- 238000000855 fermentation Methods 0.000 claims description 100
- 230000004151 fermentation Effects 0.000 claims description 100
- 239000000463 material Substances 0.000 claims description 97
- 102000004169 proteins and genes Human genes 0.000 claims description 83
- 150000001413 amino acids Chemical class 0.000 claims description 62
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 55
- 239000000203 mixture Substances 0.000 claims description 54
- 238000004519 manufacturing process Methods 0.000 claims description 46
- 230000007062 hydrolysis Effects 0.000 claims description 41
- 238000006460 hydrolysis reaction Methods 0.000 claims description 41
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims description 38
- 108010076504 Protein Sorting Signals Proteins 0.000 claims description 33
- 239000012634 fragment Substances 0.000 claims description 31
- 244000005700 microbiome Species 0.000 claims description 31
- 239000002299 complementary DNA Substances 0.000 claims description 27
- 108091032973 (ribonucleotides)n+m Proteins 0.000 claims description 25
- 239000013612 plasmid Substances 0.000 claims description 25
- 102000040650 (ribonucleotides)n+m Human genes 0.000 claims description 24
- 238000006467 substitution reaction Methods 0.000 claims description 22
- 230000000295 complement effect Effects 0.000 claims description 20
- 108020004459 Small interfering RNA Proteins 0.000 claims description 17
- 238000003780 insertion Methods 0.000 claims description 15
- 230000037431 insertion Effects 0.000 claims description 15
- 238000012217 deletion Methods 0.000 claims description 13
- 230000037430 deletion Effects 0.000 claims description 13
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 12
- 230000002401 inhibitory effect Effects 0.000 claims description 10
- 230000009261 transgenic effect Effects 0.000 claims description 10
- 230000015556 catabolic process Effects 0.000 claims description 8
- 241000588724 Escherichia coli Species 0.000 claims description 7
- 238000006731 degradation reaction Methods 0.000 claims description 6
- 108091070501 miRNA Proteins 0.000 claims description 6
- 239000002679 microRNA Substances 0.000 claims description 6
- 230000000593 degrading effect Effects 0.000 claims description 4
- 239000013598 vector Substances 0.000 abstract description 36
- 210000004027 cell Anatomy 0.000 description 219
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 136
- 229940088598 enzyme Drugs 0.000 description 106
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 95
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 94
- 235000018102 proteins Nutrition 0.000 description 77
- 235000001014 amino acid Nutrition 0.000 description 67
- 241000196324 Embryophyta Species 0.000 description 62
- 229940024606 amino acid Drugs 0.000 description 62
- 108010059892 Cellulase Proteins 0.000 description 56
- 239000000047 product Substances 0.000 description 53
- 229920002678 cellulose Polymers 0.000 description 46
- 239000001913 cellulose Substances 0.000 description 46
- 235000010980 cellulose Nutrition 0.000 description 45
- 230000000694 effects Effects 0.000 description 45
- 108020004414 DNA Proteins 0.000 description 41
- 238000006243 chemical reaction Methods 0.000 description 38
- 239000002609 medium Substances 0.000 description 37
- 241001313536 Thermothelomyces thermophila Species 0.000 description 34
- 241000193830 Bacillus <bacterium> Species 0.000 description 33
- 238000003752 polymerase chain reaction Methods 0.000 description 32
- 230000001580 bacterial effect Effects 0.000 description 30
- 108010047754 beta-Glucosidase Proteins 0.000 description 29
- 102000006995 beta-Glucosidase Human genes 0.000 description 29
- 239000002253 acid Substances 0.000 description 27
- 230000002538 fungal effect Effects 0.000 description 27
- 230000008569 process Effects 0.000 description 27
- 235000000346 sugar Nutrition 0.000 description 26
- 240000006439 Aspergillus oryzae Species 0.000 description 25
- 235000002247 Aspergillus oryzae Nutrition 0.000 description 25
- 239000000126 substance Substances 0.000 description 25
- 150000007524 organic acids Chemical class 0.000 description 24
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 23
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 22
- 239000000499 gel Substances 0.000 description 22
- 108010008885 Cellulose 1,4-beta-Cellobiosidase Proteins 0.000 description 21
- 239000008103 glucose Substances 0.000 description 21
- 150000008163 sugars Chemical class 0.000 description 20
- 241000228212 Aspergillus Species 0.000 description 19
- 241001494489 Thielavia Species 0.000 description 19
- 229920002488 Hemicellulose Polymers 0.000 description 18
- 108091028043 Nucleic acid sequence Proteins 0.000 description 18
- -1 but not limited to Substances 0.000 description 18
- 108020004711 Nucleic Acid Probes Proteins 0.000 description 17
- 239000002853 nucleic acid probe Substances 0.000 description 17
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 16
- 241000226677 Myceliophthora Species 0.000 description 16
- 241000187747 Streptomyces Species 0.000 description 16
- 238000007792 addition Methods 0.000 description 16
- 238000002360 preparation method Methods 0.000 description 16
- 230000010076 replication Effects 0.000 description 16
- 238000005516 engineering process Methods 0.000 description 15
- 239000013604 expression vector Substances 0.000 description 15
- 238000000605 extraction Methods 0.000 description 15
- 230000004048 modification Effects 0.000 description 15
- 238000012986 modification Methods 0.000 description 15
- 239000000523 sample Substances 0.000 description 15
- 230000009466 transformation Effects 0.000 description 15
- 230000003321 amplification Effects 0.000 description 14
- 238000003199 nucleic acid amplification method Methods 0.000 description 14
- 230000001105 regulatory effect Effects 0.000 description 14
- 241000222120 Candida <Saccharomycetales> Species 0.000 description 13
- 239000000872 buffer Substances 0.000 description 13
- 238000004880 explosion Methods 0.000 description 13
- 238000011282 treatment Methods 0.000 description 13
- 241000228245 Aspergillus niger Species 0.000 description 12
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 12
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 12
- 229940106157 cellulase Drugs 0.000 description 12
- 239000007788 liquid Substances 0.000 description 12
- 239000000758 substrate Substances 0.000 description 12
- 239000002028 Biomass Substances 0.000 description 11
- GUBGYTABKSRVRQ-CUHNMECISA-N D-Cellobiose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-CUHNMECISA-N 0.000 description 11
- 240000008042 Zea mays Species 0.000 description 11
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 11
- 230000008901 benefit Effects 0.000 description 11
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 11
- 108020004999 messenger RNA Proteins 0.000 description 11
- 239000000243 solution Substances 0.000 description 11
- 238000013518 transcription Methods 0.000 description 11
- 230000035897 transcription Effects 0.000 description 11
- 229910001868 water Inorganic materials 0.000 description 11
- 239000004382 Amylase Substances 0.000 description 10
- 102000013142 Amylases Human genes 0.000 description 10
- 108010065511 Amylases Proteins 0.000 description 10
- 241000894006 Bacteria Species 0.000 description 10
- 241000235070 Saccharomyces Species 0.000 description 10
- 241000194017 Streptococcus Species 0.000 description 10
- 241000499912 Trichoderma reesei Species 0.000 description 10
- 125000000539 amino acid group Chemical group 0.000 description 10
- 235000019418 amylase Nutrition 0.000 description 10
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 10
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Chemical class OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 9
- 241000351920 Aspergillus nidulans Species 0.000 description 9
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 9
- 238000010367 cloning Methods 0.000 description 9
- 235000005822 corn Nutrition 0.000 description 9
- SUYVUBYJARFZHO-RRKCRQDMSA-N dATP Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-RRKCRQDMSA-N 0.000 description 9
- SUYVUBYJARFZHO-UHFFFAOYSA-N dATP Natural products C1=NC=2C(N)=NC=NC=2N1C1CC(O)C(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-UHFFFAOYSA-N 0.000 description 9
- HAAZLUGHYHWQIW-KVQBGUIXSA-N dGTP Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 HAAZLUGHYHWQIW-KVQBGUIXSA-N 0.000 description 9
- NHVNXKFIZYSCEB-XLPZGREQSA-N dTTP Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)C1 NHVNXKFIZYSCEB-XLPZGREQSA-N 0.000 description 9
- 230000007071 enzymatic hydrolysis Effects 0.000 description 9
- 238000006047 enzymatic hydrolysis reaction Methods 0.000 description 9
- 150000002500 ions Chemical class 0.000 description 9
- 238000002703 mutagenesis Methods 0.000 description 9
- 231100000350 mutagenesis Toxicity 0.000 description 9
- 238000002203 pretreatment Methods 0.000 description 9
- 238000011160 research Methods 0.000 description 9
- 210000001519 tissue Anatomy 0.000 description 9
- 101150024653 61 gene Proteins 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 244000063299 Bacillus subtilis Species 0.000 description 8
- 235000014469 Bacillus subtilis Nutrition 0.000 description 8
- 241000233866 Fungi Species 0.000 description 8
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 8
- 241000235648 Pichia Species 0.000 description 8
- 108090000637 alpha-Amylases Proteins 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 8
- 238000000137 annealing Methods 0.000 description 8
- 239000002585 base Substances 0.000 description 8
- 210000002421 cell wall Anatomy 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 8
- RGWHQCVHVJXOKC-SHYZEUOFSA-J dCTP(4-) Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)C1 RGWHQCVHVJXOKC-SHYZEUOFSA-J 0.000 description 8
- 230000035772 mutation Effects 0.000 description 8
- 230000007935 neutral effect Effects 0.000 description 8
- 210000001938 protoplast Anatomy 0.000 description 8
- 230000014616 translation Effects 0.000 description 8
- 241000223218 Fusarium Species 0.000 description 7
- 102000005744 Glycoside Hydrolases Human genes 0.000 description 7
- 108010031186 Glycoside Hydrolases Proteins 0.000 description 7
- 241000223198 Humicola Species 0.000 description 7
- 108090000604 Hydrolases Proteins 0.000 description 7
- 108090001060 Lipase Proteins 0.000 description 7
- 102000004882 Lipase Human genes 0.000 description 7
- 239000004367 Lipase Substances 0.000 description 7
- 240000007594 Oryza sativa Species 0.000 description 7
- 235000007164 Oryza sativa Nutrition 0.000 description 7
- 102000035195 Peptidases Human genes 0.000 description 7
- 108091005804 Peptidases Proteins 0.000 description 7
- 238000000246 agarose gel electrophoresis Methods 0.000 description 7
- 230000029087 digestion Effects 0.000 description 7
- 230000002255 enzymatic effect Effects 0.000 description 7
- 108020001507 fusion proteins Proteins 0.000 description 7
- 102000037865 fusion proteins Human genes 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- 239000008187 granular material Substances 0.000 description 7
- 229920005610 lignin Polymers 0.000 description 7
- 235000019421 lipase Nutrition 0.000 description 7
- 239000003550 marker Substances 0.000 description 7
- 238000003259 recombinant expression Methods 0.000 description 7
- 235000009566 rice Nutrition 0.000 description 7
- 241000894007 species Species 0.000 description 7
- 239000010907 stover Substances 0.000 description 7
- 238000011144 upstream manufacturing Methods 0.000 description 7
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 6
- 102000005575 Cellulases Human genes 0.000 description 6
- 108010084185 Cellulases Proteins 0.000 description 6
- 241000193403 Clostridium Species 0.000 description 6
- 238000001712 DNA sequencing Methods 0.000 description 6
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 6
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 6
- 108010073178 Glucan 1,4-alpha-Glucosidase Proteins 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 102000004157 Hydrolases Human genes 0.000 description 6
- 108010029541 Laccase Proteins 0.000 description 6
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 6
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 6
- 102000004139 alpha-Amylases Human genes 0.000 description 6
- 229940024171 alpha-amylase Drugs 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 239000007795 chemical reaction product Substances 0.000 description 6
- 238000004520 electroporation Methods 0.000 description 6
- 239000000835 fiber Substances 0.000 description 6
- 125000003147 glycosyl group Chemical group 0.000 description 6
- 238000001802 infusion Methods 0.000 description 6
- 230000010354 integration Effects 0.000 description 6
- 238000002955 isolation Methods 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 238000012216 screening Methods 0.000 description 6
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 6
- 238000013519 translation Methods 0.000 description 6
- 238000009279 wet oxidation reaction Methods 0.000 description 6
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical class COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 5
- 241001225321 Aspergillus fumigatus Species 0.000 description 5
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 5
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 5
- 108090000371 Esterases Proteins 0.000 description 5
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 5
- 125000003412 L-alanyl group Chemical group [H]N([H])[C@@](C([H])([H])[H])(C(=O)[*])[H] 0.000 description 5
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 5
- 241000209510 Liliopsida Species 0.000 description 5
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 5
- 241000221961 Neurospora crassa Species 0.000 description 5
- 102000004316 Oxidoreductases Human genes 0.000 description 5
- 108090000854 Oxidoreductases Proteins 0.000 description 5
- 102000003992 Peroxidases Human genes 0.000 description 5
- 241000222385 Phanerochaete Species 0.000 description 5
- 241000223258 Thermomyces lanuginosus Species 0.000 description 5
- 241000588902 Zymomonas mobilis Species 0.000 description 5
- 229940091771 aspergillus fumigatus Drugs 0.000 description 5
- 238000003556 assay Methods 0.000 description 5
- 230000002950 deficient Effects 0.000 description 5
- 235000019253 formic acid Nutrition 0.000 description 5
- 239000000446 fuel Substances 0.000 description 5
- 150000002576 ketones Chemical class 0.000 description 5
- 239000004310 lactic acid Substances 0.000 description 5
- 235000014655 lactic acid Nutrition 0.000 description 5
- 230000000813 microbial effect Effects 0.000 description 5
- 235000015097 nutrients Nutrition 0.000 description 5
- 230000036961 partial effect Effects 0.000 description 5
- 230000037039 plant physiology Effects 0.000 description 5
- 230000008488 polyadenylation Effects 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 238000012552 review Methods 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 239000011734 sodium Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 4
- UHPMCKVQTMMPCG-UHFFFAOYSA-N 5,8-dihydroxy-2-methoxy-6-methyl-7-(2-oxopropyl)naphthalene-1,4-dione Chemical compound CC1=C(CC(C)=O)C(O)=C2C(=O)C(OC)=CC(=O)C2=C1O UHPMCKVQTMMPCG-UHFFFAOYSA-N 0.000 description 4
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 4
- 101000757144 Aspergillus niger Glucoamylase Proteins 0.000 description 4
- 241000194108 Bacillus licheniformis Species 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 4
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 4
- 229920001503 Glucan Polymers 0.000 description 4
- 102100034343 Integrase Human genes 0.000 description 4
- 241000235649 Kluyveromyces Species 0.000 description 4
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 4
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 4
- 239000004472 Lysine Substances 0.000 description 4
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 4
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 4
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 4
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 4
- 229910019142 PO4 Inorganic materials 0.000 description 4
- 102000012288 Phosphopyruvate Hydratase Human genes 0.000 description 4
- 108010022181 Phosphopyruvate Hydratase Proteins 0.000 description 4
- 241000235403 Rhizomucor miehei Species 0.000 description 4
- 241000235346 Schizosaccharomyces Species 0.000 description 4
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 4
- 238000002105 Southern blotting Methods 0.000 description 4
- 241000193996 Streptococcus pyogenes Species 0.000 description 4
- 241000187398 Streptomyces lividans Species 0.000 description 4
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 4
- 239000008049 TAE buffer Substances 0.000 description 4
- 235000011941 Tilia x europaea Nutrition 0.000 description 4
- 241000223259 Trichoderma Species 0.000 description 4
- 108010048241 acetamidase Proteins 0.000 description 4
- HGEVZDLYZYVYHD-UHFFFAOYSA-N acetic acid;2-amino-2-(hydroxymethyl)propane-1,3-diol;2-[2-[bis(carboxymethyl)amino]ethyl-(carboxymethyl)amino]acetic acid Chemical compound CC(O)=O.OCC(N)(CO)CO.OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O HGEVZDLYZYVYHD-UHFFFAOYSA-N 0.000 description 4
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 4
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 4
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 4
- 108010051210 beta-Fructofuranosidase Proteins 0.000 description 4
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 4
- 238000010364 biochemical engineering Methods 0.000 description 4
- 239000012620 biological material Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000004422 calculation algorithm Methods 0.000 description 4
- 229910002091 carbon monoxide Inorganic materials 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 230000021615 conjugation Effects 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 108010005400 cutinase Proteins 0.000 description 4
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 230000012010 growth Effects 0.000 description 4
- 108010002430 hemicellulase Proteins 0.000 description 4
- 238000002744 homologous recombination Methods 0.000 description 4
- 230000006801 homologous recombination Effects 0.000 description 4
- 238000009396 hybridization Methods 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 230000002779 inactivation Effects 0.000 description 4
- 229910052500 inorganic mineral Inorganic materials 0.000 description 4
- 239000001573 invertase Substances 0.000 description 4
- 235000011073 invertase Nutrition 0.000 description 4
- 239000004571 lime Substances 0.000 description 4
- 238000009996 mechanical pre-treatment Methods 0.000 description 4
- 239000011707 mineral Substances 0.000 description 4
- 235000010755 mineral Nutrition 0.000 description 4
- 239000010813 municipal solid waste Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 238000002741 site-directed mutagenesis Methods 0.000 description 4
- 239000004055 small Interfering RNA Substances 0.000 description 4
- 239000001632 sodium acetate Substances 0.000 description 4
- 235000017281 sodium acetate Nutrition 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 238000004885 tandem mass spectrometry Methods 0.000 description 4
- 239000002023 wood Substances 0.000 description 4
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 3
- 108010011619 6-Phytase Proteins 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 102100034044 All-trans-retinol dehydrogenase [NAD(+)] ADH1B Human genes 0.000 description 3
- 101710193111 All-trans-retinol dehydrogenase [NAD(+)] ADH4 Proteins 0.000 description 3
- 102000004400 Aminopeptidases Human genes 0.000 description 3
- 108090000915 Aminopeptidases Proteins 0.000 description 3
- 102000004580 Aspartic Acid Proteases Human genes 0.000 description 3
- 108010017640 Aspartic Acid Proteases Proteins 0.000 description 3
- 241001513093 Aspergillus awamori Species 0.000 description 3
- 241000892910 Aspergillus foetidus Species 0.000 description 3
- 241001480052 Aspergillus japonicus Species 0.000 description 3
- 241000193744 Bacillus amyloliquefaciens Species 0.000 description 3
- 241000221198 Basidiomycota Species 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 3
- 241000589876 Campylobacter Species 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 3
- 108010053835 Catalase Proteins 0.000 description 3
- 102000016938 Catalase Human genes 0.000 description 3
- 108010022172 Chitinases Proteins 0.000 description 3
- 102000012286 Chitinases Human genes 0.000 description 3
- 241000123346 Chrysosporium Species 0.000 description 3
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 3
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 3
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 3
- 101710121765 Endo-1,4-beta-xylanase Proteins 0.000 description 3
- 108700007698 Genetic Terminator Regions Proteins 0.000 description 3
- 102100022624 Glucoamylase Human genes 0.000 description 3
- 239000004471 Glycine Substances 0.000 description 3
- 241000589989 Helicobacter Species 0.000 description 3
- 241001480714 Humicola insolens Species 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- 241000186660 Lactobacillus Species 0.000 description 3
- 241000194036 Lactococcus Species 0.000 description 3
- 241001344133 Magnaporthe Species 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 241000588653 Neisseria Species 0.000 description 3
- 241000233892 Neocallimastix Species 0.000 description 3
- 238000012408 PCR amplification Methods 0.000 description 3
- 241001236817 Paecilomyces <Clavicipitaceae> Species 0.000 description 3
- 241000194109 Paenibacillus lautus Species 0.000 description 3
- 241000235379 Piromyces Species 0.000 description 3
- 239000004365 Protease Substances 0.000 description 3
- 241000589516 Pseudomonas Species 0.000 description 3
- 108091034057 RNA (poly(A)) Proteins 0.000 description 3
- 108020004511 Recombinant DNA Proteins 0.000 description 3
- 108010083644 Ribonucleases Proteins 0.000 description 3
- 102000006382 Ribonucleases Human genes 0.000 description 3
- 241001407717 Saccharomyces norbensis Species 0.000 description 3
- 241000607142 Salmonella Species 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 244000061456 Solanum tuberosum Species 0.000 description 3
- 235000002595 Solanum tuberosum Nutrition 0.000 description 3
- 241000191940 Staphylococcus Species 0.000 description 3
- 108091081024 Start codon Proteins 0.000 description 3
- 241000264435 Streptococcus dysgalactiae subsp. equisimilis Species 0.000 description 3
- 241000194048 Streptococcus equi Species 0.000 description 3
- 241000958303 Streptomyces achromogenes Species 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 3
- 241000228341 Talaromyces Species 0.000 description 3
- 108010006785 Taq Polymerase Proteins 0.000 description 3
- 241000228178 Thermoascus Species 0.000 description 3
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 3
- 239000004473 Threonine Substances 0.000 description 3
- 108060008539 Transglutaminase Proteins 0.000 description 3
- 241000202898 Ureaplasma Species 0.000 description 3
- IXKSXJFAGXLQOQ-XISFHERQSA-N WHWLQLKPGQPMY Chemical compound C([C@@H](C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(O)=O)NC(=O)[C@@H](N)CC=1C2=CC=CC=C2NC=1)C1=CNC=N1 IXKSXJFAGXLQOQ-XISFHERQSA-N 0.000 description 3
- 241000235013 Yarrowia Species 0.000 description 3
- 241000588901 Zymomonas Species 0.000 description 3
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 3
- 230000004071 biological effect Effects 0.000 description 3
- 229960002685 biotin Drugs 0.000 description 3
- 235000020958 biotin Nutrition 0.000 description 3
- 239000011616 biotin Substances 0.000 description 3
- 108010089934 carbohydrase Proteins 0.000 description 3
- 239000001768 carboxy methyl cellulose Substances 0.000 description 3
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 3
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 3
- 239000012876 carrier material Substances 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 238000012512 characterization method Methods 0.000 description 3
- 230000002759 chromosomal effect Effects 0.000 description 3
- 229960004106 citric acid Drugs 0.000 description 3
- 238000003776 cleavage reaction Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 108010092413 endoglucanase V Proteins 0.000 description 3
- 241001233957 eudicotyledons Species 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 229930182830 galactose Natural products 0.000 description 3
- 230000009368 gene silencing by RNA Effects 0.000 description 3
- 102000006602 glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 3
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 229910001385 heavy metal Inorganic materials 0.000 description 3
- 239000000413 hydrolysate Substances 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 229940039696 lactobacillus Drugs 0.000 description 3
- 238000011068 loading method Methods 0.000 description 3
- 230000001404 mediated effect Effects 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 3
- 238000012269 metabolic engineering Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 229920001542 oligosaccharide Polymers 0.000 description 3
- 150000002482 oligosaccharides Chemical class 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000010893 paper waste Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 150000002972 pentoses Chemical class 0.000 description 3
- 238000005325 percolation Methods 0.000 description 3
- 229940072417 peroxidase Drugs 0.000 description 3
- 108040007629 peroxidase activity proteins Proteins 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- 229940085127 phytase Drugs 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 230000007017 scission Effects 0.000 description 3
- 230000028327 secretion Effects 0.000 description 3
- 238000012163 sequencing technique Methods 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 239000000600 sorbitol Substances 0.000 description 3
- 230000000638 stimulation Effects 0.000 description 3
- 230000001131 transforming effect Effects 0.000 description 3
- 102000003601 transglutaminase Human genes 0.000 description 3
- 239000003643 water by type Substances 0.000 description 3
- JLIDBLDQVAYHNE-YKALOCIXSA-N (+)-Abscisic acid Chemical compound OC(=O)/C=C(/C)\C=C\[C@@]1(O)C(C)=CC(=O)CC1(C)C JLIDBLDQVAYHNE-YKALOCIXSA-N 0.000 description 2
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 2
- HNSDLXPSAYFUHK-UHFFFAOYSA-N 1,4-bis(2-ethylhexyl) sulfosuccinate Chemical compound CCCCC(CC)COC(=O)CC(S(O)(=O)=O)C(=O)OCC(CC)CCCC HNSDLXPSAYFUHK-UHFFFAOYSA-N 0.000 description 2
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 description 2
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 2
- BWLBGMIXKSTLSX-UHFFFAOYSA-N 2-hydroxyisobutyric acid Chemical compound CC(C)(O)C(O)=O BWLBGMIXKSTLSX-UHFFFAOYSA-N 0.000 description 2
- OSJPPGNTCRNQQC-UWTATZPHSA-N 3-phospho-D-glyceric acid Chemical compound OC(=O)[C@H](O)COP(O)(O)=O OSJPPGNTCRNQQC-UWTATZPHSA-N 0.000 description 2
- ALYNCZNDIQEVRV-UHFFFAOYSA-N 4-aminobenzoic acid Chemical compound NC1=CC=C(C(O)=O)C=C1 ALYNCZNDIQEVRV-UHFFFAOYSA-N 0.000 description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 2
- 101710197633 Actin-1 Proteins 0.000 description 2
- 229920000936 Agarose Polymers 0.000 description 2
- 102000007698 Alcohol dehydrogenase Human genes 0.000 description 2
- 108010021809 Alcohol dehydrogenase Proteins 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 108010037870 Anthranilate Synthase Proteins 0.000 description 2
- 101100163849 Arabidopsis thaliana ARS1 gene Proteins 0.000 description 2
- 241000228215 Aspergillus aculeatus Species 0.000 description 2
- 101000690713 Aspergillus niger Alpha-glucosidase Proteins 0.000 description 2
- 101900318521 Aspergillus oryzae Triosephosphate isomerase Proteins 0.000 description 2
- 241000223651 Aureobasidium Species 0.000 description 2
- 241000193752 Bacillus circulans Species 0.000 description 2
- 241001328122 Bacillus clausii Species 0.000 description 2
- 241000193749 Bacillus coagulans Species 0.000 description 2
- 241000193747 Bacillus firmus Species 0.000 description 2
- 241000193422 Bacillus lentus Species 0.000 description 2
- 241000193388 Bacillus thuringiensis Species 0.000 description 2
- 239000005711 Benzoic acid Substances 0.000 description 2
- 229920002498 Beta-glucan Polymers 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 244000025254 Cannabis sativa Species 0.000 description 2
- 108010006303 Carboxypeptidases Proteins 0.000 description 2
- 102000005367 Carboxypeptidases Human genes 0.000 description 2
- 108010031396 Catechol oxidase Proteins 0.000 description 2
- 102000030523 Catechol oxidase Human genes 0.000 description 2
- 241000221955 Chaetomium Species 0.000 description 2
- 241001248634 Chaetomium thermophilum Species 0.000 description 2
- 241001508811 Clavispora Species 0.000 description 2
- 241000228437 Cochliobolus Species 0.000 description 2
- 108020004705 Codon Proteins 0.000 description 2
- 241001509964 Coptotermes Species 0.000 description 2
- 241001252397 Corynascus Species 0.000 description 2
- 241001337994 Cryptococcus <scale insect> Species 0.000 description 2
- HEBKCHPVOIAQTA-QWWZWVQMSA-N D-arabinitol Chemical compound OC[C@@H](O)C(O)[C@H](O)CO HEBKCHPVOIAQTA-QWWZWVQMSA-N 0.000 description 2
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 2
- QXKAIJAYHKCRRA-UHFFFAOYSA-N D-lyxonic acid Natural products OCC(O)C(O)C(O)C(O)=O QXKAIJAYHKCRRA-UHFFFAOYSA-N 0.000 description 2
- QXKAIJAYHKCRRA-FLRLBIABSA-N D-xylonic acid Chemical compound OC[C@@H](O)[C@H](O)[C@@H](O)C(O)=O QXKAIJAYHKCRRA-FLRLBIABSA-N 0.000 description 2
- ZAQJHHRNXZUBTE-WUJLRWPWSA-N D-xylulose Chemical compound OC[C@@H](O)[C@H](O)C(=O)CO ZAQJHHRNXZUBTE-WUJLRWPWSA-N 0.000 description 2
- 102000053602 DNA Human genes 0.000 description 2
- 239000003109 Disodium ethylene diamine tetraacetate Substances 0.000 description 2
- 108010062466 Enzyme Precursors Proteins 0.000 description 2
- 102000010911 Enzyme Precursors Human genes 0.000 description 2
- 241000206602 Eukaryota Species 0.000 description 2
- 241000221433 Exidia Species 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- 241000223221 Fusarium oxysporum Species 0.000 description 2
- 241000567178 Fusarium venenatum Species 0.000 description 2
- 241000605909 Fusobacterium Species 0.000 description 2
- 102000048120 Galactokinases Human genes 0.000 description 2
- 108700023157 Galactokinases Proteins 0.000 description 2
- IAJILQKETJEXLJ-UHFFFAOYSA-N Galacturonsaeure Natural products O=CC(O)C(O)C(O)C(O)C(O)=O IAJILQKETJEXLJ-UHFFFAOYSA-N 0.000 description 2
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 2
- 241000626621 Geobacillus Species 0.000 description 2
- 241000193385 Geobacillus stearothermophilus Species 0.000 description 2
- 101100080316 Geobacillus stearothermophilus nprT gene Proteins 0.000 description 2
- 108700023372 Glycosyltransferases Proteins 0.000 description 2
- 102000051366 Glycosyltransferases Human genes 0.000 description 2
- 101001035458 Humicola insolens Endoglucanase-5 Proteins 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 101710203526 Integrase Proteins 0.000 description 2
- 241000222342 Irpex Species 0.000 description 2
- 102000004195 Isomerases Human genes 0.000 description 2
- 108090000769 Isomerases Proteins 0.000 description 2
- 102100027612 Kallikrein-11 Human genes 0.000 description 2
- 244000285963 Kluyveromyces fragilis Species 0.000 description 2
- 235000014663 Kluyveromyces fragilis Nutrition 0.000 description 2
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 2
- 125000000570 L-alpha-aspartyl group Chemical group [H]OC(=O)C([H])([H])[C@]([H])(N([H])[H])C(*)=O 0.000 description 2
- 125000003440 L-leucyl group Chemical group O=C([*])[C@](N([H])[H])([H])C([H])([H])C(C([H])([H])[H])([H])C([H])([H])[H] 0.000 description 2
- 241000235087 Lachancea kluyveri Species 0.000 description 2
- 241000222435 Lentinula Species 0.000 description 2
- 102000003960 Ligases Human genes 0.000 description 2
- 108090000364 Ligases Proteins 0.000 description 2
- 102000004317 Lyases Human genes 0.000 description 2
- 108090000856 Lyases Proteins 0.000 description 2
- 102100024295 Maltase-glucoamylase Human genes 0.000 description 2
- 229920000057 Mannan Polymers 0.000 description 2
- 108010054377 Mannosidases Proteins 0.000 description 2
- 102000001696 Mannosidases Human genes 0.000 description 2
- 241000183011 Melanocarpus Species 0.000 description 2
- 241001184659 Melanocarpus albomyces Species 0.000 description 2
- 108090000157 Metallothionein Proteins 0.000 description 2
- 108010086093 Mung Bean Nuclease Proteins 0.000 description 2
- 101000723939 Mus musculus Transcription factor HIVEP3 Proteins 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 241000221960 Neurospora Species 0.000 description 2
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical compound OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 2
- 244000061176 Nicotiana tabacum Species 0.000 description 2
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 2
- 241001072230 Oceanobacillus Species 0.000 description 2
- 241000233654 Oomycetes Species 0.000 description 2
- 108700026244 Open Reading Frames Proteins 0.000 description 2
- 241000228143 Penicillium Species 0.000 description 2
- 241001496963 Penicillium brasilianum Species 0.000 description 2
- 108700020962 Peroxidase Proteins 0.000 description 2
- 108010064785 Phospholipases Proteins 0.000 description 2
- 102000015439 Phospholipases Human genes 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 241001451060 Poitrasia Species 0.000 description 2
- 108091030071 RNAI Proteins 0.000 description 2
- AUNGANRZJHBGPY-SCRDCRAPSA-N Riboflavin Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-SCRDCRAPSA-N 0.000 description 2
- 235000003534 Saccharomyces carlsbergensis Nutrition 0.000 description 2
- 241000204893 Saccharomyces douglasii Species 0.000 description 2
- 241001123227 Saccharomyces pastorianus Species 0.000 description 2
- 241000235060 Scheffersomyces stipitis Species 0.000 description 2
- 101100097319 Schizosaccharomyces pombe (strain 972 / ATCC 24843) ala1 gene Proteins 0.000 description 2
- 241000223255 Scytalidium Species 0.000 description 2
- 238000012300 Sequence Analysis Methods 0.000 description 2
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 241000194054 Streptococcus uberis Species 0.000 description 2
- 241001468227 Streptomyces avermitilis Species 0.000 description 2
- 241000187432 Streptomyces coelicolor Species 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- 241000182980 Thielavia ovispora Species 0.000 description 2
- 241001149964 Tolypocladium Species 0.000 description 2
- 102000005924 Triose-Phosphate Isomerase Human genes 0.000 description 2
- 108700015934 Triose-phosphate isomerases Proteins 0.000 description 2
- 235000021307 Triticum Nutrition 0.000 description 2
- 244000098338 Triticum aestivum Species 0.000 description 2
- 108090000631 Trypsin Proteins 0.000 description 2
- 102000004142 Trypsin Human genes 0.000 description 2
- 101710152431 Trypsin-like protease Proteins 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- 229920002000 Xyloglucan Polymers 0.000 description 2
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 2
- 238000010306 acid treatment Methods 0.000 description 2
- 239000001361 adipic acid Substances 0.000 description 2
- 235000011037 adipic acid Nutrition 0.000 description 2
- 235000004279 alanine Nutrition 0.000 description 2
- 238000012867 alanine scanning Methods 0.000 description 2
- IAJILQKETJEXLJ-QTBDOELSSA-N aldehydo-D-glucuronic acid Chemical compound O=C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)C(O)=O IAJILQKETJEXLJ-QTBDOELSSA-N 0.000 description 2
- 108010030291 alpha-Galactosidase Proteins 0.000 description 2
- 102000005840 alpha-Galactosidase Human genes 0.000 description 2
- 108010028144 alpha-Glucosidases Proteins 0.000 description 2
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 2
- 101150078331 ama-1 gene Proteins 0.000 description 2
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 2
- 230000000692 anti-sense effect Effects 0.000 description 2
- 235000010323 ascorbic acid Nutrition 0.000 description 2
- 229960005070 ascorbic acid Drugs 0.000 description 2
- 239000011668 ascorbic acid Substances 0.000 description 2
- 235000003704 aspartic acid Nutrition 0.000 description 2
- 229940054340 bacillus coagulans Drugs 0.000 description 2
- 229940005348 bacillus firmus Drugs 0.000 description 2
- 229940097012 bacillus thuringiensis Drugs 0.000 description 2
- 238000010923 batch production Methods 0.000 description 2
- 235000010233 benzoic acid Nutrition 0.000 description 2
- 102000005936 beta-Galactosidase Human genes 0.000 description 2
- 108010005774 beta-Galactosidase Proteins 0.000 description 2
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 2
- 230000003115 biocidal effect Effects 0.000 description 2
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 2
- 229940041514 candida albicans extract Drugs 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 230000036978 cell physiology Effects 0.000 description 2
- 235000013339 cereals Nutrition 0.000 description 2
- 210000003763 chloroplast Anatomy 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 210000000349 chromosome Anatomy 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229910000366 copper(II) sulfate Inorganic materials 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000002050 diffraction method Methods 0.000 description 2
- 229940079919 digestives enzyme preparation Drugs 0.000 description 2
- QXYJCZRRLLQGCR-UHFFFAOYSA-N dioxomolybdenum Chemical compound O=[Mo]=O QXYJCZRRLLQGCR-UHFFFAOYSA-N 0.000 description 2
- 235000019301 disodium ethylene diamine tetraacetate Nutrition 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 230000035622 drinking Effects 0.000 description 2
- 238000010410 dusting Methods 0.000 description 2
- 235000013399 edible fruits Nutrition 0.000 description 2
- 230000005672 electromagnetic field Effects 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 210000002257 embryonic structure Anatomy 0.000 description 2
- 108010091371 endoglucanase 1 Proteins 0.000 description 2
- 239000003797 essential amino acid Substances 0.000 description 2
- 235000020776 essential amino acid Nutrition 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- OVBPIULPVIDEAO-LBPRGKRZSA-N folic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-LBPRGKRZSA-N 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 229940097043 glucuronic acid Drugs 0.000 description 2
- 235000013922 glutamic acid Nutrition 0.000 description 2
- 239000004220 glutamic acid Substances 0.000 description 2
- 229940059442 hemicellulase Drugs 0.000 description 2
- 150000002402 hexoses Chemical class 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 239000005556 hormone Substances 0.000 description 2
- 229940088597 hormone Drugs 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 238000007834 ligase chain reaction Methods 0.000 description 2
- 230000002366 lipolytic effect Effects 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 2
- 235000009973 maize Nutrition 0.000 description 2
- 239000001630 malic acid Substances 0.000 description 2
- 235000011090 malic acid Nutrition 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 230000037353 metabolic pathway Effects 0.000 description 2
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 235000006408 oxalic acid Nutrition 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 230000002351 pectolytic effect Effects 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 238000005222 photoaffinity labeling Methods 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 150000004804 polysaccharides Chemical class 0.000 description 2
- 230000004481 post-translational protein modification Effects 0.000 description 2
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 2
- 235000019260 propionic acid Nutrition 0.000 description 2
- 101150054232 pyrG gene Proteins 0.000 description 2
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 108020003175 receptors Proteins 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 108091008146 restriction endonucleases Proteins 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 230000003248 secreting effect Effects 0.000 description 2
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 2
- 238000010563 solid-state fermentation Methods 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000010902 straw Substances 0.000 description 2
- 229940115922 streptococcus uberis Drugs 0.000 description 2
- 150000005846 sugar alcohols Chemical class 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 230000002103 transcriptional effect Effects 0.000 description 2
- 238000010361 transduction Methods 0.000 description 2
- 230000026683 transduction Effects 0.000 description 2
- 239000012588 trypsin Substances 0.000 description 2
- 238000000108 ultra-filtration Methods 0.000 description 2
- 230000009105 vegetative growth Effects 0.000 description 2
- 108700026220 vif Genes Proteins 0.000 description 2
- 229940088594 vitamin Drugs 0.000 description 2
- 235000013343 vitamin Nutrition 0.000 description 2
- 239000011782 vitamin Substances 0.000 description 2
- 229930003231 vitamin Natural products 0.000 description 2
- 239000012138 yeast extract Substances 0.000 description 2
- DIGQNXIGRZPYDK-WKSCXVIASA-N (2R)-6-amino-2-[[2-[[(2S)-2-[[2-[[(2R)-2-[[(2S)-2-[[(2R,3S)-2-[[2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2R)-2-[[(2S,3S)-2-[[(2R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2R)-2-[[2-[[2-[[2-[(2-amino-1-hydroxyethylidene)amino]-3-carboxy-1-hydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1,5-dihydroxy-5-iminopentylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]hexanoic acid Chemical compound C[C@@H]([C@@H](C(=N[C@@H](CS)C(=N[C@@H](C)C(=N[C@@H](CO)C(=NCC(=N[C@@H](CCC(=N)O)C(=NC(CS)C(=N[C@H]([C@H](C)O)C(=N[C@H](CS)C(=N[C@H](CO)C(=NCC(=N[C@H](CS)C(=NCC(=N[C@H](CCCCN)C(=O)O)O)O)O)O)O)O)O)O)O)O)O)O)O)N=C([C@H](CS)N=C([C@H](CO)N=C([C@H](CO)N=C([C@H](C)N=C(CN=C([C@H](CO)N=C([C@H](CS)N=C(CN=C(C(CS)N=C(C(CC(=O)O)N=C(CN)O)O)O)O)O)O)O)O)O)O)O)O DIGQNXIGRZPYDK-WKSCXVIASA-N 0.000 description 1
- AUTALUGDOGWPQH-UBLOVXTBSA-N (2r,3s,4r,5r)-2,3,4,5,6-pentahydroxyhexanal;(2r,3s,4r)-2,3,4,5-tetrahydroxypentanal Chemical compound OC[C@@H](O)[C@H](O)[C@@H](O)C=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O AUTALUGDOGWPQH-UBLOVXTBSA-N 0.000 description 1
- OCUSNPIJIZCRSZ-ZTZWCFDHSA-N (2s)-2-amino-3-methylbutanoic acid;(2s)-2-amino-4-methylpentanoic acid;(2s,3s)-2-amino-3-methylpentanoic acid Chemical compound CC(C)[C@H](N)C(O)=O.CC[C@H](C)[C@H](N)C(O)=O.CC(C)C[C@H](N)C(O)=O OCUSNPIJIZCRSZ-ZTZWCFDHSA-N 0.000 description 1
- PSLCKQYQNVNTQI-BHFSHLQUSA-N (2s)-2-aminobutanedioic acid;(2s)-2-aminopentanedioic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O.OC(=O)[C@@H](N)CCC(O)=O PSLCKQYQNVNTQI-BHFSHLQUSA-N 0.000 description 1
- FYGDTMLNYKFZSV-WFYNLLPOSA-N (2s,3r,4s,5s,6r)-2-[(2r,4r,5r,6s)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(2r,3s,4r,5r,6s)-4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1[C@@H](CO)O[C@@H](O[C@@H]2[C@H](O[C@H](O)[C@H](O)[C@H]2O)CO)[C@H](O)[C@H]1O FYGDTMLNYKFZSV-WFYNLLPOSA-N 0.000 description 1
- FQVLRGLGWNWPSS-BXBUPLCLSA-N (4r,7s,10s,13s,16r)-16-acetamido-13-(1h-imidazol-5-ylmethyl)-10-methyl-6,9,12,15-tetraoxo-7-propan-2-yl-1,2-dithia-5,8,11,14-tetrazacycloheptadecane-4-carboxamide Chemical compound N1C(=O)[C@@H](NC(C)=O)CSSC[C@@H](C(N)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](C)NC(=O)[C@@H]1CC1=CN=CN1 FQVLRGLGWNWPSS-BXBUPLCLSA-N 0.000 description 1
- GHOKWGTUZJEAQD-ZETCQYMHSA-N (D)-(+)-Pantothenic acid Chemical compound OCC(C)(C)[C@@H](O)C(=O)NCCC(O)=O GHOKWGTUZJEAQD-ZETCQYMHSA-N 0.000 description 1
- OMGHIGVFLOPEHJ-UHFFFAOYSA-N 2,5-dihydro-1h-pyrrol-1-ium-2-carboxylate Chemical compound OC(=O)C1NCC=C1 OMGHIGVFLOPEHJ-UHFFFAOYSA-N 0.000 description 1
- PKAUICCNAWQPAU-UHFFFAOYSA-N 2-(4-chloro-2-methylphenoxy)acetic acid;n-methylmethanamine Chemical compound CNC.CC1=CC(Cl)=CC=C1OCC(O)=O PKAUICCNAWQPAU-UHFFFAOYSA-N 0.000 description 1
- CDUUKBXTEOFITR-BYPYZUCNSA-N 2-methyl-L-serine Chemical compound OC[C@@]([NH3+])(C)C([O-])=O CDUUKBXTEOFITR-BYPYZUCNSA-N 0.000 description 1
- 108091071337 20 family Proteins 0.000 description 1
- 108010091324 3C proteases Proteins 0.000 description 1
- IFBHRQDFSNCLOZ-RMPHRYRLSA-N 4-nitrophenyl beta-D-glucoside Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=CC=C([N+]([O-])=O)C=C1 IFBHRQDFSNCLOZ-RMPHRYRLSA-N 0.000 description 1
- NGYHUCPPLJOZIX-XLPZGREQSA-N 5-methyl-dCTP Chemical compound O=C1N=C(N)C(C)=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)C1 NGYHUCPPLJOZIX-XLPZGREQSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 241001019659 Acremonium <Plectosphaerellaceae> Species 0.000 description 1
- 229930024421 Adenine Natural products 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 241000743339 Agrostis Species 0.000 description 1
- 102100027211 Albumin Human genes 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102100034035 Alcohol dehydrogenase 1A Human genes 0.000 description 1
