WO2009062473A2 - Axialkolbenmotor und verfahren zum betrieb eines axialkolbenmotors - Google Patents
Axialkolbenmotor und verfahren zum betrieb eines axialkolbenmotors Download PDFInfo
- Publication number
- WO2009062473A2 WO2009062473A2 PCT/DE2008/001836 DE2008001836W WO2009062473A2 WO 2009062473 A2 WO2009062473 A2 WO 2009062473A2 DE 2008001836 W DE2008001836 W DE 2008001836W WO 2009062473 A2 WO2009062473 A2 WO 2009062473A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- axial piston
- piston engine
- combustion chamber
- fuel
- chamber
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 39
- 238000002485 combustion reaction Methods 0.000 claims abstract description 179
- 239000000446 fuel Substances 0.000 claims description 67
- 239000000203 mixture Substances 0.000 claims description 26
- 238000001816 cooling Methods 0.000 claims description 25
- 238000010304 firing Methods 0.000 claims description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 21
- 239000000919 ceramic Substances 0.000 claims description 18
- 238000000354 decomposition reaction Methods 0.000 claims description 7
- 230000003750 conditioning effect Effects 0.000 claims description 6
- 230000006835 compression Effects 0.000 claims description 5
- 238000007906 compression Methods 0.000 claims description 5
- 238000011144 upstream manufacturing Methods 0.000 claims description 2
- 238000002360 preparation method Methods 0.000 description 7
- 239000007789 gas Substances 0.000 description 6
- 239000000567 combustion gas Substances 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02G—HOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
- F02G3/00—Combustion-product positive-displacement engine plants
- F02G3/02—Combustion-product positive-displacement engine plants with reciprocating-piston engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01B—MACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
- F01B3/00—Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis
- F01B3/0002—Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
- F01B3/0005—Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders having two or more sets of cylinders or pistons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01B—MACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
- F01B3/00—Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis
- F01B3/04—Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis the piston motion being transmitted by curved surfaces
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B75/00—Other engines
- F02B75/26—Engines with cylinder axes coaxial with, or parallel or inclined to, main-shaft axis; Engines with cylinder axes arranged substantially tangentially to a circle centred on main-shaft axis
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02G—HOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
- F02G2254/00—Heat inputs
- F02G2254/10—Heat inputs by burners
Definitions
- the invention relates to an axial piston engine with a combustion chamber.
- the invention also relates to an axial piston engine with a combustion chamber which is isolated by means of a ceramic assembly.
- the invention relates to an axial piston engine with continuous combustion, in which from a combustion chamber effluent working fluid is fed via at least one firing channel successively at least two working cylinders.
- the invention also relates to a method for operating an axial piston motor.
- an axial-piston engine having a combustion chamber that operates with two-stage combustion. Characterized in that a combustion chamber is provided, which is constructed so that it can work with a two-stage combustion, existing in a fuel chemical energy can be used much more effectively on the axial piston motor according to the invention or converted into usable energy, whereby the efficiency of the axial piston motor improves is.
- the combustion chamber has two areas, in which a fuel and / or air is injected.
- the fuel and the air can be injected together or separately into the different areas of the combustion chamber.
- a preferred embodiment provides that the combustion chamber has a first region in which a portion of the combustion is introduced and in which a treatment nozzle injects a corresponding amount of fuel.
- the treatment nozzle in which fuel is already mixed with a very small proportion of combustion air and thus processed for combustion, and the complementary supply of combustion air, the combustion process is particularly effectively initiated, whereby the combustion of the fuel can take place more effectively overall.
- the combustion air fraction which is introduced as an additional fraction into the first region, is less than 50% of the total combustion air, preferably less than 15%, in particular less than 10%. If the combustion air fraction is within such limits, this already makes it possible to improve the combustion of the fuel via the two-stage combustion.
- a fuel can be injected particularly well into the combustion chamber of the axial-piston engine if the axial-piston engine has a main nozzle and a secondary nozzle.
- a fuel-air mixture could also be injected into the combustion chamber by means of such a main nozzle.
- the main nozzle thus ensures that a substantial proportion of fuel in a certain preferred direction enters the combustion chamber of the axial piston engine, while by the auxiliary nozzle, which may be formed, for example, as a preparation nozzle, a certain amount of fuel or on a fuel-air mixture in enters the combustion chamber, which can be used for supporting purposes, such as an afterburner, a treatment or a temperature control.
- the object of the invention is also achieved by an axial piston motor with a combustion chamber, in which fuel via a main nozzle and fuel via a preparation nozzle, which is mixed with air or is injectable.
- a virtually arbitrary fuel-air mixture can be injected into the combustion chamber, while ideally only fuel is injected by means of the main nozzle. Alone through this division of the efficiency of an axial piston engine is already improved. If it is advantageous for an application, more than one treatment nozzle can be provided. The In particular, this advantage also applies independently of the use of a two-stage combustion or of a combustion chamber having two regions.
- the fuel can be injected so particularly well into the combustion chamber that it can ignite and burn exceptionally effectively.
- an ignited or combusted fuel-air mixture with higher kinetic energy can pass through the entire combustion chamber, further out through firing channels out of the combustion chamber and into working cylinder of the axial piston engine, especially if the fuel from the main nozzle out in the main combustion direction in the Combustion chamber is injected.
- the fuel or the fuel-air mixture can be quickly fed to the areas of the axial piston motor, in which it should then do its job, such as the cylinders.
- the main nozzle is aligned coaxially to an axis of symmetry of the combustion chamber, which is parallel to the main combustion direction in the combustion chamber. If the main nozzle is located centrally, ie centrally, on the axis of symmetry of the combustion chamber, a corresponding, essentially combustion takes place, so that the combustion gases can then also be taken out symmetrically from the combustion chamber for further use, even if further components are supplied by a secondary or conditioning nozzle but then they can not penetrate that much.
- An advantageous embodiment provides that the treatment nozzle is aligned at an angle to the main nozzle. As a result, both the main nozzle and the treatment nozzle can be structurally placed and connected to the combustion chamber in a small space.
- the jet direction of the treatment nozzle intersects the jet direction of the main nozzle, whereby a fuel injected into the combustion chamber through the main nozzle and a fuel-air mixture injected into the combustion chamber through the treatment nozzle, for example in the region of an antechamber Processing chamber can already be particularly well mixed and mixed with each other.
- the axial-piston engine has a treatment chamber into which both a main nozzle and a treatment nozzle are directed and which opens to the main combustion chamber. In this way, it is always ensured that the fuel from the main nozzle and the fuel-air mixture from the treatment nozzle can be thoroughly mixed thoroughly before they reach the second region of the combustion chamber, for example into a main combustion chamber of the combustion chamber.
- the axial piston engine has a treatment chamber, in which the exhaust gas or a fuel-air mixture introduced from a treatment nozzle and in which without air supply fuel from a Main jet is injected.
