WO2008138351A1 - Coupling arrangement for a telescopic device - Google Patents
Coupling arrangement for a telescopic device Download PDFInfo
- Publication number
- WO2008138351A1 WO2008138351A1 PCT/DK2008/050109 DK2008050109W WO2008138351A1 WO 2008138351 A1 WO2008138351 A1 WO 2008138351A1 DK 2008050109 W DK2008050109 W DK 2008050109W WO 2008138351 A1 WO2008138351 A1 WO 2008138351A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- telescopic device
- tubular element
- coupling
- coupling ring
- ring
- Prior art date
Links
- 230000008878 coupling Effects 0.000 title claims abstract description 165
- 238000010168 coupling process Methods 0.000 title claims abstract description 165
- 238000005859 coupling reaction Methods 0.000 title claims abstract description 165
- 238000006073 displacement reaction Methods 0.000 claims abstract description 4
- 230000000670 limiting effect Effects 0.000 claims abstract description 3
- 239000002783 friction material Substances 0.000 claims description 5
- 230000002485 urinary effect Effects 0.000 claims description 4
- 239000000463 material Substances 0.000 description 28
- 230000007704 transition Effects 0.000 description 11
- 210000003708 urethra Anatomy 0.000 description 5
- -1 polypropylene Polymers 0.000 description 4
- 229920002635 polyurethane Polymers 0.000 description 4
- 239000004814 polyurethane Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000004417 polycarbonate Substances 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 2
- 239000004809 Teflon Substances 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- FACXGONDLDSNOE-UHFFFAOYSA-N buta-1,3-diene;styrene Chemical compound C=CC=C.C=CC1=CC=CC=C1.C=CC1=CC=CC=C1 FACXGONDLDSNOE-UHFFFAOYSA-N 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 229920005669 high impact polystyrene Polymers 0.000 description 2
- 239000004797 high-impact polystyrene Substances 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 229920002530 polyetherether ketone Polymers 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 238000007788 roughening Methods 0.000 description 2
- 239000007779 soft material Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 229920000468 styrene butadiene styrene block copolymer Polymers 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 2
- 210000002700 urine Anatomy 0.000 description 2
- JDCCCHBBXRQRGU-UHFFFAOYSA-N 5-phenylpenta-2,4-dienenitrile Chemical compound N#CC=CC=CC1=CC=CC=C1 JDCCCHBBXRQRGU-UHFFFAOYSA-N 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229920001634 Copolyester Polymers 0.000 description 1
- 229920002633 Kraton (polymer) Polymers 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 206010033799 Paralysis Diseases 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 210000003484 anatomy Anatomy 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- BZDKYAZTCWRUDZ-UHFFFAOYSA-N buta-1,3-diene;methyl 2-methylprop-2-enoate;prop-2-enenitrile;styrene Chemical compound C=CC=C.C=CC#N.COC(=O)C(C)=C.C=CC1=CC=CC=C1 BZDKYAZTCWRUDZ-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- BXOUVIIITJXIKB-UHFFFAOYSA-N ethene;styrene Chemical group C=C.C=CC1=CC=CC=C1 BXOUVIIITJXIKB-UHFFFAOYSA-N 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 229920003031 santoprene Polymers 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000011345 viscous material Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/0017—Catheters; Hollow probes specially adapted for long-term hygiene care, e.g. urethral or indwelling catheters to prevent infections
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16B—DEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
- F16B7/00—Connections of rods or tubes, e.g. of non-circular section, mutually, including resilient connections
- F16B7/10—Telescoping systems
- F16B7/14—Telescoping systems locking in intermediate non-discrete positions
- F16B7/1463—Telescoping systems locking in intermediate non-discrete positions with the expansion of an element inside the outer telescoping member due to the axial movement towards a wedge or a conical member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L19/00—Joints in which sealing surfaces are pressed together by means of a member, e.g. a swivel nut, screwed on, or into, one of the joint parts
- F16L19/06—Joints in which sealing surfaces are pressed together by means of a member, e.g. a swivel nut, screwed on, or into, one of the joint parts in which radial clamping is obtained by wedging action on non-deformed pipe ends
- F16L19/065—Joints in which sealing surfaces are pressed together by means of a member, e.g. a swivel nut, screwed on, or into, one of the joint parts in which radial clamping is obtained by wedging action on non-deformed pipe ends the wedging action being effected by means of a ring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L19/00—Joints in which sealing surfaces are pressed together by means of a member, e.g. a swivel nut, screwed on, or into, one of the joint parts
- F16L19/08—Joints in which sealing surfaces are pressed together by means of a member, e.g. a swivel nut, screwed on, or into, one of the joint parts with metal rings which bite into the wall of the pipe
- F16L19/083—Joints in which sealing surfaces are pressed together by means of a member, e.g. a swivel nut, screwed on, or into, one of the joint parts with metal rings which bite into the wall of the pipe the longitudinal cross-section of the ring not being modified during clamping
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L27/00—Adjustable joints; Joints allowing movement
- F16L27/12—Adjustable joints; Joints allowing movement allowing substantial longitudinal adjustment or movement
- F16L27/127—Adjustable joints; Joints allowing movement allowing substantial longitudinal adjustment or movement with means for locking the longitudinal adjustment or movement in the final mounted position
- F16L27/1273—Adjustable joints; Joints allowing movement allowing substantial longitudinal adjustment or movement with means for locking the longitudinal adjustment or movement in the final mounted position by quick-acting means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M2025/0175—Introducing, guiding, advancing, emplacing or holding catheters having telescopic features, interengaging nestable members movable in relations to one another
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2210/00—Anatomical parts of the body
- A61M2210/10—Trunk
- A61M2210/1078—Urinary tract
- A61M2210/1089—Urethra
- A61M2210/1096—Male
Definitions
- the present invention relates to a telescopic device and a coupling arrangement for coupling the telescopic device in an extended configuration.
- the invention relates to a telescopic catheter and a coupling arrangement for coupling the telescopic device in a ready-to-use configuration.
- intermittent catheters have become almost a standard for persons not able to urinate of free will.
- Such users typically paralysed persons such as para- and tetraplectics, have found that using intermittent catheters has greatly improved their freedom to move around and lead an active life as catheterisation can be performed anywhere.
- the present invention relates to a first tubular element and an extension member displaceably arranged in an axial direction within the first tubular element, wherein a coupling member is provided relatively displaceable to the extension member, between at least; a first axial position wherein the extension member is displaceable within the first tubular element and a second axial position wherein the coupling member engages between the extension member and the first tubular element limiting displacement in at least one longitudinal direction, where the coupling member engages the interior of the first tubular element.
- engage can mean to interlock or cause to interlock between two parts.
- displace means to move from one position to another position.
- the term interior can mean any part of the first tubular element, which cannot be construed as facing the exterior of the first tubular element. This may include the inner surface of the tubular element, any form of groove or extrusion on the inside of the tubular element or any surface area that is not facing the exterior or the outside of the tubular element, e.g. facing inwards and towards the central longitudinal axis of the first or the second tubular element.