- 108010053754 Aldehyde reductase Proteins 0.000 description 1
- 241000609240 Ambelania acida Species 0.000 description 1
- 241000534414 Anotopterus nikparini Species 0.000 description 1
- 241000219195 Arabidopsis thaliana Species 0.000 description 1
- 241000235349 Ascomycota Species 0.000 description 1
- 101000756530 Aspergillus niger Endo-1,4-beta-xylanase B Proteins 0.000 description 1
- 101900127796 Aspergillus oryzae Glucoamylase Proteins 0.000 description 1
- 241000972773 Aulopiformes Species 0.000 description 1
- 235000007319 Avena orientalis Nutrition 0.000 description 1
- 244000075850 Avena orientalis Species 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- 108090000145 Bacillolysin Proteins 0.000 description 1
- 101000695691 Bacillus licheniformis Beta-lactamase Proteins 0.000 description 1
- 241000194103 Bacillus pumilus Species 0.000 description 1
- 108091005658 Basic proteases Proteins 0.000 description 1
- 241000219310 Beta vulgaris subsp. vulgaris Species 0.000 description 1
- 102100030981 Beta-alanine-activating enzyme Human genes 0.000 description 1
- 241000222490 Bjerkandera Species 0.000 description 1
- 241000222478 Bjerkandera adusta Species 0.000 description 1
- 240000002791 Brassica napus Species 0.000 description 1
- 235000011299 Brassica oleracea var botrytis Nutrition 0.000 description 1
- 240000003259 Brassica oleracea var. botrytis Species 0.000 description 1
- 235000004977 Brassica sinapistrum Nutrition 0.000 description 1
- 241000219193 Brassicaceae Species 0.000 description 1
- 241000193764 Brevibacillus brevis Species 0.000 description 1
- 101150020139 CEL6B gene Proteins 0.000 description 1
- 101100327917 Caenorhabditis elegans chup-1 gene Proteins 0.000 description 1
- 102100037633 Centrin-3 Human genes 0.000 description 1
- 241000259840 Chaetomidium Species 0.000 description 1
- 241001057137 Chaetomium fimeti Species 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- 241000080524 Chrysosporium queenslandicum Species 0.000 description 1
- 241000355696 Chrysosporium zonatum Species 0.000 description 1
- 241000233652 Chytridiomycota Species 0.000 description 1
- 108020004638 Circular DNA Proteins 0.000 description 1
- 241000259811 Cladorrhinum foecundissimum Species 0.000 description 1
- 241000221760 Claviceps Species 0.000 description 1
- 108700010070 Codon Usage Proteins 0.000 description 1
- 108020004635 Complementary DNA Proteins 0.000 description 1
- 238000011537 Coomassie blue staining Methods 0.000 description 1
- 241000222511 Coprinus Species 0.000 description 1
- 241000221755 Cryphonectria Species 0.000 description 1
- 241000323684 Ctenomyces vellereus Species 0.000 description 1
- 241000235646 Cyberlindnera jadinii Species 0.000 description 1
- 108010025880 Cyclomaltodextrin glucanotransferase Proteins 0.000 description 1
- 102000018832 Cytochromes Human genes 0.000 description 1
- 108010052832 Cytochromes Proteins 0.000 description 1
- AUNGANRZJHBGPY-UHFFFAOYSA-N D-Lyxoflavin Natural products OCC(O)C(O)C(O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-UHFFFAOYSA-N 0.000 description 1
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 1
- LXJXRIRHZLFYRP-VKHMYHEASA-N D-glyceraldehyde 3-phosphate Chemical compound O=C[C@H](O)COP(O)(O)=O LXJXRIRHZLFYRP-VKHMYHEASA-N 0.000 description 1
- 102000012410 DNA Ligases Human genes 0.000 description 1
- 108010061982 DNA Ligases Proteins 0.000 description 1
- 108010017826 DNA Polymerase I Proteins 0.000 description 1
- 102000004594 DNA Polymerase I Human genes 0.000 description 1
- 230000004544 DNA amplification Effects 0.000 description 1
- 238000007400 DNA extraction Methods 0.000 description 1
- 239000003298 DNA probe Substances 0.000 description 1
- 108010053770 Deoxyribonucleases Proteins 0.000 description 1
- 102000016911 Deoxyribonucleases Human genes 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 101100342470 Dictyostelium discoideum pkbA gene Proteins 0.000 description 1
- 108090000204 Dipeptidase 1 Proteins 0.000 description 1
- 108010016626 Dipeptides Proteins 0.000 description 1
- 241000935926 Diplodia Species 0.000 description 1
- 101100268551 Drosophila melanogaster Appl gene Proteins 0.000 description 1
- 101150015836 ENO1 gene Proteins 0.000 description 1
- 101710132690 Endo-1,4-beta-xylanase A Proteins 0.000 description 1
- 241000194033 Enterococcus Species 0.000 description 1
- 108010013369 Enteropeptidase Proteins 0.000 description 1
- 102100029727 Enteropeptidase Human genes 0.000 description 1
- 241000588698 Erwinia Species 0.000 description 1
- 241000588722 Escherichia Species 0.000 description 1
- 101100385973 Escherichia coli (strain K12) cycA gene Proteins 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- PLUBXMRUUVWRLT-UHFFFAOYSA-N Ethyl methanesulfonate Chemical compound CCOS(C)(=O)=O PLUBXMRUUVWRLT-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 101710098247 Exoglucanase 1 Proteins 0.000 description 1
- 108010074860 Factor Xa Proteins 0.000 description 1
- 241000234642 Festuca Species 0.000 description 1
- 241000192125 Firmicutes Species 0.000 description 1
- 241000589565 Flavobacterium Species 0.000 description 1
- 108010058643 Fungal Proteins Proteins 0.000 description 1
- 241000567163 Fusarium cerealis Species 0.000 description 1
- 241000221779 Fusarium sambucinum Species 0.000 description 1
- 241000223192 Fusarium sporotrichioides Species 0.000 description 1
- 241001465753 Fusarium torulosum Species 0.000 description 1
- 101150108358 GLAA gene Proteins 0.000 description 1
- 206010064571 Gene mutation Diseases 0.000 description 1
- 101100369308 Geobacillus stearothermophilus nprS gene Proteins 0.000 description 1
- 101000892220 Geobacillus thermodenitrificans (strain NG80-2) Long-chain-alcohol dehydrogenase 1 Proteins 0.000 description 1
- 239000005980 Gibberellic acid Substances 0.000 description 1
- 108010044091 Globulins Proteins 0.000 description 1
- 102000006395 Globulins Human genes 0.000 description 1
- XBGGUPMXALFZOT-VIFPVBQESA-N Gly-Tyr Chemical compound NCC(=O)N[C@H](C(O)=O)CC1=CC=C(O)C=C1 XBGGUPMXALFZOT-VIFPVBQESA-N 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 101150009006 HIS3 gene Proteins 0.000 description 1
- 101100295959 Halobacterium salinarum (strain ATCC 700922 / JCM 11081 / NRC-1) arcB gene Proteins 0.000 description 1
- 244000286779 Hansenula anomala Species 0.000 description 1
- 235000014683 Hansenula anomala Nutrition 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- LPBWRHRHEIYAIP-KKUMJFAQSA-N His-Tyr-Asp Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CC(O)=O)C(O)=O LPBWRHRHEIYAIP-KKUMJFAQSA-N 0.000 description 1
- ZHMZWSFQRUGLEC-JYJNAYRXSA-N His-Tyr-Glu Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CCC(O)=O)C(O)=O ZHMZWSFQRUGLEC-JYJNAYRXSA-N 0.000 description 1
- 241001497663 Holomastigotoides Species 0.000 description 1
- 101000780443 Homo sapiens Alcohol dehydrogenase 1A Proteins 0.000 description 1
- 101000773364 Homo sapiens Beta-alanine-activating enzyme Proteins 0.000 description 1
- 101000880522 Homo sapiens Centrin-3 Proteins 0.000 description 1
- 101000891113 Homo sapiens T-cell acute lymphocytic leukemia protein 1 Proteins 0.000 description 1
- 240000005979 Hordeum vulgare Species 0.000 description 1
- 235000007340 Hordeum vulgare Nutrition 0.000 description 1
- 241000430519 Human rhinovirus sp. Species 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 1
- 206010020649 Hyperkeratosis Diseases 0.000 description 1
- 241000222344 Irpex lacteus Species 0.000 description 1
- 239000007836 KH2PO4 Substances 0.000 description 1
- 241000588749 Klebsiella oxytoca Species 0.000 description 1
- 241001138401 Kluyveromyces lactis Species 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- HXEACLLIILLPRG-YFKPBYRVSA-N L-pipecolic acid Chemical compound [O-]C(=O)[C@@H]1CCCC[NH2+]1 HXEACLLIILLPRG-YFKPBYRVSA-N 0.000 description 1
- DZLNHFMRPBPULJ-VKHMYHEASA-N L-thioproline Chemical compound OC(=O)[C@@H]1CSCN1 DZLNHFMRPBPULJ-VKHMYHEASA-N 0.000 description 1
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 1
- 125000000769 L-threonyl group Chemical group [H]N([H])[C@]([H])(C(=O)[*])[C@](O[H])(C([H])([H])[H])[H] 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- 125000003580 L-valyl group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C(C([H])([H])[H])(C([H])([H])[H])[H] 0.000 description 1
- 108091026898 Leader sequence (mRNA) Proteins 0.000 description 1
- 101710094902 Legumin Proteins 0.000 description 1
- 108010036940 Levansucrase Proteins 0.000 description 1
- 229920002097 Lichenin Polymers 0.000 description 1
- 241000209082 Lolium Species 0.000 description 1
- 241000219745 Lupinus Species 0.000 description 1
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 1
- NPBGTPKLVJEOBE-IUCAKERBSA-N Lys-Arg Chemical compound NCCCC[C@H](N)C(=O)N[C@H](C(O)=O)CCCNC(N)=N NPBGTPKLVJEOBE-IUCAKERBSA-N 0.000 description 1
- 101150068888 MET3 gene Proteins 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 102000003792 Metallothionein Human genes 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- GMPKIPWJBDOURN-UHFFFAOYSA-N Methoxyamine Chemical class CON GMPKIPWJBDOURN-UHFFFAOYSA-N 0.000 description 1
- 108060004795 Methyltransferase Proteins 0.000 description 1
- 229920001340 Microbial cellulose Polymers 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 240000003433 Miscanthus floridulus Species 0.000 description 1
- 229910017234 MnSO4 H2O Inorganic materials 0.000 description 1
- 241000235395 Mucor Species 0.000 description 1
- 241000323642 Myceliophthora lutea Species 0.000 description 1
- PQNASZJZHFPQLE-LURJTMIESA-N N(6)-methyl-L-lysine Chemical compound CNCCCC[C@H](N)C(O)=O PQNASZJZHFPQLE-LURJTMIESA-N 0.000 description 1
- OVBPIULPVIDEAO-UHFFFAOYSA-N N-Pteroyl-L-glutaminsaeure Natural products C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)NC(CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 101100099821 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) cbs-1 gene Proteins 0.000 description 1
- 101100022915 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) cys-11 gene Proteins 0.000 description 1
- 108091005507 Neutral proteases Proteins 0.000 description 1
- 102000035092 Neutral proteases Human genes 0.000 description 1
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 108090000913 Nitrate Reductases Proteins 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 108010038807 Oligopeptides Proteins 0.000 description 1
- 102000015636 Oligopeptides Human genes 0.000 description 1
- 102000007981 Ornithine carbamoyltransferase Human genes 0.000 description 1
- 101710113020 Ornithine transcarbamylase, mitochondrial Proteins 0.000 description 1
- 241000235652 Pachysolen Species 0.000 description 1
- 241000235647 Pachysolen tannophilus Species 0.000 description 1
- 241001520808 Panicum virgatum Species 0.000 description 1
- 206010034133 Pathogen resistance Diseases 0.000 description 1
- 241000364057 Peoria Species 0.000 description 1
- 241000222393 Phanerochaete chrysosporium Species 0.000 description 1
- 241000222397 Phlebia radiata Species 0.000 description 1
- 102000011755 Phosphoglycerate Kinase Human genes 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 241000425347 Phyla <beetle> Species 0.000 description 1
- 241000222350 Pleurotus Species 0.000 description 1
- 244000252132 Pleurotus eryngii Species 0.000 description 1
- 235000001681 Pleurotus eryngii Nutrition 0.000 description 1
- 241000209048 Poa Species 0.000 description 1
- 241000209049 Poa pratensis Species 0.000 description 1
- 241000209504 Poaceae Species 0.000 description 1
- 101100112955 Podospora anserina (strain S / ATCC MYA-4624 / DSM 980 / FGSC 10383) CEL6C gene Proteins 0.000 description 1
- 241000276498 Pollachius virens Species 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- RVQDZELMXZRSSI-IUCAKERBSA-N Pro-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@@H]1CCCN1 RVQDZELMXZRSSI-IUCAKERBSA-N 0.000 description 1
- 101710130181 Protochlorophyllide reductase A, chloroplastic Proteins 0.000 description 1
- 241000383860 Pseudoplectania Species 0.000 description 1
- 241001497658 Pseudotrichonympha Species 0.000 description 1
- 241000635201 Pumilus Species 0.000 description 1
- 108020004518 RNA Probes Proteins 0.000 description 1
- 238000012228 RNA interference-mediated gene silencing Methods 0.000 description 1
- 239000003391 RNA probe Substances 0.000 description 1
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 1
- 102000018120 Recombinases Human genes 0.000 description 1
- 108010091086 Recombinases Proteins 0.000 description 1
- 241000235402 Rhizomucor Species 0.000 description 1
- 101100394989 Rhodopseudomonas palustris (strain ATCC BAA-98 / CGA009) hisI gene Proteins 0.000 description 1
- 102100037968 Ribonuclease inhibitor Human genes 0.000 description 1
- 241000193448 Ruminiclostridium thermocellum Species 0.000 description 1
- 101900354623 Saccharomyces cerevisiae Galactokinase Proteins 0.000 description 1
- 101900084120 Saccharomyces cerevisiae Triosephosphate isomerase Proteins 0.000 description 1
- 235000001006 Saccharomyces cerevisiae var diastaticus Nutrition 0.000 description 1
- 244000206963 Saccharomyces cerevisiae var. diastaticus Species 0.000 description 1
- 235000018368 Saccharomyces fragilis Nutrition 0.000 description 1
- 241000582914 Saccharomyces uvarum Species 0.000 description 1
- 241000235343 Saccharomycetales Species 0.000 description 1
- 101000702553 Schistosoma mansoni Antigen Sm21.7 Proteins 0.000 description 1
- 101000714192 Schistosoma mansoni Tegument antigen Proteins 0.000 description 1
- 241000222480 Schizophyllum Species 0.000 description 1
- 101100022918 Schizosaccharomyces pombe (strain 972 / ATCC 24843) sua1 gene Proteins 0.000 description 1
- 241000209056 Secale Species 0.000 description 1
- 235000007238 Secale cereale Nutrition 0.000 description 1
- SSJMZMUVNKEENT-IMJSIDKUSA-N Ser-Ala Chemical compound OC(=O)[C@H](C)NC(=O)[C@@H](N)CO SSJMZMUVNKEENT-IMJSIDKUSA-N 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical class [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- 240000003768 Solanum lycopersicum Species 0.000 description 1
- 240000006394 Sorghum bicolor Species 0.000 description 1
- 235000011684 Sorghum saccharatum Nutrition 0.000 description 1
- 101100309436 Streptococcus mutans serotype c (strain ATCC 700610 / UA159) ftf gene Proteins 0.000 description 1
- 101100370749 Streptomyces coelicolor (strain ATCC BAA-471 / A3(2) / M145) trpC1 gene Proteins 0.000 description 1
- 241000187392 Streptomyces griseus Species 0.000 description 1
- 235000021536 Sugar beet Nutrition 0.000 description 1
- 108010076818 TEV protease Proteins 0.000 description 1
- 101150052008 TKL-1 gene Proteins 0.000 description 1
- 241001215623 Talaromyces cellulolyticus Species 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- 244000152045 Themeda triandra Species 0.000 description 1
- 241001647802 Thermobifida Species 0.000 description 1
- 241000203780 Thermobifida fusca Species 0.000 description 1
- 101001099217 Thermotoga maritima (strain ATCC 43589 / DSM 3109 / JCM 10099 / NBRC 100826 / MSB8) Triosephosphate isomerase Proteins 0.000 description 1
- JZRWCGZRTZMZEH-UHFFFAOYSA-N Thiamine Natural products CC1=C(CCO)SC=[N+]1CC1=CN=C(C)N=C1N JZRWCGZRTZMZEH-UHFFFAOYSA-N 0.000 description 1
- 241000183057 Thielavia microspora Species 0.000 description 1
- 241000183053 Thielavia subthermophila Species 0.000 description 1
- 241001495429 Thielavia terrestris Species 0.000 description 1
- 241001271171 Thielavia terrestris NRRL 8126 Species 0.000 description 1
- ZMZDMBWJUHKJPS-UHFFFAOYSA-M Thiocyanate anion Chemical compound [S-]C#N ZMZDMBWJUHKJPS-UHFFFAOYSA-M 0.000 description 1
- GXDLGHLJTHMDII-WISUUJSJSA-N Thr-Ser Chemical compound C[C@@H](O)[C@H](N)C(=O)N[C@@H](CO)C(O)=O GXDLGHLJTHMDII-WISUUJSJSA-N 0.000 description 1
- 108091036066 Three prime untranslated region Proteins 0.000 description 1
- 108010022394 Threonine synthase Proteins 0.000 description 1
- 108090000190 Thrombin Proteins 0.000 description 1
- 241000222354 Trametes Species 0.000 description 1
- 241000222355 Trametes versicolor Species 0.000 description 1
- 241000217816 Trametes villosa Species 0.000 description 1
- 102100028601 Transaldolase Human genes 0.000 description 1
- 108020004530 Transaldolase Proteins 0.000 description 1
- 102000004357 Transferases Human genes 0.000 description 1
- 108090000992 Transferases Proteins 0.000 description 1
- 102000014701 Transketolase Human genes 0.000 description 1
- 108010043652 Transketolase Proteins 0.000 description 1
- 241000223260 Trichoderma harzianum Species 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 108060008724 Tyrosinase Proteins 0.000 description 1
- 102000003425 Tyrosinase Human genes 0.000 description 1
- 108090000848 Ubiquitin Proteins 0.000 description 1
- 102000044159 Ubiquitin Human genes 0.000 description 1
- STTYIMSDIYISRG-UHFFFAOYSA-N Valyl-Serine Chemical compound CC(C)C(N)C(=O)NC(CO)C(O)=O STTYIMSDIYISRG-UHFFFAOYSA-N 0.000 description 1
- 241000082085 Verticillium <Phyllachorales> Species 0.000 description 1
- 240000006677 Vicia faba Species 0.000 description 1
- 235000010749 Vicia faba Nutrition 0.000 description 1
- 244000090207 Vigna sesquipedalis Species 0.000 description 1
- 235000005072 Vigna sesquipedalis Nutrition 0.000 description 1
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 description 1
- 241000222124 [Candida] boidinii Species 0.000 description 1
- 241000192381 [Candida] diddensiae Species 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 102000005421 acetyltransferase Human genes 0.000 description 1
- 108020002494 acetyltransferase Proteins 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 108010045649 agarase Proteins 0.000 description 1
- 125000003158 alcohol group Chemical group 0.000 description 1
- 108010050181 aleurone Proteins 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- CDUUKBXTEOFITR-UHFFFAOYSA-N alpha-methylserine Natural products OCC([NH3+])(C)C([O-])=O CDUUKBXTEOFITR-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 230000003625 amylolytic effect Effects 0.000 description 1
- 229960004543 anhydrous citric acid Drugs 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 101150009206 aprE gene Proteins 0.000 description 1
- 229920000617 arabinoxylan Polymers 0.000 description 1
- 150000004783 arabinoxylans Chemical class 0.000 description 1
- 101150008194 argB gene Proteins 0.000 description 1
- 210000004507 artificial chromosome Anatomy 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000010905 bagasse Substances 0.000 description 1
- 238000000498 ball milling Methods 0.000 description 1
- 101150103518 bar gene Proteins 0.000 description 1
- 238000007630 basic procedure Methods 0.000 description 1
- 235000013405 beer Nutrition 0.000 description 1
- 125000000188 beta-D-glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- 239000003139 biocide Substances 0.000 description 1
- 238000003766 bioinformatics method Methods 0.000 description 1
- 230000009141 biological interaction Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229920001222 biopolymer Polymers 0.000 description 1
- 238000013452 biotechnological production Methods 0.000 description 1
- MPCQNSCUKOECNW-UHFFFAOYSA-N butan-1-ol;ethanol Chemical compound CCO.CCCCO MPCQNSCUKOECNW-UHFFFAOYSA-N 0.000 description 1
- DNZWLJIKNWYXJP-UHFFFAOYSA-N butan-1-ol;propan-2-one Chemical compound CC(C)=O.CCCCO DNZWLJIKNWYXJP-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000010804 cDNA synthesis Methods 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000004850 capillary HPLC Methods 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 229920003090 carboxymethyl hydroxyethyl cellulose Polymers 0.000 description 1
- 230000034303 cell budding Effects 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 125000001547 cellobiose group Chemical group 0.000 description 1
- FYGDTMLNYKFZSV-ZWSAEMDYSA-N cellotriose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@@H](O[C@@H]2[C@H](OC(O)[C@H](O)[C@H]2O)CO)[C@H](O)[C@H]1O FYGDTMLNYKFZSV-ZWSAEMDYSA-N 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229960005091 chloramphenicol Drugs 0.000 description 1
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 239000002361 compost Substances 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 101150005799 dagA gene Proteins 0.000 description 1
- 235000013365 dairy product Nutrition 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000326 densiometry Methods 0.000 description 1
- 238000011033 desalting Methods 0.000 description 1
- FCRACOPGPMPSHN-UHFFFAOYSA-N desoxyabscisic acid Natural products OC(=O)C=C(C)C=CC1C(C)=CC(=O)CC1(C)C FCRACOPGPMPSHN-UHFFFAOYSA-N 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- NEKNNCABDXGBEN-UHFFFAOYSA-L disodium;4-(4-chloro-2-methylphenoxy)butanoate;4-(2,4-dichlorophenoxy)butanoate Chemical compound [Na+].[Na+].CC1=CC(Cl)=CC=C1OCCCC([O-])=O.[O-]C(=O)CCCOC1=CC=C(Cl)C=C1Cl NEKNNCABDXGBEN-UHFFFAOYSA-L 0.000 description 1
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000007876 drug discovery Methods 0.000 description 1
- 238000009837 dry grinding Methods 0.000 description 1
- 238000002003 electron diffraction Methods 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 238000001952 enzyme assay Methods 0.000 description 1
- 210000002615 epidermis Anatomy 0.000 description 1
- 239000000262 estrogen Substances 0.000 description 1
- LKIFFLJMAMTBCD-UHFFFAOYSA-N ethyl methanesulfonate nitrous acid Chemical compound N(=O)O.C(C)OS(=O)(=O)C LKIFFLJMAMTBCD-UHFFFAOYSA-N 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 108010000165 exo-1,3-alpha-glucanase Proteins 0.000 description 1
- 108010038658 exo-1,4-beta-D-xylosidase Proteins 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 238000012262 fermentative production Methods 0.000 description 1
- 235000021001 fermented dairy product Nutrition 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 229960000304 folic acid Drugs 0.000 description 1
- 235000019152 folic acid Nutrition 0.000 description 1
- 239000011724 folic acid Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000004459 forage Substances 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 238000002523 gelfiltration Methods 0.000 description 1
- 239000010437 gem Substances 0.000 description 1
- 238000012224 gene deletion Methods 0.000 description 1
- 238000012239 gene modification Methods 0.000 description 1
- 230000030279 gene silencing Effects 0.000 description 1
- 238000012226 gene silencing method Methods 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- IXORZMNAPKEEDV-UHFFFAOYSA-N gibberellic acid GA3 Natural products OC(=O)C1C2(C3)CC(=C)C3(O)CCC2C2(C=CC3O)C1C3(C)C(=O)O2 IXORZMNAPKEEDV-UHFFFAOYSA-N 0.000 description 1
- IXORZMNAPKEEDV-OBDJNFEBSA-N gibberellin A3 Chemical compound C([C@@]1(O)C(=C)C[C@@]2(C1)[C@H]1C(O)=O)C[C@H]2[C@]2(C=C[C@@H]3O)[C@H]1[C@]3(C)C(=O)O2 IXORZMNAPKEEDV-OBDJNFEBSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 108010061330 glucan 1,4-alpha-maltohydrolase Proteins 0.000 description 1
- 239000000174 gluconic acid Substances 0.000 description 1
- 235000012208 gluconic acid Nutrition 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- XBGGUPMXALFZOT-UHFFFAOYSA-N glycyl-L-tyrosine hemihydrate Natural products NCC(=O)NC(C(O)=O)CC1=CC=C(O)C=C1 XBGGUPMXALFZOT-UHFFFAOYSA-N 0.000 description 1
- 108010087823 glycyltyrosine Proteins 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 1
- 230000002573 hemicellulolytic effect Effects 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 239000010903 husk Substances 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- ZMZDMBWJUHKJPS-UHFFFAOYSA-N hydrogen thiocyanate Natural products SC#N ZMZDMBWJUHKJPS-UHFFFAOYSA-N 0.000 description 1
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 108010002685 hygromycin-B kinase Proteins 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229960000367 inositol Drugs 0.000 description 1
- CDAISMWEOUEBRE-GPIVLXJGSA-N inositol Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](O)[C@@H]1O CDAISMWEOUEBRE-GPIVLXJGSA-N 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- PGLTVOMIXTUURA-UHFFFAOYSA-N iodoacetamide Chemical compound NC(=O)CI PGLTVOMIXTUURA-UHFFFAOYSA-N 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- 238000001155 isoelectric focusing Methods 0.000 description 1
- GCHPUFAZSONQIV-UHFFFAOYSA-N isovaline Chemical compound CCC(C)(N)C(O)=O GCHPUFAZSONQIV-UHFFFAOYSA-N 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- 229930027917 kanamycin Natural products 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- 229940031154 kluyveromyces marxianus Drugs 0.000 description 1
- HXEACLLIILLPRG-RXMQYKEDSA-N l-pipecolic acid Natural products OC(=O)[C@H]1CCCCN1 HXEACLLIILLPRG-RXMQYKEDSA-N 0.000 description 1
- 238000010169 landfilling Methods 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
- 235000021374 legumes Nutrition 0.000 description 1
- 239000002029 lignocellulosic biomass Substances 0.000 description 1
- 239000012978 lignocellulosic material Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000001294 liquid chromatography-tandem mass spectrometry Methods 0.000 description 1
- 230000004777 loss-of-function mutation Effects 0.000 description 1
- 101150039489 lysZ gene Proteins 0.000 description 1
- UEGPKNKPLBYCNK-UHFFFAOYSA-L magnesium acetate Chemical compound [Mg+2].CC([O-])=O.CC([O-])=O UEGPKNKPLBYCNK-UHFFFAOYSA-L 0.000 description 1
- 239000011654 magnesium acetate Substances 0.000 description 1
- 229940069446 magnesium acetate Drugs 0.000 description 1
- 235000011285 magnesium acetate Nutrition 0.000 description 1
- ISPYRSDWRDQNSW-UHFFFAOYSA-L manganese(II) sulfate monohydrate Chemical compound O.[Mn+2].[O-]S([O-])(=O)=O ISPYRSDWRDQNSW-UHFFFAOYSA-L 0.000 description 1
- LUEWUZLMQUOBSB-GFVSVBBRSA-N mannan Chemical class O[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@@H](O[C@@H]2[C@H](O[C@@H](O[C@H]3[C@H](O[C@@H](O)[C@@H](O)[C@H]3O)CO)[C@@H](O)[C@H]2O)CO)[C@H](O)[C@H]1O LUEWUZLMQUOBSB-GFVSVBBRSA-N 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- OGXRXFRHDCIXDS-UHFFFAOYSA-N methanol;propane-1,2,3-triol Chemical compound OC.OCC(O)CO OGXRXFRHDCIXDS-UHFFFAOYSA-N 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 125000001360 methionine group Chemical group N[C@@H](CCSC)C(=O)* 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- 230000002906 microbiologic effect Effects 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 210000003470 mitochondria Anatomy 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 238000005319 nano flow HPLC Methods 0.000 description 1
- 235000021278 navy bean Nutrition 0.000 description 1
- 101150095344 niaD gene Proteins 0.000 description 1
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 1
- 229960003512 nicotinic acid Drugs 0.000 description 1
- 235000001968 nicotinic acid Nutrition 0.000 description 1
- 239000011664 nicotinic acid Substances 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 239000012038 nucleophile Substances 0.000 description 1
- 230000031787 nutrient reservoir activity Effects 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 108090000021 oryzin Proteins 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 235000019629 palatability Nutrition 0.000 description 1
- 229940014662 pantothenate Drugs 0.000 description 1
- 235000019161 pantothenic acid Nutrition 0.000 description 1
- 239000011713 pantothenic acid Substances 0.000 description 1
- 239000001814 pectin Substances 0.000 description 1
- 229920001277 pectin Polymers 0.000 description 1
- 235000010987 pectin Nutrition 0.000 description 1
- 101150019841 penP gene Proteins 0.000 description 1
- 230000004108 pentose phosphate pathway Effects 0.000 description 1
- 210000002824 peroxisome Anatomy 0.000 description 1
- 235000020030 perry Nutrition 0.000 description 1
- 238000002823 phage display Methods 0.000 description 1
- JTJMJGYZQZDUJJ-UHFFFAOYSA-N phencyclidine Chemical compound C1CCCCN1C1(C=2C=CC=CC=2)CCCCC1 JTJMJGYZQZDUJJ-UHFFFAOYSA-N 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 108010024226 placental ribonuclease inhibitor Proteins 0.000 description 1
- 239000003375 plant hormone Substances 0.000 description 1
- 239000010908 plant waste Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 235000011056 potassium acetate Nutrition 0.000 description 1
- GNSKLFRGEWLPPA-UHFFFAOYSA-M potassium dihydrogen phosphate Chemical compound [K+].OP(O)([O-])=O GNSKLFRGEWLPPA-UHFFFAOYSA-M 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 108060006613 prolamin Proteins 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 235000019419 proteases Nutrition 0.000 description 1
- 238000001742 protein purification Methods 0.000 description 1
- 238000001243 protein synthesis Methods 0.000 description 1
- 101150108007 prs gene Proteins 0.000 description 1
- 101150086435 prs1 gene Proteins 0.000 description 1
- 101150070305 prsA gene Proteins 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 238000001448 refractive index detection Methods 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 229960002477 riboflavin Drugs 0.000 description 1
- 235000019192 riboflavin Nutrition 0.000 description 1
- 239000002151 riboflavin Substances 0.000 description 1
- 101150025220 sacB gene Proteins 0.000 description 1
- 235000019515 salmon Nutrition 0.000 description 1
- CDAISMWEOUEBRE-UHFFFAOYSA-N scyllo-inosotol Natural products OC1C(O)C(O)C(O)C(O)C1O CDAISMWEOUEBRE-UHFFFAOYSA-N 0.000 description 1
- 238000012807 shake-flask culturing Methods 0.000 description 1
- 235000021309 simple sugar Nutrition 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 1
- 239000004289 sodium hydrogen sulphite Chemical class 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 229940048086 sodium pyrophosphate Drugs 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000010025 steaming Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 235000021092 sugar substitutes Nutrition 0.000 description 1
- 239000001117 sulphuric acid Substances 0.000 description 1
- 235000011149 sulphuric acid Nutrition 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 235000019818 tetrasodium diphosphate Nutrition 0.000 description 1
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 1
- 229960003495 thiamine Drugs 0.000 description 1
- 235000019157 thiamine Nutrition 0.000 description 1
- KYMBYSLLVAOCFI-UHFFFAOYSA-N thiamine Chemical compound CC1=C(CCO)SCN1CC1=CN=C(C)N=C1N KYMBYSLLVAOCFI-UHFFFAOYSA-N 0.000 description 1
- 239000011721 thiamine Substances 0.000 description 1
- 229960004072 thrombin Drugs 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 108091006106 transcriptional activators Proteins 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000011426 transformation method Methods 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 101150016309 trpC gene Proteins 0.000 description 1
- 108010060175 trypsinogen activation peptide Proteins 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 241001148471 unidentified anaerobic bacterium Species 0.000 description 1
- 210000003934 vacuole Anatomy 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 235000019155 vitamin A Nutrition 0.000 description 1
- 239000011719 vitamin A Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 230000004584 weight gain Effects 0.000 description 1
- 235000019786 weight gain Nutrition 0.000 description 1
- 238000001238 wet grinding Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 229920001221 xylan Polymers 0.000 description 1
- 150000004823 xylans Chemical class 0.000 description 1
- 239000000811 xylitol Substances 0.000 description 1
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 description 1
- 235000010447 xylitol Nutrition 0.000 description 1
- 229960002675 xylitol Drugs 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 1
- 229910000368 zinc sulfate Inorganic materials 0.000 description 1
- 239000011686 zinc sulphate Substances 0.000 description 1
- 150000008498 β-D-glucosides Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/24—Hydrolases (3) acting on glycosyl compounds (3.2)
- C12N9/2402—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
- C12N9/2405—Glucanases
- C12N9/2434—Glucanases acting on beta-1,4-glucosidic bonds
- C12N9/2437—Cellulases (3.2.1.4; 3.2.1.74; 3.2.1.91; 3.2.1.150)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/24—Hydrolases (3) acting on glycosyl compounds (3.2)
- C12N9/2402—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
- C12N9/2405—Glucanases
- C12N9/2434—Glucanases acting on beta-1,4-glucosidic bonds
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/14—Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y302/00—Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
- C12Y302/01—Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
- C12Y302/01004—Cellulase (3.2.1.4), i.e. endo-1,4-beta-glucanase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y302/00—Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
- C12Y302/01—Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
- C12Y302/01021—Beta-glucosidase (3.2.1.21)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y302/00—Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
- C12Y302/01—Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
- C12Y302/01091—Cellulose 1,4-beta-cellobiosidase (3.2.1.91)
Definitions
- the present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides
- the invention also relates to nucleic acid constructs, vectors, and host cells compnsing the polynucleotides as well as methods of producing and using the polypeptides.
- Cellulose is a polymer of the simple sugar glucose linked by beta-1 ,4-bonds
- Many microorganisms produce enzymes that hydrolyze beta-linked glucans These enzymes include endoglucanases.
- cellobiohydrolases and beta-glucosidases
- Endoglucanases digest the cellulose polymer at random locations, opening it to attack by cellobiohydrolases
- Cellobiohydrolases sequentially release molecules of cellobiose from the ends of the cellulose polymer
- Cellobiose is a water-soluble beta-1 ,4-l ⁇ nked dimer of glucose. Beta-glucosidases hydrolyze cellobiose to glucose
- lignocellulosic feedstocks into ethanol has the advantages of the ready availability of large amounts of feedstock, the desirability of avoiding burning or land filling the materials and the cleanliness of the ethanol fuel.
- Wood, agricultural residues, herbaceous crops, and municipal solid wastes have been considered as feedstocks for ethanol production. These materials primarily consist of cellulose, hemicellulose and lignin Once the cellulose is converted to glucose, the glucose is easily fermented by yeast into ethanol.
- WO 2005/074647 discloses isolated polypeptides having cellulolytic enhancing activity and polynucleotides thereof from Thielavia te ⁇ estris.
- WO 2005/074656 discloses an isolated polypeptide having cellulolytic enhancing activity and the polynucleotide thereof from Thermoasc ⁇ s aurantiacus.
- WO 2007/089290 discloses an isolated polypeptide having cellulolytic enhancing activity and the polynucleotide thereof from Trichoderma reesei.
- the present invention relates to polypeptides having cellulolytic enhancing activity and polynucleotides encoding the polypeptides.
- the present invention relates to isolated polypeptides having cellulolytic enhancing activity selected from the group consisting of:
- polypeptide comprising an amino acid sequence having at least 60% identity to the mature polypeptide of SEQ ID NO:: 2 or SEQ ID NO:: 4;
- polypeptide encoded by a polynucleotide that hybridizes under at least medium stringency conditions with (i) the mature polypeptide coding sequence of SEQ ID NO:; 1 or SEQ ID NO;: 3, (ii) the cDNA sequence contained in the mature polypeptide coding sequence of SEQ ID NO:: 1 or SEQ ID NO:: 3, or (iii) a full-length complementary strand of (i) or (ii);
- the present invention also relates Io isolated polynucleotides encoding polypeptides having cellulolytic enhancing activity, selected from the group consisting of: (a) a polynucleotide encoding a polypeptide comprising an amino acid sequence having at least 60% identity to the mature polypeptide of SEQ ID NO:: 2 or SEQ ID NO:: 4;
- the present invention also relates to nucleic acid constructs, recombinant expression vectors, recombinant host cells comprising the polynucleotides, and methods of producing a polypeptide having cellulolytic enhancing activity.
- the present invention also relates to methods of inhibiting the expression of a polypeptide having cellulolytic enhancing activity in a cell, comprising administering to the cell or expressing in the cell a double-stranded RNA (dsRNA) molecule, wherein the dsRNA comprises a subsequence of a polynucleotide of the present invention.
- dsRNA double-stranded inhibitory RNA
- dsRNA double-stranded inhibitory RNA
- the present invention also relates to methods for degrading or converting a cellulosic material, comprising: treating the cellulosic material with a cellulolytic enzyme composition in the presence of such a polypeptide having cellulolytic enhancing activity, wherein the presence of the polypeptide having cellulolytic enhancing activity increases the degradation of cellulosic material compared to the absence of the polypeptide having cellulolytic enhancing activity,
- the present invention also relates to meihods of producing a fermentation product, comprising (a) saccharifying a cellulosic material with a cellulolytic enzyme composition in the presence of a polypeptide having cellulolytic enhancing activity, wherein the presence of the polypeptide having cellulolytic enhancing activity increases the degradation of cellulosic material compared Io the absence of the polypeptide having cellulolytic enhancing activity: (b) fermenting the saccharified cellulosic material of step (a) with one or more fermenting microorganisms to produce the fermentation product; and (c) recovering the fermentation product from the fermentation.
- the present invention also relates to methods of fermenting a cellulosic material, comprising: fermenting the cellulosic material with one or more fermenting microorganisms, wherein the cellulosic material is hydrolyzed with a cellulolytic enzyme composition in the presence of a polypeptide having cellulolytic enhancing activity of the present invention and the presence of the polypeptide having cellulolytic enhancing activity increases the hydrolysis of the cellulosic material compared to the absence of the polypeptide having cellulolytic enhancing activity.
- the present invention also relates to plants comprising an isolated polynucleotide encoding a polypeptide having cellulolytic enhancing activity.
- the present invention also relates to methods of producing a polypeptide having cellulolytic enhancing activity, comprising' (a) cultivating a transgenic plant or a plant cell comprising a polynucleotide encoding the polypeptide having cellulolytic enhancing activity under conditions conducive for production of the polypeptide, and (b) recovenng the polypeptide.
- the present invention further relates to nucleic acid constructs comprising a gene encoding a protein, wherein the gene is operably linked to a nucleotide sequence encoding a signal peptide comprising or consisting of amino acids 1 to 17 of SEQ ID NO:. 2 or amino acids 1 to 15 of SEQ ID NO: 4, wherein the gene is foreign to the nucleotide sequence.
- Figure 1 shows the genomic DNA sequence and the deduced amino acid sequence of a Myceliophthora thermophila CBS 202 75 GH61A polypeptide having cellulolytic enhancing activity (SEQ ID NOs 1 and 2 respectively)
- Figure 2 shows a restriction map of pSMai190
- Figure 3 shows the genomic DNA sequence and the deduced amino acid sequence of a Myceliophthora thermophila CBS 202 75 GH61 F polypeptide having cellulolytic enhancing activity (SEQ ID NOs: 3 and 4 respectively).
- Figure 4 shows a restriction map of pSMa ⁇ 192.
- Figure 5 shows a restriction map of pSMa ⁇ 185
- Figure 6 shows a restriction map of pSMa ⁇ 198
- Figure 7 shows the effect of Myceliophthora thermophila GH61A and GH61F polypeptides having cellulolytic enhancing activity on enzymatic hydrolysis of pretreated corn stover
- Cellulolytic enhancing activity is defined herein as a biological activity that enhances the hydrolysis of a cellulosic material by proteins having cellulolytic activity
- cellulolytic enhancing activity is determined by measuring the increase in reducing sugars or in the increase of the total of cellobiose and glucose from the hydrolysis of a cellulosic material by cellulase protein under the following conditions' 1-50 mg of total protein/g of cellulose in PCS.
- total protein is comprised of 80-99 5% w/w cellulase protein/g of cellulose in PCS and 0 5-20% w/w protein of cellulotytic enhancing activity for 1-7 days at 50°C compared to a control hydrolysis with equal total protein loading without cellulolytic enhancing activity (1-50 mg of cellulolytic protein/g of cellulose in PCS)
- a mixture of CEUUCLAST® 1 5L (Novozymes A/S, Bagsvaerd, Denmark) in the presence of 3% of total protein weight Aspergillus oryzae beta-glucosidase (recombinant ⁇ produced in Aspergillus oryzae according to WO 02/095014) or 3% of total protein weight Aspergillus fumigatus beta- glucosidase (recombinanly produced in Aspergillus oryzae according to Example 22 of WO 02/095014) of cellulase protein loading is used as the source of
- the polypeptides having cellulolytic enhancing activity have at least 20%, preferably at least 40%, more preferably at least 50% more preferably at least 60%, more preferably at least 70% more preferably at least 80%, even more preferably at least 90%, most preferably at least 95%, and even most preferably at least 100% of the cellulolytic enhancing activity of the mature polypeptide of SEQ ID NO: 2 or SEQ ID NO: 4.
- the polypeptides having cellulolytic enhancing activity enhance the hydrolysis of a cellulosic material catalyzed by proteins having cellulolytic activity by reducing the amount of cellulolytic enzyme required to reach the same degree of hydrolysis preferably at least 0 1-fold, more at least 0 2-fold more preferably at least 0 3-fold more preferably at least 0 4-fold, more preferably at least 0 5-fold more preferably at least 1-fold more preferably at least 3-fold, more preferably at least 4-fold more preferably at least 5-fold more preferably at least 10-fold, more preferably at least 20- fold, even more preferably at least 30-fold, most preferably at least 50-fold, and even most preferably at least 100-fold Cellulolytic activity:
- the term "cellulorytic activity” is defined herein as a biological activity which hydrolyzes a cellulosic material
- Cellulolytic protein may hydrolyze or hydrolyzes carboxymethyl cellulose (CMC), thereby decreasing the viscosity of the incuba
- the resulting reduction in viscosity may be determined by a vibration viscosimeter (e.g. , MIVI 3000 from Sofraser. France) Determination of cellulase activity, measured in terms of Cellulase Viscosity Unit (CEVU), quantifies the amount of catalytic activity present in a sample by measuring the ability of the sample to reduce the viscosity of a solution of carboxymethyl cellulose (CMC)
- CMC carboxymethyl cellulose
- the assay is performed at the temperature and pH suitable for the cellulolytic protein and substrate For CELLUCLASTTM (Novozymes A/S, Bagsvaerd, Denmark) the assay is carried out at 40°C in 0 1 M phosphate pH 9 0 buffer for 30 minutes with CMC as substrate (33 3 g/L carboxymethyl cellulose Hercules 7 LFD) and an enzyme concentration of approximately 3 3-4 2 CEVU/ml
- the CEVU activity is calculated relative to a declared enzyme standard, such as C
- cellulolytic activity is determined by measuring the increase in hydrolysis of a cellulosic material by a cellulolytic mixture under the following conditions 1-10 mg of cellulolytic protein/g of cellulose in PCS for 5- 7 day at 50°C compared to a control hydrolysis without addition of cellulolytic protein
- Endoglucanase is defined herein as an endo-1 ,4- (1 ,3,1 ,4)-beta-D-glucan 4-glucanohydrolase (E C No 3 2 1 4), which catalyses endohydrolysis of 1 ,4-beta-D-glycos ⁇ d ⁇ c linkages in cellulose, cellulose denvatives (such as carboxymethyl cellulose and hydroxyethyl cellulose), lichenin beta- 1 ,4 bonds in mixed beta-1 ,3 gluca ⁇ s such as cereal beta-D-glucans or xyloglucans, and other plant material containing cellulosic components
- endoglucanase activity is determined using carboxymethyl cellulose (CMC) hydrolysis according to the procedure of G hose, 1987 , Pure and App)
- Chem 59 257-268 Cellobiohydrolase
- Beta-glucosidase is defined herein as a beta-D- glucoside gl ⁇ cohydrolase (E C 3 2 1 21) which catalyzes the hydrolysis of terminal non-redu ⁇ ng beta-D-glucose residues with the release of beta-D-glucose
- beta-glucosidase activity is determined according to the basic procedure described by Ventun et al 2002 J Basic Microbiol 42 55-66, except different conditions were employed as described herein
- One unit of beta- glucosidase activity is defined as 1 0 ⁇ mole of ⁇ -n ⁇ trophenol produced per minute at 50 'C pH 5 from 4 mM p-nitrophenyl-beta-D-glucopyranoside as substrate in 100 mM sodium citrate, 0 01% TvVEEN® 20
- Family 61 glycoside hydrolase The term "Family 61 glycoside hydrolase" or
- “Family GH61” is defined herein as a polypeptide falling into the glycoside hydrolase Family 61 according to Henrissat B , 1991.