- a further axial piston motor with a combustion chamber and a combustion chamber upstream treatment chamber proposed in which via a main nozzle fuel is fed, which is heated in the processing chamber, preferably already thermally decomposed, becomes.
- known axial piston motors can advantageously be developed further, since a fuel which could at least already be heated in the treatment chamber can be burned more effectively.
- a sufficient and advantageous two-stage combustion can already be realized and permanently ensured on an axial piston engine.
- the object of the invention is accordingly also achieved by a method for operating an axial-piston engine, in which fuel is decomposed in a first step and then brought into contact with process air for combustion.
- the decomposed fuel can react more effectively with the process air, so that the combustion process is correspondingly more effective.
- the decomposition of the fuel takes place thermally.
- a heat or heat required for this purpose can be easily generated and provided directly on the axial piston motor.
- other decomposition zess such as elktrolytician or kathalytician processes cumulatively or alternatively in a corresponding processing chamber can be used.
- the thermal energy for the decomposition can be generated in different ways. If the thermal energy for the decomposition is provided by a treatment flame, the fuel can be thermally decomposed on the axial piston motor in a particularly simple manner and, in particular, by utilizing the technology already used anyway for the combustion of the fuel.
- the conditioning flame is generated by means of a fuel-air mixture, then the conditioning flame on the axial-piston engine can be structurally produced and provided in a simple manner.
- the axial piston motor can be operated particularly fuel-efficient In this way, only a minimum of fuel is used for the preparation of the combustion, namely the preparatory decomposition, while the remainder of the fuel is available for the performance of the desired work.
- the fuel used for the treatment is ultimately just as energetically available to the process and used accordingly for the process.
- the two-step approach ensures that the decomposition of the fuel used for work has already taken place or is well advanced until it ignites, which increases the effectiveness of the overall process.
- the processing chamber opens a treatment nozzle, via which the fuel can be heated in the processing chamber.
- the fuel likewise introduced into the treatment chamber via a main nozzle can be heated particularly simply in the region of the treatment chamber, preferably even thermally decomposed, and supplied to the main combustion chamber .
- combustion air / fuel mixture or other gas mixture or gas conducted from the treatment nozzle into the processing chamber are metered in such a way that sufficient temperatures prevail in the processing chamber to ensure treatment of the remaining fuel, for example thermal decomposition.
- the air-fuel mixture from the Aufbungskungshunt can be particularly advantageously mixed with combustion air in the main combustion chamber when the treatment chamber has a smaller diameter than the combustion chamber.
- the main combustion chamber should be in volume only as much larger as the treatment chamber, that an undisturbed stream from the processing chamber can be formed with complementary supply of combustion air through the main combustion chamber in the cylinder to prevent unnecessary expansion in the main combustion chamber, which in itself would lead to losses, since the work should actually be done in de cylinder.
- the treatment chamber comprises a pre-chamber and a main chamber.
- the main nozzle and / or the treatment nozzle can open into the prechamber of the treatment chamber, an ignition and / or pre-combustion may take place in the main chamber of the treatment chamber.
- Both the main nozzle and the preparation nozzle can advantageously open into the processing chamber or into the antechamber of the processing chamber in a small space if the pre-chamber of the Aufbreitungshunt is conical and widens towards the main chamber.
- the fact is taken into account that the amount of gas increases by the addition of the volume flows from the main nozzle and the treatment nozzle.
- an advantageous further embodiment accordingly provides that the antechamber widens towards the main chamber.
- the jet direction of the treatment nozzle and the jet direction of the main nozzle intersect in the prechamber. In this way, a particularly good and intimate mixing of the given by the main nozzle on the one hand and the conditioning nozzle on the other hand blended mixtures can be achieved.
- a preferred embodiment provides that a quantity of air corresponding to the quantity of fuel introduced into the main combustion chamber through a main nozzle is introduced into the main combustion chamber behind a treatment chamber. In this way, it is ensured that a treatment process of the fuel in the processing chamber can be performed reliably without already combustion of the abandoned by the main nozzle of the main combustion chamber air.
- the axial piston motor has a separate air supply to the combustion chamber.
- the separate air supply can be provided in a structurally particularly simple manner if a perforated ring for an air supply has a nozzle, preferably a conditioning nozzle.
- the air supply can also be realized by separate channels, which open into corresponding openings or separate nozzles in a combustion chamber.
- the terms "before” and “behind” refer respectively to the main combustion direction and to the flow direction through the nozzles or chambers.
- combustion air or air which is to require the combustion of the fuel.
- the present invention can be advantageously reacted accordingly.
- Another object of the present invention is to provide an axial piston engine having a combustion chamber which is insulated by a ceramic assembly, the ceramic assembly being air cooled. If the ceramic assembly is air-cooled, the thermal budget of the combustion chamber of the axial piston motor can be controlled much better. In this respect, thereby the life of the axial piston motor can be improved. In particular, the air heated in this way can be used for combustion, whereby the efficiency, in deviation from corresponding water-cooled combustion chambers, can be further increased. It is also easier to control air cooling in the region of the combustion chamber, in particular a ceramic combustion chamber.
- the object of the invention is further achieved by an axial piston motor with a combustion chamber, which is insulated by a ceramic assembly, the ceramic assembly is tubular and surrounded by a tube with a profiling, preferably with a thread ,
- a profiling can achieve an increase in surface area, as a result of which cooling of the ceramic assembly can be substantially improved.
- this can also increase the service life of the axial piston motor, since in this case the thermal budget of the axial piston motor can be improved.
- An improved embodiment in this respect provides that the profiled tube is profiled on both sides, for simplicity on both sides is provided with a thread.
- the profiled tube with a larger contact surface can be in contact with the ceramic combustion chamber of the axial piston motor and, if necessary, even be screwed on. the.
- a thread also has the advantage that it can ensure a uniform air flow in a structurally simple manner.
- the object of the invention is achieved independently of the other features of the present invention according to the Understanding of an axial piston engine, in which compressed process air for cooling, in particular for cooling a combustion chamber, is used.
- this compressed process air can flow around the profiled tube described above and additionally cool it.
- such a compressed process air at the axial piston motor to a sufficient extent already exist, so that it can be readily used advantageously for cooling the axial piston motor.
- a cooling effect can be further improved if the process air is given up water. If suitable means for supplying water into a process air of the axial piston motor are provided on the axial piston motor, water can also be added to the process air in an easily metered manner.
- the process air can be perfectly used for cooling.
- the water can cumulatively or alternatively be given up before or during the compression of the process air or of a fuel-air mixture. There then remains enough time to heat the process air enriched with water in order to maximize the efficiency of the axial piston, for which purpose in particular waste heat from the combustion process, for example from cooling processes, can be used accordingly.
- the residual heat of the exhaust gas can be used accordingly.
- the water is injected into a compression cylinder, whereby a uniform distribution of the water can be ensured.
- the water can also be used to advantage in the combustion process.
- an injection of an excessive amount of water can be avoided, so that the risk can be reduced that the axial piston motor is cooled too much at a lower workload.