- the coupling member is palpable or cannot be felt through the walls of the first tubular element by running the fingers across the outer surface of the first tubular element. This is advantageous in that the coupling member cannot be felt and does not injure or damage anatomical structures in the body of a user when the telescopic device is inserted into the urethra of the user.
- the coupling member and the extension member are capable of relative placement in more than the first and second axial position.
- Telescopic devices may be formed of many different shapes, but typically they are formed of cylinder sections, for example catheters.
- the coupling member may be a coupling ring having an inner surface facing the extension member and an outer surface facing the first tubular element.
- outer and inner surfaces of the different elements of the invention and as described herein should be seen with respect to axis of the telescopic device.
- surfaces facing out and away from the axis of the telescopic device are referred to as outer surfaces, while surfaces facing inwards and towards the axis are referred to as inner surfaces.
- the coupling ring is expandable from a first radial extent in the first axial position to a second radial extent in the second axial position and wherein the radial extent of inner surface of the coupling ring is larger in the second radial extent than in the first radial extent.
- the coupling ring is expandable from a first radial extent in the first axial position to a second radial extent in the second axial position and wherein the radial extent of outer surface of the coupling ring is larger in the second radial extent than in the first radial extent.
- the coupling ring can be formed of a high friction material.
- a high friction material should be understood as a material, which when the coupling ring is pressed against the first tubular element in its second axial position provides a high coefficient of friction.
- coefficient of friction is not absolute and may be altered for different embodiments. Thus, in one embodiment it can be above 0,1 , however it could be above 0,2 or even 0,3. These values should be considered in view of the coefficient of friction between a coated catheter and the urethra, which may be as low as between 0,03 and 0,01.
- the collapsing force may also be considered by adapting the collapsing force, which should be understood as being the force required for pushing the extension member into the first tubular element.
- the high friction material can be understood as a material, which would provide a collapsing force between 5 - 1 ON, in some cases.
- the above mentioned collapsing force may be in the range between 20 - 8ON, where the specific size of the collapsing force may be dependent on the size and dimensions of the telescopic catheter, where catheters which have a small diameter may have less collapsing force than catheters which have a larger diameter, or vice versa.
- the minimum collapsing force is set at 2ON, such that the risk of unwanted collapse during insertion of the telescopic catheter is reduced.
- the maximum collapsing force is achieved at 8ON, such that the user may willingly collapse the telescopic catheter after use.
- the minimum collapsing force may be 2ON and the maximum collapsing force may be 8ON and the preferred collapsing force may be somewhere in-between the minimum and the maximum value, based on the specific purpose, size, dimensions or material choice of the telescopic catheter.
- the outer surface of the coupling ring can be provided with at least one rib.
- Such ribs provide a small contact area against the inner surface of the first tubular element, which result in a corresponding higher pressure than if the whole surface of the coupling ring distributes the pressure.
- such ribs, or the whole coupling ring can be formed of a relatively hard material compared to the first tubular element. This results in the fact that the ribs dig into, cut into or deform inwardly the inner surface of the first tubular element providing a very secure engagement.
- the coupling ring is formed as an open ring, having a c-shape when seen in cross section.
- This shape allows for the coupling ring to be easier deformed when the coupling ring is formed of a hard material as the opening in the c-shape will allow for the ring to be pressed together until the ends of the c-shape meet, providing a small enveloping circumference.
- it allows for the ring to be opened, i.e. the ends of the c-shape are moved away from each other providing a large enveloping circumference.
- the coupling member is arranged around a conical shaped surface area of the extension member tapering along the axial direction.
- conical shaped surface area it may be desirable to use a different material for the conical shaped surface area than that used to form the extension member in order to achieve different properties and/or for manufacturing reason.
- the conical shaped surface area can be provided as a separate bushing element attached to the distal end of the extension member.
- the coupling member or coupling ring and the bushing element may be made of two different materials, as tests performed by the inventor indicate that the frictional forces between two parts constructed out of two different materials are often less than the frictional forces between two parts made out of the same material.
- the bushing element is formed with a through-going opening along the axial direction. This for example allows for communication between passageways in the telescopic device in embodiments, wherein the extension member is a second tubular element.
- Such embodiment may for example cover telescopic devices such as a telescopic intermittent urinary catheter, wherein the first tubular element can be the distal section and the second tubular element can be the proximal section. This allows urine to flow through both telescopic sections, typically from the bladder through the proximal and out through the distal section.
- the inner surface of the first tubular element is provided with at least one protruding rim and/or at least one grove. This provides means to which the annular ribs can engage for improved coupling or if no annular ribs are provided it will function as a roughening of the surface, which also provides an improved coupling and engagement between the coupling member and the first tubular element.
- Fig. 1 shows in section the transition area between the proximal section and the distal section of a telescopic catheter according to the invention where the coupling element is in an uncoupled position
- Fig. 2 shows in section the transition area between the proximal section and the distal section of a telescopic catheter according to the invention where the coupling element is in a coupled position
- Fig. 3 shows in section the transition area between the proximal section and the distal section of a telescopic catheter according to the invention where the coupling element is in an uncoupled position
- Fig. 4a and 4b show a section of a catheter according to the present invention taken along line IV-IV,
- Fig. 5 shows in section the transition area between the proximal section and the distal section of one embodiment of a telescopic catheter according to the invention where the coupling element is in an uncoupled position
- Fig. 6 shows in section the same where the coupling element is in a coupled position
- Fig. 7a and /b shows a section of a telescopic catheter, where one surface is provided with longitudinal grooves
- Fig. 8 shows a side view of a bushing element and a coupling ring according to the present invention
- Fig. 9 shows in section the transition area between the proximal section and the distal section of another embodiment of a telescopic catheter, having the bushing element and coupling ring of Fig. 8, where the coupling element is in a coupled position
- Fig. 10 shows in section the same where the coupling element is in a coupled position
- Fig.1 1 shows in section the transition area between the proximal section and the distal section of yet another embodiment of a telescopic catheter according to the invention where the coupling element is in an uncoupled position
- Fig. 12 shows in section the same where the coupling element is in a coupled position
- a telescopic intermittent catheter 1 is shown partly and in section in Fig.1 around a first axis A - A.
- the catheter is formed of a proximal section 2 (corresponding to the extension member described above) and a distal section 3 (corresponding to the first tubular element described above). Both sections are formed as tubular elements defining the first and second passageway 4,5 respectively, through which urine may flow in a flow direction from the first proximal section to the distal section during use.
- the outer surface 6 of the proximal section 2 has a circumference, which is smaller than the circumference of the inner surface 7 of the distal section 3, so that the proximal section 2 at least partly can be displaceably placed within the second passageway 5.
- a bushing element 9 is attached.
- the bushing element 9 is formed with a through-going third passageway 10 providing fluid communication between the first and second passageway 4,5.
- the bushing element is further formed with a neck 1 1 disposed within the first passageway.
- the neck may have a circumference slightly larger than the circumference of the inner surface 12 of the proximal section 2, thus allowing for a frictional attachment of the bushing to the proximal section.
- the neck and proximal section are glued or welded together.
- the neck extends into a shoulder part in the form of a first annular rim 13.