- the cellulosic material can be any material containing cellulose
- the predominant polysaccharide in the primary cell wall of biomass is cellulose, the second most abundant is hemi-cellulose, and the third is pectin
- the secondary cell wall, produced after the cell has stopped growing, also contains polysacchandes and is strengthened by polymeric lignin covalently cross-linked to hemicellulose
- Cellulose is a homopolymer of anhydrocellobiose and thus a linear beta- (1-4)-D-glucan, while hemicelluloses include a variety of compounds, such as xylans xyloglucans arabinoxylans and mannans in complex branched structures with a spectrum of substrtuents
- cellulose is found in plant tissue primarily as an insoluble crystalline matrix of parallel glucan chains Hemicelluloses usually hydrogen bond to cellulose, as well as to other hemicelluloses, which help stabilize the cell wall matnx
- Cellulose is generally found, for example in the stems, leaves hulls, husks and cobs of plants or leaves, branches and wood of trees
- the cellulosic matenal can be, but is not limited to, herbaceous material, agricultural residue, forestry residue, municipal solid waste, waste paper and pulp and paper mill residue
- the cellulosic material can be any type of biomass including but not limited to, wood resources, municipal solid waste, wastepaper, crops, and crop residues (see, for example, Wiselogel et al 1995 in Handbook on Bioethanol (Charles E Wyman, editor), pp 105- 1 18 Taylor & Francis Washington O C Wyman, 1994 Bioresource Technology 50 3- 16, Lynd 1990, Applied Biochemistry and Biotechnology 24/25 695-719 Mosier et al., 1999, Recent Progress in Bioconversion of Lignocellulosics, in Advances in Biochemical Engineering/Biotechnology, T Scheper managing editor, Volume 65 pp 23-40 Springer- Verlag, New York) It is understood here
- the cellulosic material is herbaceous matenal In another aspect the cellulosic material is agricultural residue In another aspect the cellulosic material is forestry residue In another aspect, the cellulosic material is municipal solid waste In another aspect, the cellulosic material is waste paper In another aspect the cellulosic material is pulp and paper mill residue
- the cellulosic material is corn stover In another preferred aspect, the cellulosic material is corn fiber In another aspect the cellulosic material is corn cob in another aspect the cellulosic matenal is orange peel In another aspect, the cellulosic material is ⁇ ce straw In another aspect, the cellulosic matenal is wheat straw In another aspect the cellulosic material is switch grass In another aspect, the cellulosic matenal is miscanthus In another aspect, the cellulosic material is bagasse
- the cellulosic material is microcrystalline cellulose In another aspect the cellulosic material is bactenal cellulose
- the cellulosic material may be used as is or may be subjected to pretreatment, using conventional methods known in the art as descnbed herein In a preferred aspect, the cellulosic material is pretreated
- Pre-treated com stover The term "PCS or "Pre-treated Corn Stover” is defined herein as a cellulosic material derived from corn stover by treatment with heat and dilute acid
- Isolated polypeptide refers to a polypeptide that is isolated from a source in a preferred aspect the polypeptide is at least 1% pure preferably at least 5% pure, more preferably at least 10% pure, more preferably at least 20% pure, more preferably at least 40% pure, more preferably at least 60% pure even more preferably at least 80% pure, and most preferably at least 90% pure, as determined by SDS-PAGE
- substantially pure polypeptide denotes herein a polypeptide preparation that contains at most 10%, preferably at most 8%, more preferably at most 6%, more preferably at most 5% more preferably at most 4%, more preferably at most 3% even more preferably at most 2%, most preferably at most 1% and even most preferably at most 0 5% by weight of other polypeptide material with which it is natively or recombinants associated It is therefore preferred that the substantially pure polypeptide is at least 92% pure, preferably at least 94% pure, more preferably at least 95% pure, more preferably at least 96% pure, more preferably at least 97% pure more preferably at least 98% pure even more preferably at least 99% pure, most preferably at least 99 5% pure, and even most preferably 100% pure by weight of the total polypeptide material present in the preparation
- the polypeptides of the present invention are preferably in a substantially pure form, i.e., that the polypeptide preparation is
- the mature polypeptide is amino acids 16 to 235 of SEQ ID NO: 4 based on the SignalP program that predicts amino acids 1 to 15 of SEQ ID NO: 4 are a signal peptide Mature polypeptide coding sequence:
- the term "mature polypeptide coding sequence" is defined herein as a nucleotide sequence that encodes a mature polypeptide having cellulolytic enhancing activity
- the mature polypeptide coding sequence is nucleotides 52 to 921 of SEQ ID NO: 1 based on the SignalP program that predicts nucleotides 1 to 51 of SEQ ID NO: 1 encode a signal peptide
- the mature polypeptide coding sequence is nucleotides 46 to 851 of SEQ ID NO: 3 based on the SignalP program that predicts nucleotides 1 to 45 of SEQ ID NO: 3 encode
- the relatedness between two amino acid sequences or between two nucleotide sequences is described by the parameter 'identity'
- the degree of identity between two amino acid sequences is determined using the Needleman-Wunsch algorithm (Needleman and Wunsch, 1970, J MoI Biol 48 443-453) as implemented in the Needle program of the EMBOSS package (EMEiOSS The European Molecular Biology Open Software Suite, Rice et at , 2000, Trends in Genetics 16 276-277) preferably version 3 0 0 or later
- the optional parameters used are gap open penalty of 10, gap extension penalty of 0 5 and the EBLOSUM62 (EMBOSS version of BLOSUM62) substitution matrix
- the output of Needle labeled "longest identity" is used as the percent identity and is calculated as follows (Identical Residues x 100)/(Length of Alignment - Total Number of Gaps in Alignment)
- the percent identity is calculated as follows (Identical Residues x 100)/(Leng
- homologous sequence is defined herein as a predicted protein having an E value (or expectancy score) of less than O 001 in a tfasty search (Pearson W R 1999 in Bioinformatics Methods and Protocols S Misener and S. A. Krawetz, ed , pp 185-219) with the Mycebophthora thermophita polypeptide having cellulolytic enhancing activity of SEQ ID NO: 2 or SEQ ID NO: 4, or the mature polypeptide thereof
- Polypeptide fragment The term 'polypeptide fragment' is defined herein as a polypeptide having one or more (several) amino acids deleted from the amino and/or carboxyl terminus of the mature polypeptide of SEQ ID NO: 2 or SEQ ID NO: 4, or a homologous sequence thereof, wherein the fragment has cellulolytic enhancing activity
- a fragment contains at least 185 amino acid residues, more preferably at least 195 amino acid residues and most preferably at least 205 amino acid residues of the mature polypeptide of SEQ ID NO: 2 or a homologous sequence thereof
- a fragment contains at least 190 amino acid residues, more preferably at least 200 amino a ⁇ d residues and most preferably at least 210 amino a ⁇ d residues of the mature polypeptide of SEQ ID NO: 4 or a homologous sequence thereof
- Subsequence is defined herein as a nucleotide sequence having one or more (several) nucleotides deleted from the 5' and/or 3' end of the mature polypeptide coding sequence of SEQ ID NO: 1 or SEQ ID NO: 3 or a homologous sequence thereof, wherein the subsequence encodes a polypeptide fragment having cellulolytic enhancing activity
- a subsequence contains at least 555 nucleotides more preferably at least 585 nucleotides, and most preferably at least 615 nucleotides of the mature polypeptide coding sequence of SEQ ID NO: 1 or a homologous sequence thereof
- a subsequence contains at least 570 nucleotides, more preferably at least 600 nucleotides, and most preferably at least 630 nucleotides of the mature polypeptide coding sequence of SEQ ID NO: 3 or a homologous sequence thereof
- Allelic variant denotes herein any of two or more alternative forms of a gene occupying the same chromosomal locus Allelic variation arises naturally through mutation, and may result in polymorphism within populations Gene mutations can be silent (no change in the encoded polypeptide) or may encode polypeptides having altered amino acid sequences
- An allelic va ⁇ ant of a polypeptide is a polypeptide encoded by an allelic variant of a gene.
- Isolated polynucleotide refers to a polynucleotide that is isolated from a source
- the polynucleotide is at least 1% pure, preferably at least 5% pure, more preferably at least 10% pure, more preferably at least 20% pure more preferably at least 40% pure, more preferably at least 60% pure, even more preferably at least 80% pure, and most preferably at least 90% pure, as determined by agarose electrophoresis
- substantially pure polynucleotide refers to a polynucleotide preparation free of other extraneous or unwanted nucleotides and in a form suitable for use wrthm genetically engineered protein production systems
- a substantially pure polynucleotide contains at most 10% preferably at most 8%, more preferably at most 6% more preferably at most 5%, more preferably at most 4%, more preferably at most 3%.
- substantially pure polynucleotide may, however, include naturally occurnng 5' and 3' untranslated regions such as promoters and terminators It is preferred that the substantially pure polynucleotide is at least 90% pure, preferably at least 92% pure, more preferably at least 94% pure more preferably at least 95% pure, more preferably at least 96% pure, more preferably at least 97% pure even more preferably at least 98% pure, most preferably at least 99% pure, and even most preferably at least 99 5% pure by weight
- the polynucleotides of the present invention are preferably in a substantially pure form, / e , that the polynucleotide preparation is essentially free of other polynucleotide material with which it is natively or recombinant ⁇ associated.
- the polynucleotides of the present invention are preferably in a substantially pure form, / e , that the polynucleotide preparation is essentially free of other polynucleotide material with which
- Coding sequence means a nucleotide sequence, which directly specifies the amino acid sequence of its protein product.
- the boundaries of the coding sequence are generally determined by an open reading frame, which usually begins with the ATG start codon or alternative start codons such as GTG and TTG and ends with a stop codon such as TAA, TAG, and TGA.
- the coding sequence may be a DNA. cDNA. synthetic, or recombinant nucleotide sequence.
- cDNA The term “cDNA” is defined herein as a DNA molecule that can be prepared by reverse transcription from a mature, spliced. mRNA molecule obtained from a eukaryotic cell.
- cDNA lacks intron sequences that may be present in the corresponding genomic DNA.
- the initial, primary RNA transcnpt is a precursor to mRNA that is processed through a senes of steps before appeanng as mature spliced mRNA These steps include the removal of intron sequences by a process called splicing cDNA derived from mRNA lacks, therefore, any intron sequences
- nucleic acid construct refers to a nucleic acid molecule either single- or double-stranded which is isolated from a naturally occurring gene or which is modified to contain segments of nucleic acids in a manner that would not otherwise exist in nature or which is synthetic
- nucleic acid construct is synonymous with the term “expression cassette” when the nucleic acid construct contains the control sequences required for expression of a coding sequence of the present invention
- Control sequences The term “control sequences” is defined herein to include all components necessary for the expression of a polynucleotide encoding a polypeptide of the present invention Each control sequence may be native or foreign to the nucleotide sequence encoding the polypeptide or native or foreign to each other Such control sequences include, but are not limited to a leader, polyadenylation sequence, propeptide sequence promoter, signal peptide sequence and transcription terminator At a minimum, the control sequences include a promoter, and transcnptional and translational
- expression includes any step involved in the production of the polypeptide including, but not limited to, transcnption, post-transcnptional modification translation post-translational modification and secretion
- Expression vector is defined herein as a linear or circular DNA molecule that comprises a polynucleotide encoding a polypeptide of the present invention and is operably linked to additional nucleotides that provide for its expression
- host cell includes any cell type that is susceptible to transformation, transfection transduction, and the like with a nucleic acid construct or expression vector comprising a polynucleotide of the present invention
- Modification means herein any chemical modification of the polypeptide consisting of the mature polypeptide of SEQ ID NO: 2 or SEQ ID NO: 4, or a homologous sequence thereof, as well as genetic manipulation of the DNA encoding such a polypeptide
- the modification can be a substitution a deletion and/or an insertion of one or more (several) amino acids as well as replacements of one or more (several) amino acid side chains
- artificial variant means a polypeptide having cellulolytic enhancing activity produced by an organism expressing a modified polynucleotide sequence of the mature polypeptide coding sequence of SEQ ID NO: 1 or SEQ ID NO: 3, or a homologous sequence thereof
- the modified nucleotide sequence is obtained through human intervention by modification of the polynucleotide sequence disclosed in SEQ ID NO: 1 or SEQ ID NO: 3, or a homologous sequence thereof
- the present invention relates to isolated polypeptides comprising an amino acid sequence having a degree of identity to the mature polypeptide of SEQ ID NO: 2 or SEQ IDNO: 4 of preferably at least 60%, more preferably at least 66% more preferably at least 70%, more preferably at least 75%, more preferably at least 80%.
- homologous polypeptides have an amino acid sequence that differs by ten amino acids, preferably by five amino acids, more preferably by four amino acids, even more preferably by three amino acids, most preferably by two amino acids, and even most preferably by one amino acid from the mature polypeptide of SEQ ID NO: 2 or SEQ ID NO: 4
- a polypeptide of the present invention preferably comprises the amino acid sequence of SEQ ID NO: 2 or an allelic variant thereof or a fragment thereof having cellulolytic enhancing activity
- the polypeptide comprises the amino acid sequence of SEQ ID NO: 2.
- the polypeptide comprises the mature polypeptide of SEQ ID NO: 2
- the polypeptide comprises amino acids 18 to 232 of SEQ ID NO: 2, or an allelic variant thereof, or a fragment thereof having cellulolytic enhancing activity
- the polypeptide comprises amino acids 18 to 232 of SEQ ID NO: 2
- the polypeptide consists of the amino acid sequence of SEQ ID NO:.
- polypeptide consists of the amino acid sequence of SEQ ID NO: 2 In another preferred aspect, the polypeptide consists of the mature polypeptide of SEQ ID NO:. 2 In another preferred aspect, the polypeptide consists of amino acids 18 to 232 of SEQ ID NO:' 2 or an allelic variant thereof; or a fragment thereof having cellulolytic enhancing activity In another preferred aspect, the polypeptide consists of amino acids 18 to 232 of SEQ ID NO:. 2 A polypeptide of the present invention preferably comprises the amino acid sequence of SEQ ID NO: 4 or an allelic variant thereof, or a fragment thereof having cellulolytic enhancing activity.
- the polypeptide comprises the amino acid sequence of SEQ ID NO: 4 In another preferred aspect, the polypeptide comprises the mature polypeptide of SEQ IDNO: 4 In another preferred aspect, the polypeptide compnses amino acids 16 to 235 of SEQ ID NO: 4, or an allelic variant thereof, or a fragment thereof having cellulolytic enhancing activity In another preferred aspect the polypeptide comprises amino acids 16 to 235 of SEQ ID NO:' 4. In another preferred aspect the polypeptide consists of the amino acid sequence of SEQ ID NO: 4 or an allelic variant thereof; or a fragment thereof having cellulolytic enhancing activity In another preferred aspect, the polypeptide consists of the amino acid sequence of SEQ ID NO:.
- polypeptide consists of the mature polypeptide of SEQ ID NO:; 4 In another preferred aspect, the polypeptide consists of amino acids 16 to 235 of SEQ IDNO: 4 or an allelic variant thereof; or a fragment thereof having cellulolytic enhancing activity In another preferred aspect, the polypeptide consists of amino acids 16 to 235 of SEQ ID NO:. 4.
- the present invention relates to isolated polypeptides having cellulolytic enhancing activity that are encoded by polynucleotides that hybndize under preferably very low stnngency conditions, more preferably low stringency conditions, more preferably medium stringency conditions, more preferably medium-high stringency conditions, even more preferably high stringency conditions and most preferably very high stringency conditions with (i) the mature polypeptide coding sequence of SEQ ID NO:: 1 or SEQ ID NO:: 3, (it) the cDNA sequence contained in the mature polypeptide coding sequence of SEQ ID NO:. 1 or SEQ ID NO:.
- a subsequence of the mature polypeptide coding sequence of SEQ ID NO:: 1 or SEQ ID NO:' 3 contains at least 100 contiguous nucleotides or preferably at least 200 contiguous nucleotides.
- the subsequence may encode a polypeptide fragment having cellulolytic enhancing activity
- the complementary strand is the full-length complementary strand of the mature polypeptide coding sequence of SEQ ID NO:: 1 or SEQ ID NO: 3.
- nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 3. or a subsequence thereof, as well as the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 4, or a fragment thereof; may be used to design nucleic acid probes to identify and clone DNA encoding polypeptides having cellulolytic enhancing activity from strains of different genera or species according to methods well known in the art
- probes can be used for hybridization with the genomic or cDNA of the genus or species of interest, following standard Southern blotting procedures in order to identify and isolate the corresponding gene therein
- Such probes can be considerably shorter than the entire sequence, but should be at least 14 preferably at least 25, more preferably at least 35, and most preferably at least 70 nucleotides in length It is.
- the nucleic acid probe is at least 100 nucleotides in length.
- the nucleic a ⁇ d probe may be at least 200 nucleotides, preferably at least 300 nucleotides, more preferably at least 400 nucleotides, or most preferably at least 500 nucleotides in length
- Even longer probes may be used, e g.. nucleic acid probes that are preferably at least 600 nucleotides, more preferably at least 700 nucleotides, or most preferably at least 800 nucleotides in length.
- Both DNA and RNA probes can be used
- the probes are typically labeled for detecting the corresponding gene (for example, with 32 P. 3 H, "S, biotin, or avidin) Such probes are encompassed by the present invention.
- a genomic DNA or cDNA library prepared from such other strains may. therefore, be screened for DNA that hybridizes with the probes descnbed above and encodes a polypeptide having cellulolytic enhancing activity.
- Genomic or other DNA from such other strains may be separated by agarose or polyacrylamide gel electrophoresis, or other separation techniques DNA from the libranes or the separated DNA may be transferred to and immobilized on nitrocellulose or other suitable carrier material
- the carrier matenal is preferably used in a Southern blot,
- hybridization indicates that the nucleotide sequence hybndizes to a labeled nucleic acid probe corresponding to the mature polypeptide coding sequence of SEQ ID NO:. 1 or SEQ ID NO: 3: the cDNA sequence contained in the mature polypeptide coding sequence of SEQ ID NO: 1 or SEQ ID NO: 3, its full-length complementary strand; or a subsequence thereof, under very low to very high stringency conditions Molecules to which the nucleic acid probe hybridizes under these conditions can be detected using, for example, X-ray film.
- the nucleic acid probe is the mature polypeptide coding sequence of SEQ ID NO:. 1 In another preferred aspect, the nucleic acid probe is nucleotides 52 to 921 of SEQ ID NO:: 1 In another preferred aspect, the nucleic acid probe is a polynucleotide sequence that encodes the polypeptide of SEQ ID NO: 2, or a subsequence thereof In another preferred aspect the nucleic acid probe is SEQ ID NO: 1 In another preferred aspect, the nucleic acid probe is the polynucleotide sequence contained in plasmid pSMa ⁇ 190 which is contained in E coli NRRL B-50083 wherein the polynucleotide sequence thereof encodes a polypeptide having cellulolytic enhancing activity In another preferred aspect, the nucleic acid probe is the mature polypeptide coding region contained in plasmid pSMa ⁇ 190 which is contained in E coli NRRL B-50083
- the nucleic acid probe is the mature polypeptide coding sequence of SEQ ID NO: 3
- the nucleic acid probe is nucleotides 46 to 851 of SEQ ID NO: 3.
- the nucleic acid probe is a polynucleotide sequence that encodes the polypeptide of SEQ ID NO: 4, or a subsequence thereof
- the nucleic acid probe is SEQ ID NO:' 3
- the nucleic acid probe is the polynucleotide sequence contained in plasmid ⁇ SMa ⁇ 192 which is contained in E.
- the nucleic acid probe is the mature polypeptide coding region contained in plasmid pSMa ⁇ 192 which is contained in E coli NRRL B-50085
- very low to very high stringency conditions are defined as prehybndization and hybridization at 42 ⁇ C in 5X SSPE 1 0 3% SDS, 200 ⁇ g/ml sheared and denatured salmon sperm DNA, and either 25% formamide for very low and low stringencies, 35% formamide for medium and medium-high stringencies, or 50% formamide for high and very high stringencies, following standard Southern blotting procedures for 12 to 24 hours optimally
- the carrier material is finally washed three times each for 15 minutes using 2X SSC, 0 2% SDS preferably at 45 1 C (very low stringency), more preferably at 50°C (low st ⁇ ngency), more preferably at 55 s C (medium stringency), more preferably at 60°C (medium-high stringency), even more preferably at 65'C (high stringency), and most preferably at 70 'C (very high stringency)
- the carrier material is washed once in 6X SCC plus 0.1% SDS for 15 minutes and twice each for 15 minutes using 6X SSC at 5°C to 10°C below the calculated T 11
- the present invention relates to isolated polypeptides having cellulolytic enhancing activity encoded by polynucleotides comprising or consisting of nucleotide sequences that have a degree of identity to the mature polypeptide coding sequence of SEQ ID NO: 1 or SEQ ID NO: 3 of preferably at least 60%, more preferably at least 65%, more preferably at least 70% more preferably at least 75% more preferably at least 80%, more preferably at least 85%, even more preferably at least 90%, most preferably at least 95%, and even most preferably at least 96%, at least 97% at least 98%, or at least 99%, which encode a polypeptide having cellulolytic enhancing activity See polynucleotide section herein
- the present invention relates to artificial vanants comprising a substitution deletion and/or insertion of one or more (or several) amino acids of the mature polypeptide of SEQ ID NO: 2 or SEQ ID NO: 4, or a homologous sequence thereof
- amino acid changes are of a minor nature that is conservative amino acid substitutions or insertions that do not significantly affect the folding and/or activity of the protein, small deletions, typically of one to about 30 amino acids, small amino- or carboxyl-terminal extensions, such as an amino-terminal methionine residue a small linker peptide of up to about 20-25 residues, or a small extension that facilitates purrfication by changing net charge or another function, such as a poly-histidine tract, an antigenic epitope or a binding domain
- amino acids (argmine lysine and histidine) acidic amino acids (glutamic acid and aspartic acid), polar amino acids (glutamine and asparagme) hydrophobic amino acids (leucine, isoleucine and valine), aromatic amino acids (phenylalanine tryptophan and tyrosine) and small amino acids (glycine, alanine, serine, threonine and methionine) Amino acid substitutions that do not generally alter specific activity are known in the art and are described, for example by H Neurath and R L Hill, 1979, In 1 The Proteins, Academic Press, New York The most commonly occurring exchanges are Ala/Ser, Val/lle,
- non-standard amino acids such as
- 6-N-methyl lysine 2-am ⁇ no ⁇ sobutyr ⁇ c acid isovaline, and alpha-methyl serine) may be substituted for amino acid residues of a wild-type polypeptide
- a limited number of non-conservative amino acids, amino acids that are not encoded by the genetic code, and unnatural amino acids may be substituted for amino acid residues "Unnatural amino acids' have been modified after protein synthesis, and/or have a chemical structure in their side cha ⁇ n(s) different from that of the standard amino acids
- Unnatural amino acids can be chemically synthesized, and preferably, are commercially available, and include pipecolic acid, thiazolidine carboxylic acid dehydroproline, 3- and 4-methylprol ⁇ ne, and 3 3-d ⁇ methylprol ⁇ ne
- amino acid changes are of such a nature that the physico- chemical properties of the polypeptides are altered
- amino acid changes may improve the thermal stability of the polypeptide, alter the substrate specificity change the pH optimum and the like
- Essential amino acids in the parent polypeptide can be identified according to procedures known in the art such as site-directed mutagenesis or alanine-scanning mutagenesis (Cunningham and Wells. 1989. Science 244 1081-1085) In the latter technique single alanine mutations are introduced at every residue in the molecule, and the resultant mutant molecules are tested for biological activity i.e.
- the active site of the enzyme or other biological interaction can also be determined by physical analysis of structure, as determined by such techniques as nuclear magnetic resonance, crystallography electron diffraction, or photoaffinity labeling, in conjunction with mutation of putative contact site amino acids See, for example, de Vos et at , 1992 Science 255 306-312 Smith ef al. 1992, J MoI Biol 224 899-904 Wlodaver al.
- the identities of essential amino acids can also be inferred from analysis of identities with polypeptides that are related to a polypeptide according to the invention
- Single or multiple amino acid substitutions deletions, and/or insertions can be made and tested using known methods of mutagenesis recombination, and/or shuffling, followed by a relevant screening procedure, such as those disclosed by Reidhaar-Olson and Sauer. 1988, Science 241 53-57 Bowie and Sauer, 1989 Proc Natl Acad Sci. USA 86 2152-2156, WO 95/17413, or WO 95/22625
- Other methods that can be used include error-prone PCR, phage display (e.g. .
- Mutagenesis/shuffling methods can be combined with high-throughput automated screening methods to detect activity of cloned, mutagenized polypeptides expressed by host cells (Ness et al., 1999, Nature Biotechnology 17 893-896) Mutagenized DNA molecules that encode active polypeptides can be recovered from the host cells and rapidly seq ⁇ enced using standard methods in the art. These methods allow the rapid determination of the importance of individual amino acid residues in a polypeptide of interest, and can be applied to polypeptides of unknown structure.
- the total number of amino acid substitutions, deletions and/or insertions of the mature polypeptide of SEQ ID NO:: 2 or SEQ ID NO:: 4, is 10. preferably 9, more preferably 8, more preferably 7, more preferably at most 6, more preferably 5, more preferably 4, even more preferably 3, most preferably 2. and even most preferably 1.
- a polypeptide of the present invention may be obtained from microorganisms of any genus.
- the term Obtained from shall mean that the polypeptide encoded by a nucleotide sequence is produced by the source or by a strain in which the nucleotide sequence from the source has been inserted.
- the polypeptide obtained from a given source is secreted extracellularly.
- a polypeptide having cellulolytic enhancing activity of the present invention may be a bacterial polypeptide.
- the polypeptide may be a gram positive bacterial polypeptide such as a Bacillus, Streptococcus, Streptomyces, Staphylococcus. Enterococc ⁇ s, Lactobacillus. Lactococcus, Clostridium, Geobacillus, or Oceanobacillus polypeptide having cellulolytic enhancing activity, or a Gram negative bacterial polypeptide such as an £ colt, Pseudomonas. Salmonella, Campylobacter. Helicobacter, Flavobacterium, Fusobacterium, llyobacter.
- the polypeptide is a Bacillus alkabphil ⁇ s, Bacillus amyloliquefaciens, Bacillus brevis, Bacillus circulans, Bacillus clausii, Bacillus coagulans, Badllus firmus, Bacillus lautus, Bacillus lentus, Bacillus licheniformis. Bacillus m ⁇ gaterium, Bacillus pumilus. Bacillus st ⁇ arothermophilus, Bacillus subtilis. or Bacillus thuringiensis polypeptide having cellulolytic enhancing activity.
- the polypeptide is a Streptococcus equisimilis,
- the polypeptide is a Streptomyces achromogenes, Streptomyces avermitilis. Streptomyces coeticotor, Streptomyces griseus, or Streptomyces lividans polypeptide having cellulolytic enhancing activity.
- a polypeptide having cellulolytic enhancing activity of the present invention may also be a fungal polypeptide, and more preferably a yeast polypeptide such as a Candida, Kluyveromyces, Pichia, Saccharomyces, Schizosaccharomyces, or Yarrowia polypeptide having cellulolytic enhancing activity; or more preferably a filamentous fungal polypeptide such as an Acremoni ⁇ m, Agancus Altemana, Aspergillus Aureobasidium, Botryospaena, Cenponopsis, Chaetomidtum, Chrysosponum, Clavic ⁇ ps, Cochliobolus, Copnnopsis, Coptotermes, Corynascus, Cryphonectna, Cryptococcus, D ⁇ lodia, Exidia Ftlibasidium, Fusanum, Gibberella, Holomastigotoides Humicola, Irpex, Lentinula, Leptospaena
- polypeptide is a Saccharomyc ⁇ s carlsbergensis, Saccharomyces cerevisiae, Saccharomyces diastatic ⁇ s, Saccharomyces douglasii, Saccharomyces kluyveri, Saccharomyces norbensis, or Saccharomyces oviformis polypeptide having cellulolytic enhancing activity
- the polypeptide is an A ⁇ emonium cellulolyticus, Aspergillus ac ⁇ leatus, Aspergillus awamori, Aspergillus fumigatus. Aspergillus foetidus Aspergillus japonicus, Aspergillus nidulans, Aspergillus niger, Aspergillus oryzae, Chrysosponum kerabnophilum, Chrysosponum lucknowense, Chrysosponum tropicum.
- Thielavia subthermophila Thielavia terrestns Trichoderma harzianum, Trichoderma konmgii, Tnchoderma longibrachiatum, Tnchoderma reesei, or Trichoderma vinde polypeptide having cellulolytic enhancing activity
- polypeptide is a Mycehophthora hmnulea, Myceliophthora lutea, Mycehophthora thermophila, or Myceliophthora vellerea polypeptide having cell ⁇ loiytic enhancing activity
- the polypeptide is a Myceliophthora thermophita polypeptide having cellulolytic enhancing activity
- the polypeptide is a Myceliophthora thermophila CBS 202 75 polypeptide having cellulolytic enhancing activity, e g , the polypeptide compnsing the mature polypeptide of SEQ ID NO: 2 or SEQ ID NO: 4
- ATCC American Type Culture Collection
- DSM Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH
- CBS Centraalbureau Voor Schimmelcultures
- NRRL Agricultural Research Service Patent Culture Collection Northern Regional Research Center
- polypeptides may be identified and obtained from other sources including microorganisms isolated from nature (e g , soil, composts, water, etc ) using the above-mentioned probes Techniques for isolating microorganisms from natural habitats are well known in the art
- the polynucleotide may then be obtained by similarly screening a genomic or cDNA library of such a microorganism
- the polynucleotide can be isolated or cloned by utilizing techniques that are well known to those of ordinary skill in the art (see e g , Sambrook ef al , 1989, supra)
- Polypeptides of the present invention also include fused polypeptides or cleavable fusion polypeptides in which another polypeptide is fused at the N-tenminus or the C-terminus of the polypeptide or fragment thereof
- a fused polypeptide is produced by fusing a nucleotide sequence (or a portion thereof) encoding another polypeptide to a nucleotide sequence (or a portion thereof) of the present invention
- Techniques for producing fusion polypeptides are known in the art, and include ligating the coding sequences encoding the polypeptides so that they are in frame and that expression of the fused polypeptide is under control of the same promoter(s) and terminator
- a fusion polypeptide can further comprise a cleavage site Upon secretion of the fusion protein the site is cleaved releasing the polypeptide having cellulolytic enhancing activity from the fusion protein
- cleavage sites include, but are not limited to a Kex2 site that encodes the dipeptide Lys-Arg (Martin ef al , 2003. J lnd Microbiol Biotechnol 3 568-76, Svetma et at , 2000, J Biotechnol 76 245-251 , Rasmussen- Wilson et al , 1997, Appl Environ Microbiol 63 3488-3493, Ward et al.
- the present invention also relates to isolated polynucleotides compnsing or consisting of nucleotide sequences that encode polypeptides having cellulolytic enhancing activity of the present invention
- the nucleotide sequence comprises or consists of SEQ ID NO: 1
- the nucleotide sequence comprises or consists of the sequence contained in plasmid pSMa ⁇ 190 which is contained in E coli IMRRL B-50083
- the nucleotide sequence comprises or consists of the mature polypeptide coding sequence of SEQ ID NO: 1
- the nucleotide sequence comprises or consists of nucleotides 52 to 921 of SEQ ID NO: 1
- the nucleotide sequence comprises or consists of the mature polypeptide coding sequence contained in plasmid pSMari 90 which is contained in E coli NRRL B-50083
- nucleotide sequence compnses or consists of SEQ ID NO: 3
- nucleotide sequence comprises or consists of the sequence contained in plasmtd pSMa ⁇ 192 which is contained in E coli NRRL B-50085
- nucleotide sequence comprises or consists of the mature polypeptide coding sequence of SEQ ID NO:.
- the nucleotide sequence comprises or consists of nucleotides 46 to 851 of SEQ ID NO: 3
- the nucleotide sequence comprises or consists of the mature polypeptide coding sequence contained in plasmid pSMa ⁇ 192 which is contained in E coli NRRL B-50085
- the present invention also encompasses nucleotide sequences that encode polypeptides comprising or consisting of the amino acid sequence of SEQ ID NO:' 2 or SEQ ID NO: 4 or the mature polypeptide thereof, which differ from SEQ ID NO: 1 or SEQ ID NO: 3, or the mature polypeptide coding sequence thereof, respectively, by virtue of the degeneracy of the genetic code
- the present invention also relates to subsequences of SEQ ID NO: 1 or SEQ ID NO: 3 that encode fragments of SEQ IDNO: 2 or SEQ ID NO: 4 that have cellulolytic enhancing activity, respectively.
- the present invention also relates to mutant polynucleotides comprising or consisting of at least one mutation in the mature polypeptide coding sequence of SEQ ID NO:. 1 or SEQ ID NO: 3, in which the mutant nucleotide sequence encodes the mature polypeptide of SEQ ID NO:. 2 or SEQ ID NO: 4. respectively
- the techniques used to isolate or clone a polynucleotide encoding a polypeptide include isolation from genomic DNA, preparation from cDNA, or a combination thereof
- the cloning of the polynucleotides of the present invention from such genomic DNA can be effected, e g .
- PCR polymerase chain reaction
- LCR ligase chain reaction
- LAT ligated activated transcription
- NASBA nucleotide sequence-based amplification
- the polynucleotides may be cloned from a strain of Myceliophthora, or another or related organism and thus for example, may be an allelic or species variant of the polypeptide encoding region of the nucleotide sequence.
- the present invention also relates to isolated polynucleotides comprising or consisting of nucleotide sequences that have a degree of identity to the mature polypeptide coding sequence of SEQ ID NO: 1 or SEQ ID NO:: 3 of preferably at least 60%, more preferably at least 65%, more preferably at least 70%, more preferably at least 75%, more preferably at least 80%, more preferably at least 85%, even more preferably at least 90% most preferably at least 95%. and even most preferably at least 96%, at least 97%, at least 98%, or al least 99% identity which encode a polypeptide having cellulolytic enhancing activity
- Modification of a nucleotide sequence encoding a polypeptide of the present invention may be necessary for the synthesis of polypeptides substantially similar to the polypeptide.
- the term substantially similar" to the polypeptide refers to non-naturally occurring forms of the polypeptide
- These polypeptides may differ in some engineered way from the polypeptide isolated from its native source e.g.
- variants that differ in specific activity thermostability, pH optimum, or the like
- the variant sequence may be constructed on the basis of the nucleotide sequence presented as the mature polypeptide coding sequence of SEQ ID NO:' 1 or SEQ ID NO:: 3, e.g., a subsequence thereof, and/or by introduction of nucleotide substitutions that do not give nse to another amino acid sequence of the polypeptide encoded by the nucleotide sequence, but which correspond to the codon usage of the host organism intended for production of the enzyme, or by introduction of nucleotide substitutions that may give rise to a different amino acid sequence
- nucleotide substitution see e g , Ford et al , 1991 , Protein Expression and Purification 2 95-107
- Amino acid residues essential to the activity of the polypeptide encoded by an isolated polynucleotide of the invention, and therefore preferably not subject Io substitution may be identified according to procedures known in the art, such as site- directed mutagenesis or alanine-scanning mutagenesis (see, e g , Cunningham and Wells, 1989 supra) In the latter technique, mutations are introduced at every positively charged residue in the molecule and the resultant mutant molecules are tested for cellulolytic enhancing activity to identify amino acid residues that are critical to the activity of the molecule
- Sites of substrate-enzyme interaction can also be determined by analysis of the three-dimensional structure as determined by such techniques as nuclear magnetic resonance analysis crystallography or photoaffinity labeling (see, e g , de Vos et al 1992, supra, Smith et al , 1992 supra, W
- the present invention also relates to isolated polynucleotides encoding polypeptides of the present invention, which hybridize under very low stringency conditions, preferably low stringency conditions, more preferably medium stringency conditions, more preferably medium-high stnngency conditions, even more preferably high stringency conditions, and most preferably very high stnngency conditions with (i) the mature polypeptide coding sequence of SEQ ID NO: 1 or SEQ ID NO: 3 ( ⁇ ) the cDNA sequence contained in the mature polypeptide coding sequence of SEQ ID NO: 1 or SEQ ID NO:. 3 or (in) a full-length complementary strand of ( ⁇ ) or ( ⁇ ) or allelic variants and subsequences thereof (Sambrook et al.
- the complementary strand is the full-length complementary strand of the mature polypeptide coding sequence of SEQ ID NO: 1 or SEQ ID NO: 3
- the present invention also relates to isolated polynucleotides obtained by (a) hyb ⁇ dizing a population of DNA under very low low, medium medium-high, high, or very high stringency conditions with ( ⁇ ) the mature polypeptide coding sequence of SEQ ID NO: 1 or SEQ ID NO: 3, ( ⁇ ) the cDNA sequence contained in the mature polypeptide coding sequence of SEQ ID NO: 1 or SEQ ID NO: 3, or (in) a fulHength complementary strand of ( ⁇ ) or (n), and (b) isolating the hybridizing polynucleotide, which encodes a polypeptide having cellulolytic enhancing activity
- the complementary strand is the full-length complementary strand of the mature polypeptide coding sequence of SEQ ID NO 1 or SEQ ID NO 3
- the present invention also relates to nucleic acid constructs comprising an isolated polynucleotide of the present invention operably linked to one or more (several) control sequences that direct the expression of the coding sequence in a suitable host cell under conditions compatible with the control sequences
- An isolated polynucleotide encoding a polypeptide of the present invention may be manipulated in a variety of ways to provide for expression of the polypeptide Manipulation of the polynucleotide s sequence prior to its insertion into a vector may be desirable or necessary depending on the expression vector
- the techniques for modifying polynucleotide sequences utilizing recombinant DNA methods are well known in the art
- the control sequence may be an appropnate promoter sequence, a nucleotide sequence thai is recognized by a host cell for expression of a polynucleotide encoding a polypeptide of the present invention
- the promoter sequence contains transcriptional control sequences that mediate the expression of the polypeptide
- the promoter may be any nucleotide sequence that shows transcriptional activity in the host cell of choice including mutant, truncated, and hybnd promoters, and may be obtained from genes encoding extracellular or intracellular polypeptides either homologous or heterologous to the host cell
- suitable promoters for directing the transcription of the nucleic acid constructs of the present invention are the promoters obtained from the E coli lac operon.
- Streptomyces coettcotor agarase gene (dagA), Bacillus subtilts levansucrase gene ⁇ sacB), Bacillus lich ⁇ mformis alpha-amylase gene (amyL) Bacillus stearothetmopbilus maltogenic amylase gene (amy/Vf) Bacillus amyioliq ⁇ efa ⁇ ens alpha-amylase gene (amyQ) Bacillus licheniformis penicillinase gene (penP), Bacillus subtilis xylA and xyiB genes, and prokaryotic beta-lactamase gene (Villa-Kamaroff et al 1978 Proceedings of the National Academy of Sciences USA 75 3727-3731), as well as the tac promoter (DeBoer
- promoters for directing the transcription of the nucleic acid constructs of the present invention in a filamentous fungal host cell are promoters obtained from the genes for Aspergillus oryzae TAKA amylase, Rhizomucor miehei aspartic proteinase, Aspergillus niger neutral alpha-amylase, Aspergillus niger acid stable alpha-amylase, Aspeiyillus niger or Aspergillus awamon glucoamylase (glaA) Rhizom ⁇ cor miehei lipase Aspergillus oryzae alkaline protease, Aspergillus oryzae triose phosphate isomerase.
- Aspergillus oryzae TAKA amylase Rhizomucor miehei aspartic proteinase
- Aspergillus niger neutral alpha-amylase Aspergillus niger acid stable alpha-amylase
- Trichoderma reesei beta-glucosidase Trichoderma reesei cetlobiohydrolase I 1 T ⁇ choderma reesei cellobiohydrolase II, Trichoderm ⁇ reesei endoglucanase I T ⁇ choderma reesei endoglucanase Il Trichoderma reesei endoglucanase III, Tnchoderma reesei endoglucanase IV Trichoderma reesei endoglucanase V, Trichoderma reesei endoglucanase V, Trichoderma reesei endoglucanase V, Tricho
- Saccharomyces cerevisiae enolase ENO-1
- Saccharomyces cerevisiae galactokinase GAL1
- Saccharomyces cerevisiae alcohol dehydrogenase/glyceraldehyde-3- phosphate dehydrogenase ADH1 , ADH2/GAP
- Saccharomyces cerevisiae triose phosphate isomerase TPl
- Saccharomyces cerevisiae metallothionein CUP1
- Saccharomyces cerevisiae 3-phosphoglycerate kinase Other useful promoters for yeast host cells are described by Romanos et al. , 1992, Yeast 8' 423-488
- the control sequence may also be a suitable transcription terminator sequence, a sequence recognized by a host cell to terminate transcription.
- the terminator sequence is operably linked to the 3 terminus of the nucleotide sequence encoding the polypeptide. Any terminator that is functional in the host cell of choice may be used in the present invention
- Preferred terminators for filamentous fungal host cells are obtained from the genes for Aspergillus oryzae TAKA amylase Aspergillus niger glucoamylase, Aspergillus nidulans anthranilate synthase, Aspergillus niger alpha-glucosidase. and Fusarium oxysporum trypsm-like protease
- Preferred terminators for yeast host cells are obtained from the genes for Saccharomyces cerevisiae enolase. Saccharomyces cerevisiae cytochrome C (CYC1), and Saccharomyces cerevisiae glyceraldehyde-3-phosphate dehydrogenase. Other useful terminators for yeast host cells are descnbed by Romanos et al , 1992 supra
- the control sequence may also be a suitable leader sequence, a nontranslated region of an mRNA that is important for translation by the host cell
- the leader sequence is operably linked to the 5' terminus of the nucleotide sequence encoding the polypeptide. Any leader sequence that is functional in the host cell of choice may be used in the present invention
- Preferred leaders for filamentous fungal host cells are obtained from the genes for Aspergillus oryzae TAKA amylase and Aspergillus nidulans triose phosphate isomerase.
- Suitable leaders for yeast host cells are obtained from the genes for
- ENO-1 Saccbaromyces cerevisiae enolase
- Saccharomyces cerevisiae 3- phosphoglycerate kinase Saccharomyces cerevisiae alpha-factor Saccharomyces cerevisiae alcohol dehydrogenase/glyceraldehyde-3-phosphate dehydrogenase (ADH2/GAP).
- the control sequence may also be a polyadenylation sequence, a sequence operabry linked to the 3' terminus of the nucleotide sequence and. when transcribed, is recognized by the host cell as a signal to add polyadenosine residues to transcribed mRNA. Any polyadenylation sequence that is functional in the host cell of choice may be used in the present invention.
- Preferred polyadenylation sequences for filamentous fungal host cells are obtained from the genes for Aspergillus oryzae TAKA amylase, Aspergillus niger glucoamylase, Aspergillus nidulans anthranilate synthase, Fusarium oxysporum trypsin- like protease, and Aspergillus niger alpha-glucosidase.
- Useful polyadenylation sequences for yeast host cells are described by Guo and
- the control sequence may also be a signal peptide coding sequence that codes for an amino acid sequence linked to the amino terminus of a polypeptide and directs the encoded polypeptide into the DCrs secretory pathway.
- the 5' end of the coding sequence of the nucleotide sequence may inherently contain a signal peptide coding sequence naturally linked in translation reading frame with the segment of the coding sequence that encodes the secreted polypeptide.
- the 5' end of the coding sequence may contain a signal peptide coding sequence that is foreign to the coding sequence.
- the foreign signal peptide coding sequence may be required where the coding sequence does not naturally contain a signal peptide coding sequence.
- the foreign signal peptide coding sequence may simply replace the natural signal peptide coding sequence in order to enhance secretion of the polypeptide.
- any signal peptide coding sequence that directs the expressed polypeptide into the secretory pathway of a host cell of choice, i.e. , secreted into a culture medium, may be used in the present invention.
- Effective signal peptide coding sequences for bacterial host cells are the signal peptide coding sequences obtained from the genes for Bacillus NCIB 11837 mattogenic amylase Bacillus stearothetmophilus alpha-amylase Bacillus lichenifonms s ⁇ btilisin Bacillus hchemforrms beta-laclamase Bacillus stearotheimophtlus neutral proteases (nprT nprS nprM), and Bacillus subtilis prsA Further signal peptides are described by Simonen and Palva, 1993, Microbiological Reviews 57 109-137 Effective signal peptide coding sequences for filamentous fungal host cells are the signal peptide coding sequences obtained from the genes for Aspergillus oryzae TAKA amylase Aspergillus niger neutral amylase, Aspergillus niger glucoamylase, Rhizomucor miehei aspartic proteinase Hum
- Saccharomyces cerevisiae alpha-factor and Saccharomyces cerevisiae invertase Other useful signal peptide coding sequences are descnbed by Romanos ef al. , 1992 supra
- the signal peptide comprises or consists of amino acids 1 to 17 of SEQ ID NO: 2
- the signal peptide coding sequence comprises or consists of nucleotides 1 to 51 of SEQ ID NO: 1
- the signal peptide comprises or consists of amino a ⁇ ds 1 to 15 of SEQ ID NO: 4
- the signal peptide coding sequence comprises or consists of nucleotides 1 to 45 of SEQ ID NO: 3
- the control sequence may also be a propeptide coding sequence that codes for an amino acid sequence positioned at the amino terminus of a polypeptide
- the resultant polypeptide is known as a proenzyme or propolypeptide (or a zymogen in some cases)
- a propeptide is generally inactive and can be converted to a mature active polypeptide by catalytic or autocatalytic cleavage of the propeptide from the propolypeptide
- the propeptide coding sequence may be obtained from the genes for Bacillus subtilis alkaline protease (aprE), Bacillus subtilis neutral protease (nprT) Saccnaromyces cerevisiae alpha-factor, Rhizomucor miehet aspartic protein
- the propeptide sequence is positioned next to the amino terminus of a polypeptide and the signal peptide sequence is positioned next to the amino terminus of the propeptide sequence
- regulatory systems that allow the regulation of the expression of the polypeptide relative to the growth of the host cell
- regulatory systems are those that cause the expression of the gene to be turned on or off in response to a chemical or physical stimulus, including the presence of a regulatory compound
- Regulatory systems in prokaryotic systems include the lac tac, and trp operator systems In yeast, the ADH2 system or GAL1 system may be used- In filamentous fungi, the TAKA alpha-amyiase promoter, Aspergillus niger glucoamylase promoter, and Aspergillus oryzae glucoamylase promoter may be used as regulatory sequences.