- the water can also be used as a reagent and / or catalyst in the combustion process in order, for example, to carry out a chemical reaction. to ensure desired exhaust components.
- the amount of water required thereby corresponds advantageously to the amount of fuel converted in each case.
- the water may also be split thermally before it reaches the main combustion chamber. This can for example also be done in the processing chamber. On the other hand, the splitting can also take place chemically or catalytically and / or elsewhere, for example in feed channels or in the immediate vicinity of inlet openings in the combustion chamber.
- the object of the invention of an axial piston engine with a continuous combustion is achieved in which from a combustion chamber effluent working fluid is fed through at least one firing channel successively at least two working cylinders, each working cylinder, a firing channel is provided, the closed via a control piston and can be opened.
- the control piston By means of the control piston, the shot channels between a combustion chamber and working cylinders on the one hand particularly tightly closed and on the other hand very quickly reopened, which is not possible, for example, by rotary valves or rotating shot channels, which are already known from the prior art. In this respect, this alone the efficiency of an axial piston motor can be improved.
- Such control piston can also structurally very simple and robust seal a shot channel and release again, whereby the life of the axial piston motor can be further increased.
- control piston can perform a substantially radially directed lifting movement in order to be able to release a firing channel again.
- the control piston carry out a substantially radially directed lifting movement, so that axial space can be saved.
- a control piston alternatively carries out a substantially axially directed lifting movement, that is to say a substantially axially directed lifting movement, cooling of the control piston can be realized more simply.
- with a between axial and radial stroke movement, ie at an angle can be selected, which, however, structurally usually leads to more complex and therefore more costly results.
- another preferred embodiment provides that the control piston is water-cooled, whereby overheating can be avoided particularly effectively, since the control pistons in the firing channel are exposed to particularly high temperatures.
- control pistons can be driven hydraulically or pneumatically, so that very fast shutter speeds or sequences of movements of the pistons can be realized.
- control piston is desmodromisch driven. In the case of a desmodromic drive, the control piston can always close a firing channel even at high speeds reliably and exceptionally tight.
- control piston If the control piston is driven via a curved path, it can be accelerated and decelerated particularly quickly.
- a desmodromic drive can be implemented particularly well in practice.
- a particularly simple attachment and guidance of the control piston can be realized in particular by sliding blocks or plain bearings, whereby the control piston can be secured against rotation in a preferred embodiment at the same time.
- An exceptionally good seal with respect to the control piston can be achieved if the control piston carries a control piston ring. If the control piston ring has a slot, the sealing function of the control piston ring can be further improved since the control piston ring can better adapt to the structural conditions, in particular to a control piston cylinder, in particular when it is pressurized.
- control piston ring is secured against rotation, as this can improve the sealing function on the control piston again.
- Figure 1 shows schematically an axial piston motor in longitudinal section
- FIG. 2 shows schematically the axial piston engine according to the figure 1 in cross section along the
- Line IM; 3 shows schematically an enlarged view of the firing channel ring from the figure
- Figure 4 schematically shows a longitudinal section through a control piston as an alternative to the
- Control piston according to Figures 1 and 2; and Figure 5 shows schematically a cross section through the control piston of Figure 4 along the line V-V.
- the axial piston engine 1 shown in FIG. 1 has a combustion chamber 2 in which a fuel-air mixture can be ignited and burnt.
- the axial piston engine 1 operates in this case with a two-stage combustion.
- the combustion chamber 2 has a first region 3 and a second region 4, into which fuel and / or air can be injected.
- a portion of a combustion air of the axial-piston engine 1 can be introduced, wherein in this embodiment the proportion of the combustion air can be set smaller than 15% of the total combustion air.
- the combustion chamber 2 of the axial-piston engine 1 can be subdivided into a treatment chamber 5 and a main combustion chamber 6.
- the treatment chamber 5 has a smaller diameter than the main combustion chamber 6, wherein the treatment chamber 5 is additionally divided into an antechamber 7 and into a main chamber 8.
- the antechamber 7 is conical in this case and expands towards the main chamber 8.
- a main nozzle 9 and on the other hand a treatment nozzle 10 is connected.
- a fuel can be introduced into the combustion chamber 2, wherein the fuel which is injected by means of the treatment nozzle 10 is already mixed with air or is.
- the main nozzle 9 is aligned parallel to a main combustion direction 11 in the combustion chamber 2 on the axial piston motor 1.
- the main nozzle 9 is coaxial with an axis of symmetry 12 of the combustion chamber 2, which is parallel to the main combustion direction 11 in the combustion chamber 2, aligned.
- the treatment nozzle 10 is aligned with respect to the main nozzle 9 at an angle 13. In this respect, a jet direction 14 of the treatment nozzle 10 intersects with a jet direction 15 of the main nozzle 9 at an intersection point 16.
- fuel from the main nozzle 9 is injected without further air supply. This is already preheated in the treatment chamber 5, ideally thermally decomposed.
- the quantity of air corresponding to the quantity of fuel flowing through the main nozzle 9 is introduced into the main combustion chamber 6 behind a distribution chamber 5, for which purpose a separate air supply 17 is provided, which essentially discharges into the main combustion chamber 6.
- the separate air supply 17 is for this purpose connected to a process air supply 18, wherein from the first another air supply 19 can be supplied with air, which in this case supplies a hole ring 20 with air.
- the hole ring 20 is in this case associated with the treatment nozzle 10, so that the fuel injected with the treatment nozzle 10 can additionally be injected with process air into the prechamber 7 of the treatment chamber 5.
- the combustion chamber 2 in particular the main combustion chamber 6 of the combustion chamber 2, has a ceramic assembly 21, which is air-cooled.
- the ceramic assembly 21 in this case comprises a ceramic combustion chamber wall 22 which is surrounded by a profiled tube 23.
- a cooling air chamber 24 To this profiled tube 23 extends a cooling air chamber 24, which is operatively connected via a cooling air chamber supply 25 with the process air supply 18.
- the axial piston motor 1 has known working cylinders 30 (see in particular FIG. 2) in which working pistons 31 can be moved back and forth.
- compressor pistons 32 of the axial-piston engine 1 are driven, which can be moved correspondingly in suitable compressor cylinders 33 of the axial-piston engine 1.
- the working piston 31 are in each case by means of a connecting rod 34 with the compressor piston 32 in connection, between the piston 31 and the connecting rod 34 and between the compressor piston 32 and the connecting rod 34 each have a Pleuellaufrad 35 is arranged.
- a drive cam track 36 In each case enclosed between two connecting-rod wheels 35 is a drive cam track 36, which is guided on a drive cam track carrier 37.
- the axial piston engine 1 has a drive shaft 38, by means of which the power generated by the axial piston motor 1 can be delivered.