- the bushing element 9 extends from the first annular rim and in the flow direction (along the axis A - A from the proximal section to the distal section) as a conical part 14, having a surface 17 that tapers from a large circumference towards a smaller circumference along the flow direction.
- the bushing element terminates at its distal end in a second annular rim 15.
- a coupling member in the form of a coupling ring 16 is arranged around the conical part.
- the ring has an axial dimension of about half the axial dimension of the conical part, i.e. the length between the first annular rim and the second annular rim.
- the first annular rim has a larger radial extent than the conical part, thus providing a stop for the coupling ring in the proximal end of the conical part.
- the second annular rim has a larger radial extent than the conical part in the distal end, thus also functioning as a stop for the coupling ring in this end.
- the coupling ring abuts against the second annular rim 15 in the distal end of the conical part.
- the coupling ring 16 slightly presses against the inner surface 7 of the distal section, engaging slightly with the surface of the distal section. It should be understood that this slight frictional engagement is relatively small compared to the force used by a user to pull the telescopic catheter into its extended configuration. Typically, such initial engagement requires a pulling force of approximately 1 - 10 N. This is a relatively small pulling force, considering that a normal human being is capable of pulling with a force of 200N, corresponding to pulling 20kg.
- a high frictional engagement is desired between the outer surface of the coupling ring and the inner surface of the distal section, when the coupling ring is in its second axial position.
- a relatively smaller frictional engagement may be desired between the inner surface of the coupling ring and the surface of the conical part.
- the coupling ring may slide over the surface of the conical part while engaged with the inner surface of the distal section.
- Forming the bushing element in e.g. polyamid or Teflon may provide such a relative low frictional engagement.
- the coupling ring may be formed of two materials; An inner material forming the inner surface of the coupling ring providing a relatively low frictional engagement with the surface of the conical part; and an outer material forming the outer surface of the coupling ring providing a relatively high frictional engagement with the inner surface of the distal section.
- the coupling ring may be provided with at least one annular rib 19, in the embodiment shown there are provided three annular ribs 19a,19b, 19c on the outer surface 20 of the coupling ring.
- This provides a small contact area with the inner surface of the distal section.
- pressure will be distributed through these relatively small contact areas, which results in a high pressure distribution through each rib whereby the ribs have a tendency to dig into the material of the distal section providing a gripping engagement between the locking ring 16 and the distal section 3.
- the distal section 3 is at its proximal end 21 formed with a narrow inner surface part 22 having a decreased inner circumference compared to the circumference of the inner surface 7, i.e. the rest of the distal section 3.
- This provides an edge 23, provided in the transition between the inner surface 7 and the narrowed inner surface part 22.
- the edge 23 functions as a stop against the first annular flange 13, providing that the outer circumference 24 of the first annular flange is greater than the inner circumference of the narrowed inner surface part 22. This prevents that the proximal section and the distal section are pulled apart unintentionally.
- Fig. 3 shows in section the transition area between the proximal section 2 and the distal section 3 of a telescopic catheter 1 where the coupling ring 16 is in its initial engagement state.
- the size of the radial circumference of the coupling ring 16 is slightly larger than the radial circumference of the inner surface 7 of the distal section 3, in a way that the annular ribs 19a, 19b, 19c of the coupling ring 16 are in continuous contact with the inner surface 7 of the distal section 3, providing frictional engagement between the coupling ring 16 and the inner surface 7.
- the coupling ring 16 is in contact with the second annular rim 15 and there is a slit 26 between the inner surface 18 of 5 the coupling ring 16 and the tapering surface 17 of the conical part 14, which extends along the radial inner surface 18 of the coupling ring, as shown in Fig. 4a, which ensures that the conical part 14 of the bushing element 9 may be pushed a short distance into the coupling ring 16 without providing full contact between the inner surface 18 and the tapering surface 17.
- the coupling ring 16 in full contact between the inner surface 18 and the tapering o surface 17 is shown in Fig. 4b, where the slit has been filled and the opening 27 in the coupling ring has been widened, as the annular rib 19c is pressed into the inner surface 7 of the distal section 3.
- F1 is in the range 2 - 100% larger than F2, more preferably F1 is in the range 5 - 70% larger than F2, yet more preferably F1 is in the range 10 - 40% larger than F2, and most preferably F1 is approximately 20% larger than F2.
- the preferred ratio between F1 and F2 is based on the specific construction of the catheter and the specific percentage may vary from one embodiment to another embodiment of the present invention.
- frictional force means the force of two surfaces in contact. The term may be understood as either static friction, i.e. friction between two objects, which are not moving relative to each other, or kinetic (dynamic) friction, which is the friction between two objects moving relative to each other.
- the force F 1 is increased by providing the coupling ring with at least one annular rib 19, which provides a smaller contact surface between the coupling ring 16 and the inner surface 7 of the distal section 3 and ensures that the forces in the radial direction are distributed over a small surface area on the inner surface 7. Furthermore, this ensures that the annular ribs 19 are capable of digging into the inner surface 7, providing increased frictional forces.
- the friction F1 could in different embodiments be increased by roughening the outer surface of the coupling part 16, or by providing the outer surface with treads, similar to those found on tires to increase traction. Different methods of increasing the frictional force F 1 would be obvious to the skilled person based on the present invention.
- This may be achieved by constructing the inner surface 18 of the coupling ring 16 and/or the tapered surface 17 of the conical part 14 of low friction material, such as nylon, or by coating the surfaces 17,18 with a non-stick material such as Teflon or similar material.
- the low friction surface area may be obtained by polishing the surfaces to a glossy finish, such that any roughness of the surfaces may be removed, minimizing the friction.
- the conical part 14 and the coupling ring may be completely untreated after fabrication where the construction of the conical part 14 and the coupling ring 16 may provide a suitable balance between the frictional forces, F 1 > F 2 .
- the inner surface of the coupling ring and the tapered surface of the conical part may be lubricated with a high viscous substance, such as grease, oil or similar substances, where it would be important to ensure that the substance could not come in contact with the contact surface between the inner surface 7 of the distal section 3 and the outer surface 19 of the coupling ring 16.
- a high viscous substance such as grease, oil or similar substances
- the particular embodiment of the present invention as shown in Fig. 3 is provided with two rims 25a and 25b, which the coupling ring 16 may easily pass when the proximal section 2 is pulled towards the extended position of the telescopic catheter 1 .
- the rims 25a and 25b provide a redundant securing means, which ensures that the coupling ring does not slide past the first 25a or the second rim 25b, if the frictional forces or the gripping engagement between the annular ribs 19a, 19b, 19c and the inner surface 7 of the distal section 3 are less than the force pushing the coupling ring 16 towards the proximal end of the distal section 3, when the proximal section 2 is being pushed into its collapsed configuration.
- FIG. 5 shows a 5 telescopic catheter 1 , having a proximal section 2 and a distal section 3 in an extended position.
- Fig. 5 shows the proximal section 3 in an unlocked position, where the coupling ring
- the proximal section2 may still be moved in a direction towards its collapsed position.
- the proximal section 2 In order to lock the proximal section 2 in its extended position, the proximal section 2 has to be pulled further o towards its extended position in a way that the bushing element 9 expands the c-shaped coupling ring 16, by means of the tapered outer surface 30 of the bushing 9 and the tapered inner surface 29 of the coupling ring 16 and the structural element 28.