- regulatory sequences are those that allow for gene amplification In eukaryotic systems, these regulatory sequences include the dihydrofolate reductase gene that is amplified in the presence of methotrexate, and the metallothionein genes that are amplified with heavy metals. In these cases, the nucleotide sequence encoding the polypeptide would be operably linked with the regulatory sequence
- the present Invention also relates to recombinant expression vectors comprising a polynucleotide of the present invention, a promoter, and transcriptional and translational stop signals.
- the various nucleic acids and control sequences descnbed herein may be joined together to produce a recombinant expression vector that may include one or more (several) convenient restriction sites to allow for insertion or substitution of the nucleotide sequence encoding the polypeptide at such sites.
- a polynucleotide sequence of the present invention may be expressed by inserting the nucleotide sequence or a nucleic acid construct comprising the sequence into an appropriate vector for expression.
- the coding sequence is located in the vector so that the coding sequence is operably linked with the appropriate control sequences for expression
- the recombinant expression vector may be any vector (e.g , a plasmid or virus) that can be conveniently subjected to recombinant DNA procedures and can bring about expression of the nucleotide sequence
- the choice of the vector will typically depend on the compatibility of the vector with the host cell into which the vector is to be introduced.
- the vectors may be linear or closed circular plasmids
- the vector may be an autonomously replicating vector. / e , a vector that exists as an extrachromosomal entity, the replication of which is independent of chromosomal replication, e g., a plasmid, an extrachromosomal element, a minichromosome, or an artificial chromosome
- the vector may contain any means for assuring self-replication Alternatively, the vector may be one that, when introduced into the host cell, is integrated into the genome and replicated together with the chromosome(s) into which it has teen integrated.
- a single vector or plasmid or two or more vectors or plasmids that together contain the total DNA to be introduced into the genome of the host cell, or a transposon. may be used
- the vectors of the present invention preferably contain one or more (several) selectable markers that permit easy selection of transformed, transfected. transduced, or the like cells
- a selectable marker is a gene the product of which provides for biocide or viral resistance resistance to heavy metals prototrophy to auxotrophs and the like
- bacterial selectable markers are the dal genes from Bacillus subtilis or Bacillus licheniformis, or markers that confer antibiotic resistance such as ampicillin kanamycin, chloramphenicol, or tetracycline resistance
- markers for yeast host cells are ADE2, HIS3.
- the vector may rely on the polynucleotide's sequence encoding the polypeptide or any other element of the vector for integration into the genome by homologous or nonhomologous recombination
- the vector may contain additional nucleotide sequences for directing integration by homologous recombination into the genome of the host cell at a precise locat ⁇ on(s) in the chromosome(s)
- the integrational elements should preferably contain a sufficient number of nucleic acids such as 100 to 10 000 base pairs preferably 400 to 10 000 base pairs, and most preferably 800 to 10,000 base pairs, which have a high degree of identity to the corresponding target sequence to enhance the probability of homologous recombination
- the integrational elements may be any sequence that is homologous with the target sequence in the genome of the host cell
- the integrational elements may be non-encoding or encoding nucleotide sequences
- the vector may be integrated into the
- the vector may further comprise an origin of replication enabling the vector to replicate autonomously in the host cell in question
- the origin of replication may be any plasmid replicator mediating autonomous replication that functions in a cell
- the term "ongm of replication" or 'plasmid replicator' is defined herein as a nucleotide sequence that enables a plasmid or vector to replicate in vivo
- Examples of bacterial origins of replication are the origins of replication of plasmids pBR322 pUC19, pACYC177, and pACYC184 permitting replication in E coli and pUB110, pEi94 pTAi060 and pAM ⁇ i permitting replication in Bacillus
- Examples of origins of replication for use in a yeast host cell are the 2 micron origin of replication ARS1 , ARS4, the combination of ARS1 and CEN3, and the combination of ARS4 and CEN6
- AMA1 and ANSI examples of origins of replication useful in a filamentous fungal cell are AMA1 and ANSI (Gems el al., 1991, Gene 98 61-67 Cullen et al. , 1987. Nucleic Acids Research 15 9163-9175 WO 00/24883) Isolation of the AMA1 gene and construction of plasmids or vectors comprising the gene can be accomplished according to the methods disclosed in WO 00/24883
- More than one copy of a polynucleotide of the present invention may be inserted into a host cell to increase production of the gene product
- An increase in the copy number of the polynucleotide can be obtained by integrating at least one additional copy of the sequence into the host cell genome or by including an amplifiable selectable marker gene with the polynucleotide where cells containing amplified copies of the selectable marker gene, and thereby additional copies of the polynucleotide, can be selected for by cultivating the cells in the presence of the appropriate selectable agent
- the procedures used to ligate the elements descnbed above to construct the recombinant expression vectors of the present invention are well known to one skilled in the art (see e g , Sambrook et at , 1989, supra)
- Host Cells The present invention also relates to recombinant host cells, comprising an isolated polynucleotide of the present invention which are advantageously used in the recombinant production of the polypeptides
- a vector comprising a polynucleotide of the present invention is introduced into a host cell so that the vector is maintained as a chromosomal integrant or as a self-replicating extra-chromosomal vector as described earlier
- the term "host cell” encompasses any progeny of a parent cell that is not identical to the parent cell due to mutations that occur during replication The choice of a host cell will to a large extent depend upon the gene encoding the polypeptide and its source
- the host cell may be any cell useful in the recombinant production of a polypeptide of the present invention, e g , a prokaryote or a eukaryote
- the prokaryotic host cell may be any Gram positive bacterium or a Gram negative bactenum Gram positive bacteria include, but not limited to, Bacillus Streptococcus. Streptomyces, Staphylococcus Enterococc ⁇ s, Lactobacillus Lactococcus, Clostridium, Geobacillus, and Oceanobacillus Gram negative bacteria include, but not limited to, E colt Pse ⁇ domonas, Salmonella, Campylobacter, Helicobacter, Flavobactenum, Fusobacterium, llyobacter, Neisseria, and Ureaplasma
- the bacterial host cell may be any Bacillus cell Bacillus cells useful in the practice of the present invention include, but are not limited to, Bacillus alkalophilus, Bacillus amyloliq ⁇ efactens, Ba ⁇ llus brevis Bacillus circulans, Bacillus clau ⁇ n, Bacillus coagulans Bacillus firmus Bacillus lautus.
- Bacillus lent ⁇ s Bacillus lent ⁇ s, Ba ⁇ llus licheniformis. Bacillus megatenum, Ba ⁇ llus pumilus. Bacillus stearothermophilus Ba ⁇ llus subtilis. and Bacillus tbu ⁇ ngiensis cells.
- the bacterial host cell is a Bacillus amyloliquefaciens. Bacillus lent ⁇ s Bacillus licheniformis, Bacillus stearothermophilus or Bacillus subtilis cell In a more preferred aspect, the bacterial host cell is a Bacillus amyloliquefaciens cell In another more preferred aspect, the bacterial host cell is a Bacillus clausii cell In another more preferred aspect, the bacterial host cell is a Bacillus licheniformis cell In another more preferred aspect, the bacterial host cell is a Bacillus subtilis cell
- the bacterial host cell may also be any Streptococcus cell Streptococcus cells useful in the practice of the present invention include, but are not limited to, Streptococcus equisimilis Streptococcus pyogenes, Streptococcus ub ⁇ ns, and Streptococcus equi subsp Zooepidemtcus cells.
- the bacterial host cell is a Streptococcus equisimilis cell In another preferred aspect the bacterial host cell is a Streptococcus pyogenes cell In another preferred aspect, the bacterial host cell is a Streptococcus uberis cell In another preferred aspect, the bacterial host cell is a Streptococcus equi subsp Zooeptdemicus cell
- the bacterial host cell may also be any Streptomyces cell Streptomyces cells useful in the practice of the present invention include, but are not limited to, Streptomyces achromogenes, Streptomyces avermttilts, Streptomyces coelicolor, Streptomyces g ⁇ seus, and Streptomyces lividans cells
- the bacterial host cell is a Streptomyces achrvmogenes cell
- the bactenal host cell is a Streptomyces avermitilis cell.
- the bactenal host cell is a Streptomyces coelicolor cell
- the bacterial host cell is a Streptomyces gnseus cell.
- the bacterial host cell is a Streptomyces lividans cell
- the introduction of DNA into a Bacillus cell may. for instance, be effected by protoplast transformation (see, e.g . Chang and Cohen, 1979, Molecular General Genetics 168 111-115), by using competent cells (see, e g . Young and Spizizen. 1961 , Journal of Bactenology 81 : 823-829, or Dubnau and Davidoff-Abelson, 1971 , Journal of Molecular Biology 56.
- the introduction of DNA into an E coli cell may. for instance, be effected by protoplast transformation (see, e g , Hanahan, 1983, J MoI Biol. 166' 557-580) or electroporation (see, e g , Dower et al.. 1988. Nucleic Acids Res.
- the introduction of DNA into a Streptomyces cell may, for instance, be effected by protoplast transformation and electroporation (see, e g , Gong et at , 2004, Folia Microbiol (Praha) 49 399-405), by conjugation (see. e.g . Mazodier e/ al. , 1989, J. Bactenot. 171. 3583-3585), or by transduction (see, e g , Burke et al , 2001 , Proc Natl Acad Sci.
- the introduction of DNA into a Pseudomonas cell may, for instance, be effected by electroporation (see, ⁇ g , Choi et al , 2006, J. Microbiol. Methods 64- 391-397) or by conjugation (see. e g , Pinedo and Smets, 2005, Appl Environ Microbiol. 71 : 51-57).
- the introduction of DNA into a Streptococcus cell may, for instance, be effected by natural competence (see. e.g Perry and Kuramitsu, 1981 , Infect Immun. 32 1295-1297), by protoplast transformation (see, e g.
- the host cell may also be a eukaryote, such as a mammalian, insect, plant or fungal cell
- the host cell is a fungal cell "Fungi” as used herein includes the phyla Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycete (as defined by Hawksworth et al., In, Ainsworth and Bisby's Dictionary of The Fungi, 8th edition, 1995 CAB International, University Press, Cambndge, UK) as well as the Oomycota (as cited in Hawksworth et al., 1995, supra page 171) and all mitosporic fungi (Hawksworth et al , 1995, supra)
- the fungal host cell is a yeast cell.
- yeast as used herein includes ascosporogenous yeast (Endomycetales), basidiosporogenous yeast, and yeast belonging to the Fungi lmperfedi (Blastomycetes) Since the classification of yeast may change in the future, for the purposes of this invention yeast shall be defined as described in Biology and Activities of Yeast (Skinner, FA, Passmore, S.M., and Davenport, R R . eds, Soc App Bacterid Symposium Senes No 9, 1980)
- the yeast host cell is a Candida, Hansenula
- Kluyveromyces Pichia, Saccharomyces, Schizosaccharomyces, or Yarrowta cell.
- the yeast host cell is a Saccharomyces carlsbergensis, Saccharomyces cerevisiae, Saccharomyces dtastattcus Saccharomyces douglash, Saccharomyces kluyven, Saccharomyces norbensis, or Saccharomyces oviformis cell
- the yeast host cell is a Kluyveromyces lactis cell
- the yeast host cell is a Yarrowia lipolytics cell
- the fungal host cell is a filamentous fungal cell "Filamentous fungi" include all filamentous forms of the subdivision Eumycota and Oomycota (as defined by Hawksworth et al. , 1995, s ⁇ pra)
- the filamentous fungi are generally characterized by a mycelial wall composed of chrtin, cellulose, glucan, chitosan, mannan, and other complex polysaccharides.
- Vegetative growth is by hyphal elongation and carbon catabolism is obligately aerobic
- vegetative growth by yeasts such as Saccharomyces cerevisiae is by budding of a unicellular thallus and carbon catabolism may be fermentative.
- the filamentous fungal host cell is an Acremoni ⁇ m, Aspergillus, A ⁇ reobasidium, Bjerkandera, Cenponopsis, Chrysosponum Coprinus, Conolus, Cryptococcus, Filtbasidium, Fusanum, H ⁇ micola, Magnaporthe, M ⁇ cor Myceliophthora, Neocallimastix, Neurospora, Paecilomyces, Penicillium, Phanerochaete, Phtebia, Piromyces Pleurotus Schizophyilum, Talaromyces. Thermoascus, Thtelavia, Tolypodadium. Trametes. or Tnchodetma cell.
- the filamentous fungal host cell is an Aspergillus awamori, Aspergillus fumigatus, Aspergillus foetidus, Aspergillus japonicus. Aspergillus nidulans Aspergillus niger or Aspergillus oryzae cell
- the filamentous fungal host cell is a Fusarium bactndioides, Fusanum cerealis, Fusarium crookwellense, Fusanum culmorum, Fusanum graminearum, Fusanum graminum Fusanum heterosporum Fusanum negundt, Fusanum oxysporum, Fusanum r ⁇ ticulatum Fusanum roseum, Fusanum sambucinum, Fusanum sarcochroum.
- the filamentous fungal host cell is a Bjerkandera adusta, Cenponopsis anei ⁇ na.
- Fungal cells may be transformed by a process involving protoplast formation transformation of the protoplasts, and regeneration of the cell wall in a manner known per se Suitable procedures for transformation of Aspergillus and Tnchoderma host cells are descnbed in EP 238 023 and Yelton et al , 1984.
- Suitable methods for transforming Fusarium species are described by Malardier et al 1989, Gene 78 147-156, and WO 96/00787 Yeast may be transformed using the procedures descnbed by Becker and Guarente, In Abelson, J N and Simon M l , editors Guide to Yeast Genetics and Molecular Biology, Methods in Enzymology, Volume 194 pp 182-187, Academic Press, lnc , New York, lto et al., 1983 Journal of Bacteriology 153 163 and Hinnen ⁇ t at 1978, Proceedings of the National Academy of Sciences USA 75 1920
- the present invention also relates to methods of producing a polypeptide of the present invention, comprising (a) cultivating a cell, which in its wild-type form produces the polypeptide, under conditions conducive for production of the polypeptide, and (b) recovering the polypeptide
- the cell is of the genus Myceliophthora
- the cell is Myceliophthora thermophila in a most preferred aspect, the cell is Myceliophthora thermophita CBS 202 75 In another most preferred aspect the cell is Myceliophthora thermophila CBS 117 65
- the present invention also relates to methods of producing a polypeptide of the present invention, composing (a) cultivating a recombinant host cell, as described herein under conditions conducive for production of the polypeptide and (b) recovenng the polypeptide
- the present invention also relates to methods of producing a polypeptide of the present invention, comp ⁇ sing (a) cultivating a recombinant host cell under conditions conducive for production of the polypeptide wherein the host cell comprises a mutant nucleotide sequence having at least one mutation in the mature polypeptide coding sequence of SEQ ID NO: 1 or SEQ ID NO: 3, wherein the mutant nucleotide sequence encodes a polypeptide that comprises or consists of the mature polypeptide of SEQ ID NO: 2 or SEQ ID NO: 4 and (b) recovering the polypeptide
- the cells are cultivated in a nutrient medium suitable for production of the polypeptide using methods well known in the art
- the cell may be cultivated by shake flask cultivation, and small- scale or large-scale fermentation (including continuous, batch, fed-batch, or solid state fermentations) in laboratory or industrial fermentors performed in a suitable medium and under conditions allowing the polypeptide Io be expressed and/or isolated
- the cultivation takes place in a suitable nutrient medium compnsing carbon and nitrogen sources and inorganic salts, using procedures Known in the art Suitable media are available from commercial suppliers or may be prepared according to published compositions (e.o/ , in catalogues of the Amencan Type Culture Collection)
- the polypeptide is secreted into the nutrient medium, the polypeptide can be recovered directly from the medium If the polypeptide is not secreted into the medium it can be recovered from cell lysates
- the polypeptides may be detected using methods known in the art that are specific for the polypeptides These detection methods may include
- the polypeptide may be recovered from the nut ⁇ ent medium by conventional procedures including, but not limited to, cent ⁇ fugation, filtration, extraction, spray-drying, evaporation, or precipitation
- polypeptides of the present invention may be purified by a variety of procedures known in the art including, but not limited to, chromatography (e g . ion exchange, affinity, hydrophobic chromatofocusi ⁇ g, and size exclusion), eledrophoretic procedures (e g , preparative isoelectric focusing), differential solubility (e g , aminonium sulfate precipitation), SDS-PAGE or extraction (see, e g Protein Purification, J -C Janson and Lars Ryden, editors, VCH Publishers, New York 1989) to obtain substantially pure polypeptides
- chromatography e g ion exchange, affinity, hydrophobic chromatofocusi ⁇ g, and size exclusion
- eledrophoretic procedures e g , preparative isoelectric focusing
- differential solubility e g , aminonium sulfate precipitation
- SDS-PAGE or extraction see, e g Protein Purification, J -C Janson and Lars Ry
- the present invention also relates to plants, e g , a transgenic plant plant part or plant cell comprising an isolated polynucleotide encoding a polypeptide having cellulolytic enhancing activity of the present invention so as to express and produce the polypeptide in recoverable quantities
- the polypeptide may be recovered from the plant or plant part Alternatively the plant or plant part containing the recombinant polypeptide may be used as such for improving the quality of a food or feed e g , improving nutritional value palatability, and rheological properties, or to destroy an aneckrrtive factor
- the transgenic plant can be dicotyledonous (a dicot) or monocotyledonous (a monocot)
- monocot plants are grasses, such as meadow grass (blue grass, Poa) forage grass such as Festuca, Lolium, temperate grass, such as Agrostis, and cereals, e.g , wheat, oats, rye, barley, rice, sorghum, and maize (corn)
- dicot plants are tobacco legumes, such as lupins potato, sugar beet, pea bean and soybean, and cruciferous plants (family Brassicaceae), such as cauliflower, rape seed, and the closely related model organism Arabidopsis thaliana
- plant parts are stem, callus leaves root, fruits seeds, and tubers as well as the individual tissues comprising these parts, e.g., epidermis, mesophyll, parenchyme, vascular tissues, meristems
- Specific plant cell compartments such as chloroplasts, apoplasts. mitochondria, vacuoles, peroxisomes and cytoplasm are also considered to be a plant part
- any plant cell whatever the tissue origin, is considered to be a plant part
- plant parts such as specific tissues and cells isolated to facilitate the utilisation of the invention are also considered plant parts, e g embryos, endosperms, aleurone and seeds coats
- the transgenic plant or plant cell expressing a polypeptide of the present invention may be constructed in accordance with methods known in the art
- the plant or plant cell is constructed by incorporating one or more (several) expression constructs encoding a polypeptide of the present invention into the plant host genome or chloroplast genome and propagating the resulting modified plant or plant cell into a transgenic plant or plant cell
- the expression construct is conveniently a nucleic acid construct that compnses a polynucleotide encoding a polypeptide of the present invention operably linked with appropriate regulatory sequences required for expression of the nucleotide sequence in the plant or plant part of choice.
- the expression construct may comprise a selectable marker useful for identifying host cells into which the expression construct has been integrated and DNA sequences necessary for introduction of the construct into the plant in question (the latter depends on the DNA introduction method to be used)
- the choice of regulatory sequences is determined, for example on the basis of when where, and how the polypeptide is desired to be expressed
- the expression of the gene encoding a polypeptide of the present invention may be constitutive or inducible, or may be developmental, stage or tissue specific, and the gene product may be targeted to a specific tissue or plant part such as seeds or leaves.
- Regulatory sequences are, for example, descnbed by Tague er al.
- the 35S-CaMV the maize ubiquitin 1 , and the nee actin 1 promoter may be used (Franck et al 1980 Cell 21 285-294 Christensen et al ,
- Organ-specific promoters may be, for example, a promoter from storage sink tissues such as seeds, potato tubers and fruits (Edwards and Coruzzi, 1990 Ann Rev Genet 24 275-303), or from metabolic sink tissues such as meristems (Ito et al., 1994, Plant MoI Biol 24 863-878), a seed specific promoter such as the glutehn, prolamin, globulin, or albumin promoter from rice (Wu et al , 1998 Plant and Cell Physiology 39 885-889) a Vicia faba promoter from the legumin B4 and the unknown seed protein gene from Vi ⁇ a faba (Conrad et al 1998, Journal of Plant Physiology 152 708-711), a promoter from a seed oil body protein (Chen et al , 1998, Plant and Cell Physiology 39 935-941) the storage protein napA promoter
- the promoter may be a leaf specific promoter such as the rbcs promoter from rice or tomato (Kyozuka et al. , 1993, Plant Physiology 102 991-1000, the chlorelta virus adenine methyltransferase gene promoter (Mitra and Higgins, 1994, Plant Molecular Biology 26 85-93), or the aldP gene promoter from rice (Kagaya et al , 1995 Molecular and General Genetics 248 668-674), or a wound inducible promoter such as the potato p ⁇ n2 promoter (Xu et al , 1993, Plant Molecular Biology 22 573-588)
- the promoter may inducible by abiotic treatments such as temperature drought, or alterations in salinity or induced by exogenously applied substances that activate the promoter, e g , ethanol oestrogens, plant hormones such as ethylene abscisic acid, and gibberelli
- a promoter enhancer element may also be used to achieve higher expression of a polypeptide of the present invention in the plant
- the promoter enhancer element may be an intron that is placed between the promoter and the nucleotide sequence encoding a polypeptide of the present invention
- the nucleic acid construct is incorporated into the plant genome according to conventional techniques known in the art, including Agrobactenum-m&ale ⁇ transformation, virus- mediated transformation, microinjection, particle bombardment biolistic transformation, and electroporation (Gasser et al , 1990, Science 244 1293
- Agrobadenum tumefiaciens-mediated gene transfer is the method of choice for generating transgenic dicots (for a review, see Hooykas and Schilperoort, 1992, Plant Molecular Biology 19 15-38) and can also be used for transforming monocots. although other transformation methods are often used for these plants
- the method of choice for generating transgenic monocots is particle bombardment (microscopic gold or tungsten particles coated with the transforming DNA) of embryonic calli or developing embryos (Chnstou. 1992, Plant Journal 2 275- 281 ; Shimamoto. 1994. Current Opinion Biotechnology 5 158-162, Vasil et al. , 1992, Bio/Technology 10 667-674)
- An alternative method for transformation of monocots is based on protoplast transformation as descnbed by Omirulleh et al , 1993, Plant Molecular Biology 21 : 415-428.
- the transformants having incorporated the expression construct are selected and regenerated into whole plants according to methods well- known in the art Often the transformation procedure is designed for the selective elimination of selection genes either dunng regeneration or in the following generations by using, for example, co-transformalion with two separate T-DNA constructs or site specific excision of the selection gene by a specific recombinase
- the present invention also relates to methods of producing a polypeptide of the present invention comprising (a) cultivating a transgenic plant or a plant cell comprising a polynucleotide encoding the polypeptide having cellulolytic enhancing activity of the present invention under conditions conducive for production of the polypeptide, and (b) recovering the polypeptide
- the present invention also relates to methods of producing a mutant of a parent cell, which comprises disrupting or deleting a polynucleotide sequence, or a portion thereof, encoding a polypeptide of the present invention, which results in the mutant cell producing less of the polypeptide than the parent cell when cultivated under the same conditions
- the mutant cell may be constructed by reducing or eliminating expression of a nucleotide sequence encoding a polypeptide of the present invention using methods well known in the art, for example, insertions, disruptions, replacements, or deletions
- the nucleotide sequence is inactivated.
- the nucleotide sequence to be modified or inactivated may be, for example, the coding region or a part thereof essential for activity, or a regulatory element required for the expression of the coding region
- An example of such a regulatory or control sequence may be a promoter sequence or a functional part thereof, i.e , a part that is sufficient for affecting expression of the nucleotide sequence
- Other control sequences for possible modification include, but are not limited to, a leader, pofyadenylation sequence, propeptide sequence, signal peptide sequence, transcription terminator, and transcriptional activator
- Modification or inactivation of the nucleotide sequence may be performed by subjecting the parent cell to mutagenesis and selecting for mutant cells in which expression of the nucleotide sequence has been reduced or eliminated
- the mutagenesis which may be specific or random, may be performed, for example, by use of a suitable physical or chemical mutagenizing agent, by use of a suitable oligonucleotide, or by subjecting the DNA sequence to PCR generated mutagenesis
- the mutagenesis may be performed by use of any combination of these mutagenizing agents
- Examples of a physical or chemical mutagenizing agent suitable for the present purpose include ultraviolet (UV) irradiation, hydroxylamine. N-methyl-N'-nitro-N- ⁇ itrosoguanidine (MNNG), O-methyl hydroxylamine, nitrous acid ethyl methane sulphonate (EMS), sodium bisulphite, formic acid, and nucleotide analogues
- the mutagenesis is typically performed by incubating the parent cell to be mutagenized in the presence of the mutagenizing agent of choice under suitable conditions, and screening and/or selecting for mutant cells exhibiting reduced or no expression of the gene
- Modification or inactivation of the nucleotide sequence may be accomplished by introduction, substitution, or removal of one or more (several) nucleotides in the gene or a regulatory element required for the transcription or translation thereof
- nucleotides may be inserted or removed so as to result in the introduction of a stop codon, the removal of the start codon, or a change in the open reading frame
- modification or inactivation may be accomplished by site-directed mutagenesis or PCR generated mutagenesis in accordance with methods known in the art
- the modification may be performed in vivo, / e., directly on the cell expressing the nucleotide sequence to be modified, it is preferred that the modification be performed in vitro as exemplified below An example of a convenient way to
- modification or inactivation of the nucleotide sequence may be performed by established anti-sense or RNAi techniques using a sequence complementary to the nucleotide sequence More specifically, expression of the nucleotide sequence by a cell may be reduced or eliminated by introducing a sequence complementary to the nucleotide sequence of the gene that may be transcribed in the cell and is capable of hybndizmg to the mRNA produced in the cell Under conditions allowing the complementary anti-sense nucleotide sequence to hybridize to the mRNA, the amount of protein translated is thus reduced or eliminated
- the present invention further relates to a mutant cell of a parent cell that comprises a disruption or deletion of a nucleotide sequence encoding the polypeptide or a control sequence thereof, which results in the mutant cell producing less of the polypeptide or no polypeptide compared to the parent cell
- the present invention further relates to methods of producing a native or heterologous polypeptide comprising (a) cultivating the mutant cell under conditions conducive for production of the polypeptide, and (b) recovering the polypeptide
- heterologous polypeptides is defined herein as polypeptides that are not native to the host cell, a native protein in which modifications have been made to alter the native sequence, or a native protein whose expression is quantitatively altered as a result of a manipulation of the host cell by recombinant DNA techniques
- the present invention relates to a method of producing a protein product essentially free of cellulolytic enhancing activity by fermentation of a cell that produces both a polypeptide of the present invention as well as the protein product of interest by adding an effective amount of an agent capable of inhibiting cellulolytic enhancing activity to the fermentation broth before, during, or after the
- the present invention relates to a method of producing a protein product essentially free of cellulofytic enhancing activity by cultivating the cell under conditions permitting the expression of the product, subjecting the resultant culture broth to a combined pH and temperature treatment so as to reduce the cellulolytic enhancing activity substantially, and recovering the product from the culture broth
- the combined pH and temperature treatment may be performed on an enzyme preparation recovered from the culture broth
- the combined pH and temperature treatment may optionally be used in combination with a treatment with an cellulolylic enhancing inhibitor
- the combined pH and temperature treatment is preferably earned out at a pH in the range of 2-4 or 9-11 and a temperature in the range of at least 60-70 J C for a sufficient period of time to attain the desired effect, where typically 30 to 60 minutes is sufficient
- the methods used for cultivation and purification of the product of interest may be performed by methods known in the art
- the methods of the present invention for producing an essentially cellulolytic enhancing-free product is of particular interest in the production of eukaryotic polypeptides, in particular fungal proteins such as enzymes
- the enzyme may be selected from, e g an amylolytic enzyme, lipolytic enzyme, proteolytic enzyme, cellulolytic enzyme, oxidoreductase, or plant cell-wall degrading enzyme
- examples of such enzymes include an aminopeptidase, amylase, amyloglucosidase carbohydrase carboxypeplidase, catalase, cellobiohydrolase, cellulase, chitinase, cutinase, cyclodextnn glycosyltransferase, deoxynbonuclease, endoglucanase, esterase galactosidase beta-galactosidase, glucoamylase glucose oxidase glucosidase, haloperoxida
- eukaryotic polypeptides includes not only native polypeptides, but also those polypeptides, e g , enzymes, which have been modified by amino acid substitutions, deletions or additions or other such modifications to enhance activity, thermostability pH tolerance and the like
- the present invention relates to a protein product essentially free from cellulolytic enhancing activity that is produced by a method of the present invention.
- the present invention also relates to methods of inhibiting the expression of a polypeptide having cellulolytic enhancing activity in a cell, comprising administering to the cell or expressing in the cell a double-stranded RNA (dsRNA) molecule, wherein the dsRNA comprises a subsequence of a polynucleotide of the present invention
- dsRNA double-stranded RNA
- the dsRNA is about 15. 16, 17, 18, 19 20, 21 , 22, 23, 24. 25 or more duplex nucleotides in length
- the dsRNA is preferably a small interfering RNA (siRNA) or a micro RNA (miRNA)
- the dsRNA is small interfering RNA (siRNAs) for inhibiting transcription
- the dsRNA is micro RNA (miRNAs) for inhibiting translation.
- the present invention also relates to such double-stranded RNA (dsRNA) molecules, comprising a portion of the mature polypeptide coding sequence of SEQ ID NO:: 1 or SEQ ID NO. 3 for inhibiting expression of a polypeptide in a cell
- dsRNA double-stranded RNA
- the present invention is not limited by any particular mechanism of action the dsRNA can enter a cell and cause the degradation of a single-stranded RNA (ssRNA) of similar or identical sequences, including endogenous mRNAs
- ssRNA single-stranded RNA
- mRNA from the homologous gene is selectively degraded by a process called RNA interference (RNAi)
- the dsRNAs of the present invention can be used in gene-silencing therapeutics
- the invention provides methods to selectively degrade RNA using the dsRNAis of the present invention
- the process may be practiced in vitro, ex wvo or in vivo
- the dsRNA molecules can be used to generate a loss-of- function mutation in a cell, an organ or an animal
- Methods for making and using dsRNA molecules to selectively degrade RNA are well known in the art. see, for example, U.S. Patent No. 6,506,559, U S. Patent No. 6,511 ,824, U S Patent No. 6,515,109, and U S Patent No 6,489,127
- the present invention also relates to compositions compnsing a polypeptide of the present invention
- the compositions are enriched in such a polypeptide
- the term "enriched" indicates that the cellulolytic enhancing activity of the composition has been increased, e g , with an enrichment factor of at least 1.1.
- the composition may comprise a polypeptide of the present invention as the major enzymatic component e g.. a mono-component composition
- the composition may comprise multiple enzymatic activities, such as an aminopeptidase. amylase, carbohydrase, carboxypeptidase catalase.
- the additional enzyme(s) may be produced for example, by a microorganism belonging to the genus Aspergillus, preferably Aspergillus ac ⁇ leatus, Aspergillus awamon, Aspergillus fumigat
- polypeptide compositions may be prepared in accordance with methods known in the art and may be in the form of a liquid or a dry composition
- the polypeptide composition may be in the form of a granulate or a microgranulate
- the polypeptide to be included in the composition may be stabilized in accordance with methods known in the art
- the present invention also relates to methods for degrading or converting a cellulosic matenal, comprising treating the cellulosic material with a cellulolytic enzyme composition in the presence of a polypeptide having cellulolytic enhancing activity of the present invention
- the method further comprises recovenng the degraded or converted cellulosic matenal
- the present invention also relates to methods of producing a fermentation product comprising (a) saccharifying a cellulosic material with a cellulolytic enzyme composition in the presence of a polypeptide having cellulolytic enhancing activity of the present invention, (b) fermenting the saccharified cellulosic material of step (a) with one or more fermenting microorganisms to produce the fermentation product and (c) recovering the fermentation product from the fermentation
- the present invention also relates to methods of fermenting a cellulosic material, comprising, fermenting the cellulosic material with one or more fermenting microorganisms, wherein the cellulosic material is hydrolyzed with a cellulolytic enzyme composition in the presence of a polypeptide having cellulolytic enhancing activity of the present invention and the presence of the polypeptide having cellulolytic enhancing activity increases the hydrolysis of the cellulosic material compared to the absence of the polypeptide having cellulolytic enhancing activity
- the fermenting of the cellulosic material produces a fermentation product
- the method further compnses recovering the fermentation product from the fermentation
- composition comprising the polypeptide having cellulolytic enhancing activity can be in the form of a crude fermentation broth with or without the cells removed or in the form of a semi-purified or purified enzyme preparation or the composition can comprise a host cell of the present invention as a source of the polypeptide having cellulolytic enhancing activity in a fermentation process with the biomass
- the methods of the present invention can be used to saccharify a cellulosic material to fermentable sugars and convert the fermentable sugars to many useful substances, e g , chemicals and fuels
- the production of a desired fermentation product from cellulosic material typically involves pretreatment. enzymatic hydrolysis
- the processing of cellulosic material according to the present invention can be accomplished using processes conventional in the art Moreover, the methods of the present invention can be implemented using any conventional biomass processing apparatus configured to operate in accordance with the invention
- Hydrolysis (saccharification) and fermentation, separate or simultanoeus include but are not limited to. separate hydrolysis and fermentation (SHF), simultaneous saccharification and fermentation (SSF), simultaneous sacchanficaiion and cofermentation (SSCF); hybrid hydrolysis and fermentation (HHF), SHCF (separate hydrolysis and co-ferme ⁇ tat ⁇ on), HHCF (hybnd hydrolysis and fermentation), and direct microbial conversion (DMC).
- SHF separate hydrolysis and fermentation
- SSF simultaneous saccharification and fermentation
- SSCF simultaneous sacchanficaiion and cofermentation
- HHF hybrid hydrolysis and fermentation
- SHCF separate hydrolysis and co-ferme ⁇ tat ⁇ on
- HHCF hybnd hydrolysis and fermentation
- DMC direct microbial conversion
- SHF uses separate process steps to first enzymatically hydrolyze lignocellulose to fermentable sugars, e.g , glucose, cellobiose, cellotriose, and pentose sugars, and then ferment the fermentable sugars to ethanol
- fermentable sugars e.g , glucose, cellobiose, cellotriose, and pentose sugars
- the enzymatic hydrolysis of lignocellulose and the fermentation of sugars to ethanol are combined in one step (Philippidis, G P .
- HHF HHF
- the steps in an HHF process can be carried out at different temperatures, / e., high temperature enzymatic saccharification followed by SSF at a lower temperature that the fermentation strain can tolerate.
- DMC combines all three processes (enzyme production, hgnocellulose hydrolysis, and fermentation) in one or more steps where the same organism is used to produce the enzymes for conversion of the lignocellulose to fermentable sugars and to convert the fermentable sugars into a final product (Lynd, L R , Weimer, P J van ZyI, W H., and Pretonus, I S , 2002, Microbial cellulose utilization Fundamentals and biotechnology, Microbiol MoI Biol Reviews 66 506-577) It is understood herein that any method known in the art comprising pretreatment enzymatic hydrolysis (saccharification) fermentation, or a combination thereof can be used in the practicing the methods of the present invention
- a conventional apparatus can include a fed-batch stirred reactor, a batch stirred reactor, a continuous flow stirred reactor with ultrafiltration, and/or a continuous plug- flow column reactor (Fernanda de Castilhos Corazza, Flavio Faria de Moraes, Gisella Maria Zanin and Ivo Neitzel, 2003, Optimal control in fed-batch reactor for the cellobiose hydrolysis, Acta Scientiarum Technology 25 33-38 Gusakov A V , and Simtsyn A P , 1985, Kinetics of the enzymatic hydrolysis of cellulose. 1.
- any pretreatment process known in the art can be used to disrupt the plant cell wall components
- the cellulosic material can also be subjected to pre-soaking, wetting or conditioning prior to pretreatment using methods known in the art
- Conventional pretreatments include, but are not limited to, steam pretreatment (with or without explosion), dilute acid pretreatment, hot water pretreatment. lime pretreatment. wet oxidation, wet explosion, aminonia fiber explosion, organosolv pretreatment, and biological pretreatment
- Additional pretreatments include ultrasound electroporation. microwave, supercritical CO 2 , supercritical H 2 0, and aminonia percolation pretreatments
- the cellulosic matenal can be pretreated before hydrolysis and/or fermentation Pretreatment is preferably performed pnor to the hydrolysis Alternatively, the pretreatment can be carried out simultaneously with hydrolysis such as simultaneously with treatment of the cellulosic material with one or more cellulotytic enzymes, or other enzyme activities, to release fermentable sugars, such as glucose and/or maltose. In most cases the pretreatment step itself results in some conversion of biomass to fermentable sugars (even in absence of enzymes)
- the cellulosic material is heated to disrupt the plant cell wall components, including lignin, hemicellulose, and cellulose to make the cellulose and other fractions e g , hemicellulase accessible to enzymes
- the lignocellulose material is passed to or through a reaction vessel where steam is injected to increase the temperature to the required temperature and pressure and is retained therein for the desired reaction time
- Steam pretreatment is preferably done at 140- 230 C more preferably 160-200°C, and most preferably 170-190°C, where the optimal temperature range depends on any addition of a chemical catalyst Residence time for the steam pretreatment is preferably 1-15 minutes, more preferably 3-12 minutes and most preferably 4-10 minutes, where the optimal residence time depends on temperature range and any addition of a chemical catalyst
- Steam pretreatment allows for relatively high solids loadings, so that the cellulosic material is generally only moist during the pretreatment
- the steam pretreatment is often combined with an explosive discharge of the matenal after the pretreatment, which is known as steam
- a catalyst such as H,->SO,i or SO? (typically 0.3 to 3% w/w) is often added prior to steam pretreatment, which decreases the time and temperature, increases the recovery, and improves enzymatic hydrolysis (Ballesteros et al. , 2006, Appl Biochem Biotechnol 129-132 496-508; Varga et at , 2004 Appl Biochem Biotechnol 113-116 509-523 Sassner et al 2006 Enzyme Microb Technol 39 756-762)
- Chemical Pretreatment refers to any chemical pretreatment that promotes the separation and/or release of cellulose, hemicellulose and/or iignin
- suitable chemical pretreatment processes include, for example, dilute acid pretreatment lime pretreatment wet oxidation, aminonia fiber/freeze explosion (AFEX), aminonia percolation (APR), and organosolv pretreatments
- the cellulosic material is mixed with dilute acid, typically H;SO ⁇ :, and water to form a slurry, heated by steam to the desired temperature and after a residence time flashed to atmospheric pressure
- dilute acid pretreatment can be performed with a number of reactor designs e g plug-flow reactors, counter- current reactors or continuous counter-current shnnking bed reactors (Duff and Murray, 1996, supra Schell et at , 2004, Btoresource Technol 91 179-188, Lee et al , 1999, Adv Biochem Eng Biotechnot 65 93-115)
- alkaline pretreatments include, but are not limited to, lime pretreatment wet oxidation aminonia percolation (APR) and aminonia fiber/freeze explosion (AFEX)
- Lime pretreatment is performed with calcium carbonate, sodium hydroxide or aminonia at low temperatures of 85-150°C and residence times from 1 hour to several days (Wyman et al. , 2005 Bioresource Technol 96 1959-1966, Mosier et at . 2005, Bioresource Technol 96 673-686) WO 2006/1 10891 WO 2006/11899, WO
- Wet oxidation is a thermal pretreatmerrt performed typically at 180-200°C for 5-15 minutes with addition of an oxidative agent such as hydrogen peroxide or over-pressure of oxygen (Schmidt and Thomsen, 1998, Bioresource Technol 64 139-151 , Palonen et al 2004, Appl Biochem Biotechnot 117 1-17, Varga et at , 2004 Btotechnot Btoeng 88 567-574 Martin et al 2006.
- an oxidative agent such as hydrogen peroxide or over-pressure of oxygen
- the pretreatment is performed at preferably 1-40% dry matter, more preferably 2-30% dry matter and most preferably 5-20% dry matter, and often the initial pH is increased by the addition of alkali such as sodium carbonate
- alkali such as sodium carbonate
- AFEX Ammonia fiber explosion
- Organosolv pretreatment dehgnifies cellulosic material by extraction using aqueous ethanol (40-60% etha ⁇ ol) at 160-200°C for 30-60 minutes (Pan et al., 2005, Biotechnol Bioeng 90 473-481, Pan et al., 2006. Biotechnol Bioeng 94. 851-861, Kurabi et al 2005, Appl. Biochem Biotechnol 121 219-230) Sulphuric acid is usually added as a catalyst. In organosolv pretreatment, the majority of the hemicellulose is removed
- the chemical pretreatment is preferably earned out as an a ⁇ d treatment, and more preferably as a continuous dilute and/or mild acid treatment
- the acid is typically sulfuric acid, but other acids can also be used, such as acetic acid, citric acid, nit ⁇ c acid, phosphoric acid, tartaric acid, succinic acid, hydrogen chloride or mixtures thereof
- Mild a ⁇ d treatment is conducted in the pH range of preferably 1-5.
- the acid concentration is in the range from preferably 0 01 to 20 wt % acid, more preferably 0 05 to 10 wt % acid, even more preferably 0 1 to 5 wt % acid, and most preferably 02 to 2 0 wt % acid
- the acid is contacted with the cellulosic material and held at a temperature in the range of preferably 160-220°C, and more preferably 165-195°C, for periods ranging from seconds to minutes to, e g , 1 second to 60 minutes
- pretreatment is carried out as an aminonia fiber explosion step (AFEX pretreatment step)
- pretreatment takes place in an aqueous slurry.
- the cellulosic material is present during pretreatment in amounts preferably between 10-80 wt%, more preferably between 20-70 wt%, and most preferably between
- the pretreated cellulosic material can be unwashed or washed using any method known in the art, e g , washed with water
- Mechanical Pretreatment refers to various types of grinding or milling (e g , dry milling, wet milling, or vibratory ball milling)
- Physical Pretreatment refers to any pretreatment that promotes the separation and/or release of cellulose, hemicellulose, and/or lignin from cellulosic matenal
- physical pretreatment can involve irradiation (e g , microwave irradiation), steaming/steam explosion hydrothermolysis, and combinations thereof
- Physical pretreatment can involve high pressure and/or high temperature (steam explosion) in one aspect, high pressure means pressure in the range of preferably about 300 to about 600 psi, more preferably about 350 to about 550 psi and most preferably about 400 to about 500 psi, such as around 450 psi In another aspect high temperature means temperatures in the range of about 100 to about 300°C preferably about 140 to about 235°C In a preferred aspect, mechanical pretreatment is performed in a batch- process steam gun hydrolyzer system that uses high pressure and high temperature as defined above e g. a Sunds Hydrolyzer available from Sunds Defibrator AB, Sweden
- the cellulosic matenal can be pretreated both physically and chemically
- the pretreatment step can involve dilute or mild acid treatment and high temperature and/or pressure treatment
- the physical and chemical pretreatments can be earned out sequentially or simultaneously, as desired
- a mechanical pretreatment can also be included
- the cellulosic material is subjected to mechanical, chemical or physical pretreatment or any combination thereof to promote the separation and/or release of cellulose hemicellulose and/or lignin
- Bio pretreatment refers to any biological pretreatment that promotes the separation and/or release of cellulose, hemicellulose and/or lignin from the cellulosic material
- Biological pretreatment techniques can involve applying lignm-solubilizmg microorganisms (see for example,
- the pretreated cell ⁇ losic material is hydrolyzed to break down cellulose and alternatively also hemicellulose to fermentable sugars, such as glucose xylose xylulose arabinose maltose, mannose galactose, or soluble oligosaccharides
- the hydrolysis is performed enzymaticalty by a cellulolytic enzyme composition compnsing a polypeptide having cellulolytic enhancing activity of the present invention which can further comprise one or more hemicellulolytic enzymes
- the enzymes of the compositions can also be added sequentially
- Enzymatic hydrolysis is preferably earned out in a suitable aqueous environment under conditions that can be readily determined by one skilled in the art
- hydrolysis is performed under conditions suitable for the activity of the enzyme(s), / e , optimal for the enzyme(s)
- the hydrolysis can be earned out as a fed batch or continuous process where the pretreated cellulosic material (substrate) is fed gradually to, for example, an enzyme containing hydrolysis solution
- the saccharification is generally performed in stirred-tank reactors or fermentors under controlled pH, temperature, and mixing conditions Suitable process time temperature and pH conditions can readily be determined by one skilled in the art
- the saccharification can last up to 200 hours, but is typically performed for preferably about 12 to about 96 hours, more preferably about 16 to about 72 hours, and most preferably about 24 to about 48 hours
- the temperature is in the range of preferably about 25X to about 7OX, more preferably about 30°C to about 65X 1 and more preferably about 4OX to 6OX, in particular about 50X
- the pH is in the range of preferably about 3 to about 8 more preferably about 3 6 to about 7 and most preferably about 4 to about 6, in particular about pH 5
- the dry solids content is in the range of preferably about 5 to about 50 wt %, more preferably about 10 to about 40 wt %, and most preferably about 20 to about 30 wt %
- the cellulolytic enzyme components of the composition are preferably enzymes having endoglucanase, cellobiohydrolase and beta-glucosidase activities
- the cellulolytic enzyme composition comprises one or more (several) cellulolytic enzymes selected from the group consisting of a cellulase. endoglucanase, cellobiohydrolase.