- a compression of the process air possibly including injected water, which possibly leads to an additional cooling, whereby, however, if necessary, the exhaust gases can be cooled much deeper in a heat exchanger when the process air over a preheated such heat exchanger to be performed to the combustion chamber 2, wherein the process air by contact with other assemblies of the axial piston motor 1, which must be cooled, further preheated or heated, as already described above.
- process air is then abandoned the combustion chamber 2 in the manner already explained.
- Each of the working cylinder 30 is connected via a firing channel 39 with the combustion chamber 2 of the axial piston motor 1, so that the fuel-air mixture from the combustion chamber 2 via the firing channel 39 into the working cylinder 30 and there can drive the working piston 31.
- the effluent from the combustion chamber 2 working medium via at least one firing channel 39 successively at least two working cylinders 30 are supplied, each working cylinder 30, a firing channel 39 is provided, which can be closed and opened via a control piston 40.
- the number of control pistons 40 of the axial piston motor 1 is predetermined by the number of working cylinders 30.
- a closure of the firing channel 39 takes place here substantially via the control piston 40 also with its piston cover 41.
- the control piston 40 is driven by means of a control piston cam track 42, wherein a spacer 43 for the Steuerkolvekurven- web 42 is provided to the drive shaft 38, which also serves in particular a thermal decoupling.
- the control piston 40 can perform a substantially axially directed stroke 44.
- Each control piston 40 is for this purpose by means not unnatural sliding blocks, which are mounted in the control piston cam track 42, guided, wherein the sliding blocks each have a safety cam which runs in an unnumbered guide groove back and forth and prevents rotation of the control piston 40.
- control piston 40 comes into contact with the hot working medium from the combustion chamber 2 in the region of the firing channel 39, it is advantageous if the control piston 40 is water-cooled.
- the axial piston motor 1, in particular in the region of the control piston 40, a water cooling 45, the water cooling 45 inner cooling channels 46, middle cooling channels 47 and outer cooling channels 48 includes. Cooled so well, the control piston 40 can be reliably moved in a corresponding control piston cylinder 49.
- the firing channels 39 and the control pistons 40 can be provided in a constructionally simple manner on the axial piston motor 1 if the axial piston motor 1 has a firing channel ring 50, as illustrated in particular in FIG.
- the firing channel ring 50 has a central axis 51, around which, in particular, the parts of the working cylinders 30 and the control piston cylinders 49 of the axial piston motor 1 are arranged concentrically. Between each working cylinder 30 and control piston cylinder 49, a firing channel 39 is provided, each firing channel 39 being spatially connected to a recess 52 (see FIG. 3) of a combustion chamber bottom 53 (see FIG. 1) of the combustion chamber 2 of the axial piston motor 1.
- coatings and inserts may still be provided in order to protect the firing channel ring 50 or its material from direct contact with corrosive combustion products or at excessively high temperatures.
- the exemplary control piston 60 shown by way of example in FIGS. 4 and 5 has an impeller 61 for the control piston cam track 37 of the axial piston motor 1.
- the impeller 61 is provided as well as a ball 62 formed as a rotation lock 63 on a piston cap 41 facing away from the end 64 of the control piston 60.
- the ball 62 may advantageously serve in the present case as a longitudinal guide of the control piston 60.
- the control piston 60 comprises a piston ring 65, which sits directly below the piston cover 41.
- the piston ring 65 is secured to the control piston 60 by means of a piston ring lock 66. Between the piston ring 65 and the ball 62, a pressure equalization 67 is still provided for the control piston 60.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Combustion Methods Of Internal-Combustion Engines (AREA)
- Pistons, Piston Rings, And Cylinders (AREA)
- Hydraulic Motors (AREA)
Abstract
Description
Claims
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2010118716/06A RU2490488C2 (ru) | 2007-11-12 | 2008-11-10 | Аксиальный поршневой двигатель и способ управления работой аксиального поршневого двигателя |
DE112008003003T DE112008003003A5 (de) | 2007-11-12 | 2008-11-10 | Axialkolbenmotor und Verfahren zum Betrieb eines Axialkolbenmotors |
CN2008801156999A CN101932792B (zh) | 2007-11-12 | 2008-11-10 | 轴向活塞发动机以及用于操作轴向活塞发动机的方法 |
KR1020107012268A KR101514859B1 (ko) | 2007-11-12 | 2008-11-10 | 축방향 피스톤 엔진 및 축방향 피스톤 엔진 작동방법 |
JP2010532429A JP5598763B2 (ja) | 2007-11-12 | 2008-11-10 | 軸方向ピストンエンジンおよび軸方向ピストンエンジンを動作させるための方法 |
ES08849887T ES2711318T3 (es) | 2007-11-12 | 2008-11-10 | Motor de pistones axiales y método para hacer funcionar un motor de pistones axiales |
BRPI0817366 BRPI0817366A2 (pt) | 2007-11-12 | 2008-11-10 | "motor de pistão axial e método para a operação de um motor de pistão axial" |
US12/734,508 US9879635B2 (en) | 2007-11-12 | 2008-11-10 | Axial piston engine and method for operating an axial piston engine |
EP08849887.8A EP2220341B1 (de) | 2007-11-12 | 2008-11-10 | Axialkolbenmotor und verfahren zum betrieb eines axialkolbenmotors |