- the coupling ring 16 is held in its position by means of the edge 23, which stops the coupling ring 16 from moving in the direction of the extended proximal section 2.
- the telescopic catheter 1 in its locked position is shown in Fig. 6, where the distal section of the bushing element 9 is snugly fit inside the coupling ring 16, where the tapered outer surface 30 of the bushing element borders on the inner surface 29 of the coupling ring 16 and the structural element 28 and the distal edge of the bushing element 9 prevents the bushing element in exiting the inside of the coupling ring 16 in a direction towards its0 collapsed position.
- the coupling ring is expanded from its normal circumference, as shown in Fig. 5, into an expanded outer circumference, reinforced by the bushing element 9, where the external surface 19 of the coupling ring is fully engaged into the inner surface 7 of the distal member 3.
- the fully engaged coupling ring 16 ensures that the proximal section 2 is limited in5 displacement in a direction towards the telescopic catheter's 1 collapsed position.
- FIG. 7a Another embodiment of the present invention is shown in Fig. 7a where the tapered surface
- the longitudinal grooves 31 decrease the surface area of the tapered surface 17 compared to a uniform surface, such that there is less area of the0 tapered surface 17 that comes in contact with the inner surface 18 of the coupling ring 16.
- An alternative embodiment is shown in Fig. 7b, where the inner surface 18 of the coupling ring 16 has been provided with longitudinal grooves 32 in a direction parallel to the axis A.
- the longitudinal grooves 32 decrease the surface area of the inner surface 18 of the coupling ring 16 compared to a uniform surface area. This means that the contact surface between the tapered surface 17 and the inner surface 18 of the coupling ring 16 is less than with a uniformed surface and the kinetic friction between the surfaces is reduced.
- Fig. 8 shows another embodiment of the present invention, where the bushing element 9 5 has a uniform cylindrical form from the distal end 33 to the proximal end 34. At the distal end 33 there is provided a collar 35, which extends radially away from the central longitudinal axis of the bushing element 9. At the proximal end 34 of the bushing element 9, the bushing element is connected to the proximal section 2 of the catheter 1 , as shown in Fig. 9.
- the outer surface 36 of the bushing element 9 is provided with a plurality of through going o openings 37, which are in this embodiment larger in the direction parallel to the central axis A, than along the radial curvature of the of the outer surface 36.
- a coupling ring 38 is moveably arranged onto the outer surface 36 of the bushing element 9, where a plurality of arms 39, each arm 39 having at least one projection, extending in a direction radially away from the central axis A.
- the arms are arranged to be resiliency moveable in a radial direction 5 from the central axis A.
- the arms 39 are arranged to slot into the through going openings 37 of the bushing element 9, such that at least one arm 39 slots into one opening 37.
- the coupling ring 38 is provided with a collar 41 , which extends radially away from the central axis A.
- the projections 40 of the arms 39 are arranged to extend at least the same radial distance from the axis A as the outer surface 42 of the collar 41 and in one embodiment the0 projections 40 extend further in a radial distance from the axis A than the outer surface 42.
- Fig. 9 shows a sectional view of a catheter 1 according to the present invention in an unlocked position, where the catheter is provided with the bushing element 9 and the coupling ring 38 as shown in Fig. 8.
- the projections 40 of the arms 39 of the coupling ring 38 are in contact with the inner surface 7 of the distal section 3.
- The5 contact between the coupling ring 38 and the inner surface 7 ensures that there is friction between them.
- the collar 35 of the bushing element 9 ensures that the coupling ring 38 does not slide off the bushing element 9.
- Fig. 10 shows a sectional view of the catheter, as shown in Fig 9, in a locked position.
- The0 proximal section 2 has been manoeuvred towards the catheter's 1 collapsed configuration and the bushing element 9 has moved relative to the distal section 3 and the coupling ring
- Fig. 1 1 and Fig. 12 show a partial sectional diagram of another embodiment of a telescopic catheter according to the present invention in an unlocked position.
- the bushing element 9 is of a uniform cylindrical shape and is provided with an expansion means 44, in the form of a wedge shaped element.
- the central axis of the expansion means 44 is positioned in a direction that is parallel to the central axis A of the catheter 1 , having a distal end 45, which is pointed and a proximal end 46 which is wide.
- the catheter 1 is provided with an open coupling ring 47, which is substantially c-shaped, where the expansion means 44 are positioned within the opening 48 of the coupling ring.
- the free ends 49 of the coupling ring 47 are substantially parallel to the sides of the expansion means 44.
- the contact surface between the coupling ring 47 and the bushing element 9, is preferably a low friction surface, such that the coupling ring 47 can easily be manoeuvred relative to the bushing element 9.
- the outer surface 49 of the coupling ring 47 is in contact with the inner surface 7 of the distal section 3 of the catheter 1 , where the frictional forces between the inner surface 7 and the outer surface 50 of the coupling ring is to be larger that the frictional forces between the inner surface 48 of the coupling ring 47 and the bushing element 9.
- the proximal section 2 has been manoeuvred into its extended position and a collar 51 on the distal end of the bushing element 9 ensures that the coupling ring 47 does not slide of the bushing element 9.
- the proximal section 2 is manoeuvred towards its collapsed position, as mentioned earlier and the bushing means 9 move relative to the coupling ring 47, where the expansion means 44 engage the opening 48 of the coupling ring 47 and force the coupling ring 47 to expand in a radial direction away from the central axis A.
- the expanded coupling ring 47 engages the inner surface 7 of the distal section 3 and ensures that the proximal section 2 of the catheter 1 remains in its extended position, such that the extended catheter 1 can be inserted into the urethra of the user.
- one way of determining the force required to pull the catheter into an extended configuration or the force required to push the catheter into a collapsed configuration may be through the materials used for the different part of the catheter.
- the proximal section may be produced of rather soft materials such as polyurethane, PVC (polyvinylchloride) or similar flexible materials and the distal section may for example be produced of hard materials such as polyurethane, polyolefines, PEEK (polyetheretherketon), PC (polycarbonate), PET (polyester, polyethylenephtalate), ABS (acrylonitril-butadien-styrene) and/or MABS (methylmethacrylate acrylonitril-butadien- styrene).
- PEEK polyetheretherketon
- PC polycarbonate
- PET polyethylenephtalate
- ABS acrylonitril-butadien-styrene
- MABS methylmethacrylate acrylonitril-butadien- styrene
- the bushing element is typically formed of a relatively hard material in order to prevent deformation of the conical shaped surface area when the coupling ring presses against the distal section in its second axial position.
- a relatively hard material can be numerous and selected between many different plastics but also aluminium, steel, brass etc.
- a polyurethane may be used, for example Desmopan as mentioned above.
- plastic materials can for example be polyolefins, such as polypropylene, polyethylene, EVA (polyethylene vinylacetate copolymer), ABS MABS, Kraton, PET, PC, PCTG(copolyester/polycarbonat) blends, HIPS (high impact polystyrene), PA (polyamid), SAN (styrene-acrylonitril), PS (polystyrene) and SEBS (styrene-ethylene/bothylene-styrene).