- the cellulolytic enzyme preparation is supplemented with one or more additional enzyme activities selected from the group consisting of hemicellulases, esterases (e g , lipases, phospholipases and/or cutinases), proteases, laccases peroxidases, or mixtures thereof
- the additional enzyme(s) can be added prior to or du ⁇ ng fermentation, including dunng or after propagation of the fermenting m ⁇ croorgan ⁇ sm(s)
- the enzymes can be derived or obtained from any suitable origin including, bacterial, fungal, yeast, plant or mammalian origin
- the term "obtained' means herein that the enzyme may have been isolated from an organism that naturally produces the enzyme as a native enzyme
- the term “obtained” also means herein that the enzyme may have been produced recombinantly in a host organism employing methods described herein, wherein the recombinantly produced enzyme is either native or foreign to the host organism or has
- the enzymes used in the present invention can be in any form suitable for use in the methods described herein, such as a crude fermentation broth with or without cells or substantially pure polypeptides
- the enzyme(s) can be a dry powder or granulate, a non-dusting granulate, a liquid, a stabilized liquid, or a protected enzyme(s) Granulates can be produced, e g , as disclosed in U S Patent Nos 4,106 991 and 4 661 ,452 and can optionally be coated by process known in the art
- Liquid enzyme preparations can, for instance be stabilized by adding stabilizers such as a sugar, a sugar alcohol or another polyol, and/or lactic acid or another organic acid according to established process
- Protected enzymes can be prepared according to the process disclosed in EP 238,216
- an effective amount of cellulolytic enzyme(s) to cellulosic material is about 0 5 to about 50 mg. preferably at about 0 5 to about 40 mg. more preferably at about 0 5 to about 25 mg, more preferably at about 0 75 to about 20 mg, more preferably at about 0,75 to about 15 mg. even more preferably at about 0 5 to about 10 mg, and most preferably at about 2 5 to about 10 mg per g of cellulosic material
- an effective amount of a polypeptide having cellulolytic enhancing activity to cellulosic matenal is about 0 01 to about 50 mg preferably at about O 5 to about 40 mg, more preferably at about O 5 to about 25 mg, more preferably at about O 75 to about 20 mg, more preferably at about O 75 to about 15 mg, even more preferably at about 0 5 to about 10 mg and most preferably at about 2 5 to about 10 mg per g of celiulosic material
- an effective amount of polypept ⁇ de(s) having cellulolytic enhancing activity to celiulosic material is about 0 01 to about 50 0 mg preferably about 0 01 to about 40 mg, more preferably about 0 01 to about 30 mg, more preferably about 0 01 to about 20 mg, more preferably about 0 01 to about 10 mg, more preferably about 0 01 to about 5 mg, more preferably at about 0 025 to about 1 5 mg, more preferably at about 0 05 to about 1 25 mg
- an effective amount of poly ⁇ e ⁇ t ⁇ de(s) having cellulolytic enhancing activity to cellulolytic enzyme(s) is about 0 005 to about 1 0 g, preferably at about 0 01 to about 1 0 g, more preferably at about 0 15 to about 0 75 g, more preferably at about 0 15 to about 0 5 g, more preferably at about 0 1 to about 0 5 g even more preferably at about 0 1 to about 0 5 g.
- fermentable sugars obtained from the pretreated and hydrolyzed celiulosic material can be fermented by one or more fermenting microorganisms capable of fermenting the sugars directly or indirectly into a desired fermentation product
- Fermentation or 'fermentation process refers to any fermentation process or any process comprising a fermentation step Fermentation processes also include fermentation processes used in the consumable alcohol industry
- dairy industry e g fermented dairy products
- leather industry e g , leather industry
- tobacco industry e g , tobacco industry
- the fermentation conditions depend on the desired fermentation product and fermenting organism and can easily be determined by one skilled in the art
- sugars released from the celiulosic matenal as a result of the pretreatment and enzymatic hydrolysis steps are fermented to a product e g ethanol, by a fermenting organism such as yeast Hydrolysis (saccha ⁇ fication) and fermentation can be separate or simultaneous
- yeast Hydrolysis saccha ⁇ fication and fermentation
- SSCF simultaneous sacchanfication and cofermentation
- HHF simultaneous sacchanfication and cofermentation
- SHCF separate hydrolysis and co- fermentation
- HHCF hybrid hydrolysis and fermentation
- DMC direct microbial conversion
- Any suitable hydrolyzed cellulosic material can be used in the fermentation step in practicing the present invention The material is generally selected based on the desired fermentation product, i.e.
- substrates suitable for use in the methods of present invention include cellulosic matenals, such as wood or plant residues or low molecular sugars DP 1-3 obtained from processed cellulosic material that can be metabolized by the fermenting microorganism and which can be supplied by direct addition to the fermentation medium
- fermentation medium is understood herein to refer to a medium before the fermenting m ⁇ croorgan ⁇ sm(s) ⁇ s(are) added, such as, a medium resulting from a sacchanfication process, as well as a medium used in a simultaneous saccharification and fermentation process (SSF)
- Fermenting microorganism refers to any microorganism including bacterial and fungal organisms, suitable for use in a desired fermentation process to produce a fermentation product
- the fermenting organism can be C 6 and/or C 5 fermenting organisms, or a combination thereof.
- C 6 and C 5 fermenting organisms are well known in the art Suitable fermenting microorganisms are able to ferment, / e convert sugars, such as glucose, xylose, xylulose, arabinose, maltose, mannose, galactose, or oligosaccharides, directly or indirectly into the desired fermentation product
- sugars such as glucose, xylose, xylulose, arabinose, maltose, mannose, galactose, or oligosaccharides
- fermenting microorganisms that can ferment C6 sugars include bacterial and fungal organisms, such as yeast Preferred yeast includes strains of the Saccnaromyces spp , preferably Saccharomyces cerevisiae
- yeast Preferred yeast includes strains of the Saccnaromyces spp , preferably Saccharomyces cerevisiae
- Other fermenting organisms include strains of Zymomonas such as Zymomonas mobilis, Hansenula such as Hansenula anomala Klyveromyces, such as K
- the yeast is a Saccharomyces spp In a more preferred aspect, the yeast is Saccharomyces cerevisiae. In another more preferred aspect, the yeast is Saccharomyces distaticus In another more preferred aspect the yeast is
- yeast Saccharomyces uvarum
- yeast is a Kluyveromyces
- yeast is Kluyveromyces marxianus
- yeast is Kluyveromyces fragilis
- yeast is a Candida
- yeast is Candida boidinit
- the yeast is Candida brassicae In another more preferred aspect, the yeast is Candida diddensn In another more preferred aspect, the yeast is Candida pseudotroptcalts In another more preferred aspect the yeast is
- the yeast is a Ctavispora In another more preferred aspect, the yeast is Clavispora iusitaniae In another more preferred aspect, the yeast is Clavispora op ⁇ ntiae In another preferred aspect, the yeast is a Pachysolen In another more preferred aspect, the yeast is Pachysolen tannophilus In another preferred aspect, the yeast is a Pichia In another more preferred aspect, the yeast is a Pichia stiprtis In another preferred aspect, the yeast is a Bretannomyces In another more preferred aspect, the yeast is Bretannomyces cla ⁇ senti (Philippidis G P ,
- Bacteria that can efficiently ferment hexose and pentose to ethanol include for example Zymomonas mobilis and Clostridium thermocellum (Philippidis 1996 supra)
- the bacterium is a Zymomonas In a more preferred aspect the bacterium is Zymomonas mobilis In another preferred aspect, the bacterium is a Clostridium In another more preferred aspect, the bacterium is Clostridium thermoceHum
- yeast suitable for ethanol production includes, e.g. , ETHANOL RED"- yeast (available from Fermentis/Lesaffre, USA), FALl TM (available from Fleischmann s Yeast USA), SUPERSTARTTM and THERMOSACCTM fresh yeast (available from Ethanol Technology, Wl, USA), BIOFERMTM AFT and XR (available from NABC - North American Byproducts Corporation, GA USA), GERT STRANDTM (available from Gert Strand AB, Sweden), and FERMIOLTM (available from DSM Specialties)
- the fermenting microorganism has been genetically modified to provide the ability to ferment pentose sugars, such as xylose utilizing, arabinose utilizing, and xylose and arabinose co-utilizing microorganisms
- the genetically modified fermenting microorganism is
- the genetically modified fermenting microorganism is Zymomonas mobilis. In another preferred aspect, the genetically modified fermenting microorganism is Escherichia coli. In another preferred aspect, the genetically modified fermenting microorganism is Klebsiella oxytoca. It is well known in the art that the organisms described above can also be used to produce other substances, as described herein.
- the fermenting microorganism is typically added to the degraded lignocellulose or hydrolysate and the fermentation is performed for about 8 to about 96 hours, such as about 24 to about 60 hours.
- the temperature is typically between about 26 1 C to about 60°C. in particular about 32°C or 50°C, and at about pH 3 to about pH 8, such as around pH 4-5. 6. or 7.
- the yeast and/or another microorganism is applied to the degraded lignocellulose or hydrolysate and the fermentation is performed for about 12 to about 96 hours, such as typically 24-60 hours,
- the temperature is preferably between about 20°C to about 60°C, more preferably about 25°C to about 50°C, and most preferably about 32*C to about 50°C, in particular about 32°C or 50°C
- the pH is generally from about pH 3 to about pH 7. preferably around pH 4-7
- some bacterial fermenting organisms for example, have higher fermentation temperature optima.
- Yeast or another microorganism is preferably applied in amounts of approximately 10 5 to 10 c , preferably from approximately 1o 7 to 1o 10 .
- SSF simultaneous saccharification and fermentation
- ethanol obtained according to the methods of the invention can be used as e g y fuel ethanol, drinking ethanol. / e potable neutral spints, or industrial ethanol
- a fermentation stimulator can be used in combination with any of the enzymatic processes described herein to further improve the fermentation process, and in particular, the performance of the fermenting microorganism, such as, rate enhancement and ethanol yield
- a "fermentation stimulator” refers to stimulators for growth of the fermenting microorganisms in particular, yeast Preferred fermentation stimulators for growth include vitamins and minerals Examples of vitamins include multivitamins, biotin, pantothenate nicotinic acid, meso-inositol, thiamine, py ⁇ doxine, para-aminobenzoic acid folic acid, riboflavin, and Vitamins A, B, C D, and E See for example, Alfenore et al , Improving
- a fermentation product can be any substance derived from the fermentation
- the fermentation product can be without limitation, an alcohol (e g , arabinitol butanol ethanol, glycerol methanol, 1 ,3-propaned ⁇ ol sorbitol, and xylitol), an organic acid (e g acetic acid acetonic acid adipic acid ascorbic acid citric acid 2,5-d ⁇ keto-D-gluco ⁇ c acid, formic acid, fumaric acid glucanc acid gluconic acid, glucuronic acid, glutaric acid 3-hydroxyprop ⁇ on ⁇ c acid itaconic acid, lactic acid, malic acid malonic acid, oxalic acid, propionic acid, succinic acid, and xylonic acid) a ketone (e.g., acetone), an amino acid (e g , aspartic acid glutamic acid, glycine, lysine, se ⁇ ne, and threonine
- the fermentation product is an alcohol
- the term "alcohol' encompasses a substance that contains one or more hydroxy! moieties
- the alcohol is arabinitol
- the alcohol is butanol
- the alcohol is ethanol
- the alcohol is glycerol
- the alcohol is methanol
- the alcohol is 1 3-propaned ⁇ ol
- the alcohol is sorbitol
- the alcohol is xyiitol See, for example, Gong C S , Cao, N J , Du, J , and Tsao, G T , 1999 Ethanol production from renewable resources, in Advances in Biochemical Engineering/Biotechnology, Scheper, T , ed Springer- Verlag Berlin Heidelberg, Germany, 65 207-241 , Silveira M M , and Jonas, R , 2002, The biotechnological production of
- the fermentation product is an organic acid
- the organic acid is acetic acid
- the organic acid is acetonic acid
- the organic acid is adipic acid
- the organic acid is ascorbic acid
- the organic acid is citric acid
- the organic acid is 2 5-d ⁇ keto-D-glucon ⁇ c acid
- the organic acid is formic acid
- the organic acid is fumanc acid
- the organic acid is glucanc acid
- the organic acid is gluconic a ⁇ d
- the organic acid is glucuronic acid
- the organic acid is glutaric acid
- the organic a ⁇ d is 3-hydroxyprop ⁇ on ⁇ c a ⁇ d
- the organic acid is itaconic acid
- the organic acid is lactic acid
- the organic acid is malic
- the fermentation product is an amino acid
- the organic acid is aspartic acid
- (he amino aod is glutamic acid
- the amino acid is glycine.
- the amino acid is lysine
- the amino acid is serine.
- the amino acid is threonine See, for example, Richard, A,, and Margarrtis, A.,
- the fermentation product is a gas.
- the gas is methane
- the gas is H;
- the gas is CO;
- the gas is CO See, for example, Kataoka, N , A. Miya, and K. Kinyama. 1997, Studies on hydrogen production by continuous culture system of hydrogen-producing anaerobic bacteria, Water Science and Technology 36 (6-7)- 41-47: and Gunaseelan V N in Biomass and Bioenergy, VoI 13 (1-2), pp 83-1 14 1997, Anaerobic digestion of biomass for methane production- A review
- the fermentation ⁇ roduct(s) can be optionally recovered from the fermentation medium using any method known in the art including, but not limrted to, chromatography, eledrophoretic procedures, differential solubility, distillation, or extraction
- alcohol is separated from the fermented cellulosic material and purified by conventional methods of distillation. Ethanol with a purity of up to about
- 96 vol.% can be obtained, which can be used as, for example fuel ethanol, drinking ethanol, / e , potable neutral spinis, or industnal ethanol.
- the cellulolytic enzyme composition may comprise any protein involved in the processing of a cellulose-containing material to glucose, or hemicellulose to xylose, mannose, galactose, and arabmose, their polymers, or products derived from them as described below
- the cellulolytic enzyme composition comprises one or more enzymes selected from the group consisting of an endoglucanase, a cellobiohydrolase and a beta-glucosidase
- the cellulolytic enzyme composition further comprises one or more additional enzyme activities to improve the degradation of the cellulose-containing material
- Preferred additional enzymes are hemicellulases, esterases (e g., lipases, phospholipases and/or cutmases), proteases, laccases, peroxidases, or mixtures thereof
- the cellulolytic enzyme composition may be a monocomponent preparation e g , an endoglucanase, a multicomponent preparation e g endoglucanase(s) DClob ⁇ ohydrolase(s), and beta-glucosidase(s). or a combination of multicomponent and monocomponent protein preparations
- the cellulolytic proteins may have activity, / e , hydrolyze the cellulose-containing material, either in the acid, neutral or alkaline pH- range
- the cellulolytic proteins used in the present invention may be monocomponent preparations, i.e. , a component essentially free of other cellulolytic components
- the single component may be a recombinant component, / e . produced by cloning of a DNA sequence encoding the single component and subsequent cell transformed with the DNA sequence and expressed in a host (see, for example, WO 91/17243 and WO 91/17244)
- the host cell may be a heterologous host (enzyme is foreign to host) or the host may also be a wild-type host (enzyme is native to host)
- Monocomponent cellulolytic proteins may also be prepared by purifying such a protein from a fermentation broth
- the enzymes used in the present invention may be in any form suitable for use in the processes described herein, such as, for example, a crude fermentation broth wrth or without cells, a dry powder or granulate a non-dusting granulate, a liquid a stabilized liquid, or a protected enzyme Granulates may be produced, e g , as disclosed in U S Patent Nos 4,106,991 and 4,661,452, and may optionally be coated by process known m the art
- Liquid enzyme preparations may, for instance, be stabilized by adding stabilizers such as a sugar, a sugar alcohol or another poiyol, and/or lactic acid or another organic acid according to established process
- Protected enzymes may be prepared according to the process disclosed in EP 238,216
- a polypeptide having cellulolytic enzyme activity may be a bacterial polypeptide
- the polypeptide may be a gram positive bacterial polypeptide such as a Bacillus. Streptococcus Streptomyces, Staphylococcus, Enterococcus Lactobacillus. Lactococcus, Clostridium Geobacill ⁇ s, or Oceanobactll ⁇ s polypeptide having cellulolytic enzyme activity, or a Gram negative bacterial polypeptide such as an E coli Pseudomonas. Salmonella Campylobacter Helicobacter, Ftavobactenum, Fusobactenum, llyobacter. Neisseria, or Ureaplasma polypeptide having cellulolytic enzyme activity.
- the polypeptide is a Bacillus alkabphtlus, Ba ⁇ llus amylokquefactens Bacillus brevts Bacillus ⁇ rculans, Ba ⁇ llus clausn Ba ⁇ llus coagulans. Bacillus firmus Bacillus lautus, Bacillus lentus, Bacillus ltcheniformis
- Bacillus megatenum, Bacillus pumil ⁇ s, Bacillus siearothermophilus, Bacillus subtilis, or Bacillus thuringiensis polypeptide having cellulolytic enzyme activity Bacillus megatenum, Bacillus pumil ⁇ s, Bacillus siearothermophilus, Bacillus subtilis, or Bacillus thuringiensis polypeptide having cellulolytic enzyme activity
- the polypeptide is a Streptococcus equistmilis, Streptococcus pyogenes. Streptococcus ⁇ bens or Streptococcus equi subsp Zooepidemicus polypeptide having cellulolytic enzyme activity. In another preferred aspect, the polypeptide is a Streptomyces achromogenes,
- the polypeptide having cellulolytic enzyme activity may also be a fungal polypeptide and more preferably a yeast polypeptide such as a Candida. Kluyveromyces, Pichia, Saccharomyces, Schizosaccharomyces, or Yarrowia polypeptide having cellulolytic enzyme activity or more preferably a filamentous fungal polypeptide such as aan Acremonium, Agartcus, Alternana, Aspergillus, Aureobasidium Botryospaena, Cenponopsis, Chaetomidium, Cbrysospori ⁇ m, Claviceps, Cochliobolus, Coprmopsis, Coptotermes, Corynascus, Cryphonectria, Cryptococc ⁇ s, Diplodia, Exidia, Filibasidium, Fusan ⁇ m Gibberella Holomastigototdes Humicola Irpex.
- a yeast polypeptide such as a Candida. Kluyveromy
- Lentinula Leptospaeria Magnaporthe Melanocarpus, Me ⁇ pitus Mucor Myceliopbthora, Neocallimastix, Neurospora, Paecilomyces, Penicillium, Phanerochaete, Piromyces, Poitrasia, Pseudoptedania, Pseudotrichonympha, Rhiiomucor, Schizophyllum. Scytalidium, Talaromyces Thermoascus Thielavia, Tolypocladium, Tnchodeima, Tnchophaea, Verticillium, Volva ⁇ ella, or Xyiana polypeptide having cellulolytic enzyme activity
- polypeptide is a Saccharomyces carlsbergensis, Saccharomyces cerevistae, Saccharomyces diastaticus, Saccharomyces douglasii, Saccharomyces kluyveri, Saccharomyces norbensis, or Saccharomyces oviformis polypeptide having cellulolytic enzyme activity
- polypeptide is an Acremonium cellulolyticus.
- Aspergillus awamori Aspergillus fumigatus, Aspergillus foetidus.
- Aspergillus japonicus Aspergillus nidulans, Aspergillus niger, Aspergillus oryzae, Chrysosponum keratinophilum Chrysosponum tucknowense Chrysosponum tropicum.
- Chrysosponum merdarium Chrysosponum inops ⁇ Chrysosporium pannicola Chrysosponum q ⁇ eenslandtcum, Chrysosponum zonatum, Fusanum bactndioides, Fusanutn cereatis, Fusanum crookwellense.
- Fusanum culmorum Fusanum graminearum, Fusanum gramtnum, Fusan ⁇ m heterosporum, Fusanum negundi, Fusanum oxysporum, Fusanum reticulatum, Fusanum roseum Fusanum sambucinum, Fusanum sarcochro ⁇ m, Fusahum sporotrichioides, Fusanum sulphureum, Fusanum tor ⁇ losum, Fusanum trichothectoides, Fusanum venenatum, Humtcola gr/sea, Humicoia insolens, Humicola lanuginosa, Irpex lacteus.
- Mucor miehei Myceliophthora thermophila Neurospora crassa, Pem ⁇ llium funiculosum Penicitlnim pu ⁇ urogenum Phanerochaete chrysosporium, Thielavia achromatica Thielavta albomyces, Thielavia albopiiosa, Thielavia a ⁇ stratetnsts Thi ⁇ lavia fimett Thielavia microspora Thielavia ovispora, Thielavia peruviana, Thielavia spededoni ⁇ m Thielavia setosa.
- Thielavia subthermophiia Thielavia terrestns, Tnchoderma harzianum, Tnchoderma konmgti, Tnchoderma longibrachiatum Tnchoderma rees ⁇ i Tnchoderma viride, or Tnch ⁇ phaea saccata polypeptide having cellulolytic enzyme activity
- One or more components of the cellulolytic enzyme composition may be a recombinant component i.e. , produced by cloning of a DNA sequence encoding the single component and subsequent cell transformed with the DNA sequence and expressed in a host (see for example, WO 91/17243 and WO 91/17244)
- the host is preferably a heterologous host (enzyme is foreign to host), but the host may under certain conditions also be a homologous host (enzyme is native to host)
- Monocompone ⁇ t cellulolytic proteins may also be prepared by purifying such a protein from a fermentation broth
- cellulolytic protein preparations suitable for use in the present invention include, for example, CELLUCLASTTM (available from Novozymes A/S) and NOVOZYM TM 188 (available from Novozymes A/S)
- Other commercially available preparations comprising cellulase that may be used include CELLUZYMETM, CEREFLOTM and ULTRAFLOTM (Novozymes A/S), LAMINEXTM and SPEZYMETM CP (Genencor Int ) ROHAMENTTM 7069 W (R ⁇ hm GmbH), and FIBREZYME® LDI FIBREZYME® LBR, or VISCOSTARiS ) 150L (Dyadic International lnc Jupiter, FL, USA)
- the cellulase enzymes are added in amounts effective from about O 001% to about 5 O % wt of solids, more preferably from about O 025% to about 4 0% wt of solids, and most preferably from about 0 005% to
- bactenal endoglucanases examples include, but are not limited to, an Acidotherm ⁇ s cetlutofyticus endoglucanase (WO 91/05039 WO 93/15186 U S Patent No 5,275,944, WO 96/02551 , U S Patent No 5,536 655 WO 00/70031 , WO 05/093050), Thermobifida f ⁇ sca endoglucanase III (WO 05/093050). and Thermobifida fusca endoglucanase V (WO 05/093050)
- fungal endoglucanases examples include, but are not limited to a Tnchoderma reesei endoglucanase I (Penttila et al. 1986 Gene 45 253-263 GENBANK vl accession no M15665) Tnchoderma reesei endoglucanase Il (Saloheimo. et al. , 1988, Gene 63 11-22 GENBANK 0 " 1 accession no. M19373); Tnchoderma reesei endoglucanase III (Okada et al. , 1988. Appl Environ. Microbiol 64 555-563, GENBANKTM accession no.
- Trichoderma reesei endoglucanase IV (Saloheimo et al , 1997 Eur J Biochem. 249. 584-591 ; GENBANKTM accession no. Y11113). and Tnchoderma reesei endoglucanase V (Saloheimo et ⁇ / , 1994, Molecular Microbiology 13 219-228, GENBANK U) accession no Z33381), Aspergillus acuteatus endoglucanase (Ooi et al. , 1990.
- Thielavia terrestris NRRL 8126 CEL6C endoglucanase (SEQ ID NO: 35), Thtelavia terrestris NRRL 8126 CEL7C endoglucanase (SEQ ID NO: 37), Thtelavia terrestris NRRL 8126 CEL7E endoglucanase (SEQ ID NO: 39); Thielavia terrestns NRRL 8126 CEL7F endoglucanase (SEQ ID NO: 41) Cladorrhinum foecundissimum ATCC 62373 CEL7A endoglucanase (SEQ ID NO:.
- Trichoderma reeset strain No VTT-D-80133 endoglucanase (SEQ ID NO: 45, GENBANK 1 M accession no M15665)
- SEQ ID NO: 45 GENBANK 1 M accession no M15665
- SEQ ID NO:. 31 , SEQ ID NO:; 33, SEQ ID NO:: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41 , SEQ ID NO: 43, and SEQ ID NO: 45 described above are encoded by the mature polypeptide coding sequence of SEQ ID NO:; 24 SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO:. 30, SEQ ID NO:.
- cellobtohydrolases useful in the methods of the present invention include, but are not limited to, Tnchoderma reesei cellobiohydrolase I (SEQ ID NO:. 47), Trichoderma reesei cellobiohydrolase Il (SEQ ID NO: 49), Humicola insolens cellobiohydrolase I (SEQ ID NO:: 51), Myceliophthora thermophila cellobiohydrolase Il (SEQ ID NO:.
- Thielavia terrestris cellobiohydrolase Il (CEL6A) (SEQ ID NO: 57), Chaetomium thermophilum cellobiohydrolase I (SEQ ID NO: 59), and Chaetomium thermophilum cellobiohydrolase Il (SEQ ID NO: 61)
- the cellobiohydrolases Of SEQ ID NO:' 47, SEQ ID NO:' 49, SEQ ID NO: 51 , SEQ ID NO:: 53, SEQ ID NO: 55 SEQ ID NO: 57, SEQ ID NO: 59, and SEQ ID NO: 61 described above are encoded by the mature polypeptide coding sequence of SEQ ID NO: 46 SEQ ID NO: 48, SEQ ID NO: 50 SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, and SEQ ID NO: 60, respectively
- beta-glucosidases useful in the methods of the present invention include, but are
- the Aspergillus oryzae polypeptide having beta-glucosidase activity can be obtained according to WO 2002/095014
- the Aspergillus fumig ⁇ tus polypeptide having beta-glucosidase activity can be obtained according to WO 2005/047499
- the Penicillium brasilianum polypeptide having beta-glucosidase activity can be obtained according to WO 2007/019442
- the Aspergillus niger polypeptide having beta- glucosidase activity can be obtained according to Dan et al , 2000, J Biol Cham 275 4973-4980
- the Aspergillus aculeatus polypeptide having beta-glucosidase activity can be obtained according to Kawaguchi et al 1996 Gene 173 287-288
- the beta-glucosidase may be a fusion protein
- the beta- glucosidase is the Aspergillus oryzae beta-glucosidase variant BG fusion protein of SEQ ID NO: 73 or the Aspergillus oryzae beta-glucosidase fusion protein of SEQ ID NO: 75
- the Aspergillus oryzae beta-glucosidase variant BG fusion protein is encoded by the polynucleotide of SEQ ID NO: 72 or the Aspergillus oryzae beta- glucosidase fusion protein is encoded by the polynucleotide of SEQ ID NO: 74
- endoglucanases, cellobiohydrolases, and beta-glucosidases are disclosed in numerous Glycosyl Hydrolase families using the classification according to Henrissat B 1991 , A classification of glycosyl hydrolases based on amino-acid sequence similarities, Biochem J 280 309-316, and Henrissat B . and Bairoch A 1 1996, Updating the sequence-based classification of glycosyl hydrolases Biochem J 316 695-696
- cellulolytic enzymes that may be used in the present invention are described in EP 495,257, EP 531.315 EP 531 ,372 WO 89/09259, WO 94/07998.
- WO 95/24471 WO 96/11262, WO 96/29397 WO 96/034108 WO 97/14804, WO 98/08940, WO 98/012307, WO 98/13465, WO 98/015619 WO 98/015633, WO 98/028411 , WO 99/06574, WO 99/10481 , WO 99/025846, WO 99/025847 WO 99/031255.
- the cellulolytic enzymes used in the methods of the present invention may be produced by fermentation of the above-noted microbial strains on a nutrient medium containing suitable carbon and nitrogen sources and inorganic salts, using procedures known in the art (see.
- Suitable media are available from commercial suppliers or may be prepared according to published compositions (e g in catalogues of the Amencan Type Culture Collection) Temperature ranges and other conditions suitable for growth and cellulolytic enzyme production are known in the art (see, e g , Bailey. J E , and Ollis, D F .
- the fermentation can be any method of cultivation of a cell resulting in the expression or isolation of a cellulolytic enzyme Fermentation may therefore, be understood as comprising shake flask cultivation, or small- or large-scale fermentation (including continuous, batch, fed-batch, or solid state fermentations) in laboratory or industnal fermentors performed in a suitable medium and under conditions allowing the cellulolytic enzyme to be expressed or isolated
- the resulting cellulolytic enzymes produced by the methods descnbed above may be recovered from the fermentation medium and punfied by conventional procedures
- the present invention also relates to nucleic acid constructs compnsing a gene encoding a protein wherein the gene is operably linked to a nucleotide sequence encoding a signal peptide comprising or consisting of amino acids 1 to 17 of SEQ ID NO: 2 or amino acids 1 to 15 of SEQ ID NO: 4. wherein the gene is foreign to the nucleotide sequence
- the nucleotide sequence comprises or consists of nucleotides 1 to 51 of SEQ ID NO: 1 or nucleotides 1 to 45 of SEQ ID NO 3
- the present invention also relates to recombinant expression vectors and recombinant host cells comprising such nucleic acid constructs.
- the present invention also relates to methods of producing a protein comprising (a) cultivating such a recombinant host cell under conditions suitable for production of the protein; and (b) recovering the protein.
- the protein may be native or heterologous to a host cell.
- the term "protein” is not meant herein to refer to a specific length of the encoded product and, therefore, encompasses peptides, oligopeptides, and proteins.
- the term “protein” also encompasses two or more polypeptides combined to form the encoded product.
- the proteins also include hybrid polypeptides that comprise a combination of partial or complete polypeptide sequences obtained from at least two different proteins wherein one or more (several) may be heterologous or native to the host cell. Proteins further include naturally occurring allelic and engineered variations of the above mentioned proteins and hybrid proteins.
- the protein is a hormone or variant thereof, enzyme, receptor or portion thereof, antibody or portion thereof, or reporter.
- the protein is an oxidoreductase. transferase, hydrolase, lyase, isomer ase, or ligase.
- the protein is an aminopeptidase, amylase, carbohydrase, carboxypeptidase, catalase, cellulase, chitinase, cutinase, cyclodextrin glycosyltransferase, deoxyribonuclease, esterase, alpha-galactosidase, beta- galactostdase, glucoamylase, alpha-glucosidase, beta-glucosidase, invertase, laccase, another lipase, ma ⁇ nosidase, mutanase, oxidase, pectinolytic enzyme, peroxidase, phytase, polyphenoloxidase, proteolytic enzyme, ribonuclease, transglutaminase or xylanase.
- the gene may be obtained from any prokaryotic, eukaryotic, or other source.
- BA medium was composed per liter of 10 g of com steep liquor dry matter, 10 g of NH,NO 3 , 10 g of KH 2 PO,, 0 75 g of MgSO 4 7H : O 0 1 ml of pluronic and 0 5 g of CaCQ;, The pH was adjusted to 6 5 before autoclaving YEG medium was composed per liter of 20 g of dextrose and 5 g of yeast extract
- Minimal medium plates were composed per liter of 6 g of NaNO 3 , 0 52 g of KCl, 1.52 g of KH 2 PO 4 , 1 ml of COVE trace elements solution 20 g of Noble agar, 20 ml of 50% glucose 2 5 ml of MgSO 4 7H 2 O and 20 ml of a 0 02% biotin solution COVE trace metals solution was composed per liter of 0 04 g of Na 2 B 4 O 3 10H-O,
- M410 medium was composed per liter of 50 g of maltose, 50 g of glucose, 2 g of MgSO. 7H-O, 2 g of KH-PO 4 , 4 g of anhydrous citric acid 8 g of yeast extract, 2 g of urea, O 5 g of CaCI;, and O 5 ml of AMG trace metals solution
- AMG trace metals was composed per liter of 14 3 g of ZnSO,- 7H 2 O 2 5 g of CuSO 4 5H 2 O, 0.5 g of NiCl 2 6H 2 O, 13.8 g of FeSO 4 7H 2 O, 8 5 g of MnSO, 7H 2 O and 3 g of crtric acid
- a doubly charged tryptic peptide ion of 615 84 m/z sequence was determined to be Val-Asp-Asn-AJa-Ala- Thr-Ala-Ser-Pro-Ser-Gly-[Leu]-Lys (SEQ ID NO: 6)
- a doubly charged tryptic peptide ion of 715.44 m/z sequence was determined to be [Leu]-Pro-AJa-Asp-[Leu]-Pro-Ser-Gly- Asp-Tyr-[Leu]-(Leu]-Arg (SEQ ID NO:: 7)
- a doubly charged tryptic peptide ion of 988.58 m/z sequence was determined to be Gly-Pro-[L ⁇ u]-[Gln]-Val-Tyr-[Leu]-Ala-Lys (SEQ ID NO: ' 8),
- Example 2 Preparation of Myceliophthor ⁇ thermophila CBS 117.65 cDNA pool Myceliophthora thermophila CBS 117.65 was cultivated in 200 ml of BA medium at 3CTC for five days at 200 rpm Mycelia from the shake flask culture were harvested by filtering the contents through a funnel lined with MIRACLOTHTM (CalBiochem, San Diego CA. USA). The mycelia were then sandwiched between two MIRACLOTHTM pieces and blotted dry with absorbent paper towels The mycelial mass was then transferred to plastic centrifuge tubes and frozen in liquid nitrogen. Frozen mycelia were stored in a -80°C freezer until use.
- MIRACLOTHTM CalBiochem, San Diego CA. USA
- RNA extraction was performed with g ⁇ anidinium thiocyanate followed by uttrace ⁇ tnfugation through a 5.7 M CsCI cushion, and isolation of poly(A)+RNA was carried out by ol ⁇ go(dT)-cellulose affinity chromatography, using the procedures described in WO 94/14953
- Double-stranded cDNA was synthesized from 5 ⁇ g of poly(A)+ RNA by the RNase H method (Gubler and Hoffman, 1983, Gene 25 263-269, Sambrook et al. 1989, Molecular cloning: A laboratory manual, Cold Spring Harbor lab , Cold Spnng Harbor, NY, USA)
- the poly(A)+ RNA (5 ⁇ g in 5 ⁇ l of DEPC (0 1% d ⁇ ethylpyrocarbonate)-treated water) was heated at 70°C for 8 minutes in a pre- stliconized, RNase-free EPPENDORF® tube, quenched on ice and combined in a final volume of 50 ⁇ l with reverse transcriptase buffer composed of 50 mM Tris-HCI, pH 8 3, 75 mM KCl, 3 mM MgCl 2 , 10 mM dithiothreitol (DTT) (Bethesda Research Laboratories, Bethesda, MD, USA), 1 m
- First-strand cDNA was synthesized by incubating the reaction mixture at 45 C for 1 hour. After synthesis, the mRNA.cDNA hybrid mixture was gel filtrated through a MICROSPIN 1 " S- 400 HR spin column (GE Healthcare, Piscataway, NJ. USA) according to the manufacturer's instructions
- the hybnds were diluted in 250 ⁇ l of second strand buffer (20 mM Tris-HCI, pH 7.4, 90 mM KCI 4.6 mM MgCl 2 , 10 mM (NH 4 ) 2 SO 4 , 0 16 mM NAD) containing 200 ⁇ M of each dNTP, 60 units of E. coli DNA polymerase I (GE Healthcare. Piscataway, NJ USA), 5.25 units of RNase H (Promega, Madison. Wl 1 USA), and 15 units of E colt DNA ligase (Boehringer Mannheim Manheim, Germany).
- second strand buffer 20 mM Tris-HCI, pH 7.4, 90 mM KCI 4.6 mM MgCl 2 , 10 mM (NH 4 ) 2 SO 4 , 0 16 mM NAD
- Second strand cDNA synthesis was performed by incubating the reaction tube at 16°C for 2 hours and an additional 15 minutes at 25°C, The reaction was stopped by addition of EDTA to a final concentration of 20 mM followed by phenol and chloroform extractions.
- the double-stranded cDNA was precipitated at -20°C for 12 hours by addition of 2 volumes of 96% ethanol and 0.2 volume of 10 M aminonium acetate, recovered by centrifugation at 13,000 x g, washed in 70% ethanol, dried, and resuspended in 30 ⁇ l of Mung bean nuclease buffer (30 mM sodium acetate pH 4 6, 300 mM NaCI, 1 mM ZnSO,. 0.36 mM DTT, 2% glycerol) containing 25 units of Mung bean nuclease (GE HeaHhcare, Piscataway, NJ, USA).
- the single-stranded hair-pin DNA was clipped by incubating the reaction at 30°C for 30 minutes, followed by addition of 70 ⁇ l of 10 mM Tris-HCl-1 mM EDTA pH 7.5, phenol extraction, and precipitation with 2 volumes of 96% ethanol and 0.1 volume of 3 M sodium acetate pH 5,2 on ice for 30 minutes.
- the double-stranded cDN As were recovered by centrifugation at 13,000 x g and blunt-ended in 30 ⁇ l of T4 DNA polymerase buffer (20 mM Tns-acetate, pH 7.9, 10 mM magnesium acetate, 50 mM potassium acetate, 1 mM DTT) containing 0,5 mM of each dNTP and 5 units of T4 DNA polymerase (New England Biolabs, Ipswich. MA USA) by incubating the reaction mixture at 16 -C for 1 hour.
- T4 DNA polymerase buffer (20 mM Tns-acetate, pH 7.9, 10 mM magnesium acetate, 50 mM potassium acetate, 1 mM DTT) containing 0,5 mM of each dNTP and 5 units of T4 DNA polymerase (New England Biolabs, Ipswich. MA USA) by incubating the reaction mixture at 16 -C for 1 hour.
- Myceliophthora thermophila CBS 202 75 and Myceliophthora thermophila CBS 1 17 65 strains were grown in 100 ml of YEG medium in a baffled shake flask at 45°C and 200 rpm for 2 days
- Mycelia were harvested by filtration using MIRACLOTH® (Calbiochem, La JoIIa, CA, USA), washed twice in deio ⁇ ized water and frozen under liquid nitrogen
- Frozen mycelia were ground by mortar and pestle, to a fine powder, and total DNA was isolated using a DNEASY® Rant Maxi Kit (QIAGEN lnc , Valencia, CA, USA)
- Example 4 Molecular screening of a Family 61 gene from Myceliophthora thermophila
- CI61A sense and CI61A anti primers were used in a PCR reaction composed of 100 ng of Myceliophthora thermophila CBS 117 65 cDNA pool or Myceliophthora thermophila CBS 117 65 genomic DNA 1 X ADVANTAGE® GC-MeIt LA Buffer (Clontech Laboratories, lnc , Mountain View, CA, USA) 0 4 mM each of dATP.
- dTTP, dGTP, and dCTP and 1 0 unit of Taq DNA polymerase (New England BioLabs, Ipswich, MA) in a final volume of 30 ⁇ l
- the amplifications were performed using a ROBOCYCLER® 40 (Strategene, La JoIIa, CA, USA) programmed for 1 cycle at 96*C for 3 minutes; 1 cycle at 72*C for 3 minutes dunng which DNA polymerase was added, 30 cycles each at 94°C for 50 seconds 52°C for 50 seconds. and 72"C for 90 seconds, followed by a final extension of 7 minutes at 72"C.
- reaction products were fractionated by 1% agarose gel electrophoresis in 40 mM Tns base- 20 mM sodium acetate- 1 mM disodium EDTA (TAE) buffer and a band of greater than 400-500 bp was excised, purified using a QIAEX II® Gel Extraction Kit (QIAGEN lnc , Valencia, CA, USA) according to the manufacturer's instructions, and subcloned using a TOPO® TA Kit (Invitrogen, Carisbad, CA, USA) Plasmid DNA was extracted from a number of E colt transformants and sequenced Sequence analysis revealed several clones containing a coding region of one Family 61 gene designated gh61f
- Example 5 Isolation of a full-length Family 61 gene ⁇ gh61a) from Myceliophthora thermophila CBS 202.75
- a full-length Family 61 gene (gh61a) from Myceliophthora thermophila CBS 202 75 was isolated using a GENOMEWALKERTM Universal Kit (Clontech Laboratories, Inc., Mountain View, CA USA) according to the manufacturer's instructions Briefly, total genomic DNA from Myceltophthora thermophila CBS 202 75 was digested separately with four different restriction enzymes ⁇ Dra I 1 Eco RV 1 Pvu II, and Stu I) that leave blunt ends.
- amplifications were performed using an EPPENDORF® MASTERCYCLER® 5333 programmed for pre-denaturing at 94°C for 1 minute 7 cycles each at a denaturing temperature of 94°C for 30 seconds, annealing and elongation at 72X for 5 minutes, and 32 cycles each at a denaturing temperature of 94°C for 30 seconds, annealing and elongation 67°C for 5 minutes followed by a final extension of 7 minutes at 67 C
- the secondary amplifications were composed of 1 ⁇ l of each primary PCR product as template, 0 4 mM each of dATP dTTP, dGTP, and dCTP 10 pmol of Adaptor Primer 2 (Clontech Laboratones lnc , Mountain View, CA, USA), 10 pmol of nested primer MtCel61A-R2 or MtCel61A-F2 1X ADVANTAGE® GC-MeIt LA Buffer and 1 25 units of ADVANTAGE® GC Genomic Polymerase Mix in a final volume of 25 ⁇ l
- the amplifications were performed using an EPPENDORF® MASTERCYCLER® 5333 programmed for pre-denatunng at 94°C for 1 minute, 5 cycles each at a denatunng temperature of 94X for 30 seconds annealing and elongation at 72°C for 5 minutes, and 20 cycles each at a denatunng temperature of 94°C for 30 seconds,
- Example 6 Characterization of the Myc ⁇ liophthora thermophila CBS 202.75 genomic sequence encoding a Family GH61A polypeptide having cellulolytic enhancing activity DNA sequencing of the PCR fragment was performed with a Perkin-Elmer
- the PCR consisted of fifty picomoles of forward and reverse primers in a PCR reaction composed of 100 ng of Myceliophthora thermophila CBS 202 75 genomic DNA, Pit Amplification Buffer (Invitrogen, Carlsbad, CA, USA), O 4 mM each of dATP, dTTP, dGTP, and dCTP, 1 mM MgCb and 2 5 units of Pfx DNA polymerase (Invrtrogen, Carlsbad, CA, USA) in a final volume of 50 ⁇ l
- the amplification was performed using an EPPENDORF® MASTERCYCLER® 5333 programmed for 1 cycle at 98°C for 3 minutes, and 30 cycles each at 98"C for 30 seconds, 60 v C for 30 seconds, and 72°C for 1 minute, , followed by a final extension of 15 minutes at 72X
- the heat block then went to a 4 'C soak cycle.
- reaction products were isolated by 1 0% agarose gel electrophoresis in TAE buffer and punfled using a MINELUTE® Gel Extraction Kit according to the manufacturer's instructions
- a MINELUTE® Gel Extraction Kit according to the manufacturer's instructions
- addition of 3' A-ove ⁇ t ⁇ angs was performed using Taq DNA polymerase (New England Biolabs Ipswich, MA, USA)
- E colt pSMa ⁇ 190 was deposited with the Agricultural Research Service Patent Culture Collection, Northern Regional Research Center, Peona, IL, USA, on December 5, 2007, and assigned accession number B-50083
- the nucleotide sequence (SEQ ID NO: 1) and deduced amino acid sequence (SEQ ID NO: 2) of the Mycehophthora thermophil ⁇ GH61A polypeptide having cellulolytic enhancing activity are shown in Figure 1
- the genomic polynucleotide encodes a polypeptide of 232 amino acids, interrupted by 2 mtrons of 88 and 137 bp
- the % G+C content of the full-length coding sequence and the mature coding sequence are 61 1% and 66.5% respectively
- a signal peptide of 17 residues was predicted
- the predicted mature protein contains 215 amino acids with a molecular mass of 22 6 kDa,
- Example 7 Isolation of a full-length Family 61 gene (gh61f) from Myceliophthora thermophila CBS 202.75
- a full-length Family 61 gene (gh61f) from Myceliophthora thermoplvla CBS 202 75 was isolated using a GENOMEWALKERTM Universal Kit (Clontech Laboratories, lnc , Mountain View, CA USA) according to the manufacturer's instructions Briefly.
- Upstream Region Pnmers MtGH61F-R1 5'-CCCTTGTGGCTGGCGTCCATGACATCGTC-3' (SEQ ID NO: 18) MtGH61F-R2 5'-GTGCCTCCAGATGGCCTTGACCGTGGTG-3' (SEQ ID NO: 19) Downstream Region Primers MtGH61F-F6 5'-GGCGGCGAGCACTACATGTGAGCCATTCCT-3' (SEQ ID NO: 20) MtGH61F-F7 5'-TGACGATCTCGC ⁇ GACCCG ⁇ GCAACAAGTG-3' (SEQ ID NO: 21)
- PCR amplifications Two primary PCR amplifications were performed, one to isolate the upstream region and the other to isolate the downstream region of the Myc ⁇ ltophthora thermopbila gh61f gene.
- Each PCR amplification 25 ⁇ l was composed of 1 > ⁇ (approximately 6 ng) of each library as template. O 4 mM each of dATP, dTTP, dGTP, and dCTP. 10 pmol of Adaptor Pnmer 1 (Clontech Laboratories, lnc , Mountain View, CA.