US15/840,308 US20180128204A1 (en) | 2007-11-12 | 2017-12-13 | Axial piston engine and method for operating an axial piston engine |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102007054204.8 | 2007-11-12 | ||
DE102007054204 | 2007-11-12 | ||
DE102007055337 | 2007-11-19 | ||
DE102007055337.6 | 2007-11-19 | ||
DE102007056814.4 | 2007-11-23 | ||
DE102007056814 | 2007-11-23 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/734,508 A-371-Of-International US9879635B2 (en) | 2007-11-12 | 2008-11-10 | Axial piston engine and method for operating an axial piston engine |
US15/840,308 Continuation US20180128204A1 (en) | 2007-11-12 | 2017-12-13 | Axial piston engine and method for operating an axial piston engine |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2009062473A2 true WO2009062473A2 (de) | 2009-05-22 |
WO2009062473A3 WO2009062473A3 (de) | 2009-11-26 |
Family
ID=40636953
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE2008/001836 WO2009062473A2 (de) | 2007-11-12 | 2008-11-10 | Axialkolbenmotor und verfahren zum betrieb eines axialkolbenmotors |
Country Status (10)
Country | Link |
---|---|
US (2) | US9879635B2 (de) |
EP (3) | EP2220341B1 (de) |
JP (1) | JP5598763B2 (de) |
KR (1) | KR101514859B1 (de) |
CN (2) | CN101932792B (de) |
BR (1) | BRPI0817366A2 (de) |
DE (1) | DE112008003003A5 (de) |
ES (1) | ES2711318T3 (de) |
RU (1) | RU2490488C2 (de) |
WO (1) | WO2009062473A2 (de) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011009453A2 (de) | 2009-07-24 | 2011-01-27 | GETAS GESELLSCHAFT FüR THERMODYNAMISCHE ANTRIEBSSYSTEME MBH | Axialkolbenmotor, verfahren zum betrieb eines axialkolbenmotors sowie verfahren zur herstellung eines wärmeübertragers eines axialkolbenmotors |
WO2011009452A2 (de) * | 2009-07-24 | 2011-01-27 | GETAS GESELLSCHAFT FüR THERMODYNAMISCHE ANTRIEBSSYSTEME MBH | Axialkolbenmotor sowie verfahren zum betrieb eines axialkolbenmotors |
WO2011009450A2 (de) | 2009-07-24 | 2011-01-27 | GETAS GESELLSCHAFT FüR THERMODYNAMISCHE ANTRIEBSSYSTEME MBH | Axialkolbenmotor, verfahren zum betrieb eines axialkolbenmotors sowie verfahren zur herstellung eines wärmeübertragers eines axialkolbenmotors |
WO2011009451A2 (de) | 2009-07-24 | 2011-01-27 | GETAS GESELLSCHAFT FüR THERMODYNAMISCHE ANTRIEBSSYSTEME MBH | Axialkolbenmotor, verfahren zum betrieb eines axialkolbenmotors sowie verfahren zur herstellung eines wärmeübertragers eines axialkolbenmotors |
WO2011009455A2 (de) | 2009-07-24 | 2011-01-27 | GETAS GESELLSCHAFT FüR THERMODYNAMISCHE ANTRIEBSSYSTEME MBH | Axialkolbenmotor, verfahren zum betrieb eines axialkolbenmotors sowie verfahren zur herstellung eines wärmeübertragers eines axialkolbenmotors |
EP2456967A2 (de) * | 2009-07-24 | 2012-05-30 | GETAS Gesellschaft für thermodynamische Antriebssysteme mbH | Axialkolbenmotor, verfahren zum betrieb eines axialkolbenmotors sowie verfahren zur herstellung eines wärmeübertragers eines axialkolbenmotors |
DE102011018846A1 (de) | 2011-01-19 | 2012-07-19 | GETAS GESELLSCHAFT FüR THERMODYNAMISCHE ANTRIEBSSYSTEME MBH | Axialkolbenmotor sowie Verfahren zum Betrieb eines Axialkolbenmotors |
DE102015108542A1 (de) | 2015-05-29 | 2016-12-01 | GETAS GESELLSCHAFT FüR THERMODYNAMISCHE ANTRIEBSSYSTEME MBH | Axialkolbenmotor |
WO2017121427A1 (de) * | 2016-01-12 | 2017-07-20 | GETAS GESELLSCHAFT FüR THERMODYNAMISCHE ANTRIEBSSYSTEME MBH | Verfahren zum betrieb eines axialkolbenmotors sowie axialkolbenmotor |
EP3071812A4 (de) * | 2013-10-22 | 2017-12-20 | Chris Kiarash Montebello | Rotationskolbenmaschine mit externer explosions-/expansionskammer |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7397049B2 (en) * | 2006-03-22 | 2008-07-08 | Varian Semiconductor Equipment Associates, Inc. | Determining ion beam parallelism using refraction method |
DE102015118239A1 (de) * | 2015-10-26 | 2017-04-27 | GETAS GESELLSCHAFT FüR THERMODYNAMISCHE ANTRIEBSSYSTEME MBH | Axialkolbenmotor und Verfahren zum Betrieb eines Axialkolbenmotors |
RU2628831C2 (ru) * | 2016-10-20 | 2017-08-22 | Погуляев Юрий Дмитриевич | Способ управления аксиально-поршневым двигателем и аксиально-поршневой двигатель |
RU2634974C2 (ru) * | 2016-10-20 | 2017-11-08 | Погуляев Юрий Дмитриевич | Способ управления аксиально-поршневым двигателем и аксиально-поршневой двигатель |
DE102017124411A1 (de) | 2016-11-07 | 2018-05-09 | GETAS GESELLSCHAFT FüR THERMODYNAMISCHE ANTRIEBSSYSTEME MBH | Axialkolbenmotor |
WO2019149297A1 (de) | 2018-01-31 | 2019-08-08 | GETAS GESELLSCHAFT FüR THERMODYNAMISCHE ANTRIEBSSYSTEME MBH | Axialkolbenmotor |
DE112019003348A5 (de) | 2018-07-04 | 2021-03-25 | GETAS GESELLSCHAFT FüR THERMODYNAMISCHE ANTRIEBSSYSTEME MBH | Axialkolbenmotor |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1035310A2 (de) | 1999-03-05 | 2000-09-13 | Rohs, Ulrich, Dr. | Kolbenmotor mit kontinuierlicher Verbrennung |
Family Cites Families (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3007462A (en) * | 1957-08-26 | 1961-11-07 | Vernon W Balzer | Reciprocating machine |
US4024703A (en) * | 1971-10-14 | 1977-05-24 | Hudson Perry D | Combustion in combustion products pressure generator intermittent burner type and engines |
SE366092B (de) | 1973-01-02 | 1974-04-08 | T Airas | |
DE2321060A1 (de) * | 1973-04-26 | 1974-11-14 | Volkswagenwerk Ag | Hubkolben-brennkraftmaschine mit innerer kontinuierlicher verbrennung |
DE2331706A1 (de) * | 1973-06-22 | 1975-01-16 | Volkswagenwerk Ag | Mit kontinuierlicher verbrennung arbeitende hubkolben-brennkraftmaschine |
US3895614A (en) * | 1973-12-03 | 1975-07-22 | Henry E Bailey | Split piston two-stroke four cycle internal combustion engine |