- polyolefins such as polypropylene, polyethylene, EVA (polyethylene vinylacetate copolymer), ABS MABS, Kraton, PET, PC, PCTG(copolyester/polycarbonat) blends, HIPS (high impact polystyrene), PA (polyamid), SAN (styrene-acrylonitril), PS (polystyrene) and SEBS (styrene-ethylene/bothylene-s
- the coupling ring and the distal section may be manufactured of the same type of material, such as those materials described above in relation to the coupling ring and the distal section.
- the coupling ring may be formed relatively hard relative to the distal section in order to be able to dig into the material of the distal section. Or, if the coupling ring is formed relatively soft relative to the distal section it is possible to provide a frictional engagement.
- the coupling ring can for example be formed of SBS (Styrene Butadiene Styrene), SEBS, silicone, TPU (Thermoplastic Urethane), rubber (such as nitril, santoprene etc.).
- Coupling rings formed of a relatively hard material may be formed as open rings, i.e. having a c-shape when seen in cross section. This allows for the ring to have spring like characteristics where it can be compressed into a smaller annular enveloping circumference and expanded to a larger annular enveloping circumference than when the open ring is in its neutral, non-loaded, shape.
- Coupling rings formed of a relatively soft material may be formed as closed ring, as the material itself is being compressed providing a frictional engagement as described above.
- the inner surface of the distal section can be formed with rims and/or groves. These ribs or groves provide an even firmer engagement between the coupling ring and the distal section, as the annular ribs formed on the outer surface of the coupling ring will engage with the ribs or groves. Such ribs or groves can be formed at the proximal end of the distal section in order to improve the engagement between the distal section and the proximal section when the telescopic catheter is in its expanded configuration.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hematology (AREA)
- Biophysics (AREA)
- Pulmonology (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Urology & Nephrology (AREA)
- Epidemiology (AREA)
- Media Introduction/Drainage Providing Device (AREA)
Abstract
Description
Claims
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008800156898A CN101678193B (en) | 2007-05-16 | 2008-05-16 | Coupling arrangement for a telescopic device |
JP2010507794A JP2010526606A (en) | 2007-05-16 | 2008-05-16 | Connecting device for telescopic device |
AU2008250764A AU2008250764A1 (en) | 2007-05-16 | 2008-05-16 | Coupling arrangement for a telescopic device |
BRPI0810630A BRPI0810630B8 (en) | 2007-05-16 | 2008-05-16 | coupling arrangement for a telescopic device |
EP08734564.1A EP2148714B1 (en) | 2007-05-16 | 2008-05-16 | Coupling arrangement for a telescopic device |
CA002687148A CA2687148A1 (en) | 2007-05-16 | 2008-05-16 | Coupling arrangement for a telescopic device |
US12/600,273 US8491568B2 (en) | 2007-05-16 | 2008-05-16 | Coupling arrangement for a telescopic device |
US13/923,371 US9259551B2 (en) | 2007-05-16 | 2013-06-21 | Coupling arrangement for a telescopic device |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US92446707P | 2007-05-16 | 2007-05-16 | |
DKPA200700736 | 2007-05-16 | ||
US60/924,467 | 2007-05-16 | ||
DKPA200700736 | 2007-05-16 | ||
DKPA200800494 | 2008-04-04 | ||
DKPA200800494 | 2008-04-04 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/600,273 A-371-Of-International US8491568B2 (en) | 2007-05-16 | 2008-05-16 | Coupling arrangement for a telescopic device |
US13/923,371 Division US9259551B2 (en) | 2007-05-16 | 2013-06-21 | Coupling arrangement for a telescopic device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008138351A1 true WO2008138351A1 (en) | 2008-11-20 |
Family
ID=39535185
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DK2008/050109 WO2008138351A1 (en) | 2007-05-16 | 2008-05-16 | Coupling arrangement for a telescopic device |
Country Status (7)
Country | Link |
---|---|
US (2) | US8491568B2 (en) |
EP (1) | EP2148714B1 (en) |
JP (1) | JP2010526606A (en) |
CN (2) | CN103157169B (en) |
AU (1) | AU2008250764A1 (en) |
CA (1) | CA2687148A1 (en) |
WO (1) | WO2008138351A1 (en) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010149174A1 (en) | 2009-06-26 | 2010-12-29 | Coloplast A/S | A urinary catheter |
WO2011063816A1 (en) | 2009-11-26 | 2011-06-03 | Coloplast A/S | A telescopic device |
WO2011076211A1 (en) | 2009-12-21 | 2011-06-30 | Coloplast A/S | A catheter kit for a urinary catheter |
WO2013075725A1 (en) | 2011-11-25 | 2013-05-30 | Coloplast A/S | A urinary catheter assembly |
WO2013174381A1 (en) | 2012-05-23 | 2013-11-28 | Coloplast A/S | Coupling arrangement for a telescopic device |
ITMI20130240A1 (en) * | 2013-02-20 | 2014-08-21 | Rpe Srl | METHOD AND CONNECTION GROUP OF TWO TUBULAR ELEMENTS |
US8864730B2 (en) | 2005-04-12 | 2014-10-21 | Rochester Medical Corporation | Silicone rubber male external catheter with absorbent and adhesive |
US9186100B2 (en) | 2011-04-26 | 2015-11-17 | Velano Vascular, Inc. | Systems and methods for phlebotomy through a peripheral IV catheter |
US9707375B2 (en) | 2011-03-14 | 2017-07-18 | Rochester Medical Corporation, a subsidiary of C. R. Bard, Inc. | Catheter grip and method |
US9744344B1 (en) | 2016-06-30 | 2017-08-29 | Velano Vascular, Inc. | Devices and methods for catheter placement within a vein |
US9750446B2 (en) | 2011-04-26 | 2017-09-05 | Velano Vascular, Inc. | Systems and methods for phlebotomy through a peripheral IV catheter |
US9872969B2 (en) | 2012-11-20 | 2018-01-23 | Rochester Medical Corporation, a subsidiary of C.R. Bard, Inc. | Catheter in bag without additional packaging |
US10076272B2 (en) | 2011-04-26 | 2018-09-18 | Velano Vascular, Inc. | Systems and methods for phlebotomy through a peripheral IV catheter |
US10092728B2 (en) | 2012-11-20 | 2018-10-09 | Rochester Medical Corporation, a subsidiary of C.R. Bard, Inc. | Sheath for securing urinary catheter |