- primer MtGH61F-R1 or primer MtGH61 F-F6, 1X ADVANTAGE® GC-MeIt LA Buffer 10 pmol of primer MtGH61F-R1 or primer MtGH61 F-F6, 1X ADVANTAGE® GC-MeIt LA Buffer, and 1 ,25 units of ADVANTAGE® GC Genomic Polymerase Mix
- the amplifications were performed using an EPPENDORF® MASTERCYCLER® 5333 programmed for pre-denatu ⁇ ng at 94°C for 1 minute, 7 cycles each at a denaturing temperature of 94°C for 30 seconds, annealing and elongation at 72X for 5 minutes; and 32 cycles each at a denaturing temperature of 94°C for 30 seconds, annealing and elongation 67' 1 C for 5 minutes, followed by a final extension of 7 minutes at 67 'C.
- the secondary amplifications were composed of 1 ⁇ l of each primary PCR product as template. 0.4 mM each of dATP. dTTP. dGTP, and dCTP, 10 pmol of Adaptor Primer 2 (Clontech Laboratories, lnc , Mountain View. CA, USA), 10 pmol of nested primer MtGH61F-R2 or MtGH61F-F7, 1X ADVANTAGE® GC-MeIt LA Buffer, and 1 25 units of ADVANTAGE® GC Genomic Polymerase Mix in a final volume of 25 ⁇ l.
- the amplifications were performed using an EPPENDORF® MASTERCYCLER® 5333 programmed for pre-denaturing at 94°C for 1 minute, 5 cycles each at a denaturing temperature of 94°C for 30 seconds, annealing and elongation at 72°C for 5 minutes; and 20 cycles each at a denatunng temperature of 94°C for 30 seconds; annealing and elongation at 67°C for 5 minutes, followed by a final extension of 7 minutes at 67°C
- the reaction products were isolated by 1 0% agarose gel electrophoresis in TAE buffer where a 1.3 kb PCR product (upstream region) from the Pw Il library and a 1.2 kb PCR product (upstream region) from the Puv Il library were excised from the gel, purified using a MINELUTE® Gel Extraction Kit (QIAGEN Inc . Valencia. CA 1 USA) according to the manufacturer's instructions, and the PCR products were sequenced directly or subcloned
- Example 8 Characterization of the Myceliophthora thermophila genomic sequence encoding a Family GH61F polypeptide having cellulolytic enhancing activity DNA sequencing of the PCR fragments was performed with a Perkin-Elmer
- the PCR consisted of 50 picomoles of forward and reverse pnmers in a PCR reaction composed of 100 ng of Myceliophthora thermophila CBS 202 75 genomic DNA Pit Amplification Buffer (Invitrogen, Carlsbad, CA, USA), 04 mM each of dATP, dTTP, dGTP, and dCTP, 1 mM MgCb and 2 5 units of Pfx DNA polymerase (Invitrogen, Carlsbad, CA, USA) in a final volume of 50 ⁇ l
- the amplification were performed using an EPPENDORF® MASTERCYCLER® 5333 programmed for 1 cycle at 98°C for 3 minutes, and 30 cycles each at 98"C for 30 seconds. 60 v C for 30 seconds, and 72"C for 1 minute, followed by a final extension of 15 minutes at 72°C
- the heat block then went to a 4 'C soak cycle
- reaction products were isolated by 1 0% agarose gel electrophoresis in TAE buffer and punfled using a MINELUTE® Gel Extraction Kit according to the manufacturer's instructions
- a MINELUTE® Gel Extraction Kit according to the manufacturer's instructions
- addition of 3' A-ove ⁇ t ⁇ angs was performed using Taq DNA polymerase (New England Biolabs Ipswich, MA USA)
- the Mycehophthora thermophtla gh61f insert was confirmed by DNA sequencing E colt pSMa ⁇ 192 was deposited with the Agricultural Research Service Patent Culture Collection, Northern Regional Research Center, 1815 University Street, Peoria, IL, USA, on December 5, 2007, and assigned accession number B-50085
- the nucleotide sequence (SEQ ID NO: 3) and deduced amino acid sequence (SEQ ID NO:. 4) of the Myceliophthora thermophila GH61F polypeptide having cellulolytic enhancing activity are shown in Figure 1
- the genomic polynucleotide encodes a polypeptide of 235 amino acids interrupted by 2 mtrons of 62 and 84 bp
- the % G+C content of the full-length coding sequence and the mature coding sequence are 64.1% and 65.4% respectively
- a signal peptide of 15 residues was predicted
- the predicted mature protein contains 220 amino acids with a molecular mass of 23 kDa
- Example 9 Construction of an Aspergillus oryzae expression vector containing Myceliophthora thermophila CBS 202.75 genomic sequence encoding a Family GH61A polypeptide having cellulolytic enhancing activity
- the ligation reaction (50 ⁇ l) was composed of 1X InFusion Buffer (BD Biosciences. Palo Alto, CA 1 USA) 1X BSA (BD Biosciences, Palo Alto, CA, USA), 1 ⁇ l of Infusion enzyme (diluted 1 10) (BD Biosciences. Palo Allo, CA. USA), 100 ng of pAlLo2 digested with Nco I and Pac I and 50 ng of the Myceliophthora thermophila gh61a purified PCR product The reaction was incubated at room temperature for 30 minutes. One ⁇ l of the reaction was used to transform E. colt XL10 SOLOPACK® Gold Supercompetent cells (Stratagene. La JoIIa 1 CA. USA) An E.
- coli tra ⁇ sformant containing pSMa ⁇ 185 was detected by restriction digestion and plasmid DNA was prepared using a BIOROBOT® 9600 (QIAGEN Inc., Valencia, CA. USA). The Myceliophthora thermophiia gh ⁇ ia insert in ⁇ SMa ⁇ i85 was confirmed by DNA sequencing
- Example 10 Construction of an Aspergillus oryz ⁇ e expression vector containing Myceliophthora thermophiia CBS 202.75 genomic sequence encoding a Family GH61F polypeptide having cellulolytic enhancing activity
- Example 11 Expression of the Myceliophthora thermophiia Family 61 glycosyl hydrolase genes (gh61a and gh61f Individually in Aspergillus oryzae JaL355 Aspergillus ot ⁇ zae JaL355 (WO 2002/40694) protoplasts were prepared according to the method of Christensen et al. , 1988, Bio/Technology 6 1419-1422 Three ⁇ g of pSMa ⁇ 185 (gh ⁇ ia) or pSMa ⁇ 198 (gh61t) were transformed individually into Aspergillus oryzae JaL355
- Confluent Minimal Medium plates of each of the transformants were washed with 6 ml of 0 01% TWEEN® 20 and inoculated separately into 25 ml of M410 medium in 125 ml glass shake flasks and incubated at 34X, 250 rpm After 5 days incubation, 5 ⁇ l of supernatant from each culture were analyzed on CRITERION® 8-16% Tris-HCI gels with a CRITERION® Cell (Bio-Rad Laboratories lnc , Hercules, CA.
- Example 12 Effect of Mycelfophthora thermophila GH61A and GH61F polypeptides on enzymatic hydrolysis of pretreated corn stover
- Culture broth was prepared as decribed in Example 11 and concentrated approximately 20-fold using an Amicon ultrafiltration device (Millipore, Bedfored, MA , 10 kDa polyethersulfone membrane, 40 psi, 4°C) Protein concentration was estimated by densitometry following SDS-PAGE and Coomassie blue staining Corn slover was pretreated and prepared as an assay substrate as described in WO 2005/074647 to generate pretreated com stover (PCS) The base cellulase mixture used to assay enhancing activity was prepared from Tnchoderma reesei strain SMA135 (WO 2008/057637)
- An isolated polypeptide having cellulolytic enhancing activity selected from the group consisting of (a) a polypeptide comprising an amino acid sequence having at least 60% identity to the mature polypeptide of SEQ ID NO: 2 or SEQ ID NC 4,
- polypeptide encoded by a polynucleotide comprising a nucleotide sequence having at least 60% identity to the mature polypeptide coding sequence of SEQ ID NO: 1 or SEQ ID NO: 3, and
- a vanant comprising a substitution, deletion, and/or insertion of one or more (several) amino acids of the mature polypeptide of SEQ ID NO: 2 or SEQ ID NO: 4
- polypeptide of paragraph 8 comprising an amino acid sequence having at least 95% identity to the mature polypeptide of SEQ ID NO: 2 or SEQ ID NO: 4
- polypeptide of paragraph 1 comprising or consisting of the amino acid sequence of SEQ ID NO:. 2 or SEQ ID NO: 4, or a fragment thereof having cellulolytic enhancing activity
- polypeptide of paragraph 10 comprising or consisting of the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 4
- polypeptide of paragraph 10 comprising or consisting of the mature polypeptide of SEQ ID NO: 2 or SEQ ID NO:' 4
- the polypeptide of paragraph 1 which is encoded by a polynucleotide that hybridizes under at least medium stringency conditions with (i) the mature polypeptide coding sequence of SEQ ID NO: 1 or SEQ ID NO: 3, ( ⁇ i) the cDNA sequence contained in the mature polypeptide coding sequence of SEQ ID NO: 1 or SEQ ID NO: 3 or (HI) a full-length complementary strand of ( ⁇ ) or ( ⁇ i) [14]
- the polypeptide of paragraph 13 which is encoded by a polynucleotide that hybridizes under at least medium stnngency conditions with (i) the mature polypeptide coding sequence of SEQ ID NO: 1 or SEQ ID NO: 3, (n) the cDNA sequence contained in the mature polypeptide coding sequence of SEQ ID NO: 1 or SEQ ID NO: 3, or ( ⁇ i) a full-length complementary strand of ( ⁇ ) or ( ⁇ i) [15]
- the polypeptide of paragraph 14 which is encoded by a polyn
- polypeptide of paragraph 16 which is encoded by a polynucleotide comprising a nucleotide sequence having at least 65% identity to the mature polypeptide coding sequence of SEQ ID NO: 1 or SEQ ID NO: 3
- polypeptide of paragraph 17 which is encoded by a polynucleotide comprising a nucleotide sequence having at least 70% identity to the mature polypeptide coding sequence of SEQ ID NO: 1 or SEQ ID NO: 3
- polypeptide of paragraph 18 which is encoded by a polynucleotide comprising a nucleotide sequence having at least 75% identity to the mature polypeptide coding sequence of SEQ ID NO: 1 or SEQ ID NO: 3
- polypeptide of paragraph 19 which is encoded by a polynucleotide comprising a nucleotide sequence having at least 80% identity to the mature polypeptide coding sequence of SEQ ID NO: 1 or SEQ ID NO 3
- polypeptide of paragraph 20 which is encoded by a polynucleotide comprising a nucleotide sequence having at least 85% identity to the mature polypeptide coding sequence of SEQ ID NO 1 or SEQ ID NO 3
- polypeptide of paragraph 21 which is encoded by a polynucleotide comprising a nucleotide sequence having at least 90% identity to the mature polypeptide coding sequence of SEQ ID NO 1 or SEQ ID NO 3
- polypeptide of paragraph 22 which is encoded by a polynucleotide comprising a nucleotide sequence having at least 95% identity to the mature polypeptide coding sequence of SEQ ID NO 1 or SEQ ID NO 3
- polypeptide of paragraph 1 which is encoded by a polynucleotide comprising or consisting of the nucleotide sequence of SEQ ID NO 1 or SEQ ID NO 3 or a subsequence thereof encoding a fragment having celluloiytic enhancing activity
- polypeptide of paragraph 24 which is encoded by a polynucleotide comprising or consisting of the nucleotide sequence of SEQ ID NO 1 or SEQ ID NO 3
- polypeptide of paragraph 24 which is encoded by a polynucleotide comprising or consisting of the mature polypeptide coding sequence of SEQ ID NO 1 or SEQ ID NO 3
- polypeptide of paragraph 1 wherein the polypeptide is a vanant comprising a substitution deletion, and'or insertion of one or more (several) amino a ⁇ ds of the mature polypeptide of SEQ ID NO 2 or SEQ ID NO 4
- polypeptide of any of paragraphs 1-29, wherein the mature polypeptide coding sequence is nucleotides 52 to 921 of SEQ ID NO 1 or nucleotides 46 to 851 of SEQ ID NO 3
- a nucleic acid construct comprising the polynucleotide of paragraph 31 or 32 operably linked to one or more (several) control sequences that direct the production of the polypeptide in an expression host
- a recombinant expression vector comprising the nucleic acid construct of paragraph 33
- a method of producing the polypeptide of any of paragraphs 1-30 comprising (a) cultivating a cell, which in its wild-type form produces the polypeptide, under conditions conducive for production of the polypeptide and (b) recovering the polypeptide [37]
- a method of producing the polypeptide of any of paragraphs 1 -30 comprising' (a) cultivating a host cell comprising a nucleic acid construct comprising a nucleotide sequence encoding the polypeptide under conditions conducive for production of the polypeptide, and (b) recovenng the polypeptide
- a method of producing a mutant of a parent cell comprising disrupting or deleting a nucleotide sequence encoding the polypeptide of any of paragraphs 1-30. which results in the mutant producing less of the polypeptide than the parent cell
- mutant cell of paragraph 39 further comprising a gene encoding a native or heterologous protein.
- a method of producing a protein comprising (a) cultivating the mutant cell of paragraph 40 under conditions conducive for production of the protein, and (b) recovenng the protein.
- the isolated polynucleotide of paragraph 31 or 32 obtained by (a) hybridizing a population of DNA under at least high stringency conditions with (i) the mature polypeptide coding sequence of SEQ ID NO 1 or SEQ ID NO' 3, ( ⁇ ) the cDNA sequence contained in the mature polypeptide coding sequence of SEQ ID NO 1 or
- SEQ ID NO. 3 or (iii) a full-length complementary strand of ( ⁇ ) or ( ⁇ i), and (b) isolating the hybridizing polynucleotide, which encodes a polypeptide having cellulolytic enhancing activity.
- a method of producing a polynucleotide comprising a mutant nucleotide sequence encoding a polypeptide having cellulolytic enhancing activity comprising (a) introducing at least one mutation into the mature polypeptide coding sequence of SEQ
- mutant nucleotide sequence encodes a polypeptide comp ⁇ sing or consisting of the mature polypeptide of SEQ ID NO 2 or SEQ
- a method of producing a polypeptide comprising (a) cultivating a cell comprising the mutant polynucleotide of paragraph 45 encoding the polypeptide under conditions conducive for production of the polypeptide, and (b) recovering the polypeptide
- a method of producing the polypeptide of any of paragraphs 1-30 comprising' (a) cultivating a transgenic plant or a plant cell comprising a polynucleotide encoding the polypeptide under conditions conducive for production of the polypeptide, and (b) recovering the polypeptide
- dsRNA double- stranded inhibitory RNA
- dsRNA double-stranded inhibitory RNA
- a method of inhibiting the expression of a polypeptide having cellulolytic enhancing activity in a cell compnsing administering to the cell or expressing in the cell a double-stranded RNA (dsRNA) molecule, wherein the dsRNA comprises a subsequence of the polynucleotide of paragraph 31 or 32 (52)
- the method of paragraph 51 wherein the dsRNA is about 15, 16 17, 18,
- a nucleic acid construct comprising a gene encoding a protein operably linked to a nucleotide sequence encoding a signal peptide comprising or consisting of amino acids 1 to 17 of SEQ ID NO 2 or amino acids 1 to 15 of SEQ ID NO 4 wherein the gene is foreign to the nucleotide sequence
- a recombinant host cell comprising the nucleic acid construct of paragraph 53
- a method of producing a protein comprising (a) cultivating the recombinant host cell of paragraph 55 under conditions conducive for production of the protein and (b) recovering the protein
- a method for degrading or converting a cell ⁇ losic material comprising treating the cell ⁇ losic material with a cellulolytic enzyme composition in the presence of the polypeptide having cellulolytic enhancing activity of any of paragraphs 1-30 wherein the presence of the polypeptide having cellulolytic enhancing activity increases the degradation of cellulosic material compared to the absence of the polypeptide having cellulolytic enhancing activity
- step (b) fermenting the sacchanfied cellulosic mate ⁇ al of step (a) with one or more fermenting microorganisms to produce the fermentation product
- a method of fermenting a cellulosic material comprising fermenting the cellulosic material with one or more fermenting microorganisms, wherein the cellulosic material is hydrolyzed with a cellulolytic enzyme composition in the presence of a polypeptide having cellutolytic enhancing activity of any of paragraphs 1-30 and the presence of the polypeptide having cellulolytic enhancing activity increases the hydrolysis of the cellulosic material compared to the absence of the polypeptide having cellulolytic enhancing activity
- cellulolytic enzyme composition compnses one or more cellulolytic enzymes selected from the group consisting of a cellulase endoglucanase, cellobiohydrolase, and beta-glucosidase
- cellulolytic enzyme composition further comprises one or more enzymes selected from the group consisting of a hemtcellulase, esterase protease, laccase. and peroxidase
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Peptides Or Proteins (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
Abstract
Description
Claims
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EA201070764A EA201070764A1 (en) | 2007-12-19 | 2008-12-18 | POLYPEPTIDES, HAVING ACTIVITY, STRENGTHENING LYSIS OF CELLULOSE, AND ENCODING THEIR POLYNUCLEOTIDE |
CN2008801271234A CN101952420A (en) | 2007-12-19 | 2008-12-18 | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
NZ586014A NZ586014A (en) | 2007-12-19 | 2008-12-18 | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
AU2008343105A AU2008343105A1 (en) | 2007-12-19 | 2008-12-18 | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
US12/745,985 US8323944B2 (en) | 2007-12-19 | 2008-12-18 | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
JP2010539794A JP2011507525A (en) | 2007-12-19 | 2008-12-18 | Polypeptide having cellulolytic enhancing activity and polynucleotide encoding the same |
CA2709490A CA2709490A1 (en) | 2007-12-19 | 2008-12-18 | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
UAA201008853A UA102832C2 (en) | 2007-12-19 | 2008-12-18 | Polypeptide with cellulose-decomposing enhanced capacity and polynucleotide coding it |
EP08868044A EP2235173A2 (en) | 2007-12-19 | 2008-12-18 | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
BRPI0821230A BRPI0821230A2 (en) | 2007-12-19 | 2008-12-18 | "nucleic acid construct, recombinant host microbial banknote, methods for producing a polypeptide having cellulolytic enhancing activity, for producing a precursor banknote mutant, for inhibiting expression of a cellulolytic enhancing activity polypeptide in a cell, for producing a protein" , to degrade or convert a cellulosic material, and to ferment a cellulosic material " |
US13/692,835 US20130117892A1 (en) | 2007-12-19 | 2012-12-03 | Polypeptides Having Cellulolytic Enhancing Activity And Polynucleotides Encoding Same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US1498007P | 2007-12-19 | 2007-12-19 | |
US1490007P | 2007-12-19 | 2007-12-19 | |
US61/014,900 | 2007-12-19 | ||
US61/014,980 | 2007-12-19 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/692,835 Continuation US20130117892A1 (en) | 2007-12-19 | 2012-12-03 | Polypeptides Having Cellulolytic Enhancing Activity And Polynucleotides Encoding Same |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2009085935A2 true WO2009085935A2 (en) | 2009-07-09 |
WO2009085935A3 WO2009085935A3 (en) | 2009-10-15 |
Family
ID=40435129
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2008/087402 WO2009085935A2 (en) | 2007-12-19 | 2008-12-18 | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
Country Status (12)
Country | Link |
---|---|
US (2) | US8323944B2 (en) |
EP (2) | EP2235173A2 (en) |
JP (1) | JP2011507525A (en) |
KR (1) | KR20100105849A (en) |
CN (1) | CN101952420A (en) |
AU (1) | AU2008343105A1 (en) |
BR (1) | BRPI0821230A2 (en) |
CA (1) | CA2709490A1 (en) |
EA (1) | EA201070764A1 (en) |
MX (1) | MX293208B (en) |
NZ (2) | NZ598403A (en) |
WO (1) | WO2009085935A2 (en) |
Cited By (138)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010080532A1 (en) * | 2008-12-19 | 2010-07-15 | Novozymes, Inc. | Methods for increasing hydrolysis of cellulosic material in the presence of cellobiose dehydrogenase |
WO2010141325A1 (en) | 2009-06-02 | 2010-12-09 | Novozymes, Inc. | Polypeptides having cellobiohydrolase activity and polynucleotides encoding same |
WO2011008785A2 (en) | 2009-07-17 | 2011-01-20 | Novozymes A/S | A method of analyzing cellulose decay in cellulosic material hydrolysis |
WO2011035027A2 (en) | 2009-09-17 | 2011-03-24 | Novozymes, Inc. | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
WO2011035029A1 (en) | 2009-09-18 | 2011-03-24 | Novozymes, Inc. | Polypeptides having beta-glucosidase activity and polynucleotides encoding same |
WO2011057140A1 (en) * | 2009-11-06 | 2011-05-12 | Novozymes, Inc. | Compositions for saccharification of cellulosic material |
WO2011057083A1 (en) | 2009-11-06 | 2011-05-12 | Novozymes, Inc. | Polypeptides having xylanase activity and polynucleotides encoding same |
WO2011057086A1 (en) | 2009-11-06 | 2011-05-12 | Novozymes, Inc. | Polypeptides having cellobiohydrolase activity and polynucleotides encoding same |
WO2012003379A1 (en) | 2010-06-30 | 2012-01-05 | Novozymes A/S | Polypeptides having beta-glucosidase activity and polynucleotides encoding same |
WO2012006642A1 (en) | 2010-07-07 | 2012-01-12 | Novozymes North America, Inc. | Fermentation process |
WO2012012590A2 (en) | 2010-07-23 | 2012-01-26 | Novozymes A/S | Processes for producing fermentation products |
WO2012021399A1 (en) | 2010-08-12 | 2012-02-16 | Novozymes, Inc. | Compositions comprising a polypeptide having cellulolytic enhancing activity and a nitrogen-containing compound and uses thereof |
WO2012024698A1 (en) | 2010-08-20 | 2012-02-23 | Codexis, Inc. | Use of glycoside hydrolase 61 family proteins in processing of cellulose |
WO2012030844A1 (en) | 2010-08-30 | 2012-03-08 | Novozymes A/S | Polypeptides having endoglucanase activity and polynucleotides encoding same |
WO2012030811A1 (en) | 2010-08-30 | 2012-03-08 | Novozymes A/S | Polypeptides having cellobiohydrolase activity and polynucleotides encoding same |
WO2012030858A2 (en) | 2010-08-30 | 2012-03-08 | Novozymes A/S | Polypeptides having hemicellulolytic activity and polynucleotides encoding same |
WO2012030849A1 (en) | 2010-08-30 | 2012-03-08 | Novozymes A/S | Polypeptides having xylanase activity and polynucleotides encoding same |
WO2012030845A2 (en) | 2010-08-30 | 2012-03-08 | Novozymes A/S | Polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and polynucleotides encoding same |
WO2012044836A1 (en) | 2010-09-30 | 2012-04-05 | Novozymes, Inc. | Variants of polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
WO2012044835A1 (en) | 2010-09-30 | 2012-04-05 | Novozymes, Inc. | Variants of polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
WO2012058293A1 (en) | 2010-10-26 | 2012-05-03 | Novozymes North America, Inc. | Methods of saccharifying sugarcane trash |
WO2012061517A1 (en) | 2010-11-02 | 2012-05-10 | Novozymes, Inc. | Methods of pretreating cellulosic material with a gh61 polypeptide |
WO2012059053A1 (en) | 2010-11-04 | 2012-05-10 | Novozymes A/S | Polypeptides having cellobiohydrolase activity and polynucleotides encoding same |
WO2012062220A1 (en) | 2010-11-12 | 2012-05-18 | Novozymes A/S | Polypeptides having endoglucanase activity and polynucleotides encoding same |
WO2012068509A1 (en) | 2010-11-18 | 2012-05-24 | Novozymes, Inc. | Chimeric polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
WO2012103350A1 (en) | 2011-01-26 | 2012-08-02 | Novozymes A/S | Polypeptides having cellobiohydrolase activity and polynucleotides encoding same |
WO2012101206A2 (en) | 2011-01-26 | 2012-08-02 | Novozymes A/S | Novel glycoside hydrolases from thermophilic fungi |
WO2012103322A1 (en) | 2011-01-26 | 2012-08-02 | Novozymes A/S | Polypeptides having endoglucanase activity and polynucleotides encoding same |
WO2012103293A1 (en) | 2011-01-26 | 2012-08-02 | Novozymes A/S | Polypeptides having cellobiohydrolase activity and polynucleotides encoding same |
WO2012103288A1 (en) | 2011-01-26 | 2012-08-02 | Novozymes A/S | Polypeptides having cellobiohydrolase activity and polynucleotides encoding same |
WO2012113340A1 (en) | 2011-02-23 | 2012-08-30 | Novozymes Inc. | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
CN102666847A (en) * | 2009-10-29 | 2012-09-12 | 诺维信股份有限公司 | Polypeptides having cellobiohydrolase activity and polynucleotides encoding same |
WO2012122477A1 (en) | 2011-03-10 | 2012-09-13 | Novozymes A/S | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
WO2012122518A1 (en) | 2011-03-09 | 2012-09-13 | Novozymes A/S | Methods of increasing the cellulolytic enhancing activity of a polypeptide |
WO2012135719A1 (en) | 2011-03-31 | 2012-10-04 | Novozymes, Inc. | Cellulose binding domain variants and polynucleotides encoding same |
WO2012135659A2 (en) | 2011-03-31 | 2012-10-04 | Novozymes A/S | Methods for enhancing the degradation or conversion of cellulosic material |
WO2012130120A1 (en) | 2011-03-25 | 2012-10-04 | Novozymes A/S | Method for degrading or converting cellulosic material |
WO2012149192A1 (en) | 2011-04-28 | 2012-11-01 | Novozymes, Inc. | Polypeptides having endoglucanase activity and polynucleotides encoding same |
WO2012149344A1 (en) | 2011-04-29 | 2012-11-01 | Novozymes, Inc. | Methods for enhancing the degradation or conversion of cellulosic material |
WO2012159007A1 (en) | 2011-05-19 | 2012-11-22 | Novozymes, Inc. | Methods for enhancing the degradation of cellulosic material with chitin binding proteins |
WO2012159009A1 (en) | 2011-05-19 | 2012-11-22 | Novozymes, Inc. | Methods for enhancing the degradation of cellulosic material with chitin binding proteins |
WO2013016115A1 (en) | 2011-07-22 | 2013-01-31 | Novozymes North America, Inc. | Processes for pretreating cellulosic material and improving hydrolysis thereof |
WO2013019827A2 (en) | 2011-08-04 | 2013-02-07 | Novozymes A/S | Polypeptides having xylanase activity and polynucleotides encoding same |
WO2013019780A2 (en) | 2011-08-04 | 2013-02-07 | Novozymes A/S | Polypeptides having endoglucanase activity and polynucleotides encoding same |
WO2013028912A2 (en) | 2011-08-24 | 2013-02-28 | Novozymes, Inc. | Methods for producing multiple recombinant polypeptides in a filamentous fungal host cell |
WO2013028915A2 (en) | 2011-08-24 | 2013-02-28 | Novozymes, Inc. | Methods for obtaining positive transformants of a filamentous fungal host cell |
WO2013043910A1 (en) | 2011-09-20 | 2013-03-28 | Novozymes A/S | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
WO2013064075A1 (en) | 2011-10-31 | 2013-05-10 | Novozymes, Inc. | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
WO2013074956A2 (en) | 2011-11-18 | 2013-05-23 | Novozymes, Inc. | Polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and polynucleotides encoding same |
WO2013075644A1 (en) | 2011-11-22 | 2013-05-30 | Novozymes, Inc. | Polypeptides having beta-xylosidase activity and polynucleotides encoding same |
WO2013079015A1 (en) | 2011-12-01 | 2013-06-06 | Novozymes, Inc. | Polypeptides having beta-xylosidase activity and polynucleotides encoding same |
WO2013089889A2 (en) | 2011-09-30 | 2013-06-20 | Novozymes, Inc. | Chimeric polypeptides having beta-glucosidase activity and polynucleotides encoding same |
WO2013087027A1 (en) | 2011-12-16 | 2013-06-20 | Novozymes, Inc. | Polypeptides having laccase activity and polynucleotides encoding same |
WO2013096652A1 (en) | 2011-12-21 | 2013-06-27 | Novozymes, Inc. | Methods for determining the degradation of a biomass material |
WO2013096369A1 (en) | 2011-12-19 | 2013-06-27 | Novozymes A/S | Processes and compositions for increasing the digestibility of cellulosic materials |
WO2013096603A2 (en) | 2011-12-20 | 2013-06-27 | Novozymes, Inc. | Cellobiohydrolase variants and polynucleotides encoding same |
WO2013091547A1 (en) | 2011-12-19 | 2013-06-27 | Novozymes, Inc. | Polypeptides having catalase activity and polynucleotides encoding same |
WO2013119302A2 (en) | 2011-11-21 | 2013-08-15 | Novozymes, Inc. | Gh61 polypeptide variants and polynucleotides encoding same |
WO2013160247A2 (en) | 2012-04-23 | 2013-10-31 | Novozymes A/S | Polypeptides having glucuronyl esterase activity and polynucleotides encoding same |
WO2013160248A2 (en) | 2012-04-23 | 2013-10-31 | Novozymes A/S | Polypeptides having alpha-glucuronidase activity and polynucleotides encoding same |
WO2013163590A2 (en) | 2012-04-27 | 2013-10-31 | Novozymes, Inc. | Gh61 polypeptide variants and polynucleotides encoding same |
JP2013541950A (en) * | 2010-09-29 | 2013-11-21 | ベータ リニューアブルス エス・ピー・エー | Pretreated biomass with high enzyme accessibility |
WO2014000692A1 (en) * | 2012-06-29 | 2014-01-03 | Novozymes A/S | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
WO2014058896A1 (en) | 2012-10-08 | 2014-04-17 | Novozymes A/S | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
WO2014066141A2 (en) | 2012-10-24 | 2014-05-01 | Novozymes A/S | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
WO2014092832A2 (en) | 2012-09-19 | 2014-06-19 | Novozymes, Inc. | Methods for enhancing the degradation or conversion of cellulosic material |
WO2014093835A1 (en) | 2012-12-14 | 2014-06-19 | Novozymes A/S | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
WO2014099798A1 (en) | 2012-12-19 | 2014-06-26 | Novozymes A/S | Polypeptides having cellulolytic enhancinc activity and polynucleotides encoding same |
WO2014138672A1 (en) | 2013-03-08 | 2014-09-12 | Novozymes A/S | Cellobiohydrolase variants and polynucleotides encoding same |
WO2014182990A1 (en) | 2013-05-10 | 2014-11-13 | Novozymes A/S | Polypeptides having xylanase activity and polynucleotides encoding same |
WO2015035029A1 (en) | 2013-09-04 | 2015-03-12 | Novozymes A/S | Processes for increasing enzymatic hydrolysis of cellulosic material |
WO2015075391A1 (en) * | 2013-11-22 | 2015-05-28 | IFP Energies Nouvelles | Endoglucanase variants having improved activity, and uses of same |
WO2015081139A1 (en) | 2013-11-26 | 2015-06-04 | Novozymes A/S | Enzyme compositions and uses thereof |
US9051376B2 (en) | 2011-02-23 | 2015-06-09 | Novozymes, Inc. | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
WO2015105835A1 (en) | 2014-01-07 | 2015-07-16 | Novozymes A/S | Process for degrading mannan-containing cellulosic materials |
US9090918B2 (en) | 2010-11-22 | 2015-07-28 | Novozymes A/A | Compositions and methods for 3-hydroxypropionic acid production |
US20150252342A1 (en) * | 2010-11-02 | 2015-09-10 | Codexis, Inc. | Fungal strains |
WO2015187935A1 (en) | 2014-06-06 | 2015-12-10 | Novozymes A/S | Enzyme compositions and uses thereof |
EP2794871A4 (en) * | 2011-12-20 | 2015-12-30 | Codexis Inc | Endoglucanase 1b (eg1b) variants |
WO2016037096A1 (en) | 2014-09-05 | 2016-03-10 | Novozymes A/S | Carbohydrate binding module variants and polynucleotides encoding same |
WO2016045569A1 (en) | 2014-09-23 | 2016-03-31 | Novozymes A/S | Processes for producing ethanol and fermenting organisms |
US9340810B2 (en) | 2011-04-25 | 2016-05-17 | Novozymes, Inc. | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
WO2016120297A1 (en) | 2015-01-28 | 2016-08-04 | Dsm Ip Assets B.V. | Process for enzymatic hydrolysis of lignocellulosic material and fermentation of sugars |
WO2016120298A1 (en) | 2015-01-28 | 2016-08-04 | Dsm Ip Assets B.V. | Process for enzymatic hydrolysis of lignocellulosic material and fermentation of sugars |
WO2016120296A1 (en) | 2015-01-28 | 2016-08-04 | Dsm Ip Assets B.V. | Process for enzymatic hydrolysis of lignocellulosic material and fermentation of sugars |
WO2016138167A2 (en) | 2015-02-24 | 2016-09-01 | Novozymes A/S | Cellobiohydrolase variants and polynucleotides encoding same |
WO2016145358A1 (en) | 2015-03-12 | 2016-09-15 | Novozymes A/S | Enzymatic hydrolysis with hemicellulolytic enzymes |
WO2016145350A1 (en) | 2015-03-12 | 2016-09-15 | Novozymes A/S | Multi-stage enzymatic hydrolysis of lignocellulosic biomass |
WO2016145363A1 (en) | 2015-03-12 | 2016-09-15 | Novozymes A/S | Multi-stage enzymatic hydrolysis of lignocellulosic biomass employing an oxidoreductase with an aa9 polypeptide |
US9458483B2 (en) | 2010-08-12 | 2016-10-04 | Novozymes, Inc. | Compositions comprising a polypeptide having cellulolytic enhancing activity and a bicyclic compound and uses thereof |
WO2016169893A1 (en) | 2015-04-20 | 2016-10-27 | Dsm Ip Assets B.V. | Whole fermentation broth |
WO2016169892A1 (en) | 2015-04-20 | 2016-10-27 | Dsm Ip Assets B.V. | Process for enzymatic hydrolysis of lignocellulosic material and fermentation of sugars |
WO2016188459A1 (en) | 2015-05-27 | 2016-12-01 | Novozymes A/S | Polypeptides having cellobiohydrolase activity and polynucleotides encoding same |
WO2016207144A1 (en) | 2015-06-22 | 2016-12-29 | Dsm Ip Assets B.V. | Process for enzymatic hydrolysis of lignocellulosic material and fermentation of sugars |
WO2017019491A1 (en) | 2015-07-24 | 2017-02-02 | Novozymes Inc. | Polypeptides having beta-xylosidase activity and polynucleotides encoding same |
WO2017019490A1 (en) | 2015-07-24 | 2017-02-02 | Novozymes Inc. | Polypeptides having arabinofuranosidase activity and polynucleotides encoding same |
WO2017040907A1 (en) | 2015-09-04 | 2017-03-09 | Novozymes A/S | Methods of inhibiting aa9 lytic polysaccharide monooxygenase catalyzed inactivation of enzyme compositions |
WO2017050242A1 (en) | 2015-09-22 | 2017-03-30 | Novozymes A/S | Polypeptides having cellobiohydrolase activity and polynucleotides encoding same |
WO2017070219A1 (en) | 2015-10-20 | 2017-04-27 | Novozymes A/S | Lytic polysaccharide monooxygenase (lpmo) variants and polynucleotides encoding same |
WO2017076421A1 (en) | 2015-11-02 | 2017-05-11 | Renescience A/S | Solubilization of msw with blend enzymes |
WO2017151957A1 (en) | 2016-03-02 | 2017-09-08 | Novozymes A/S | Cellobiohydrolase variants and polynucleotides encoding same |
WO2017165760A1 (en) | 2016-03-24 | 2017-09-28 | Novozymes A/S | Cellobiohydrolase variants and polynucleotides encoding same |
WO2017205535A1 (en) | 2016-05-27 | 2017-11-30 | Novozymes, Inc. | Polypeptides having endoglucanase activity and polynucleotides encoding same |
WO2017211957A1 (en) | 2016-06-09 | 2017-12-14 | Dsm Ip Assets B.V. | Seed train for large scale enzyme production |
WO2018019948A1 (en) | 2016-07-29 | 2018-02-01 | Dsm Ip Assets B.V. | Polypeptides having cellulolytic enhancing activity and uses thereof |
WO2018026868A1 (en) | 2016-08-01 | 2018-02-08 | Novozymes, Inc. | Polypeptides having endoglucanase activity and polynucleotides encoding same |
US9957492B2 (en) | 2012-06-29 | 2018-05-01 | Novozymes A/S | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
WO2018085370A1 (en) | 2016-11-02 | 2018-05-11 | Novozymes A/S | Processes for reducing production of primeverose during enzymatic saccharification of lignocellulosic material |
WO2018096017A1 (en) | 2016-11-24 | 2018-05-31 | Dsm Ip Assets B.V. | Enzyme composition |
WO2018096019A1 (en) | 2016-11-24 | 2018-05-31 | Dsm Ip Assets B.V. | Enzyme composition |
US9994833B2 (en) | 2012-09-28 | 2018-06-12 | Novozymes A/S | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
US10017753B2 (en) | 2011-09-29 | 2018-07-10 | Novozymes, Inc. | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
WO2018185071A1 (en) | 2017-04-03 | 2018-10-11 | Dsm Ip Assets B.V. | Process for enzymatic hydrolysis of lignocellulosic material and fermentation of sugars |
WO2019072732A1 (en) | 2017-10-09 | 2019-04-18 | Dsm Ip Assets B.V. | Process for enzymatic hydrolysis of lignocellulosic material and fermentation of sugars |
WO2019074828A1 (en) | 2017-10-09 | 2019-04-18 | Danisco Us Inc | Cellobiose dehydrogenase variants and methods of use thereof |
WO2019083831A1 (en) | 2017-10-23 | 2019-05-02 | Novozymes A/S | Processes for reducing lactic acid in a biofuel fermentation system |
WO2019086370A1 (en) | 2017-10-30 | 2019-05-09 | Dsm Ip Assets B.V. | Process for enzymatic hydrolysis of lignocellulosic material and fermentation of sugars |
WO2019086369A1 (en) | 2017-10-30 | 2019-05-09 | Dsm Ip Assets B.V. | Process for enzymatic hydrolysis of lignocellulosic material and fermentation of sugars |
WO2019185681A1 (en) | 2018-03-28 | 2019-10-03 | Dsm Ip Assets B.V. | Enzyme composition |
WO2019185680A1 (en) | 2018-03-28 | 2019-10-03 | Dsm Ip Assets B.V. | Enzyme composition |
WO2019201765A1 (en) | 2018-04-20 | 2019-10-24 | Renescience A/S | Method for determining chemical compounds in waste |
WO2019219804A1 (en) | 2018-05-17 | 2019-11-21 | Dsm Ip Assets B.V. | Process for producing a polypeptide |
WO2019229108A1 (en) | 2018-05-30 | 2019-12-05 | Dsm Ip Assets B.V. | Process for producing sugars from carbohydrate materials |
WO2020058249A1 (en) | 2018-09-18 | 2020-03-26 | Dsm Ip Assets B.V. | Process for enzymatic hydrolysis of carbohydrate material and fermentation of sugars |
WO2020058248A1 (en) | 2018-09-18 | 2020-03-26 | Dsm Ip Assets B.V. | Process for enzymatic hydrolysis of carbohydrate material and fermentation of sugars |
WO2020058253A1 (en) | 2018-09-18 | 2020-03-26 | Dsm Ip Assets B.V. | Process for enzymatic hydrolysis of carbohydrate material and fermentation of sugars |
WO2020083951A1 (en) | 2018-10-24 | 2020-04-30 | Dsm Ip Assets B.V. | Process for enzymatic hydrolysis of carbohydrate material and fermentation of sugars |
WO2020123463A1 (en) | 2018-12-12 | 2020-06-18 | Novozymes A/S | Polypeptides having xylanase activity and polynucleotides encoding same |
WO2020182843A1 (en) | 2019-03-12 | 2020-09-17 | Dsm Ip Assets B.V. | Process for producing a fermentation broth |
WO2021048164A1 (en) | 2019-09-10 | 2021-03-18 | Dsm Ip Assets B.V. | Enzyme composition |
EP3805382A1 (en) | 2014-08-28 | 2021-04-14 | Renescience A/S | Solubilization of msw with blend enzymes |
WO2021205160A1 (en) | 2020-04-06 | 2021-10-14 | Mellizyme Biotechnology Limited | Enzymatic degradation of plastic polyalkene polymers by katg enzyme |
WO2022013148A1 (en) | 2020-07-13 | 2022-01-20 | Dsm Ip Assets B.V. | Process for the production of biogas |
WO2022096406A1 (en) | 2020-11-04 | 2022-05-12 | Renescience A/S | Method for enzymatic and/or microbial processing of waste comprising recirculation of process water |
WO2022214457A1 (en) | 2021-04-06 | 2022-10-13 | Dsm Ip Assets B.V. | Enzyme composition |
WO2022214459A1 (en) | 2021-04-06 | 2022-10-13 | Dsm Ip Assets B.V. | Enzyme composition |
WO2022214460A1 (en) | 2021-04-08 | 2022-10-13 | Dsm Ip Assets B.V. | Process for the preparation of a sugar product and a fermentation product |
WO2022214458A1 (en) | 2021-04-06 | 2022-10-13 | Dsm Ip Assets B.V. | Enzyme composition |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE447013T1 (en) * | 2005-04-27 | 2009-11-15 | Novozymes Inc | POLYPEPTIDES WITH ENDOGLUCANASE ACTIVITY AND POLYNUCLEOTIDES CODING THEREFOR |
NZ598403A (en) * | 2007-12-19 | 2012-07-27 | Novozymes As | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
US8865448B2 (en) * | 2010-07-30 | 2014-10-21 | Cleanvantage Llc | Aspergillus containing beta-glucosidase, beta-glucosidases and nucleic acids encoding the same |
KR20140017612A (en) * | 2011-03-17 | 2014-02-11 | 다니스코 유에스 인크. | Method for reducing viscosity in saccharification process |
WO2013064097A1 (en) * | 2011-11-04 | 2013-05-10 | Novozymes, Inc. | Polypeptides having cellobiohydrolase activity and polynucleotides encoding same |
US20130280764A1 (en) * | 2012-04-19 | 2013-10-24 | Dyadic International (Usa) Ltd. | Method of improving the activity of cellulase enzyme mixtures in the saccharification (ligno)cellulosic material |
MY169456A (en) | 2012-11-09 | 2019-04-11 | Dsm Ip Assets Bv | Process for enzymatic hydrolysis of lignocellulosic material and fermentation of sugars |