US3985111A (en) * | 1973-12-17 | 1976-10-12 | Eaton Corporation | Article for defining an auxiliary compartment for an engine combustion chamber |
DE2826932A1 (de) | 1978-06-20 | 1980-01-24 | Maschf Augsburg Nuernberg Ag | Axialkolben-brennkraftmaschine |
FR2442336A1 (fr) * | 1978-11-24 | 1980-06-20 | Townsend Engineering Co | Procede pour proteger les organes d'etancheite d'un piston de moteur a combustion interne contre la chaleur de combustion |
SU799556A1 (ru) * | 1979-01-02 | 1986-03-30 | Предприятие П/Я М-5536 | Двигатель внутреннего сгорани с воспламенением от сжати |
US4448154A (en) | 1979-04-30 | 1984-05-15 | Paradox International, Incorporated | Internal combustion engine |
US4343282A (en) * | 1979-07-16 | 1982-08-10 | Glenn Joseph G | Liquid tower carburetor |
AU546612B2 (en) | 1981-02-27 | 1985-09-12 | Westinghouse Electric Corporation | Multi-annular gas turbine combustor |
FR2608212A1 (fr) * | 1985-12-19 | 1988-06-17 | Pellerin Jacques | Moteur thermique en barillet dont pistons et chemises sont refroidis par une circulation dirigee de fluide, circulation obtenue par des turbines interieures au moteur |
JPS62267520A (ja) | 1986-05-14 | 1987-11-20 | Isuzu Motors Ltd | デイーゼル機関 |
JP2644745B2 (ja) * | 1987-03-06 | 1997-08-25 | 株式会社日立製作所 | ガスタービン用燃焼器 |
WO1989005399A1 (en) * | 1987-12-02 | 1989-06-15 | Wagner-Polybau Szolgáltató Kft. | Arrangement for facilitating exploitation of an internal combustion engine by preheating the fuel of the engine |
SU1740762A1 (ru) * | 1987-12-07 | 1992-06-15 | А.И. Устимов | Способ работы двухтактного форкамерного двигател внутреннего сгорани и двухтактный форкамерный двигатель внутреннего сгорани |
JPH0289916A (ja) * | 1988-09-26 | 1990-03-29 | Toshiba Corp | ガスタービン燃焼器 |
SU1751374A1 (ru) * | 1990-08-06 | 1992-07-30 | Уральский Автомоторный Завод Производственного Объединения "Зил" | Двигатель внутреннего сгорани |
WO1992007221A1 (en) | 1990-10-23 | 1992-04-30 | Rolls-Royce Plc | Gasturbine combustion chamber and method of operation thereof |
US5203298A (en) * | 1992-05-29 | 1993-04-20 | John Manolis | Pre-combustion chamber for internal combustion engine |
JP2950720B2 (ja) | 1994-02-24 | 1999-09-20 | 株式会社東芝 | ガスタービン燃焼装置およびその燃焼制御方法 |
US5964087A (en) * | 1994-08-08 | 1999-10-12 | Tort-Oropeza; Alejandro | External combustion engine |
US5549032A (en) * | 1995-04-25 | 1996-08-27 | Long; Otto V. | Low-pollution high-power external combustion engine |
US6951211B2 (en) * | 1996-07-17 | 2005-10-04 | Bryant Clyde C | Cold air super-charged internal combustion engine, working cycle and method |
US5904044A (en) | 1997-02-19 | 1999-05-18 | White; William M. | Fluid expander |
US6536207B1 (en) * | 2000-03-02 | 2003-03-25 | New Power Concepts Llc | Auxiliary power unit |
JP3712947B2 (ja) * | 2001-03-02 | 2005-11-02 | 川崎重工業株式会社 | ガスタービンエンジン用の液体燃料焚き低nox燃焼器 |
SE526379C2 (sv) * | 2004-01-22 | 2005-09-06 | Cargine Engineering Ab | Metod och system för styrning av en anordning för kompression |
EP1731833A1 (de) * | 2004-02-10 | 2006-12-13 | Ebara Corporation | Verbrennungsvorrichtung |
US7677210B2 (en) * | 2005-12-14 | 2010-03-16 | Chasin Lawrence C | Rotating barrel type internal combustion engine |
US20070256658A1 (en) * | 2006-03-06 | 2007-11-08 | Andersson Per G E | Combined variable compression ratio and passive ignition system |
-
2008
- 2008-11-10 CN CN2008801156999A patent/CN101932792B/zh not_active Expired - Fee Related
- 2008-11-10 DE DE112008003003T patent/DE112008003003A5/de not_active Withdrawn
- 2008-11-10 US US12/734,508 patent/US9879635B2/en not_active Expired - Fee Related
- 2008-11-10 JP JP2010532429A patent/JP5598763B2/ja not_active Expired - Fee Related
- 2008-11-10 BR BRPI0817366 patent/BRPI0817366A2/pt active Search and Examination
- 2008-11-10 EP EP08849887.8A patent/EP2220341B1/de not_active Not-in-force
- 2008-11-10 KR KR1020107012268A patent/KR101514859B1/ko not_active Expired - Fee Related
- 2008-11-10 WO PCT/DE2008/001836 patent/WO2009062473A2/de active Application Filing
- 2008-11-10 CN CN201310167861.4A patent/CN103334833B/zh not_active Expired - Fee Related
- 2008-11-10 EP EP20130004434 patent/EP2711499A3/de not_active Withdrawn
- 2008-11-10 ES ES08849887T patent/ES2711318T3/es active Active
- 2008-11-10 EP EP13004435.7A patent/EP2711500B1/de not_active Not-in-force
- 2008-11-10 RU RU2010118716/06A patent/RU2490488C2/ru not_active IP Right Cessation
-
2017
- 2017-12-13 US US15/840,308 patent/US20180128204A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1035310A2 (de) | 1999-03-05 | 2000-09-13 | Rohs, Ulrich, Dr. | Kolbenmotor mit kontinuierlicher Verbrennung |
Cited By (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3048244A1 (de) | 2009-07-24 | 2016-07-27 | GETAS Gesellschaft für thermodynamische Antriebssysteme mbH | Axialkolbenmotor |
US10119398B2 (en) | 2009-07-24 | 2018-11-06 | GETAS Gesellschaft fuer termodynamische Antriebssysteme mbH | Axial-piston engine, method for operating an axial-piston engine, and method for producing a heat exchanger of an axial-piston engine |
WO2011009450A2 (de) | 2009-07-24 | 2011-01-27 | GETAS GESELLSCHAFT FüR THERMODYNAMISCHE ANTRIEBSSYSTEME MBH | Axialkolbenmotor, verfahren zum betrieb eines axialkolbenmotors sowie verfahren zur herstellung eines wärmeübertragers eines axialkolbenmotors |
WO2011009451A2 (de) | 2009-07-24 | 2011-01-27 | GETAS GESELLSCHAFT FüR THERMODYNAMISCHE ANTRIEBSSYSTEME MBH | Axialkolbenmotor, verfahren zum betrieb eines axialkolbenmotors sowie verfahren zur herstellung eines wärmeübertragers eines axialkolbenmotors |