US10300247B2 (en) | 2016-02-03 | 2019-05-28 | Velano Vascular, Inc. | Devices and methods for fluid transfer through a placed peripheral intravenous catheter |
US10350381B2 (en) | 2011-08-29 | 2019-07-16 | Coloplast A/S | Closing of flow through catheter |
WO2020173531A1 (en) | 2019-02-25 | 2020-09-03 | Coloplast A/S | A urinary catheterisation aid |
US10773056B2 (en) | 2017-03-21 | 2020-09-15 | Velano Vascular, Inc. | Systems and methods for controlling catheter device size |
US10857324B2 (en) | 2014-08-26 | 2020-12-08 | C. R. Bard, Inc. | Urinary catheter |
US11090461B2 (en) | 2017-03-21 | 2021-08-17 | Velano Vascular, Inc. | Devices and methods for fluid transfer through a placed peripheral intravenous catheter |
US11160403B1 (en) | 2018-04-08 | 2021-11-02 | Arix Grant Zalace | Reusable straw assembly with housing and cleaning brush |
US11207498B2 (en) | 2019-08-20 | 2021-12-28 | Velano Vascular, Inc. | Fluid transfer devices with extended length catheters and methods of using the same |
US11389624B2 (en) | 2020-11-26 | 2022-07-19 | Avia Vascular, Llc | Blood collection devices, systems, and methods |
US11547599B2 (en) | 2017-09-19 | 2023-01-10 | C. R. Bard, Inc. | Urinary catheter bridging device, systems and methods thereof |
Families Citing this family (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8579807B2 (en) | 2008-04-28 | 2013-11-12 | Ethicon Endo-Surgery, Inc. | Absorbing fluids in a surgical access device |
EP2155310A1 (en) * | 2007-05-16 | 2010-02-24 | Coloplast A/S | Coupling arrangement for a telescopic device |
US8273060B2 (en) * | 2008-04-28 | 2012-09-25 | Ethicon Endo-Surgery, Inc. | Fluid removal in a surgical access device |
US8568362B2 (en) * | 2008-04-28 | 2013-10-29 | Ethicon Endo-Surgery, Inc. | Surgical access device with sorbents |
US8870747B2 (en) * | 2008-04-28 | 2014-10-28 | Ethicon Endo-Surgery, Inc. | Scraping fluid removal in a surgical access device |
USD700326S1 (en) | 2008-04-28 | 2014-02-25 | Ethicon Endo-Surgery, Inc. | Trocar housing |
US11235111B2 (en) | 2008-04-28 | 2022-02-01 | Ethicon Llc | Surgical access device |
US8636686B2 (en) | 2008-04-28 | 2014-01-28 | Ethicon Endo-Surgery, Inc. | Surgical access device |
US9358041B2 (en) | 2008-04-28 | 2016-06-07 | Ethicon Endo-Surgery, Llc | Wicking fluid management in a surgical access device |
WO2014062225A1 (en) | 2012-10-19 | 2014-04-24 | Hollister Incorporated | Intermittent urinary catheter assembly and an adapter assembly for an intermittent urinary catheter |
CA2917047C (en) | 2013-08-30 | 2019-06-11 | Hollister Incorporated | Device for trans-anal irrigation |
US10561817B2 (en) | 2014-05-30 | 2020-02-18 | Hollister Incorporated | Flip open catheter package |
EP3166662B1 (en) | 2014-07-08 | 2023-06-07 | Hollister Incorporated | Trans anal irrigation platform with bed module |
CA2954272C (en) | 2014-07-08 | 2021-04-27 | Hollister Incorporated | Portable trans anal irrigation device |
SE538267C2 (en) * | 2015-01-31 | 2016-04-19 | Fast Ip Handelsbolag | Locking device for telescopic devices |
WO2016164682A1 (en) | 2015-04-09 | 2016-10-13 | Boston Scientific Scimed, Inc. | Trap balloon catheter with trap balloon retainer |
CA2984775C (en) | 2015-05-13 | 2024-05-21 | Hollister Incorporated | Telescopic urinary catheter assemblies |
CN104913174A (en) * | 2015-06-05 | 2015-09-16 | 深圳市信毅科技有限公司 | Telescopic self-photographing rod and assembly technology thereof |
US10561305B2 (en) | 2015-06-30 | 2020-02-18 | Sanovas Intellectual Property, Llc | Body cavity dilation system |
US10682503B2 (en) | 2015-06-30 | 2020-06-16 | Sanovas Intellectual Property, Llc | Sinus ostia dilation system |
JP6578798B2 (en) | 2015-08-06 | 2019-09-25 | 日本電気硝子株式会社 | Glass tube forming sleeve and method for assembling glass tube forming sleeve |
CN105387042B (en) * | 2015-12-02 | 2018-07-13 | 珠海格力电器股份有限公司 | Limiting sleeve assembly and floor fan |
CN105485108B (en) * | 2016-01-19 | 2018-02-16 | 陈建丰 | The tight device of two-way automatic lock in pipe |
EP3445436A1 (en) | 2016-04-22 | 2019-02-27 | Hollister Incorporated | Medical device package with flip cap having a snap fit |
CA3021640A1 (en) | 2016-04-22 | 2017-10-26 | Hollister Incorporated | Medical device package with a twist cap |
ES2808105T3 (en) | 2016-07-08 | 2021-02-25 | Hollister Inc | Wireless electronic pump design for a body cavity irrigation device |
US10869991B2 (en) * | 2016-11-09 | 2020-12-22 | Medtronic Vascular, Inc. | Telescoping catheter |
EP3777921A1 (en) | 2016-12-14 | 2021-02-17 | Hollister Incorporated | Transanal irrigation device and system |
WO2018156589A2 (en) | 2017-02-21 | 2018-08-30 | Hollister Incorporated | Medical device package with flip cap having a snap fit |
DE102017207263A1 (en) * | 2017-04-28 | 2018-10-31 | Thyssenkrupp Uhde Chlorine Engineers Gmbh | Abdichtkupplung between at least two mutually storable pipes of an electrolysis plant and use |
EP4385915A3 (en) | 2017-10-25 | 2024-09-11 | Hollister Incorporated | Caps for catheter packages |
US10844890B2 (en) * | 2017-11-16 | 2020-11-24 | Liberty Hardware Mfg. Corp. | Locking telescoping rod |
CA3084803C (en) | 2017-12-08 | 2024-06-11 | Hollister Incorporated | A catheter product and package with hygienic means for removal from the package |
IT201800004785A1 (en) * | 2018-04-23 | 2019-10-23 | BLOWER | |
US10959559B2 (en) | 2019-03-08 | 2021-03-30 | House of Atlas, LLC | Dual-mounted end cap system and locking system for an adjustable rod |
SE544343C2 (en) * | 2019-06-07 | 2022-04-12 | Mattias Hvass | Device for manufacturing bushings |
US11382447B2 (en) * | 2019-07-30 | 2022-07-12 | House of Atlas, LLC | Adjustable rod features |
CN114728138B (en) * | 2019-11-14 | 2024-06-11 | 艾克诺韦公司 | Inhaler flow splitting |
US11825940B2 (en) | 2020-05-18 | 2023-11-28 | House of Atlas, LLC | Customizable shower caddy |
GB202105824D0 (en) * | 2021-04-23 | 2021-06-09 | Convatec Ltd | Intermittent catheter |
US11974704B2 (en) | 2022-03-03 | 2024-05-07 | House Of Atlas Llc | Customizable shower caddy |