EP3569712A1 (en) | 2012-11-09 | 2019-11-20 | DSM IP Assets B.V. | Process for enzymatic hydrolysis of lignocellulosic material and fermentation of sugars |
JP2014100073A (en) * | 2012-11-16 | 2014-06-05 | Toray Ind Inc | Composition for biomass degradation and production process for sugar solution using it |
MX2015007234A (en) | 2012-12-12 | 2015-10-29 | Danisco Us Inc | Variants of cellobiohydrolases. |
MY181516A (en) | 2014-04-30 | 2020-12-24 | Dsm Ip Assets Bv | Process for enzymatic hydrolysis of lignocellulosic material and fermentation of sugars |
CN108883400B (en) | 2016-02-19 | 2021-09-17 | 洲际大品牌有限责任公司 | Method for forming a multi-value stream from a biomass source |
Citations (86)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4106991A (en) | 1976-07-07 | 1978-08-15 | Novo Industri A/S | Enzyme granulate composition and process for forming enzyme granulates |
US4435307A (en) | 1980-04-30 | 1984-03-06 | Novo Industri A/S | Detergent cellulase |
US4661452A (en) | 1984-05-29 | 1987-04-28 | Novo Industri A/S | Enzyme containing granulates useful as detergent additives |
EP0238216A1 (en) | 1986-02-20 | 1987-09-23 | Albright & Wilson Limited | Protected enzyme systems |
EP0238023A2 (en) | 1986-03-17 | 1987-09-23 | Novo Nordisk A/S | Process for the production of protein products in Aspergillus oryzae and a promoter for use in Aspergillus |
WO1989009259A1 (en) | 1988-03-24 | 1989-10-05 | Novo-Nordisk A/S | A cellulase preparation |
WO1991005039A1 (en) | 1989-09-26 | 1991-04-18 | Midwest Research Institute | Thermostable purified endoglucanases from thermophilic bacterium acidothermus cellulolyticus |
WO1991014772A1 (en) | 1990-03-23 | 1991-10-03 | Gist-Brocades N.V. | Production of enzymes in seeds and their use |
WO1991017244A1 (en) | 1990-05-09 | 1991-11-14 | Novo Nordisk A/S | An enzyme capable of degrading cellulose or hemicellulose |
WO1991017243A1 (en) | 1990-05-09 | 1991-11-14 | Novo Nordisk A/S | A cellulase preparation comprising an endoglucanase enzyme |
WO1992006204A1 (en) | 1990-09-28 | 1992-04-16 | Ixsys, Inc. | Surface expression libraries of heteromeric receptors |
EP0495257A1 (en) | 1991-01-16 | 1992-07-22 | The Procter & Gamble Company | Compact detergent compositions with high activity cellulase |
US5223409A (en) | 1988-09-02 | 1993-06-29 | Protein Engineering Corp. | Directed evolution of novel binding proteins |
WO1993015186A1 (en) | 1992-01-27 | 1993-08-05 | Midwest Research Institute | Thermostable purified endoglucanases from thermophilic bacterium acidothermus cellulolyticus |
WO1994007998A1 (en) | 1992-10-06 | 1994-04-14 | Novo Nordisk A/S | Cellulase variants |
WO1994014953A1 (en) | 1992-12-23 | 1994-07-07 | Novo Nordisk A/S | An enzyme with endoglucanase activity |
WO1995017413A1 (en) | 1993-12-21 | 1995-06-29 | Evotec Biosystems Gmbh | Process for the evolutive design and synthesis of functional polymers based on designer elements and codes |
WO1995022625A1 (en) | 1994-02-17 | 1995-08-24 | Affymax Technologies N.V. | Dna mutagenesis by random fragmentation and reassembly |
WO1995024471A1 (en) | 1994-03-08 | 1995-09-14 | Novo Nordisk A/S | Novel alkaline cellulases |
WO1995033836A1 (en) | 1994-06-03 | 1995-12-14 | Novo Nordisk Biotech, Inc. | Phosphonyldipeptides useful in the treatment of cardiovascular diseases |
WO1996000787A1 (en) | 1994-06-30 | 1996-01-11 | Novo Nordisk Biotech, Inc. | Non-toxic, non-toxigenic, non-pathogenic fusarium expression system and promoters and terminators for use therein |
WO1996002551A1 (en) | 1994-07-15 | 1996-02-01 | Midwest Research Institute | Gene coding for the e1 endoglucanase |
WO1996011262A1 (en) | 1994-10-06 | 1996-04-18 | Novo Nordisk A/S | An enzyme and enzyme preparation with endoglucanase activity |
WO1996029397A1 (en) | 1995-03-17 | 1996-09-26 | Novo Nordisk A/S | Novel endoglucanases |
WO1996034108A2 (en) | 1995-04-28 | 1996-10-31 | Genencor International, Inc. | Alkaline cellulase and method for producing the same |
WO1997014804A1 (en) | 1995-10-17 | 1997-04-24 | Röhn Enzyme Finland OY | Cellulases, the genes encoding them and uses thereof |
US5648263A (en) | 1988-03-24 | 1997-07-15 | Novo Nordisk A/S | Methods for reducing the harshness of a cotton-containing fabric |
WO1998008940A1 (en) | 1996-08-26 | 1998-03-05 | Novo Nordisk A/S | A novel endoglucanase |
WO1998012307A1 (en) | 1996-09-17 | 1998-03-26 | Novo Nordisk A/S | Cellulase variants |
WO1998013465A1 (en) | 1996-09-25 | 1998-04-02 | Genencor International, Inc. | Cellulase obtainable from thermomonospora fusca for use in industrial processes |
WO1998015633A1 (en) | 1996-10-10 | 1998-04-16 | Mark Aaron Emalfarb | Chrysosporium cellulase and methods of use |
WO1998015619A1 (en) | 1996-10-09 | 1998-04-16 | Genencor International, Inc. | High molecular weight trichoderma cellulase |
WO1998028411A2 (en) | 1996-12-23 | 1998-07-02 | Genencor International, Inc. | Enlarged cellulase compositions for use in the treatment of textiles |
WO1999006574A1 (en) | 1997-07-31 | 1999-02-11 | Dsm N.V. | Cellulose degrading enzymes of aspergillus |
WO1999010481A2 (en) | 1997-08-26 | 1999-03-04 | Genencor International, Inc. | Mutant thermomonospora spp. cellulase |
WO1999025847A2 (en) | 1997-11-19 | 1999-05-27 | Genencor International, Inc. | Cellulase produced by actinomycetes and method of producing same |
WO1999025846A2 (en) | 1997-11-19 | 1999-05-27 | Genencor International, Inc. | Cellulase produced by actinomycetes and method for producing same |
WO1999031255A2 (en) | 1997-12-16 | 1999-06-24 | Genencor International, Inc. | Novel egiii-like enzymes, dna encoding such enzymes and methods for producing such enzymes |
WO2000009707A1 (en) | 1998-06-24 | 2000-02-24 | Genencor International, Inc. | Cellulase producing actinomycetes, cellulase produced therefrom and method of producing same |
WO2000024883A1 (en) | 1998-10-26 | 2000-05-04 | Novozymes A/S | Constructing and screening a dna library of interest in filamentous fungal cells |
WO2000056900A2 (en) | 1999-03-22 | 2000-09-28 | Novo Nordisk Biotech, Inc. | Promoter sequences derived from fusarium venenatum and uses thereof |
WO2000070031A1 (en) | 1999-05-19 | 2000-11-23 | Midwest Research Institute | E1 endoglucanase variants y245g, y82r and w42r |
WO2002007679A2 (en) | 2000-07-21 | 2002-01-31 | The Government Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services | Adult human dental pulp stem cells in vitro and in vivo |
WO2002040694A2 (en) | 2000-11-17 | 2002-05-23 | Novozymes A/S | Heterologous expression of taxanes |
WO2002050245A2 (en) | 2000-12-18 | 2002-06-27 | Genencor International, Inc. | Novel cellulase producing actinomycetes, cellulase produced therefrom and method of producing same |
US20020164730A1 (en) | 2000-02-24 | 2002-11-07 | Centro De Investigaciones Energeticas, Medioambientales Y Tecnologicas (C.I.E.M.A.T.) | Procedure for the production of ethanol from lignocellulosic biomass using a new heat-tolerant yeast |
WO2002095014A2 (en) | 2001-05-18 | 2002-11-28 | Novozymes A/S | Polypeptides having cellobiase activity and polynucleotides encoding same |
US6489127B1 (en) | 2000-01-14 | 2002-12-03 | Exelixis, Inc. | Methods for identifying anti-cancer drug targets |
WO2002101078A2 (en) | 2001-06-12 | 2002-12-19 | Diversa Corporation | Cellulases, nucleic acids encoding them and methods for making and using them |
US6506559B1 (en) | 1997-12-23 | 2003-01-14 | Carnegie Institute Of Washington | Genetic inhibition by double-stranded RNA |
US6511824B1 (en) | 1999-03-17 | 2003-01-28 | Exelixis, Inc. | Nucleic acids and polypeptides of invertebrate TWIK channels and methods of use |
US6515109B1 (en) | 2000-10-12 | 2003-02-04 | Exelixis, Inc. | Human ECT2 polypeptide |
WO2003027306A2 (en) | 2001-09-21 | 2003-04-03 | Genencor International, Inc. | Bgl3 beta-glucosidase and nucleic acids encoding the same |
WO2003052118A2 (en) | 2001-12-18 | 2003-06-26 | Genencor International, Inc. | Bgl4 beta-glucosidase and nucleic acids encoding the same |
WO2003052057A2 (en) | 2001-12-18 | 2003-06-26 | Genencor International, Inc. | Egvi endoglucanase and nucleic acids encoding the same |
WO2003052055A2 (en) | 2001-12-18 | 2003-06-26 | Genencor International, Inc. | Egvii endoglucanase and nucleic acids encoding the same |
WO2003052056A2 (en) | 2001-12-18 | 2003-06-26 | Genencor International, Inc. | Egviii endoglucanase and nucleic acids encoding the same |
WO2003052054A2 (en) | 2001-12-18 | 2003-06-26 | Genencor International, Inc. | Bgl5 beta-glucosidase and nucleic acids encoding the same |
WO2004003378A1 (en) | 2002-06-29 | 2004-01-08 | Robert Bosch Gmbh | Fuel injector comprising booster for multiple injection |
WO2004016760A2 (en) | 2002-08-16 | 2004-02-26 | Genencor International, Inc. | Novel variant hyprocrea jecorina cbh1 cellulases |
WO2004031378A2 (en) | 2002-10-01 | 2004-04-15 | Novozymes A/S | Family gh 61 polypeptides |
WO2004043980A2 (en) | 2002-11-07 | 2004-05-27 | Genencor International, Inc. | Bgl6 beta-glucosidase and nucleic acids encoding the same |
WO2004048592A2 (en) | 2002-11-21 | 2004-06-10 | Genencor International, Inc. | Bgl7 beta-glucosidase and nucleic acids encoding the same |
WO2004099228A2 (en) | 2003-05-02 | 2004-11-18 | Novozymes Inc. | Variants of beta-glucosidases |
WO2005001065A2 (en) | 2003-04-01 | 2005-01-06 | Genencor International, Inc. | Variant humicola grisea cbh1.1 |
WO2005028636A2 (en) | 2003-03-21 | 2005-03-31 | Genencor International, Inc. | Novel cbh1 homologs and variant cbh1 cellulases |
WO2005047499A1 (en) | 2003-10-28 | 2005-05-26 | Novozymes Inc. | Polypeptides having beta-glucosidase activity and polynucleotides encoding same |
WO2005074656A2 (en) | 2004-02-06 | 2005-08-18 | Novozymes, Inc. | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
WO2005074647A2 (en) | 2004-01-30 | 2005-08-18 | Novozymes Inc. | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
WO2005093050A2 (en) | 2004-03-25 | 2005-10-06 | Genencor International, Inc. | Cellulase fusion protein and heterologous cellulase fusion construct encoding the same |
WO2005093073A1 (en) | 2004-03-25 | 2005-10-06 | Genencor International, Inc. | Exo-endo cellulase fusion protein |
WO2006011900A2 (en) | 2004-06-30 | 2006-02-02 | Nokia Corporation | Method and system for managing metadata |
WO2006011899A1 (en) | 2003-11-25 | 2006-02-02 | L-3 Communications Security and Detection Systems Corporation | Security system for detecting nuclear masses |
WO2006032282A1 (en) | 2004-09-24 | 2006-03-30 | Cambi Bioethanol Aps | Method for treating biomass and organic waste with the purpose of generating desired biologically based products |
WO2006074005A2 (en) | 2004-12-30 | 2006-07-13 | Genencor International, Inc. | Variant hypocrea jecorina cbh2 cellulases |
WO2006110901A2 (en) | 2005-04-12 | 2006-10-19 | E. I. Du Pont De Nemours And Company | Treatment of biomass to obtain fermentable sugars |
WO2006117432A1 (en) | 2005-04-29 | 2006-11-09 | Ab Enzymes Oy | Improved cellulases |
WO2007019442A2 (en) | 2005-08-04 | 2007-02-15 | Novozymes, Inc. | Polypeptides having beta-glucosidase activity and polynucleotides encoding same |
WO2007071818A1 (en) | 2005-12-22 | 2007-06-28 | Roal Oy | Treatment of cellulosic material and enzymes useful therein |
WO2007071820A1 (en) | 2005-12-22 | 2007-06-28 | Ab Enzymes Oy | Novel enzymes |
WO2007089290A2 (en) | 2005-09-30 | 2007-08-09 | Novozymes, Inc. | Methods for enhancing the degradation or conversion of cellulosic material |
WO2008008070A2 (en) | 2006-07-13 | 2008-01-17 | Dyadic International (Usa), Inc. | Construction of highly efficient cellulase compositions for enzymatic hydrolysis of cellulose |
WO2008008793A2 (en) | 2006-07-10 | 2008-01-17 | Dyadic International Inc. | Methods and compositions for degradation of lignocellulosic material |
WO2008057637A2 (en) | 2006-07-21 | 2008-05-15 | Novozymes, Inc. | Methods of increasing secretion of polypeptides having biological activity |
WO2008148131A1 (en) | 2007-05-31 | 2008-12-04 | Novozymes, Inc. | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
WO2009033071A2 (en) | 2007-09-07 | 2009-03-12 | Dyadic International, Inc. | Novel fungal enzymes |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7273738B2 (en) * | 2002-10-01 | 2007-09-25 | Novozymes A/S | Family GH-61 polypeptides |
EP1608766A4 (en) * | 2003-03-20 | 2006-11-02 | Diversa Corp | GLUCOSIDASES, NUCLEIC ACIDS ENCODING THEM, AND METHODS OF MAKING AND USING THE SAME |
EP1714258A4 (en) | 2004-02-02 | 2011-05-04 | Scope Seven Inc | Simplified control system for electronic media |
AR049379A1 (en) | 2004-04-30 | 2006-07-26 | Irm Llc | COMPOUNDS AND COMPOSITIONS AS INHIBITORS OF KATEPSINS |
NZ598403A (en) * | 2007-12-19 | 2012-07-27 | Novozymes As | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
-
2008
- 2008-12-18 NZ NZ598403A patent/NZ598403A/en not_active IP Right Cessation
- 2008-12-18 EP EP08868044A patent/EP2235173A2/en not_active Withdrawn
- 2008-12-18 EA EA201070764A patent/EA201070764A1/en unknown
- 2008-12-18 JP JP2010539794A patent/JP2011507525A/en active Pending
- 2008-12-18 AU AU2008343105A patent/AU2008343105A1/en not_active Abandoned
- 2008-12-18 NZ NZ586014A patent/NZ586014A/en not_active IP Right Cessation
- 2008-12-18 CN CN2008801271234A patent/CN101952420A/en active Pending
- 2008-12-18 WO PCT/US2008/087402 patent/WO2009085935A2/en active Application Filing
- 2008-12-18 US US12/745,985 patent/US8323944B2/en not_active Expired - Fee Related
- 2008-12-18 KR KR1020107015628A patent/KR20100105849A/en not_active Application Discontinuation
- 2008-12-18 EP EP12195927.4A patent/EP2653539A1/en not_active Withdrawn
- 2008-12-18 BR BRPI0821230A patent/BRPI0821230A2/en not_active IP Right Cessation
- 2008-12-18 CA CA2709490A patent/CA2709490A1/en not_active Abandoned
-
2010
- 2010-06-05 MX MX2010006629A patent/MX293208B/en active IP Right Grant
-
2012
- 2012-12-03 US US13/692,835 patent/US20130117892A1/en not_active Abandoned
Patent Citations (96)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4106991A (en) | 1976-07-07 | 1978-08-15 | Novo Industri A/S | Enzyme granulate composition and process for forming enzyme granulates |
US4435307A (en) | 1980-04-30 | 1984-03-06 | Novo Industri A/S | Detergent cellulase |
US4661452A (en) | 1984-05-29 | 1987-04-28 | Novo Industri A/S | Enzyme containing granulates useful as detergent additives |
EP0238216A1 (en) | 1986-02-20 | 1987-09-23 | Albright & Wilson Limited | Protected enzyme systems |
EP0238023A2 (en) | 1986-03-17 | 1987-09-23 | Novo Nordisk A/S | Process for the production of protein products in Aspergillus oryzae and a promoter for use in Aspergillus |
US5691178A (en) | 1988-03-22 | 1997-11-25 | Novo Nordisk A/S | Fungal cellulase composition containing alkaline CMC-endoglucanase and essentially no cellobiohydrolase |
US5776757A (en) | 1988-03-24 | 1998-07-07 | Novo Nordisk A/S | Fungal cellulase composition containing alkaline CMC-endoglucanase and essentially no cellobiohydrolase and method of making thereof |
WO1989009259A1 (en) | 1988-03-24 | 1989-10-05 | Novo-Nordisk A/S | A cellulase preparation |
US5648263A (en) | 1988-03-24 | 1997-07-15 | Novo Nordisk A/S | Methods for reducing the harshness of a cotton-containing fabric |
US5223409A (en) | 1988-09-02 | 1993-06-29 | Protein Engineering Corp. | Directed evolution of novel binding proteins |
WO1991005039A1 (en) | 1989-09-26 | 1991-04-18 | Midwest Research Institute | Thermostable purified endoglucanases from thermophilic bacterium acidothermus cellulolyticus |
US5536655A (en) | 1989-09-26 | 1996-07-16 | Midwest Research Institute | Gene coding for the E1 endoglucanase |
US5275944A (en) | 1989-09-26 | 1994-01-04 | Midwest Research Institute | Thermostable purified endoglucanas from acidothermus cellulolyticus ATCC 43068 |
WO1991014772A1 (en) | 1990-03-23 | 1991-10-03 | Gist-Brocades N.V. | Production of enzymes in seeds and their use |
US5763254A (en) | 1990-05-09 | 1998-06-09 | Novo Nordisk A/S | Enzyme capable of degrading cellulose or hemicellulose |
EP0531315A1 (en) | 1990-05-09 | 1993-03-17 | Novo Nordisk As | An enzyme capable of degrading cellulose or hemicellulose. |
US5686593A (en) | 1990-05-09 | 1997-11-11 | Novo Nordisk A/S | Enzyme capable of degrading cellulose or hemicellulose |
US5457046A (en) | 1990-05-09 | 1995-10-10 | Novo Nordisk A/S | Enzyme capable of degrading cellullose or hemicellulose |
WO1991017244A1 (en) | 1990-05-09 | 1991-11-14 | Novo Nordisk A/S | An enzyme capable of degrading cellulose or hemicellulose |
WO1991017243A1 (en) | 1990-05-09 | 1991-11-14 | Novo Nordisk A/S | A cellulase preparation comprising an endoglucanase enzyme |
EP0531372A1 (en) | 1990-05-09 | 1993-03-17 | Novo Nordisk As | A cellulase preparation comprising an endoglucanase enzyme. |
WO1992006204A1 (en) | 1990-09-28 | 1992-04-16 | Ixsys, Inc. | Surface expression libraries of heteromeric receptors |
EP0495257A1 (en) | 1991-01-16 | 1992-07-22 | The Procter & Gamble Company | Compact detergent compositions with high activity cellulase |
WO1993015186A1 (en) | 1992-01-27 | 1993-08-05 | Midwest Research Institute | Thermostable purified endoglucanases from thermophilic bacterium acidothermus cellulolyticus |
WO1994007998A1 (en) | 1992-10-06 | 1994-04-14 | Novo Nordisk A/S | Cellulase variants |
WO1994014953A1 (en) | 1992-12-23 | 1994-07-07 | Novo Nordisk A/S | An enzyme with endoglucanase activity |
WO1995017413A1 (en) | 1993-12-21 | 1995-06-29 | Evotec Biosystems Gmbh | Process for the evolutive design and synthesis of functional polymers based on designer elements and codes |
WO1995022625A1 (en) | 1994-02-17 | 1995-08-24 | Affymax Technologies N.V. | Dna mutagenesis by random fragmentation and reassembly |
WO1995024471A1 (en) | 1994-03-08 | 1995-09-14 | Novo Nordisk A/S | Novel alkaline cellulases |
WO1995033836A1 (en) | 1994-06-03 | 1995-12-14 | Novo Nordisk Biotech, Inc. | Phosphonyldipeptides useful in the treatment of cardiovascular diseases |
WO1996000787A1 (en) | 1994-06-30 | 1996-01-11 | Novo Nordisk Biotech, Inc. | Non-toxic, non-toxigenic, non-pathogenic fusarium expression system and promoters and terminators for use therein |
WO1996002551A1 (en) | 1994-07-15 | 1996-02-01 | Midwest Research Institute | Gene coding for the e1 endoglucanase |
WO1996011262A1 (en) | 1994-10-06 | 1996-04-18 | Novo Nordisk A/S | An enzyme and enzyme preparation with endoglucanase activity |
WO1996029397A1 (en) | 1995-03-17 | 1996-09-26 | Novo Nordisk A/S | Novel endoglucanases |
WO1996034108A2 (en) | 1995-04-28 | 1996-10-31 | Genencor International, Inc. | Alkaline cellulase and method for producing the same |
WO1997014804A1 (en) | 1995-10-17 | 1997-04-24 | Röhn Enzyme Finland OY | Cellulases, the genes encoding them and uses thereof |
WO1998008940A1 (en) | 1996-08-26 | 1998-03-05 | Novo Nordisk A/S | A novel endoglucanase |
WO1998012307A1 (en) | 1996-09-17 | 1998-03-26 | Novo Nordisk A/S | Cellulase variants |
WO1998013465A1 (en) | 1996-09-25 | 1998-04-02 | Genencor International, Inc. | Cellulase obtainable from thermomonospora fusca for use in industrial processes |
WO1998015619A1 (en) | 1996-10-09 | 1998-04-16 | Genencor International, Inc. | High molecular weight trichoderma cellulase |
WO1998015633A1 (en) | 1996-10-10 | 1998-04-16 | Mark Aaron Emalfarb | Chrysosporium cellulase and methods of use |
WO1998028411A2 (en) | 1996-12-23 | 1998-07-02 | Genencor International, Inc. | Enlarged cellulase compositions for use in the treatment of textiles |
WO1999006574A1 (en) | 1997-07-31 | 1999-02-11 | Dsm N.V. | Cellulose degrading enzymes of aspergillus |
WO1999010481A2 (en) | 1997-08-26 | 1999-03-04 | Genencor International, Inc. | Mutant thermomonospora spp. cellulase |
WO1999025847A2 (en) | 1997-11-19 | 1999-05-27 | Genencor International, Inc. | Cellulase produced by actinomycetes and method of producing same |
WO1999025846A2 (en) | 1997-11-19 | 1999-05-27 | Genencor International, Inc. | Cellulase produced by actinomycetes and method for producing same |
WO1999031255A2 (en) | 1997-12-16 | 1999-06-24 | Genencor International, Inc. | Novel egiii-like enzymes, dna encoding such enzymes and methods for producing such enzymes |
US6506559B1 (en) | 1997-12-23 | 2003-01-14 | Carnegie Institute Of Washington | Genetic inhibition by double-stranded RNA |
WO2000009707A1 (en) | 1998-06-24 | 2000-02-24 | Genencor International, Inc. | Cellulase producing actinomycetes, cellulase produced therefrom and method of producing same |
WO2000024883A1 (en) | 1998-10-26 | 2000-05-04 | Novozymes A/S | Constructing and screening a dna library of interest in filamentous fungal cells |
US6511824B1 (en) | 1999-03-17 | 2003-01-28 | Exelixis, Inc. | Nucleic acids and polypeptides of invertebrate TWIK channels and methods of use |
WO2000056900A2 (en) | 1999-03-22 | 2000-09-28 | Novo Nordisk Biotech, Inc. | Promoter sequences derived from fusarium venenatum and uses thereof |
WO2000070031A1 (en) | 1999-05-19 | 2000-11-23 | Midwest Research Institute | E1 endoglucanase variants y245g, y82r and w42r |
US6489127B1 (en) | 2000-01-14 | 2002-12-03 | Exelixis, Inc. | Methods for identifying anti-cancer drug targets |
US20020164730A1 (en) | 2000-02-24 | 2002-11-07 | Centro De Investigaciones Energeticas, Medioambientales Y Tecnologicas (C.I.E.M.A.T.) | Procedure for the production of ethanol from lignocellulosic biomass using a new heat-tolerant yeast |
WO2002007679A2 (en) | 2000-07-21 | 2002-01-31 | The Government Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services | Adult human dental pulp stem cells in vitro and in vivo |
US6515109B1 (en) | 2000-10-12 | 2003-02-04 | Exelixis, Inc. | Human ECT2 polypeptide |
WO2002040694A2 (en) | 2000-11-17 | 2002-05-23 | Novozymes A/S | Heterologous expression of taxanes |
WO2002050245A2 (en) | 2000-12-18 | 2002-06-27 | Genencor International, Inc. | Novel cellulase producing actinomycetes, cellulase produced therefrom and method of producing same |
WO2002095014A2 (en) | 2001-05-18 | 2002-11-28 | Novozymes A/S | Polypeptides having cellobiase activity and polynucleotides encoding same |
WO2002101078A2 (en) | 2001-06-12 | 2002-12-19 | Diversa Corporation | Cellulases, nucleic acids encoding them and methods for making and using them |
WO2003027306A2 (en) | 2001-09-21 | 2003-04-03 | Genencor International, Inc. | Bgl3 beta-glucosidase and nucleic acids encoding the same |
WO2003052118A2 (en) | 2001-12-18 | 2003-06-26 | Genencor International, Inc. | Bgl4 beta-glucosidase and nucleic acids encoding the same |
WO2003052057A2 (en) | 2001-12-18 | 2003-06-26 | Genencor International, Inc. | Egvi endoglucanase and nucleic acids encoding the same |
WO2003052055A2 (en) | 2001-12-18 | 2003-06-26 | Genencor International, Inc. | Egvii endoglucanase and nucleic acids encoding the same |
WO2003052056A2 (en) | 2001-12-18 | 2003-06-26 | Genencor International, Inc. | Egviii endoglucanase and nucleic acids encoding the same |
WO2003052054A2 (en) | 2001-12-18 | 2003-06-26 | Genencor International, Inc. | Bgl5 beta-glucosidase and nucleic acids encoding the same |
WO2004003378A1 (en) | 2002-06-29 | 2004-01-08 | Robert Bosch Gmbh | Fuel injector comprising booster for multiple injection |
WO2004016760A2 (en) | 2002-08-16 | 2004-02-26 | Genencor International, Inc. | Novel variant hyprocrea jecorina cbh1 cellulases |
WO2004031378A2 (en) | 2002-10-01 | 2004-04-15 | Novozymes A/S | Family gh 61 polypeptides |
WO2004043980A2 (en) | 2002-11-07 | 2004-05-27 | Genencor International, Inc. | Bgl6 beta-glucosidase and nucleic acids encoding the same |
WO2004048592A2 (en) | 2002-11-21 | 2004-06-10 | Genencor International, Inc. | Bgl7 beta-glucosidase and nucleic acids encoding the same |
WO2005028636A2 (en) | 2003-03-21 | 2005-03-31 | Genencor International, Inc. | Novel cbh1 homologs and variant cbh1 cellulases |
WO2005001065A2 (en) | 2003-04-01 | 2005-01-06 | Genencor International, Inc. | Variant humicola grisea cbh1.1 |
WO2004099228A2 (en) | 2003-05-02 | 2004-11-18 | Novozymes Inc. | Variants of beta-glucosidases |
WO2005047499A1 (en) | 2003-10-28 | 2005-05-26 | Novozymes Inc. | Polypeptides having beta-glucosidase activity and polynucleotides encoding same |
WO2006011899A1 (en) | 2003-11-25 | 2006-02-02 | L-3 Communications Security and Detection Systems Corporation | Security system for detecting nuclear masses |
WO2005074647A2 (en) | 2004-01-30 | 2005-08-18 | Novozymes Inc. | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
WO2005074656A2 (en) | 2004-02-06 | 2005-08-18 | Novozymes, Inc. | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
WO2005093050A2 (en) | 2004-03-25 | 2005-10-06 | Genencor International, Inc. | Cellulase fusion protein and heterologous cellulase fusion construct encoding the same |
WO2005093073A1 (en) | 2004-03-25 | 2005-10-06 | Genencor International, Inc. | Exo-endo cellulase fusion protein |
WO2006011900A2 (en) | 2004-06-30 | 2006-02-02 | Nokia Corporation | Method and system for managing metadata |
WO2006032282A1 (en) | 2004-09-24 | 2006-03-30 | Cambi Bioethanol Aps | Method for treating biomass and organic waste with the purpose of generating desired biologically based products |
WO2006074005A2 (en) | 2004-12-30 | 2006-07-13 | Genencor International, Inc. | Variant hypocrea jecorina cbh2 cellulases |
WO2006110891A2 (en) | 2005-04-12 | 2006-10-19 | E. I. Du Pont De Nemours And Company | Treatment of biomass to obtain a target chemical |
WO2006110901A2 (en) | 2005-04-12 | 2006-10-19 | E. I. Du Pont De Nemours And Company | Treatment of biomass to obtain fermentable sugars |
WO2006117432A1 (en) | 2005-04-29 | 2006-11-09 | Ab Enzymes Oy | Improved cellulases |
WO2007019442A2 (en) | 2005-08-04 | 2007-02-15 | Novozymes, Inc. | Polypeptides having beta-glucosidase activity and polynucleotides encoding same |
WO2007089290A2 (en) | 2005-09-30 | 2007-08-09 | Novozymes, Inc. | Methods for enhancing the degradation or conversion of cellulosic material |
WO2007071818A1 (en) | 2005-12-22 | 2007-06-28 | Roal Oy | Treatment of cellulosic material and enzymes useful therein |
WO2007071820A1 (en) | 2005-12-22 | 2007-06-28 | Ab Enzymes Oy | Novel enzymes |
WO2008008793A2 (en) | 2006-07-10 | 2008-01-17 | Dyadic International Inc. | Methods and compositions for degradation of lignocellulosic material |
WO2008008070A2 (en) | 2006-07-13 | 2008-01-17 | Dyadic International (Usa), Inc. | Construction of highly efficient cellulase compositions for enzymatic hydrolysis of cellulose |
WO2008057637A2 (en) | 2006-07-21 | 2008-05-15 | Novozymes, Inc. | Methods of increasing secretion of polypeptides having biological activity |
WO2008148131A1 (en) | 2007-05-31 | 2008-12-04 | Novozymes, Inc. | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
WO2009033071A2 (en) | 2007-09-07 | 2009-03-12 | Dyadic International, Inc. | Novel fungal enzymes |
Non-Patent Citations (162)
Title |
---|
"Useful proteins from recombinant bacteria", SCIENTIFIC AMERICAN, vol. 242, 1980, pages 74 - 94 |
ALIZADEH, APPL. BIOCHEM. BIOTECHNOL., vol. 121, 2005, pages 1133 - 1141 |
BAILEY, J.E.; OLLIS, D.F.: "Biochemical Engineering Fundamentals", 1986, MCGRAW-HILL BOOK COMPANY |
BALLESTEROS ET AL., APPL. BIOCHEM. BIOTECHNOL., vol. 129-132, 2006, pages 496 - 508 |
BEALL ET AL.: "Parametric studies of ethanol production from xylose and other sugars by recombinant Escherichia coli", BIOTECH. BIOENG., vol. 38, 1991, pages 296 - 303, XP000215006, DOI: doi:10.1002/bit.260380311 |
BECKER; GUARENTE: "Guide to Yeast Genetics and Molecular Biology, Methods in Enzymology", vol. 194, ACADEMIC PRESS, INC., pages: 182 - 187 |
BENNETT, J.W. AND LASURE, L.: "More Gene Manipulations in Fungi", 1991, ACADEMIC PRESS |
BOWIE; SAUER, PROC. NATL. ACAD. SCI. USA, vol. 86, 1989, pages 2152 - 2156 |
BUCKLEY ET AL., APPL. ENVIRON. MICROBIOL., vol. 65, 1999, pages 3800 - 3804 |
BURKE ET AL., PROC. NATL. ACAD. SCI. USA, vol. 98, 2001, pages 6289 - 6294 |
CARTER ET AL., PROTEINS: STRUCTURE, FUNCTION, AND GENETICS, vol. 6, 1989, pages 240 - 248 |
CATT; JOLLICK, MICROBIOS, vol. 68, 1991, pages 189 - 2070 |
CHANG; COHEN, MOLECULAR GENERAL GENETICS, vol. 168, 1979, pages 111 - 115 |
CHEN ET AL., PLANT AND CELL PHYSIOLOGY, vol. 39, 1998, pages 935 - 941 |
CHEN, R.; LEE, Y. Y.: "Membrane-mediated extractive fermentation for lactic acid production from cellulosic biomass", APPL. BIOCHEM. BIOTECHNOL., vol. 63-65, 1997, pages 435 - 448, XP008087560, DOI: doi:10.1007/BF02920444 |
CHEN; HO: "Cloning and improving the expression of Pichia stipitis xylose reductase gene in Saccharomyces cerevisiae", APPL. BIOCHEM. BIOTECHNOL., vol. 39-40, 1993, pages 135 - 147, XP009063851, DOI: doi:10.1007/BF02918984 |
CHOI ET AL., J. MICROBIOL. METHODS, vol. 64, 2006, pages 391 - 397 |
CHRISTENSEN ET AL., BIOLTECHNOLOGY, vol. 6, 1988, pages 1419 - 1422 |
CHRISTENSEN ET AL., PLANT MOL. BIOL., vol. 18, 1992, pages 675 - 689 |
CHRISTOU, PLANT JOURNAL, vol. 2, 1992, pages 275 - 281 |
CHUNDAWAT ET AL., BIOTECHNOL. BIOENG., vol. 96, 2007, pages 219 - 231 |
CLEWELL, MICROBIOL. REV., vol. 45, 1981, pages 409 - 436 |
COLLINS-RACIE ET AL., BIOTECHNOLOGY, vol. 13, 1995, pages 982 - 987 |
CONRAD ET AL., JOURNAL OF PLANT PHYSIOLOGY, vol. 152, 1998, pages 708 - 711 |
CONTRERAS ET AL., BIOTECHNOLOGY, vol. 9, 1991, pages 378 - 381 |
CULLEN ET AL., NUCLEIC ACIDS RESEARCH, vol. 15, 1987, pages 9163 - 9175 |
CUNNINGHAM; WELLS, SCIENCE, vol. 244, 1989, pages 1081 - 1085 |
DAN ET AL., J. BIOL. CHEM., vol. 275, 2000, pages 4973 - 4980 |
DE VOS ET AL., SCIENCE, vol. 255, 1992, pages 306 - 312 |
DEANDA ET AL.: "Development of an arabinose-fermenting Zymomonas mobilis strain by metabolic pathway engineering", APPL. ENVIRON. MICROBIOL., vol. 62, 1996, pages 4465 - 4470 |
DEBOER ET AL., PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES USA, vol. 80, 1983, pages 21 - 25 |
DERBYSHIRE ET AL., GENE, vol. 46, 1986, pages 145 |
DOWER ET AL., NUCLEIC ACIDS RES., vol. 16, 1988, pages 6127 - 6145 |
DUBNAU; DAVIDOFF-ABELSON, JOURNAL OF MOLECULAR BIOLOGY, vol. 56, 1971, pages 209 - 221 |
DUFF; MURRAY, BIORESOURCE TECHNOLOGY, vol. 855, 1996, pages 1 - 33 |
EATON ET AL., BIOCHEM., vol. 25, 1986, pages 505 - 512 |
EDWARDS; CORUZZI, ANN. REV. GENET., vol. 24, 1990, pages 275 - 303 |
EZEJI, T. C.; QURESHI, N.; BLASCHEK, H. P.: "Production of acetone, butanol and ethanol by Clostridium beijerinckii BA101 and in situ recovery by gas stripping", WORLD JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, vol. 19, no. 6, 2003, pages 595 - 603 |
FERNANDA DE CASTILHOS CORAZZA; FLAVIO FARIA DE MORAES; GISELLA MARIA ZANIN; IVO NEITZEL: "Optimal control in fed-batch reactor for the cellobiose hydrolysis", ACTA SCIENTIARUM. TECHNOLOGY, vol. 25, 2003, pages 33 - 38 |
FORD ET AL., PROTEIN EXPRESSION AND PURIFICATION, vol. 2, 1991, pages 95 - 107 |
FRANCK ET AL., CELL, vol. 21, 1980, pages 285 - 294 |
GALBE; ZACCHI, APPL. MICROBIOL. BIOTECHNOL, vol. 59, 2002, pages 618 - 628 |
GASSER ET AL., SCIENCE, vol. 244, 1990, pages 1293 |
GEMS ET AL., GENE, vol. 98, 1991, pages 61 - 67 |
GHOSE, PURE AND APPL. CHEM., vol. 59, 1987, pages 257 - 268 |
GHOSH; SINGH: "Physicochemical and biological treatments for enzymatic/microbial conversion of cellulosic biomass", ADV. APPL. MICROBIOL., vol. 39, 1993, pages 295 - 333, XP009102696, DOI: doi:10.1016/S0065-2164(08)70598-7 |
GIESECKE ET AL., JOURNAL OF VIROLOGY METHODS, vol. 38, 1992, pages 47 - 60 |
GOLLAPALLI, APPL. BIOCHEM. BIOTECHNOL., vol. 98, 2002, pages 23 - 35 |
GONG ET AL., FOLIA MICROBIOL. (PRAHA, vol. 49, 2004, pages 399 - 405 |
GONG, C. S.; CAO, N. J.; DU, J.; TSAO, G. T.: "Advances in Biochemical Engineering/Biotechnology", vol. 65, 1999, SPRINGER-VERLAG BERLIN HEIDELBERG, article "Ethanol production from renewable resources", pages: 207 - 241 |
GUBLER; HOFFMAN, GENE, vol. 25, 1983, pages 263 - 269 |
GUNASEELAN V.N., BIOMASS AND BIOENERGY, vol. 13, no. 1-2, 1997, pages 83 - 114 |
GUO; SHERMAN, MOLECULAR CELLULAR BIOLOGY, vol. 15, 1995, pages 5983 - 5990 |
GUSAKOV, A. V.; SINITSYN, A. P.: "Kinetics of the enzymatic hydrolysis of cellulose: 1. A mathematical model for a batch reactor process", ENZ. MICROB. TECHNOL., vol. 7, 1985, pages 346 - 352, XP023679176, DOI: doi:10.1016/0141-0229(85)90114-0 |
GUSAKOV, A. V.; SINITSYN, A. P.; DAVYDKIN, . Y.; DAVYDKIN, V. Y.; PROTAS, O. V.: "Enhancement of enzymatic cellulose hydrolysis using a novel type of bioreactor with intensive stirring induced by electromagnetic field", APPL. BIOCHEM. BIOTECHNOL., vol. 56, 1996, pages 141 - 153, XP035176121, DOI: doi:10.1007/BF02786945 |
H. NEURATH; R.L. HILL: "The Proteins", 1979, ACADEMIC PRESS |
HANAHAN, J. MOL. BIOL., vol. 166, 1983, pages 557 - 580 |
HAWKSWORTH ET AL.: "Ainsworth and Bisby's Dictionary of The Fungi, 8th edition,", 1995, CAB INTERNATIONAL, UNIVERSITY PRESS |
HENRISSAT B.: "A classification of glycosyl hydrolases based on amino-acid sequence similarities", BIOCHEM. J., vol. 280, 1991, pages 309 - 316 |
HENRISSAT B.; BAIROCH A.: "Updating the sequence-based classification of glycosyl hydrolases", BIOCHEM. J., vol. 316, 1996, pages 695 - 696, XP001176681 |
HILTON ET AL., J. BIOL. CHEM., vol. 271, 1996, pages 4699 - 4708 |
HINNEN ET AL., PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES USA, vol. 75, 1978, pages 1920 |
HO ET AL.: "Genetically engineered Saccharomyces yeast capable of effectively cofermenting glucose and xylose", APPL. ENVIRON. MICROBIOL., vol. 64, 1998, pages 1852 - 1859 |
HOOYKAS; SCHILPEROORT, PLANT MOLECULAR BIOLOGY, vol. 19, 1992, pages 15 - 38 |
HSU, T.-A.: "Handbook on Bioethanol: Production and Utilization", 1996, TAYLOR & FRANCIS, article "Pretreatment of biomass", pages: 179 - 212 |
INGRAM ET AL.: "Metabolic engineering of bacteria for ethanol production", BIOTECHNOL. BIOENG., vol. 58, 1998, pages 204 - 214, XP000999111, DOI: doi:10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C |
INNIS ET AL.: "PCR: A Guide to Methods and Application", 1990, ACADEMIC PRESS |
ITO ET AL., JOURNAL OF BACTERIOLOGY, vol. 153, 1983, pages 163 |
ITO ET AL., PLANT MOL. BIOL., vol. 24, 1994, pages 863 - 878 |
J.-C. JANSON AND LARS RYDEN,: "Protein Purification", 1989, VCH PUBLISHERS |
K. JACQUES, T.P. LYONS AND D.R. KELSALL,: "The Alcohol Textbook", 1999, NOTTINGHAM UNIVERSITY PRESS |
KAGAYA ET AL., MOLECULAR AND GENERAL GENETICS, vol. 248, 1995, pages 668 - 674 |
KATAOKA, N.; A. MIYA; K. KIRIYAMA: "Studies on hydrogen production by continuous culture system of hydrogen-producing anaerobic bacteria", WATER SCIENCE AND TECHNOLOGY, vol. 36, no. 6-7, 1997, pages 41 - 47 |
KAWAGUCHI ET AL., GENE, vol. 173, 1996, pages 287 - 288 |
KOEHLER; THORNE, JOURNAL OF BACTERIOLOGY, vol. 169, 1987, pages 5271 - 5278 |
KOTTER; CIRIACY: "Xylose fermentation by Saccharomyces cerevisiae", APPL. MICROBIOL. BIOTECHNOL., vol. 38, 1993, pages 776 - 783 |
KURABI ET AL., APPL. BIOCHEM. BIOTECHNOL., vol. 121, 2005, pages 219 - 230 |
KUYPER ET AL.: "Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle", FEMS YEAST RESEARCH, vol. 4, 2004, pages 655 - 664 |
KYOZUKA ET AL., PLANT PHYSIOLOGY, vol. 102, 1993, pages 991 - 1000 |
LEE, ADV. BIOCHEM. ENG. BIOTECHNOL., vol. 65, 1999, pages 93 - 115 |
LEVER ET AL., ANAL. BIOCHEM., vol. 47, 1972, pages 273 - 279 |
LIN ET AL., APPL. MICROBIOL. BIOTECHNOL., vol. 69, 2006, pages 627 - 642 |
LOWMAN ET AL., BIOCHEM., vol. 30, 1991, pages 10832 - 10837 |
LYND, APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, vol. 24-25, 1990, pages 695 - 719 |
LYND, L. R.; WEIMER, P. J.; VAN ZYL, W. H.; PRETORIUS, . S.: "Microbial cellulose utilization: Fundamentals and biotechnology", MICROBIOL. MOL. BIOL. REVIEWS, vol. 66, 2002, pages 506 - 577, XP002551605, DOI: doi:10.1128/MMBR.66.3.506-577.2002 |
MALARDIER ET AL., GENE, vol. 78, 1989, pages 147 - 156 |
MARTIN ET AL., J. IND. MICROBIOL. BIOTECHNOL., vol. 3, 2003, pages 568 - 76 |
MARTIN, J. CHEM. TECHNOL. BIOTECHNOL., vol. 81, 2006, pages 1669 - 1677 |
MAZODIER ET AL., J. BACTERIOL., vol. 171, 1989, pages 3583 - 3585 |
MCMILLAN, J. D.: "Enzymatic Conversion of Biomass for Fuels Production", 1994, ACS SYMPOSIUM SERIES 566, AMERICAN CHEMICAL SOCIETY, article "Pretreating lignocellulosic biomass: a review" |
MITRA; HIGGINS, PLANT MOLECULAR BIOLOGY, vol. 26, 1994, pages 85 - 93 |
MOSIER ET AL., BIORESOURCE TECHNOL., vol. 96, 2005, pages 673 - 686 |
MOSIER ET AL., BIORESOURCE TECHNOLOGY, vol. 96, 2005, pages 673 - 686 |
MOSIER ET AL.: "Advances in Biochemical Engineering/Biotechnology", vol. 65, 1999, SPRINGER-VERLAG, article "Recent Progress in Bioconversion of Lignocellulosics", pages: 23 - 40 |
NEEDLEMAN; WUNSCH, J. MOL. BIOL., vol. 48, 1970, pages 443 - 453 |
NER ET AL., DNA, vol. 7, 1988, pages 127 |
NESS ET AL., NATURE BIOTECHNOLOGY, vol. 17, 1999, pages 893 - 896 |
NIELSEN ET AL., PROTEIN ENGINEERING, vol. 10, 1997, pages 1 - 6 |
NIGAM, P.; SINGH, D.: "Processes for fermentative production of xylitol - a sugar substitute", PROCESS BIOCHEMISTRY, vol. 30, no. 2, 1995, pages 117 - 124 |
OKADA ET AL., APPL. ENVIRON. MICROBIOL, vol. 64, 1988, pages 555 - 563 |
OLSSON; HAHN-HAGERDAL: "Fermentation of lignocellulosic hydrolysates for ethanol production", ENZ. MICROB. TECH., vol. 18, 1996, pages 312 - 331, XP002312595, DOI: doi:10.1016/0141-0229(95)00157-3 |
OMIRULLEH ET AL., PLANT MOLECULAR BIOLOGY, vol. 21, 1993, pages 415 - 428 |
OOI ET AL., NUCLEIC ACIDS RESEARCH, vol. 18, 1990, pages 5884 |
PALONEN ET AL., APPL. BIOCHEM. BIOTECHNOL., vol. 117, 2004, pages 1 - 17 |
PAN ET AL., BIOTECHNOL. BIOENG., vol. 90, 2005, pages 473 - 481 |
PAN ET AL., BIOTECHNOL. BIOENG., vol. 94, 2006, pages 851 - 861 |
PEARSON, W.R.: "Bioinformatics Methods and Protocols", 1999, pages: 185 - 219 |
PENTTILA ET AL., GENE, vol. 45, 1986, pages 253 - 263 |
PERRY; KURAMITSU, INFECT. IMMUN., vol. 32, 1981, pages 1295 - 1297 |
PHILIPPIDIS, G. P.: "Handbook on Bioethanol: Production and Utilization", 1996, TAYLOR & FRANCIS, article "Cellulose bioconversion technology", pages: 179 - 212 |
PHILIPPIDIS, G. P.: "Handbook on Bioethanol: Production and Utilization", 1996, TAYLOR & FRANCIS, WASHINGTON, article "Cellulose bioconversion technology", pages: 179 - 212 |
PINEDO; SMETS, APPL. ENVIRON. MICROBIOL., vol. 71, 2005, pages 51 - 57 |
POTRYKUS, BIOLTECHNOLOGY, vol. 8, 1990, pages 535 |
RASMUSSEN-WILSON ET AL., APPL. ENVIRON. MICROBIOL., vol. 63, 1997, pages 3488 - 3493 |
REIDHAAR-OLSON; SAUER, SCIENCE, vol. 241, 1988, pages 53 - 57 |
RICE ET AL., EMBOSS: THE EUROPEAN MOLECULAR BIOLOGY OPEN SOFTWARE SUITE, 2000 |
RICE ET AL.: "EMBOSS: The European Molecular Biology Open Software Suite", TRENDS IN GENETICS, vol. 16, 2000, pages 276 - 277, XP004200114, DOI: doi:10.1016/S0168-9525(00)02024-2 |
RICHARD, A.; MARGARITIS, A.: "Empirical modeling of batch fermentation kinetics for poly(glutamic acid) production and other microbial biopolymers", BIOTECHNOLOGY AND BIOENGINEERING, vol. 87, no. 4, 2004, pages 501 - 515 |
ROMANOS ET AL., YEAST, vol. 8, 1992, pages 423 - 488 |
RYU, S. K.; LEE, J. M.: "Bioconversion of waste cellulose by using an attrition bioreactor", BIOTECHNOL. BIOENG., vol. 25, 1983, pages 53 - 65, XP002397253, DOI: doi:10.1002/bit.260250106 |
SAARILAHTI ET AL., GENE, vol. 90, 1990, pages 9 - 14 |