WO2011009455A2 (de) | 2009-07-24 | 2011-01-27 | GETAS GESELLSCHAFT FüR THERMODYNAMISCHE ANTRIEBSSYSTEME MBH | Axialkolbenmotor, verfahren zum betrieb eines axialkolbenmotors sowie verfahren zur herstellung eines wärmeübertragers eines axialkolbenmotors |
WO2011009453A3 (de) * | 2009-07-24 | 2011-04-14 | GETAS GESELLSCHAFT FüR THERMODYNAMISCHE ANTRIEBSSYSTEME MBH | Axialkolbenmotor, verfahren zum betrieb eines axialkolbenmotors sowie verfahren zur herstellung eines wärmeübertragers eines axialkolbenmotors |
WO2011009452A3 (de) * | 2009-07-24 | 2011-04-14 | GETAS GESELLSCHAFT FüR THERMODYNAMISCHE ANTRIEBSSYSTEME MBH | Axialkolbenmotor sowie verfahren zum betrieb eines axialkolbenmotors |
WO2011009451A3 (de) * | 2009-07-24 | 2011-04-14 | GETAS GESELLSCHAFT FüR THERMODYNAMISCHE ANTRIEBSSYSTEME MBH | Axialkolbenmotor, verfahren zum betrieb eines axialkolbenmotors sowie verfahren zur herstellung eines wärmeübertragers eines axialkolbenmotors |
WO2011009455A3 (de) * | 2009-07-24 | 2011-05-05 | GETAS GESELLSCHAFT FüR THERMODYNAMISCHE ANTRIEBSSYSTEME MBH | Axialkolbenmotor, verfahren zum betrieb eines axialkolbenmotors sowie verfahren zur herstellung eines wärmeübertragers eines axialkolbenmotors |
US20120118249A1 (en) * | 2009-07-24 | 2012-05-17 | Getas Gesellschaft Fuer Thermodynamische Antriebssysteme Mbh | Axial-piston engine, method for operating an axial-piston engine, and method for producing a heat exchanger of an axial-piston engine |
US20120124981A1 (en) * | 2009-07-24 | 2012-05-24 | Getas Gesellschaft Fuer Thermodynamische Antriebssysteme Mbh | Axial-piston engine, method for operating an axial-piston engine, and method for producing a heat exchanger of an axial-piston engine |
EP2456967A2 (de) * | 2009-07-24 | 2012-05-30 | GETAS Gesellschaft für thermodynamische Antriebssysteme mbH | Axialkolbenmotor, verfahren zum betrieb eines axialkolbenmotors sowie verfahren zur herstellung eines wärmeübertragers eines axialkolbenmotors |
US20120145120A1 (en) * | 2009-07-24 | 2012-06-14 | Getas Gesellschaft Fuer Thermodynamische Antriebssysteme Mbh | Axial-piston engine, method for operating an axial-piston engine, and method for producing a heat exchanger of an axial-piston engine |
US9376913B2 (en) | 2009-07-24 | 2016-06-28 | Getas Gesellschaft Fuer Thermodynamische Antriebssysteme Mbh | Axial-piston engine with a compressor stage, and with an engine-oil circuit and a pressure-oil circuit as well as method for operation of such an axial-piston engine |
CN106917676A (zh) * | 2009-07-24 | 2017-07-04 | 热力驱动系统有限责任公司 | 轴向活塞发动机、其操作方法和制造它的热交换器的方法 |
CN102667059A (zh) * | 2009-07-24 | 2012-09-12 | 热力驱动系统有限责任公司 | 轴向活塞发动机、用于操作轴向活塞发动机的方法以及用于制造轴向活塞发动机的热交换器的方法 |
CN102686848A (zh) * | 2009-07-24 | 2012-09-19 | 热力驱动系统有限责任公司 | 轴向活塞发动机、用于操作轴向活塞发动机的方法以及用于制造轴向活塞发动机的热交换器的方法 |
JP2013500417A (ja) * | 2009-07-24 | 2013-01-07 | ゲタス ゲゼルシャフト フル サーモダイナミシェ アントリーブッシステメ エムベーハー | 軸方向ピストンエンジン、軸方向ピストンエンジンを動作させるための方法、および軸方向ピストンエンジンの熱交換器を製造するための方法 |
JP2013500416A (ja) * | 2009-07-24 | 2013-01-07 | ゲタス ゲゼルシャフト フル サーモダイナミシェ アントリーブッシステメ エムベーハー | アキシャルピストンエンジン、アキシャルピストンエンジンの作動方法、およびアキシャルピストンエンジンの熱交換器を製作する方法 |
JP2013500418A (ja) * | 2009-07-24 | 2013-01-07 | ゲタス ゲゼルシャフト フル サーモダイナミシェ アントリーブッシステメ エムベーハー | 軸方向ピストンエンジン、軸方向ピストンエンジンを動作させるための方法、および軸方向ピストンエンジンの熱交換器を製造するための方法 |
WO2011009452A2 (de) * | 2009-07-24 | 2011-01-27 | GETAS GESELLSCHAFT FüR THERMODYNAMISCHE ANTRIEBSSYSTEME MBH | Axialkolbenmotor sowie verfahren zum betrieb eines axialkolbenmotors |
EP2846029A2 (de) | 2009-07-24 | 2015-03-11 | GETAS Gesellschaft für thermodynamische Antriebssysteme mbH | Axialkolbenmotor mit einer inneren kontinuierlichen Verbrennung |
WO2011009453A2 (de) | 2009-07-24 | 2011-01-27 | GETAS GESELLSCHAFT FüR THERMODYNAMISCHE ANTRIEBSSYSTEME MBH | Axialkolbenmotor, verfahren zum betrieb eines axialkolbenmotors sowie verfahren zur herstellung eines wärmeübertragers eines axialkolbenmotors |
EP2846029A3 (de) * | 2009-07-24 | 2015-04-01 | GETAS Gesellschaft für thermodynamische Antriebssysteme mbH | Axialkolbenmotor mit einer inneren kontinuierlichen Verbrennung |
CN104481728A (zh) * | 2009-07-24 | 2015-04-01 | 热力驱动系统有限责任公司 | 轴向活塞发动机和用于操作轴向活塞发动机的方法 |
RU2548839C2 (ru) * | 2009-07-24 | 2015-04-20 | ГЕТАС Гезельшафт фюр термодинамише Антрибссистеме мбХ | Аксиально-поршневой двигатель и способ работы аксиально-поршневого двигателя |
US9188000B2 (en) | 2009-07-24 | 2015-11-17 | Getas Gesellschaft Fuer Thermodynamische Antriebssysteme Mbh | Axial-piston motor with continuously working combustion chamber having two combustion air inputs |
JP2014504694A (ja) * | 2011-01-19 | 2014-02-24 | ゲタス ゲゼルシャフト フル サーモダイナミシェ アントリーブッシステメ エムベーハー | アキシャルピストンエンジンならびにアキシャルピストンエンジンの作動方法 |
WO2012107013A2 (de) | 2011-01-19 | 2012-08-16 | GETAS GESELLSCHAFT FüR THERMODYNAMISCHE ANTRIEBSSYSTEME MBH | Axialkolbenmotor sowie verfahren zum betrieb eines axialkolbenmotors |
US9194402B2 (en) | 2011-01-19 | 2015-11-24 | Getas Gesellschaft Fuer Thermodynamische Antriebssysteme Mbh | Axial piston motor and method for operating an axial piston motor |
WO2012107013A3 (de) * | 2011-01-19 | 2013-01-24 | GETAS GESELLSCHAFT FüR THERMODYNAMISCHE ANTRIEBSSYSTEME MBH | Axialkolbenmotor sowie verfahren zum betrieb eines axialkolbenmotors |
DE102011018846A1 (de) | 2011-01-19 | 2012-07-19 | GETAS GESELLSCHAFT FüR THERMODYNAMISCHE ANTRIEBSSYSTEME MBH | Axialkolbenmotor sowie Verfahren zum Betrieb eines Axialkolbenmotors |