AU2023269119A1 (en) * | 2022-05-09 | 2024-11-28 | Hollister Incorporated | Interlocking mechanisms for extendable urinary catheter products |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB933267A (en) * | 1959-03-07 | 1963-08-08 | Bernhard Walterscheid Muller | Improvements relating to axially extensible torque-transmission drives |
DE3225913A1 (en) * | 1982-07-10 | 1984-01-12 | Miele & Cie GmbH & Co, 4830 Gütersloh | Telescopic pipe coupling for a vacuum cleaner |
US5846259A (en) * | 1994-02-18 | 1998-12-08 | C. R. Bard, Inc. | Telescoping catheter and method of use |
EP0935974A1 (en) * | 1998-02-11 | 1999-08-18 | Porges | Telescopic device to dilate a body vessel |
WO2000023013A1 (en) * | 1998-10-15 | 2000-04-27 | Synthes Ag Chur | Telescopic vertebral prosthesis |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2032556B (en) | 1978-10-27 | 1982-12-01 | Normark O | Friction coupling for coaxial relatively axially movable members |
DE3914840A1 (en) * | 1989-05-05 | 1990-11-08 | Vorwerk Co Interholding | TELESCOPICOUS GUIDE FOR FLOOR MAINTENANCE EQUIPMENT |
JPH0633921A (en) | 1992-07-09 | 1994-02-08 | Teruyuki Kaneshiro | Joint fixing structure of telescopic rod |
CN2208631Y (en) * | 1994-02-17 | 1995-09-27 | 张明宅 | Rod telescopic positioning device |
JP4327592B2 (en) | 2001-06-29 | 2009-09-09 | コロプラスト アクティーゼルスカブ | Catheter assembly |
US7517343B2 (en) * | 2001-06-29 | 2009-04-14 | Coloplast A/S | Catheter assembly |
AT411241B (en) * | 2001-08-02 | 2003-11-25 | Vae Eisenbahnsysteme Gmbh | DEVICE FOR LOCKING THE END OF MOVING PARTS |
US6706018B2 (en) * | 2001-12-04 | 2004-03-16 | Cardiac Pacemakers, Inc. | Adjustable length catheter assembly |
US7780692B2 (en) | 2003-12-05 | 2010-08-24 | Onset Medical Corporation | Expandable percutaneous sheath |
EP2409722B1 (en) | 2004-10-25 | 2018-08-29 | Coloplast A/S | Male telescope catheter |
JP2008539914A (en) | 2005-05-13 | 2008-11-20 | コロプラスト アクティーゼルスカブ | Holding elements for telescope devices |
EP2155310A1 (en) * | 2007-05-16 | 2010-02-24 | Coloplast A/S | Coupling arrangement for a telescopic device |
-
2008
- 2008-05-16 JP JP2010507794A patent/JP2010526606A/en active Pending
- 2008-05-16 WO PCT/DK2008/050109 patent/WO2008138351A1/en active Application Filing
- 2008-05-16 US US12/600,273 patent/US8491568B2/en active Active
- 2008-05-16 CN CN201310019825.3A patent/CN103157169B/en active Active
- 2008-05-16 EP EP08734564.1A patent/EP2148714B1/en active Active
- 2008-05-16 CN CN2008800156898A patent/CN101678193B/en active Active
- 2008-05-16 AU AU2008250764A patent/AU2008250764A1/en not_active Abandoned
- 2008-05-16 CA CA002687148A patent/CA2687148A1/en not_active Abandoned
-
2013
- 2013-06-21 US US13/923,371 patent/US9259551B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB933267A (en) * | 1959-03-07 | 1963-08-08 | Bernhard Walterscheid Muller | Improvements relating to axially extensible torque-transmission drives |
DE3225913A1 (en) * | 1982-07-10 | 1984-01-12 | Miele & Cie GmbH & Co, 4830 Gütersloh | Telescopic pipe coupling for a vacuum cleaner |
US5846259A (en) * | 1994-02-18 | 1998-12-08 | C. R. Bard, Inc. | Telescoping catheter and method of use |
EP0935974A1 (en) * | 1998-02-11 | 1999-08-18 | Porges | Telescopic device to dilate a body vessel |
WO2000023013A1 (en) * | 1998-10-15 | 2000-04-27 | Synthes Ag Chur | Telescopic vertebral prosthesis |
Cited By (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9248058B2 (en) | 2005-04-12 | 2016-02-02 | Rochester Medical Corporation, a subsidiary of C.R. Bard, Inc. | Male external catheter with absorbent and adhesive |
US8864730B2 (en) | 2005-04-12 | 2014-10-21 | Rochester Medical Corporation | Silicone rubber male external catheter with absorbent and adhesive |
WO2010149174A1 (en) | 2009-06-26 | 2010-12-29 | Coloplast A/S | A urinary catheter |
US8734427B2 (en) | 2009-06-26 | 2014-05-27 | Coloplast A/S | Urinary catheter |
CN102665814A (en) * | 2009-11-26 | 2012-09-12 | 科洛普拉斯特公司 | A telescopic device |
US20120271281A1 (en) * | 2009-11-26 | 2012-10-25 | Coloplast A/S | Telescopic Device |
US8728058B2 (en) | 2009-11-26 | 2014-05-20 | Coloplast A/S | Telescopic device |
WO2011063816A1 (en) | 2009-11-26 | 2011-06-03 | Coloplast A/S | A telescopic device |
US9023013B2 (en) | 2009-12-21 | 2015-05-05 | Coloplast A/S | Catheter kit for a urinary catheter |
WO2011076211A1 (en) | 2009-12-21 | 2011-06-30 | Coloplast A/S | A catheter kit for a urinary catheter |
US11607524B2 (en) | 2011-03-14 | 2023-03-21 | Rochester Medical Corporation | Catheter grip and method |
US10569051B2 (en) | 2011-03-14 | 2020-02-25 | Rochester Medical Corporation, a subsidiary of C. R. Bard, Inc. | Catheter grip and method |
US9707375B2 (en) | 2011-03-14 | 2017-07-18 | Rochester Medical Corporation, a subsidiary of C. R. Bard, Inc. | Catheter grip and method |
US10674950B2 (en) | 2011-04-26 | 2020-06-09 | Velano Vascular, Inc. | Systems and methods for phlebotomy through a peripheral IV catheter |
US10799167B1 (en) | 2011-04-26 | 2020-10-13 | Velano Vascular, Inc. | Systems and methods for phlebotomy through a peripheral IV catheter |
US11957466B2 (en) | 2011-04-26 | 2024-04-16 | Velano Vascular, Inc. | Systems and methods for phlebotomy through a peripheral IV catheter |
US11331023B2 (en) | 2011-04-26 | 2022-05-17 | Velano Vascular, Inc. | Systems and methods for phlebotomy through a peripheral IV catheter |
US11191465B2 (en) | 2011-04-26 | 2021-12-07 | Velano Vascular, Inc. | Systems and methods for phlebotomy through a peripheral IV catheter |
US9750446B2 (en) | 2011-04-26 | 2017-09-05 | Velano Vascular, Inc. | Systems and methods for phlebotomy through a peripheral IV catheter |
US9186100B2 (en) | 2011-04-26 | 2015-11-17 | Velano Vascular, Inc. | Systems and methods for phlebotomy through a peripheral IV catheter |
US10729367B1 (en) | 2011-04-26 | 2020-08-04 | Velano Vascular, Inc. | Systems and methods for phlebotomy through a peripheral IV catheter |
US10076272B2 (en) | 2011-04-26 | 2018-09-18 | Velano Vascular, Inc. | Systems and methods for phlebotomy through a peripheral IV catheter |
US10064576B2 (en) | 2011-04-26 | 2018-09-04 | Velano Vascular, Inc. | Systems and methods for phlebotomy through a peripheral IV catheter |