SAKAMOTO ET AL., CURRENT GENETICS, vol. 27, 1995, pages 435 - 439 |
SALOHEIMO ET AL., EUR. J. BIOCHEM., vol. 249, 1997, pages 584 - 591 |
SALOHEIMO ET AL., GENE, vol. 63, 1988, pages 11 - 22 |
SALOHEIMO ET AL., MOLECULAR MICROBIOLOGY, vol. 13, 1994, pages 219 - 228 |
SAMBROOK ET AL.: "Molecular cloning: A laboratory manual", 1989, COLD SPRING HARBOR LAB. |
SASSNER ET AL., ENZYME MICROB. TECHNOL., vol. 39, 2006, pages 756 - 762 |
SCHELL ET AL., APPL. BIOCHEM. AND BIOTECHNOL., vol. 105, no. 108, 2003, pages 69 - 85 |
SCHELL, BIORESOURCE TECHNOL., vol. 91, 2004, pages 179 - 188 |
SCHMIDT; THOMSEN, BIORESOURCE TECHNOL., vol. 64, 1998, pages 139 - 151 |
SHEEHAN, J.; HIMMEL, M.: "Enzymes, energy and the environment: A strategic perspective on the U.S. Department of Energy's research and development activities for bioethanol", BIOTECHNOL. PROG., vol. 15, 1999, pages 817 - 827 |
SHIGEKAWA; DOWER, BIOTECHNIQUES, vol. 6, 1988, pages 742 - 751 |
SHIMAMOTO ET AL., NATURE, vol. 338, 1989, pages 274 |
SHIMAMOTO, CURRENT OPINION BIOTECHNOLOGY, vol. 5, 1994, pages 158 - 162 |
SILVEIRA, M. M.; JONAS, R.: "The biotechnological production of sorbitol", APPL. MICROBIOL. BIOTECHNOL., vol. 59, 2002, pages 400 - 408 |
SIMONEN; PALVA, MICROBIOLOGICAL REVIEWS, vol. 57, 1993, pages 109 - 137 |
SKINNER, F.A., PASSMORE, S.M., AND DAVENPORT, R.R.,: "Biology and Activities of Yeast", 1980, SOC. APP. BACTERIOL. SYMPOSIUM SERIES NO. 9 |
SMITH ET AL., J. MOL. BIOL., vol. 224, 1992, pages 899 - 904 |
STEVENS, DRUG DISCOVERY WORLD, vol. 4, 2003, pages 35 - 48 |
SVETINA ET AL., J. BIOTECHNOL., vol. 76, 2000, pages 245 - 251 |
TAGUE ET AL., PLANT PHYSIOLOGY, vol. 86, 1988, pages 506 |
TEYMOURI ET AL., BIORESOURCE TECHNOL., vol. 96, 2005, pages 2014 - 2018 |
VALLANDER; ERIKSSON: "Production of ethanol from lignocellulosic materials: State of the art", ADV. BIOCHEM. ENG.LBIOTECHNOL., vol. 42, 1990, pages 63 - 95 |
VAN TILBEURGH ET AL., FEBS LETTERS, vol. 149, 1982, pages 152 - 156 |
VAN TILBEURGH; CLAEYSSENS, FEBS LETTERS, vol. 187, 1985, pages 283 - 288 |
VARGA ET AL., APPL. BIOCHEM. BIOTECHNOL., vol. 113-116, 2004, pages 509 - 523 |
VARGA ET AL., BIOTECHNOL. BIOENG., vol. 88, 2004, pages 567 - 574 |
VASIL ET AL., BIOLTECHNOLOGY, vol. 10, 1992, pages 667 - 674 |
VENTURI ET AL., J. BASIC MICROBIOL., vol. 42, 2002, pages 55 - 66 |
VILLA-KAMAROFF ET AL., PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES USA, vol. 75, 1978, pages 3727 - 3731 |
WALFRIDSSON ET AL.: "Xylose- metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TALL genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase", APPL. ENVIRON. MICROBIOL., vol. 61, 1995, pages 4184 - 4190 |
WARD ET AL., BIOTECHNOLOGY, vol. 13, 1995, pages 498 - 503 |
WISELOGEL ET AL.: "Handbook on Bioethanol", 1995, TAYLOR & FRANCIS, pages: 105 - 118 |
WLODAVER ET AL., FEBS LETT., vol. 309, 1992, pages 59 - 64 |
WU ET AL., PLANT AND CELL PHYSIOLOGY, vol. 39, 1998, pages 885 - 889 |
WYMAN ET AL., BIORESOURCE TECHNOL., vol. 96, 2005, pages 1959 - 1966 |
WYMAN, BIORESOURCE TECHNOLOGY, vol. 50, 1994, pages 3 - 16 |
XU ET AL., PLANT MOLECULAR BIOLOGY, vol. 22, 1993, pages 573 - 588 |
YELTON ET AL., PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES USA, vol. 81, 1984, pages 1470 - 1474 |
YOUNG; SPIZIZEN, JOURNAL OF BACTERIOLOGY, vol. 81, 1961, pages 823 - 829 |
ZHANG ET AL., PLANT CELL, vol. 3, 1991, pages 1155 - 1165 |
ZHANG ET AL.: "Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis", SCIENCE, vol. 267, 1995, pages 240 - 243, XP002912123, DOI: doi:10.1126/science.267.5195.240 |
Cited By (239)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8809033B2 (en) | 2008-12-19 | 2014-08-19 | Novozymes, Inc. | Methods for increasing hydrolysis of cellulosic material in the presence of cellobiose dehydrogenase |
WO2010080532A1 (en) * | 2008-12-19 | 2010-07-15 | Novozymes, Inc. | Methods for increasing hydrolysis of cellulosic material in the presence of cellobiose dehydrogenase |
WO2010141325A1 (en) | 2009-06-02 | 2010-12-09 | Novozymes, Inc. | Polypeptides having cellobiohydrolase activity and polynucleotides encoding same |
WO2011008785A2 (en) | 2009-07-17 | 2011-01-20 | Novozymes A/S | A method of analyzing cellulose decay in cellulosic material hydrolysis |
US10626386B2 (en) | 2009-09-17 | 2020-04-21 | Novozymes, Inc. | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
US10246693B2 (en) | 2009-09-17 | 2019-04-02 | Novozymes, Inc. | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
EP3805348A2 (en) | 2009-09-17 | 2021-04-14 | Novozymes, Inc. | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
US8865445B2 (en) | 2009-09-17 | 2014-10-21 | Novozymes, Inc. | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
WO2011035027A2 (en) | 2009-09-17 | 2011-03-24 | Novozymes, Inc. | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
US10006012B2 (en) | 2009-09-17 | 2018-06-26 | Novozymes, Inc. | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
EP3269804A1 (en) | 2009-09-17 | 2018-01-17 | Novozymes, Inc. | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
WO2011035029A1 (en) | 2009-09-18 | 2011-03-24 | Novozymes, Inc. | Polypeptides having beta-glucosidase activity and polynucleotides encoding same |
CN102666847A (en) * | 2009-10-29 | 2012-09-12 | 诺维信股份有限公司 | Polypeptides having cellobiohydrolase activity and polynucleotides encoding same |
CN102666847B (en) * | 2009-10-29 | 2015-12-09 | 诺维信股份有限公司 | There are the polypeptide of cellobiohydrolase activity and the polynucleotide of this polypeptide of coding |
US10072280B2 (en) | 2009-11-06 | 2018-09-11 | Novozymes, Inc. | Compositions for saccharification of cellulosic material |
US9175277B2 (en) | 2009-11-06 | 2015-11-03 | Novozymes, Inc. | Compositions for saccharification of cellulosic material |
WO2011057140A1 (en) * | 2009-11-06 | 2011-05-12 | Novozymes, Inc. | Compositions for saccharification of cellulosic material |
US8580536B2 (en) | 2009-11-06 | 2013-11-12 | Novozymes, Inc. | Compositions for saccharification of cellulosic material |
WO2011057083A1 (en) | 2009-11-06 | 2011-05-12 | Novozymes, Inc. | Polypeptides having xylanase activity and polynucleotides encoding same |
WO2011057086A1 (en) | 2009-11-06 | 2011-05-12 | Novozymes, Inc. | Polypeptides having cellobiohydrolase activity and polynucleotides encoding same |
US10648009B2 (en) | 2009-11-06 | 2020-05-12 | Novoyzmes, Inc. | Compositions for saccharification of cellulosic material |
EP3222716A1 (en) * | 2009-11-06 | 2017-09-27 | Novozymes, Inc. | Composition for saccharification of cellulosic material |
US11091785B2 (en) | 2009-11-06 | 2021-08-17 | Novoyzmes, Inc. | Compositions for saccharification of cellulosic material |
US9957493B2 (en) | 2009-11-06 | 2018-05-01 | Novozymes, Inc. | Polypeptides having cellobiohydrolase activity and polynucleotides encoding same |
US11713476B2 (en) | 2009-11-06 | 2023-08-01 | Novozymes, Inc. | Compositions for saccharification of cellulosic material |
US9267125B2 (en) | 2009-11-06 | 2016-02-23 | Novozymes, Inc. | Polypeptides having cellobiohydrolase activity and polynucleotides encoding same |
CN103068976A (en) * | 2009-11-06 | 2013-04-24 | 诺维信股份有限公司 | Polypeptides having cellobiohydrolase activity and polynucleotides encoding same |
US9587262B2 (en) | 2009-11-06 | 2017-03-07 | Novozymes, Inc. | Compositions for saccharification of cellulosic material |
WO2012003379A1 (en) | 2010-06-30 | 2012-01-05 | Novozymes A/S | Polypeptides having beta-glucosidase activity and polynucleotides encoding same |
WO2012006642A1 (en) | 2010-07-07 | 2012-01-12 | Novozymes North America, Inc. | Fermentation process |
WO2012012590A2 (en) | 2010-07-23 | 2012-01-26 | Novozymes A/S | Processes for producing fermentation products |
US10087478B2 (en) | 2010-08-12 | 2018-10-02 | Novozymes, Inc. | Compositions comprising a polypeptide having cellulolytic enhancing activity and a nitrogen-containing compound and uses thereof |
US11085061B2 (en) | 2010-08-12 | 2021-08-10 | Novozymes, Inc. | Compositions comprising a GH61 polypeptide having cellulolytic enhancing activity and a liquor and method of using thereof |
WO2012021400A1 (en) | 2010-08-12 | 2012-02-16 | Novozymes, Inc. | Compositions comprising a polypeptide having cellulolytic enhancing activity and a heterocyclic compound and uses thereof |
US10570431B2 (en) | 2010-08-12 | 2020-02-25 | Novozymes, Inc. | Compositions comprising a polypeptide having cellulolytic enhancing activity and a heterocyclic compound and uses thereof |
US9752168B2 (en) | 2010-08-12 | 2017-09-05 | Novozymes, Inc. | Compositions comprising a polypeptide having cellulolytic enhancing activity and a quinone compound and uses thereof |
WO2012021410A1 (en) | 2010-08-12 | 2012-02-16 | Novozymes, Inc. | Compositions comprising a polypeptide having cellulolytic enhancing activity and a liquor and uses thereof |
WO2012021401A1 (en) | 2010-08-12 | 2012-02-16 | Novozymes, Inc. | Compositions comprising a polypeptide having cellulolytic enhancing activity and a bicyclic compound and uses thereof |
US8846351B2 (en) | 2010-08-12 | 2014-09-30 | Novozymes, Inc. | Compositions for enhancing hydroysis of cellulosic material by cellulolytic enzyme compositions |
WO2012021408A1 (en) | 2010-08-12 | 2012-02-16 | Novozymes, Inc. | Compositions comprising a polypeptide having cellulolytic enhancing activity and a dioxy compound and uses thereof |
US9458483B2 (en) | 2010-08-12 | 2016-10-04 | Novozymes, Inc. | Compositions comprising a polypeptide having cellulolytic enhancing activity and a bicyclic compound and uses thereof |
US9663808B2 (en) | 2010-08-12 | 2017-05-30 | Novozymes, Inc. | Compositions comprising a polypeptide having cellulolytic enhancing activity and an organic compound and uses thereof |
WO2012021395A1 (en) | 2010-08-12 | 2012-02-16 | Novozymes, Inc. | Compositions comprising a polypeptide having cellulolytic enhancing activity and a sulfur-containing compound and uses thereof |
WO2012021394A1 (en) | 2010-08-12 | 2012-02-16 | Novozymes, Inc. | Compositions comprising a polypeptide having cellulolytic enhancing activity and a quinone compound and uses thereof |
US10316343B2 (en) | 2010-08-12 | 2019-06-11 | Novozymes, Inc. | Compositions comprising a polypeptide having cellulolytic enhancing activity and a liquor and uses thereof |
US9404137B2 (en) | 2010-08-12 | 2016-08-02 | Novozymes, Inc. | Compositions comprising a polypeptide having cellulolytic enhancing activity and a heterocyclic compound and uses thereof |
US9394555B2 (en) | 2010-08-12 | 2016-07-19 | Novozymes, Inc. | Compositions comprising a polypeptide having cellulolytic enhancing activity and a dioxy compound and uses thereof |
US9353391B2 (en) | 2010-08-12 | 2016-05-31 | Novozymes, Inc. | Compositions comprising a polypeptide having cellulolytic enhancing activity and a nitrogen-containing compound and uses thereof |
WO2012021396A1 (en) | 2010-08-12 | 2012-02-16 | Novozymes, Inc. | Compositions comprising a polypeptide having cellulolytic enhancing activity and an organic compound and uses thereof |
US9273335B2 (en) | 2010-08-12 | 2016-03-01 | Novozymes, Inc. | Compositions comprising a polypeptide having cellulolytic enhancing activity and a quinone compound and uses thereof |
US9057086B2 (en) | 2010-08-12 | 2015-06-16 | Novozymes, Inc. | Compositions comprising a polypeptide having cellulolytic enhancing activity and a bicycle compound and uses thereof |
WO2012021399A1 (en) | 2010-08-12 | 2012-02-16 | Novozymes, Inc. | Compositions comprising a polypeptide having cellulolytic enhancing activity and a nitrogen-containing compound and uses thereof |
US10041101B2 (en) | 2010-08-12 | 2018-08-07 | Novozymes, Inc. | Compositions comprising a polypeptide having cellulolytic enhancing activity and a heterocyclic compound and uses thereof |
EP2606131A1 (en) * | 2010-08-20 | 2013-06-26 | Codexis, Inc. | Use of glycoside hydrolase 61 family proteins in processing of cellulose |
EP2606131A4 (en) * | 2010-08-20 | 2014-07-23 | Codexis Inc | Use of glycoside hydrolase 61 family proteins in processing of cellulose |
WO2012024698A1 (en) | 2010-08-20 | 2012-02-23 | Codexis, Inc. | Use of glycoside hydrolase 61 family proteins in processing of cellulose |
US9493802B2 (en) | 2010-08-20 | 2016-11-15 | Codexis, Inc. | Use of glycohydrolase 61 protein variants with improved thermostability for processing cellulose |
WO2012030844A1 (en) | 2010-08-30 | 2012-03-08 | Novozymes A/S | Polypeptides having endoglucanase activity and polynucleotides encoding same |
WO2012030858A2 (en) | 2010-08-30 | 2012-03-08 | Novozymes A/S | Polypeptides having hemicellulolytic activity and polynucleotides encoding same |
WO2012030811A1 (en) | 2010-08-30 | 2012-03-08 | Novozymes A/S | Polypeptides having cellobiohydrolase activity and polynucleotides encoding same |
WO2012030849A1 (en) | 2010-08-30 | 2012-03-08 | Novozymes A/S | Polypeptides having xylanase activity and polynucleotides encoding same |
WO2012030845A2 (en) | 2010-08-30 | 2012-03-08 | Novozymes A/S | Polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and polynucleotides encoding same |
JP2013541950A (en) * | 2010-09-29 | 2013-11-21 | ベータ リニューアブルス エス・ピー・エー | Pretreated biomass with high enzyme accessibility |
WO2012044836A1 (en) | 2010-09-30 | 2012-04-05 | Novozymes, Inc. | Variants of polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
US10246691B2 (en) | 2010-09-30 | 2019-04-02 | Novozymes, Inc. | Variants of polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
US9816082B2 (en) | 2010-09-30 | 2017-11-14 | Novozymes, Inc. | Variants of polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
WO2012044835A1 (en) | 2010-09-30 | 2012-04-05 | Novozymes, Inc. | Variants of polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
WO2012058293A1 (en) | 2010-10-26 | 2012-05-03 | Novozymes North America, Inc. | Methods of saccharifying sugarcane trash |
US9932414B2 (en) | 2010-11-02 | 2018-04-03 | Novozymes, Inc. | Methods of pretreating cellulosic material with a family 61 polypeptide |
WO2012061517A1 (en) | 2010-11-02 | 2012-05-10 | Novozymes, Inc. | Methods of pretreating cellulosic material with a gh61 polypeptide |
US20150252342A1 (en) * | 2010-11-02 | 2015-09-10 | Codexis, Inc. | Fungal strains |
US9528098B2 (en) * | 2010-11-02 | 2016-12-27 | Codexis, Inc. | Fungal strains |
WO2012059053A1 (en) | 2010-11-04 | 2012-05-10 | Novozymes A/S | Polypeptides having cellobiohydrolase activity and polynucleotides encoding same |
WO2012062220A1 (en) | 2010-11-12 | 2012-05-18 | Novozymes A/S | Polypeptides having endoglucanase activity and polynucleotides encoding same |
WO2012068509A1 (en) | 2010-11-18 | 2012-05-24 | Novozymes, Inc. | Chimeric polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
US9676830B2 (en) | 2010-11-18 | 2017-06-13 | Novozymes, Inc. | Chimeric polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
US10633664B2 (en) | 2010-11-22 | 2020-04-28 | Cargill, Incorporated | Compositions and methods for 3-hydroxypropionic acid production |
US12054721B2 (en) | 2010-11-22 | 2024-08-06 | Cargill, Incorporated | Compositions and methods for 3-hydroxypropionic acid production |
US10260072B2 (en) | 2010-11-22 | 2019-04-16 | Cargill, Incorporated | Compositions and methods for 3-hydroxypropionic acid production |
US9090918B2 (en) | 2010-11-22 | 2015-07-28 | Novozymes A/A | Compositions and methods for 3-hydroxypropionic acid production |
US11118187B2 (en) | 2010-11-22 | 2021-09-14 | Cargill, Incorporated | Compositions and methods for 3-hydroxypropionic acid production |
WO2012103350A1 (en) | 2011-01-26 | 2012-08-02 | Novozymes A/S | Polypeptides having cellobiohydrolase activity and polynucleotides encoding same |
EP3235903A1 (en) | 2011-01-26 | 2017-10-25 | Novozymes A/S | Polypeptides having cellobiohydrolase activity and polynucleotides encoding same |
WO2012101206A2 (en) | 2011-01-26 | 2012-08-02 | Novozymes A/S | Novel glycoside hydrolases from thermophilic fungi |
WO2012103322A1 (en) | 2011-01-26 | 2012-08-02 | Novozymes A/S | Polypeptides having endoglucanase activity and polynucleotides encoding same |
WO2012103300A2 (en) | 2011-01-26 | 2012-08-02 | Novozymes A/S | Polypeptides having cellobiohydrolase activity and polynucleotides encoding same |
WO2012103293A1 (en) | 2011-01-26 | 2012-08-02 | Novozymes A/S | Polypeptides having cellobiohydrolase activity and polynucleotides encoding same |
WO2012103288A1 (en) | 2011-01-26 | 2012-08-02 | Novozymes A/S | Polypeptides having cellobiohydrolase activity and polynucleotides encoding same |
US9499806B2 (en) | 2011-02-23 | 2016-11-22 | Novozymes, Inc. | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
US9051376B2 (en) | 2011-02-23 | 2015-06-09 | Novozymes, Inc. | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
US9365843B2 (en) | 2011-02-23 | 2016-06-14 | Novozymes, Inc. | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
WO2012113340A1 (en) | 2011-02-23 | 2012-08-30 | Novozymes Inc. | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
US9150842B2 (en) | 2011-03-09 | 2015-10-06 | Novozymes A/S | Methods of increasing the cellulolytic enhancing activity of a polypeptide |
EP3339442A1 (en) | 2011-03-09 | 2018-06-27 | Novozymes A/S | Methods of increasing the cellulolytic enhancing activity of a polypeptide |
US9677060B2 (en) | 2011-03-09 | 2017-06-13 | Novozymes A/S | Methods of increasing the cellulolytic enhancing activity of a polypeptide |
WO2012122518A1 (en) | 2011-03-09 | 2012-09-13 | Novozymes A/S | Methods of increasing the cellulolytic enhancing activity of a polypeptide |
US9605037B2 (en) | 2011-03-10 | 2017-03-28 | Novozymes A/S | Recombinant host cells and nucleic acid constructs encoding polypeptides having cellulolytic enhancing activity |
WO2012122477A1 (en) | 2011-03-10 | 2012-09-13 | Novozymes A/S | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
US10035828B2 (en) | 2011-03-10 | 2018-07-31 | Novozymes A/S | Methods of using polypeptides having cellulolytic enhancing activity |
US9409958B2 (en) | 2011-03-10 | 2016-08-09 | Novozymes, Inc. | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
US9725489B2 (en) | 2011-03-10 | 2017-08-08 | Novozymes A/S | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
WO2012130120A1 (en) | 2011-03-25 | 2012-10-04 | Novozymes A/S | Method for degrading or converting cellulosic material |
EP3333258A2 (en) | 2011-03-25 | 2018-06-13 | Novozymes A/S | Method for degrading or converting cellulosic material |
WO2012135719A1 (en) | 2011-03-31 | 2012-10-04 | Novozymes, Inc. | Cellulose binding domain variants and polynucleotides encoding same |
WO2012135659A2 (en) | 2011-03-31 | 2012-10-04 | Novozymes A/S | Methods for enhancing the degradation or conversion of cellulosic material |
US9410136B2 (en) | 2011-03-31 | 2016-08-09 | Novozymes, Inc. | Methods for enhancing the degradation or conversion of cellulosic material |
US9994832B2 (en) | 2011-03-31 | 2018-06-12 | Novozymes, Inc. | Recombinant host cell expressing a family glycoside hydrolase 61 polypeptide |
US9340810B2 (en) | 2011-04-25 | 2016-05-17 | Novozymes, Inc. | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
US9957491B2 (en) | 2011-04-25 | 2018-05-01 | Novozymes, Inc. | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
WO2012149192A1 (en) | 2011-04-28 | 2012-11-01 | Novozymes, Inc. | Polypeptides having endoglucanase activity and polynucleotides encoding same |
WO2012149344A1 (en) | 2011-04-29 | 2012-11-01 | Novozymes, Inc. | Methods for enhancing the degradation or conversion of cellulosic material |
US9624518B2 (en) | 2011-04-29 | 2017-04-18 | Novozymes, Inc. | Methods for enhancing the degradation or conversion of cellulosic material |
US9790530B2 (en) | 2011-04-29 | 2017-10-17 | Novozymes, Inc. | Methods for enhancing the degradation or conversion of cellulosic material |
US10036049B2 (en) | 2011-04-29 | 2018-07-31 | Novozymes, Inc. | Methods for enhancing the degradation or conversion of cellulosic material |
US9115375B2 (en) | 2011-05-19 | 2015-08-25 | Novozymes, Inc. | Methods for enhancing the degradation of cellulosic material with chitin binding proteins |
US9371551B2 (en) | 2011-05-19 | 2016-06-21 | Novozymes, Inc. | Methods for enhancing the degradation of cellulosic material with chitin binding proteins |
WO2012159009A1 (en) | 2011-05-19 | 2012-11-22 | Novozymes, Inc. | Methods for enhancing the degradation of cellulosic material with chitin binding proteins |
US8993286B2 (en) | 2011-05-19 | 2015-03-31 | Novozymes, Inc. | Methods for enhancing the degradation of cellulosic material with chitin binding proteins |
WO2012159007A1 (en) | 2011-05-19 | 2012-11-22 | Novozymes, Inc. | Methods for enhancing the degradation of cellulosic material with chitin binding proteins |
WO2013016115A1 (en) | 2011-07-22 | 2013-01-31 | Novozymes North America, Inc. | Processes for pretreating cellulosic material and improving hydrolysis thereof |
WO2013019780A2 (en) | 2011-08-04 | 2013-02-07 | Novozymes A/S | Polypeptides having endoglucanase activity and polynucleotides encoding same |
WO2013019827A2 (en) | 2011-08-04 | 2013-02-07 | Novozymes A/S | Polypeptides having xylanase activity and polynucleotides encoding same |
EP3091073A2 (en) | 2011-08-04 | 2016-11-09 | Novozymes Inc. | Polypeptides having xylanase activity and polynucleotides encoding same |
WO2013028915A2 (en) | 2011-08-24 | 2013-02-28 | Novozymes, Inc. | Methods for obtaining positive transformants of a filamentous fungal host cell |
WO2013028912A2 (en) | 2011-08-24 | 2013-02-28 | Novozymes, Inc. | Methods for producing multiple recombinant polypeptides in a filamentous fungal host cell |
WO2013043910A1 (en) | 2011-09-20 | 2013-03-28 | Novozymes A/S | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
US10017753B2 (en) | 2011-09-29 | 2018-07-10 | Novozymes, Inc. | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
WO2013089889A2 (en) | 2011-09-30 | 2013-06-20 | Novozymes, Inc. | Chimeric polypeptides having beta-glucosidase activity and polynucleotides encoding same |
WO2013064075A1 (en) | 2011-10-31 | 2013-05-10 | Novozymes, Inc. | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
US10308921B2 (en) | 2011-10-31 | 2019-06-04 | Novozymes, Inc. | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
EP3382017A1 (en) | 2011-11-18 | 2018-10-03 | Novozymes A/S | Polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and polynucleotides encoding same |
WO2013074956A2 (en) | 2011-11-18 | 2013-05-23 | Novozymes, Inc. | Polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and polynucleotides encoding same |
EP3409769A1 (en) | 2011-11-18 | 2018-12-05 | Novozymes A/S | Polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and polynucleotides encoding same |
EP3219794A1 (en) | 2011-11-21 | 2017-09-20 | Novozymes A/S | Gh61 polypeptide variants and polynucleotides encoding same |
WO2013119302A2 (en) | 2011-11-21 | 2013-08-15 | Novozymes, Inc. | Gh61 polypeptide variants and polynucleotides encoding same |
EP3597736A1 (en) | 2011-11-21 | 2020-01-22 | Novozymes A/S | Gh61 polypeptide variants and polynucleotides encoding same |
US10351834B2 (en) | 2011-11-21 | 2019-07-16 | Novozymes, Inc. | GH61 polypeptide variants and polynucleotides encoding same |
WO2013075644A1 (en) | 2011-11-22 | 2013-05-30 | Novozymes, Inc. | Polypeptides having beta-xylosidase activity and polynucleotides encoding same |
WO2013079015A1 (en) | 2011-12-01 | 2013-06-06 | Novozymes, Inc. | Polypeptides having beta-xylosidase activity and polynucleotides encoding same |
EP3272862A1 (en) | 2011-12-16 | 2018-01-24 | Novozymes, Inc. | Polypeptides having laccase activity and polynucleotides encoding same |
WO2013087027A1 (en) | 2011-12-16 | 2013-06-20 | Novozymes, Inc. | Polypeptides having laccase activity and polynucleotides encoding same |
WO2013096369A1 (en) | 2011-12-19 | 2013-06-27 | Novozymes A/S | Processes and compositions for increasing the digestibility of cellulosic materials |
WO2013091547A1 (en) | 2011-12-19 | 2013-06-27 | Novozymes, Inc. | Polypeptides having catalase activity and polynucleotides encoding same |
WO2013096603A2 (en) | 2011-12-20 | 2013-06-27 | Novozymes, Inc. | Cellobiohydrolase variants and polynucleotides encoding same |
EP2794871A4 (en) * | 2011-12-20 | 2015-12-30 | Codexis Inc | Endoglucanase 1b (eg1b) variants |
US9611462B2 (en) | 2011-12-20 | 2017-04-04 | Codexis, Inc. | Endoglucanase 1B (EG1B) variants |
WO2013096652A1 (en) | 2011-12-21 | 2013-06-27 | Novozymes, Inc. | Methods for determining the degradation of a biomass material |
WO2013160247A2 (en) | 2012-04-23 | 2013-10-31 | Novozymes A/S | Polypeptides having glucuronyl esterase activity and polynucleotides encoding same |
WO2013160248A2 (en) | 2012-04-23 | 2013-10-31 | Novozymes A/S | Polypeptides having alpha-glucuronidase activity and polynucleotides encoding same |
EP3279320A2 (en) | 2012-04-27 | 2018-02-07 | Novozymes A/S | Gh61 polypeptide variants and polynucleotides encoding same |
WO2013163590A2 (en) | 2012-04-27 | 2013-10-31 | Novozymes, Inc. | Gh61 polypeptide variants and polynucleotides encoding same |
US9957492B2 (en) | 2012-06-29 | 2018-05-01 | Novozymes A/S | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
WO2014000692A1 (en) * | 2012-06-29 | 2014-01-03 | Novozymes A/S | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
EP2867247A4 (en) * | 2012-06-29 | 2016-03-09 | Novozymes As | POLYPEPTIDES HAVING ACTIVITY PROMOTING CELLULOLYSIS AND POLYNUCLEOTIDES ENCODING SAME |
WO2014092832A2 (en) | 2012-09-19 | 2014-06-19 | Novozymes, Inc. | Methods for enhancing the degradation or conversion of cellulosic material |
US9994833B2 (en) | 2012-09-28 | 2018-06-12 | Novozymes A/S | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
US10457923B2 (en) | 2012-10-08 | 2019-10-29 | Novozymes A/S | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
WO2014058896A1 (en) | 2012-10-08 | 2014-04-17 | Novozymes A/S | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
EP3586610A1 (en) | 2012-10-08 | 2020-01-01 | Novozymes A/S | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
US10035996B2 (en) | 2012-10-08 | 2018-07-31 | Novozymes, Inc. | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
US11098290B2 (en) | 2012-10-08 | 2021-08-24 | Novozymes A/S | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
US10336993B2 (en) | 2012-10-24 | 2019-07-02 | Novozymes A/S | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
US10793845B2 (en) | 2012-10-24 | 2020-10-06 | Novozymes A/S | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
WO2014066141A2 (en) | 2012-10-24 | 2014-05-01 | Novozymes A/S | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
US9765373B2 (en) | 2012-12-14 | 2017-09-19 | Novozymes A/S | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
WO2014093835A1 (en) | 2012-12-14 | 2014-06-19 | Novozymes A/S | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
US9982285B2 (en) | 2012-12-14 | 2018-05-29 | Novozymes A/S | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
WO2014099798A1 (en) | 2012-12-19 | 2014-06-26 | Novozymes A/S | Polypeptides having cellulolytic enhancinc activity and polynucleotides encoding same |
WO2014138672A1 (en) | 2013-03-08 | 2014-09-12 | Novozymes A/S | Cellobiohydrolase variants and polynucleotides encoding same |
WO2014182990A1 (en) | 2013-05-10 | 2014-11-13 | Novozymes A/S | Polypeptides having xylanase activity and polynucleotides encoding same |
WO2015035029A1 (en) | 2013-09-04 | 2015-03-12 | Novozymes A/S | Processes for increasing enzymatic hydrolysis of cellulosic material |
US10000780B2 (en) | 2013-11-22 | 2018-06-19 | IFP Energies Nouvelles | Endoglucanase variants having improved activity, and uses of same |
WO2015075391A1 (en) * | 2013-11-22 | 2015-05-28 | IFP Energies Nouvelles | Endoglucanase variants having improved activity, and uses of same |
FR3013731A1 (en) * | 2013-11-22 | 2015-05-29 | IFP Energies Nouvelles | ENDOGLUCANASIC VARIANTS WITH IMPROVED ACTIVITY AND USES THEREOF |
WO2015081139A1 (en) | 2013-11-26 | 2015-06-04 | Novozymes A/S | Enzyme compositions and uses thereof |
EP3511418A1 (en) | 2014-01-07 | 2019-07-17 | Novozymes A/S | Process for degrading mannan-containing cellulosic materials |
WO2015105835A1 (en) | 2014-01-07 | 2015-07-16 | Novozymes A/S | Process for degrading mannan-containing cellulosic materials |
WO2015187935A1 (en) | 2014-06-06 | 2015-12-10 | Novozymes A/S | Enzyme compositions and uses thereof |
EP3805382A1 (en) | 2014-08-28 | 2021-04-14 | Renescience A/S | Solubilization of msw with blend enzymes |
EP3594335A1 (en) | 2014-09-05 | 2020-01-15 | Novozymes A/S | Carbohydrate binding module variants and polynucleotides encoding same |
EP4406964A2 (en) | 2014-09-05 | 2024-07-31 | Novozymes A/S | Carbohydrate binding module variants and polynucleotides encoding same |
WO2016037096A1 (en) | 2014-09-05 | 2016-03-10 | Novozymes A/S | Carbohydrate binding module variants and polynucleotides encoding same |
WO2016045569A1 (en) | 2014-09-23 | 2016-03-31 | Novozymes A/S | Processes for producing ethanol and fermenting organisms |
WO2016120296A1 (en) | 2015-01-28 | 2016-08-04 | Dsm Ip Assets B.V. | Process for enzymatic hydrolysis of lignocellulosic material and fermentation of sugars |
EP3640336A1 (en) | 2015-01-28 | 2020-04-22 | DSM IP Assets B.V. | Process for enzymatic hydrolysis of lignocellulosic material and fermentation of sugars |
WO2016120297A1 (en) | 2015-01-28 | 2016-08-04 | Dsm Ip Assets B.V. | Process for enzymatic hydrolysis of lignocellulosic material and fermentation of sugars |
WO2016120298A1 (en) | 2015-01-28 | 2016-08-04 | Dsm Ip Assets B.V. | Process for enzymatic hydrolysis of lignocellulosic material and fermentation of sugars |
EP4458964A2 (en) | 2015-02-24 | 2024-11-06 | Novozymes A/S | Cellobiohydrolase variants and polynucleotides encoding same |
EP3739045A2 (en) | 2015-02-24 | 2020-11-18 | Novozymes A/S | Cellobiohydrolase variants and polynucleotides encoding same |
WO2016138167A2 (en) | 2015-02-24 | 2016-09-01 | Novozymes A/S | Cellobiohydrolase variants and polynucleotides encoding same |
WO2016145350A1 (en) | 2015-03-12 | 2016-09-15 | Novozymes A/S | Multi-stage enzymatic hydrolysis of lignocellulosic biomass |
WO2016145363A1 (en) | 2015-03-12 | 2016-09-15 | Novozymes A/S | Multi-stage enzymatic hydrolysis of lignocellulosic biomass employing an oxidoreductase with an aa9 polypeptide |
WO2016145358A1 (en) | 2015-03-12 | 2016-09-15 | Novozymes A/S | Enzymatic hydrolysis with hemicellulolytic enzymes |
WO2016169893A1 (en) | 2015-04-20 | 2016-10-27 | Dsm Ip Assets B.V. | Whole fermentation broth |
WO2016169892A1 (en) | 2015-04-20 | 2016-10-27 | Dsm Ip Assets B.V. | Process for enzymatic hydrolysis of lignocellulosic material and fermentation of sugars |
WO2016188459A1 (en) | 2015-05-27 | 2016-12-01 | Novozymes A/S | Polypeptides having cellobiohydrolase activity and polynucleotides encoding same |
WO2016207144A1 (en) | 2015-06-22 | 2016-12-29 | Dsm Ip Assets B.V. | Process for enzymatic hydrolysis of lignocellulosic material and fermentation of sugars |
WO2017019490A1 (en) | 2015-07-24 | 2017-02-02 | Novozymes Inc. | Polypeptides having arabinofuranosidase activity and polynucleotides encoding same |
WO2017019491A1 (en) | 2015-07-24 | 2017-02-02 | Novozymes Inc. | Polypeptides having beta-xylosidase activity and polynucleotides encoding same |
WO2017040907A1 (en) | 2015-09-04 | 2017-03-09 | Novozymes A/S | Methods of inhibiting aa9 lytic polysaccharide monooxygenase catalyzed inactivation of enzyme compositions |
WO2017050242A1 (en) | 2015-09-22 | 2017-03-30 | Novozymes A/S | Polypeptides having cellobiohydrolase activity and polynucleotides encoding same |
WO2017070219A1 (en) | 2015-10-20 | 2017-04-27 | Novozymes A/S | Lytic polysaccharide monooxygenase (lpmo) variants and polynucleotides encoding same |
WO2017076421A1 (en) | 2015-11-02 | 2017-05-11 | Renescience A/S | Solubilization of msw with blend enzymes |
WO2017151957A1 (en) | 2016-03-02 | 2017-09-08 | Novozymes A/S | Cellobiohydrolase variants and polynucleotides encoding same |
EP4410974A2 (en) | 2016-03-02 | 2024-08-07 | Novozymes A/S | Cellobiohydrolase variants and polynucleotides encoding same |
WO2017165760A1 (en) | 2016-03-24 | 2017-09-28 | Novozymes A/S | Cellobiohydrolase variants and polynucleotides encoding same |
WO2017205535A1 (en) | 2016-05-27 | 2017-11-30 | Novozymes, Inc. | Polypeptides having endoglucanase activity and polynucleotides encoding same |
WO2017211957A1 (en) | 2016-06-09 | 2017-12-14 | Dsm Ip Assets B.V. | Seed train for large scale enzyme production |
WO2018019948A1 (en) | 2016-07-29 | 2018-02-01 | Dsm Ip Assets B.V. | Polypeptides having cellulolytic enhancing activity and uses thereof |
WO2018026868A1 (en) | 2016-08-01 | 2018-02-08 | Novozymes, Inc. | Polypeptides having endoglucanase activity and polynucleotides encoding same |
WO2018085370A1 (en) | 2016-11-02 | 2018-05-11 | Novozymes A/S | Processes for reducing production of primeverose during enzymatic saccharification of lignocellulosic material |
WO2018096019A1 (en) | 2016-11-24 | 2018-05-31 | Dsm Ip Assets B.V. | Enzyme composition |
WO2018096017A1 (en) | 2016-11-24 | 2018-05-31 | Dsm Ip Assets B.V. | Enzyme composition |
WO2018185071A1 (en) | 2017-04-03 | 2018-10-11 | Dsm Ip Assets B.V. | Process for enzymatic hydrolysis of lignocellulosic material and fermentation of sugars |
WO2019074828A1 (en) | 2017-10-09 | 2019-04-18 | Danisco Us Inc | Cellobiose dehydrogenase variants and methods of use thereof |
WO2019072732A1 (en) | 2017-10-09 | 2019-04-18 | Dsm Ip Assets B.V. | Process for enzymatic hydrolysis of lignocellulosic material and fermentation of sugars |
WO2019083831A1 (en) | 2017-10-23 | 2019-05-02 | Novozymes A/S | Processes for reducing lactic acid in a biofuel fermentation system |
WO2019086370A1 (en) | 2017-10-30 | 2019-05-09 | Dsm Ip Assets B.V. | Process for enzymatic hydrolysis of lignocellulosic material and fermentation of sugars |
WO2019086369A1 (en) | 2017-10-30 | 2019-05-09 | Dsm Ip Assets B.V. | Process for enzymatic hydrolysis of lignocellulosic material and fermentation of sugars |
WO2019185681A1 (en) | 2018-03-28 | 2019-10-03 | Dsm Ip Assets B.V. | Enzyme composition |
WO2019185680A1 (en) | 2018-03-28 | 2019-10-03 | Dsm Ip Assets B.V. | Enzyme composition |
WO2019201765A1 (en) | 2018-04-20 | 2019-10-24 | Renescience A/S | Method for determining chemical compounds in waste |
WO2019219804A1 (en) | 2018-05-17 | 2019-11-21 | Dsm Ip Assets B.V. | Process for producing a polypeptide |
WO2019229108A1 (en) | 2018-05-30 | 2019-12-05 | Dsm Ip Assets B.V. | Process for producing sugars from carbohydrate materials |
WO2020058249A1 (en) | 2018-09-18 | 2020-03-26 | Dsm Ip Assets B.V. | Process for enzymatic hydrolysis of carbohydrate material and fermentation of sugars |
WO2020058253A1 (en) | 2018-09-18 | 2020-03-26 | Dsm Ip Assets B.V. | Process for enzymatic hydrolysis of carbohydrate material and fermentation of sugars |
WO2020058248A1 (en) | 2018-09-18 | 2020-03-26 | Dsm Ip Assets B.V. | Process for enzymatic hydrolysis of carbohydrate material and fermentation of sugars |
WO2020083951A1 (en) | 2018-10-24 | 2020-04-30 | Dsm Ip Assets B.V. | Process for enzymatic hydrolysis of carbohydrate material and fermentation of sugars |
WO2020123463A1 (en) | 2018-12-12 | 2020-06-18 | Novozymes A/S | Polypeptides having xylanase activity and polynucleotides encoding same |
WO2020182843A1 (en) | 2019-03-12 | 2020-09-17 | Dsm Ip Assets B.V. | Process for producing a fermentation broth |
US12157906B2 (en) | 2019-03-12 | 2024-12-03 | Versalis S.P.A. | Process for producing a fermentation broth |
WO2021048164A1 (en) | 2019-09-10 | 2021-03-18 | Dsm Ip Assets B.V. | Enzyme composition |
WO2021205160A1 (en) | 2020-04-06 | 2021-10-14 | Mellizyme Biotechnology Limited | Enzymatic degradation of plastic polyalkene polymers by katg enzyme |
WO2022013148A1 (en) | 2020-07-13 | 2022-01-20 | Dsm Ip Assets B.V. | Process for the production of biogas |
WO2022096406A1 (en) | 2020-11-04 | 2022-05-12 | Renescience A/S | Method for enzymatic and/or microbial processing of waste comprising recirculation of process water |
WO2022214457A1 (en) | 2021-04-06 | 2022-10-13 | Dsm Ip Assets B.V. | Enzyme composition |
WO2022214459A1 (en) | 2021-04-06 | 2022-10-13 | Dsm Ip Assets B.V. | Enzyme composition |
WO2022214458A1 (en) | 2021-04-06 | 2022-10-13 | Dsm Ip Assets B.V. | Enzyme composition |
WO2022214460A1 (en) | 2021-04-08 | 2022-10-13 | Dsm Ip Assets B.V. | Process for the preparation of a sugar product and a fermentation product |
Also Published As
Publication number | Publication date |
---|---|
US8323944B2 (en) | 2012-12-04 |
US20130117892A1 (en) | 2013-05-09 |
US20100304434A1 (en) | 2010-12-02 |
AU2008343105A1 (en) | 2009-07-09 |
WO2009085935A3 (en) | 2009-10-15 |
MX293208B (en) | 2011-12-06 |
JP2011507525A (en) | 2011-03-10 |
CN101952420A (en) | 2011-01-19 |
EP2235173A2 (en) | 2010-10-06 |
KR20100105849A (en) | 2010-09-30 |
NZ586014A (en) | 2012-07-27 |
EA201070764A1 (en) | 2010-12-30 |
NZ598403A (en) | 2012-07-27 |
MX2010006629A (en) | 2010-07-16 |
CA2709490A1 (en) | 2009-07-09 |
BRPI0821230A2 (en) | 2019-09-24 |
EP2653539A1 (en) | 2013-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8323944B2 (en) | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same | |
US8455233B2 (en) | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same | |
US8575426B2 (en) | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same | |
US8207400B2 (en) | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same | |
US8975059B2 (en) | Polypeptides having endoglucanase activity and polynucleotides encoding same | |
US20100306881A1 (en) | Polypeptides having Cellulolytic Enhancing Activity and Polynucleotides Encoding Same | |
EP2195424A1 (en) | Polypeptides having cellobiohydrolase ii activity and polynucleotides encoding same | |
US20090148903A1 (en) | Polypeptides having beta-glucosidase activity and polynucleotides encoding same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200880127123.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08868044 Country of ref document: EP Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 586014 Country of ref document: NZ Ref document number: 2008343105 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2709490 Country of ref document: CA Ref document number: MX/A/2010/006629 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010539794 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2008343105 Country of ref document: AU Date of ref document: 20081218 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008868044 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 4367/CHENP/2010 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 20107015628 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 201070764 Country of ref document: EA |
|
WWE | Wipo information: entry into national phase |
Ref document number: A201008853 Country of ref document: UA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12745985 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: PI0821230 Country of ref document: BR Kind code of ref document: A2 Effective date: 20100616 |