EP2985411A1 (de) | 2011-01-19 | 2016-02-17 | GETAS Gesellschaft für thermodynamische Antriebssysteme mbH | Axialkolbenmotor sowie verfahren zum betrieb eines axialkolbenmotors |
US9540930B2 (en) | 2011-01-19 | 2017-01-10 | Getas Gesellschaft Fuer Thermodynamische Antriebssysteme Mbh | Axial piston motor and method for operation of an axial piston motor |
US9540931B2 (en) | 2011-01-19 | 2017-01-10 | Getas Gesellschaft Fuer Thermodynamische Antriebssysteme Mbh | Axial piston motor and method for operation of an axial piston motor |
EP3071812A4 (de) * | 2013-10-22 | 2017-12-20 | Chris Kiarash Montebello | Rotationskolbenmaschine mit externer explosions-/expansionskammer |
WO2016192711A1 (de) | 2015-05-29 | 2016-12-08 | GETAS GESELLSCHAFT FüR THERMODYNAMISCHE ANTRIEBSSYSTEME MBH | Axialkolbenmotor |
DE102015108542A1 (de) | 2015-05-29 | 2016-12-01 | GETAS GESELLSCHAFT FüR THERMODYNAMISCHE ANTRIEBSSYSTEME MBH | Axialkolbenmotor |
WO2017121427A1 (de) * | 2016-01-12 | 2017-07-20 | GETAS GESELLSCHAFT FüR THERMODYNAMISCHE ANTRIEBSSYSTEME MBH | Verfahren zum betrieb eines axialkolbenmotors sowie axialkolbenmotor |
CN108463618A (zh) * | 2016-01-12 | 2018-08-28 | Getas热力驱动系统有限公司 | 轴向活塞马达的操作方法以及轴向活塞马达 |
US10450945B2 (en) | 2016-01-12 | 2019-10-22 | GETAS GESELLSCHAFT FüR THERMODYNAMISCHE ANTRIEBSSYSTEME MBH | Method for operating an axial piston motor, and axial piston motor |
Also Published As
Publication number | Publication date |
---|---|
JP2011503412A (ja) | 2011-01-27 |
EP2711499A2 (de) | 2014-03-26 |
EP2711500A2 (de) | 2014-03-26 |
CN103334833A (zh) | 2013-10-02 |
US9879635B2 (en) | 2018-01-30 |
KR20100093554A (ko) | 2010-08-25 |
EP2711499A8 (de) | 2014-05-28 |
CN103334833B (zh) | 2019-04-05 |
US20180128204A1 (en) | 2018-05-10 |
WO2009062473A3 (de) | 2009-11-26 |
CN101932792B (zh) | 2013-05-08 |
US20100258065A1 (en) | 2010-10-14 |
DE112008003003A5 (de) | 2010-08-05 |
KR101514859B1 (ko) | 2015-04-23 |
EP2220341A2 (de) | 2010-08-25 |
EP2711500B1 (de) | 2016-02-10 |
EP2220341B1 (de) | 2019-01-09 |
ES2711318T3 (es) | 2019-05-03 |
CN101932792A (zh) | 2010-12-29 |
RU2010118716A (ru) | 2011-12-20 |
RU2490488C2 (ru) | 2013-08-20 |
EP2711500A3 (de) | 2015-01-21 |
BRPI0817366A2 (pt) | 2015-03-31 |
JP5598763B2 (ja) | 2014-10-01 |
EP2711499A3 (de) | 2015-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2711500B1 (de) | Axialkolbenmotor | |
AT512532B1 (de) | Vorkammersystem für eine Brennkraftmaschine | |
EP3043048B1 (de) | Brenngaszuführungs- und zündvorrichtung für einen gasmotor | |
DE102015221286B4 (de) | Verfahren zum Betreiben einer Brennkraftmaschine mit einer Spüleinrichtung | |
DE102006018973A1 (de) | Laserzündung in einer Vorkammer | |
EP3043049A1 (de) | Brenngaszuführungs- und zündvorrichtung für einen gasmotor | |
EP3574204B1 (de) | Verbrennungskraftmaschine mit kraftstoff-einspritzdüse mit zusätzlicher zuführung eines verbrennungsfördernden mediums in den brennraum | |
DE102009055038A1 (de) | Laserzündeinrichtung | |
DE2644389B2 (de) | ||
EP3015679A1 (de) | Gaszuführsystem und zylinder für eine hubkolbenbrennkraftmaschine, hubkolbenbrennkraftmaschine, sowie verfahren zum betreiben einer hubkolbenbrennkraftmaschine | |
WO2017029323A1 (de) | Zündkerze und gasmotor mit zündkerze | |
EP3015699A1 (de) | Gaszuführsystem mit einem kontrollsystem und zylinder für eine hubkolbenbrennkraftmaschine, hubkolbenbrennkraftmaschine, sowie verfahren zum betreiben einer hubkolbenbrennkraftmaschine | |
WO2011009452A2 (de) | Axialkolbenmotor sowie verfahren zum betrieb eines axialkolbenmotors | |
EP3929428A1 (de) | Kraftstoffinjektor einer dual-fuel brennkraftmaschine und dual-fuel brennkraftmaschine | |
WO2007006062A1 (de) | Verfahren zum betreiben einer mit gasförmigem kraftstoff betriebenen brennkraftmaschine | |
DE102022002118B3 (de) | Brenner für ein Kraftfahrzeug sowie Kraftfahrzeug mit wenigstens einem solchen Brenner | |
AT524226B1 (de) | Verbrennungsmotor und Verfahren zum Betreiben eines Verbrennungsmotors | |
EP3048244B1 (de) | Axialkolbenmotor | |
EP1329614A1 (de) | Verfahren zum Betrieb eines Brenners sowie Brenner, insbesondere für eine Gasturbine | |
WO2015014476A1 (de) | Dual-fuel-kraftstoffinjektor | |
DE102018210808B4 (de) | Vorkammer-Anordnung für eine Brennkraftmaschine, Brennkraftmaschine mit einer solchen Vorkammer-Anordnung, und Verfahren zum Betreiben einer solchen Brennkraftmaschine | |
DE102022206552B3 (de) | Verfahren zum Betreiben einer Antriebseinrichtung sowie entsprechende Antriebseinrichtung | |
DE3941371A1 (de) | Verfahren zum zuenden eines brenners fuer die materialbearbeitung | |
DE102010037743B4 (de) | Betriebsverfahren für einen Zweitaktmotor | |
DE19802626C1 (de) | Verfahren zum Betreiben einer Brennkraftmaschine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200880115699.9 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010532429 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12734508 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1638/KOLNP/2010 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008849887 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20107012268 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010118716 Country of ref document: RU |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08849887 Country of ref document: EP Kind code of ref document: A2 |
|
REF | Corresponds to |
Ref document number: 112008003003 Country of ref document: DE Date of ref document: 20100805 Kind code of ref document: P |
|
ENP | Entry into the national phase |
Ref document number: PI0817366 Country of ref document: BR Kind code of ref document: A2 Effective date: 20100510 |