US10350381B2 (en) | 2011-08-29 | 2019-07-16 | Coloplast A/S | Closing of flow through catheter |
WO2013075725A1 (en) | 2011-11-25 | 2013-05-30 | Coloplast A/S | A urinary catheter assembly |
CN104302344A (en) * | 2012-05-23 | 2015-01-21 | 科洛普拉斯特公司 | Coupling arrangement for a telescopic device |
WO2013174381A1 (en) | 2012-05-23 | 2013-11-28 | Coloplast A/S | Coupling arrangement for a telescopic device |
US9849267B2 (en) | 2012-05-23 | 2017-12-26 | Coloplast A/S | Coupling arrangement for a telescopic device |
EP3351285A1 (en) | 2012-05-23 | 2018-07-25 | Coloplast A/S | Coupling arrangement for a telescopic device |
US11730919B2 (en) | 2012-11-20 | 2023-08-22 | Rochester Medical Corporation | Catheter in bag without additional packaging |
US10092728B2 (en) | 2012-11-20 | 2018-10-09 | Rochester Medical Corporation, a subsidiary of C.R. Bard, Inc. | Sheath for securing urinary catheter |
US9872969B2 (en) | 2012-11-20 | 2018-01-23 | Rochester Medical Corporation, a subsidiary of C.R. Bard, Inc. | Catheter in bag without additional packaging |
US10780244B2 (en) | 2012-11-20 | 2020-09-22 | Rochester Medical Corporation, a subsidiary of C. R. Bard, Inc. | Catheter in a bag without additional packaging |
ITMI20130240A1 (en) * | 2013-02-20 | 2014-08-21 | Rpe Srl | METHOD AND CONNECTION GROUP OF TWO TUBULAR ELEMENTS |
WO2014128649A1 (en) * | 2013-02-20 | 2014-08-28 | R.P.E. S.R.L. | Method and assembly for the connection of two tubular members |
US10060562B2 (en) | 2013-02-20 | 2018-08-28 | R.P.E. S.R.L. | Method and assembly for the connection of two tubular members |
US11850370B2 (en) | 2014-08-26 | 2023-12-26 | C. R. Bard, Inc. | Urinary catheter |
US10874825B2 (en) | 2014-08-26 | 2020-12-29 | C. R. Bard, Inc. | Urinary catheter |
US10857324B2 (en) | 2014-08-26 | 2020-12-08 | C. R. Bard, Inc. | Urinary catheter |
US10300247B2 (en) | 2016-02-03 | 2019-05-28 | Velano Vascular, Inc. | Devices and methods for fluid transfer through a placed peripheral intravenous catheter |
US9744344B1 (en) | 2016-06-30 | 2017-08-29 | Velano Vascular, Inc. | Devices and methods for catheter placement within a vein |
US11744990B2 (en) | 2017-03-21 | 2023-09-05 | Velano Vascular, Inc. | Systems and methods for controlling catheter device size |
US11351340B2 (en) | 2017-03-21 | 2022-06-07 | Velano Vascular, Inc. | Systems and methods for controlling catheter device size |
US12194250B2 (en) | 2017-03-21 | 2025-01-14 | Velano Vascular, Inc. | Systems and methods for controlling catheter device size |
US12138402B2 (en) | 2017-03-21 | 2024-11-12 | Velano Vascular, Inc. | Devices and methods for fluid transfer through a placed peripheral intravenous catheter |
US11583661B2 (en) | 2017-03-21 | 2023-02-21 | Velano Vascular, Inc. | Devices and methods for fluid transfer through a placed peripheral intravenous catheter |
US12017016B2 (en) | 2017-03-21 | 2024-06-25 | Velano Vascular, Inc. | Devices and methods for fluid transfer through a placed peripheral intravenous catheter |
US10773056B2 (en) | 2017-03-21 | 2020-09-15 | Velano Vascular, Inc. | Systems and methods for controlling catheter device size |
US11090461B2 (en) | 2017-03-21 | 2021-08-17 | Velano Vascular, Inc. | Devices and methods for fluid transfer through a placed peripheral intravenous catheter |
US11547599B2 (en) | 2017-09-19 | 2023-01-10 | C. R. Bard, Inc. | Urinary catheter bridging device, systems and methods thereof |
US11160403B1 (en) | 2018-04-08 | 2021-11-02 | Arix Grant Zalace | Reusable straw assembly with housing and cleaning brush |
WO2020173531A1 (en) | 2019-02-25 | 2020-09-03 | Coloplast A/S | A urinary catheterisation aid |
US11207498B2 (en) | 2019-08-20 | 2021-12-28 | Velano Vascular, Inc. | Fluid transfer devices with extended length catheters and methods of using the same |
US11638806B2 (en) | 2020-11-26 | 2023-05-02 | Avia Vascular, Llc | Blood collection devices, systems, and methods |
US11452847B1 (en) | 2020-11-26 | 2022-09-27 | Avia Vascular, Llc | Blood collection devices, systems, and methods |
US11389624B2 (en) | 2020-11-26 | 2022-07-19 | Avia Vascular, Llc | Blood collection devices, systems, and methods |
Also Published As
Publication number | Publication date |
---|---|
AU2008250764A1 (en) | 2008-11-20 |
EP2148714A1 (en) | 2010-02-03 |
CN101678193A (en) | 2010-03-24 |
US20130289537A1 (en) | 2013-10-31 |
CN101678193B (en) | 2013-03-13 |
CN103157169B (en) | 2015-01-21 |
CN103157169A (en) | 2013-06-19 |
US20100211049A1 (en) | 2010-08-19 |
JP2010526606A (en) | 2010-08-05 |
US9259551B2 (en) | 2016-02-16 |
CA2687148A1 (en) | 2008-11-20 |
US8491568B2 (en) | 2013-07-23 |
EP2148714B1 (en) | 2021-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9259551B2 (en) | Coupling arrangement for a telescopic device | |
EP2370137B1 (en) | Coupling arrangement for a telescopic device | |
US9682212B2 (en) | Male telescope catheter | |
EP3351285B1 (en) | Coupling arrangement for a telescopic device | |
EP2155310A1 (en) | Coupling arrangement for a telescopic device | |
US20210353396A1 (en) | An Intraurethral Magnetic Valve and Associated Parts | |
BRPI0810630B1 (en) | coupling arrangement for a telescopic device | |
US20160113749A1 (en) | A urine flow control device, such as an incontinence device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200880015689.8 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08734564 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008250764 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 6950/DELNP/2009 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010507794 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2687148 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008734564 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2008250764 Country of ref document: AU Date of ref document: 20080516 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009146551 Country of ref document: RU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12600273 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: PI0810630 Country of ref document: BR Kind code of ref document: A2 Effective date: 20091110 |