WO2007082608A1 - Fuel ratio control in a combustion apparatus with multiple fuel supply lines - Google Patents
Fuel ratio control in a combustion apparatus with multiple fuel supply lines Download PDFInfo
- Publication number
- WO2007082608A1 WO2007082608A1 PCT/EP2006/069494 EP2006069494W WO2007082608A1 WO 2007082608 A1 WO2007082608 A1 WO 2007082608A1 EP 2006069494 W EP2006069494 W EP 2006069494W WO 2007082608 A1 WO2007082608 A1 WO 2007082608A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fuel
- burner
- combustion
- combustion apparatus
- temperature
- Prior art date
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 73
- 239000000446 fuel Substances 0.000 title claims abstract description 68
- 238000013021 overheating Methods 0.000 claims abstract description 14
- 239000007789 gas Substances 0.000 claims description 25
- 238000000034 method Methods 0.000 claims description 21
- 238000012544 monitoring process Methods 0.000 claims description 3
- 230000001419 dependent effect Effects 0.000 claims description 2
- 230000010355 oscillation Effects 0.000 abstract description 12
- 230000000717 retained effect Effects 0.000 description 7
- 230000008859 change Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 235000008694 Humulus lupulus Nutrition 0.000 description 2
- 244000025221 Humulus lupulus Species 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- MKHLSGKJYGBQLI-UHFFFAOYSA-N ethoxy-(2-ethylsulfanylethylsulfanyl)-methoxy-sulfanylidene-$l^{5}-phosphane Chemical compound CCOP(=S)(OC)SCCSCC MKHLSGKJYGBQLI-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C9/00—Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
- F02C9/26—Control of fuel supply
- F02C9/28—Regulating systems responsive to plant or ambient parameters, e.g. temperature, pressure, rotor speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N5/00—Systems for controlling combustion
- F23N5/02—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/22—Fuel supply systems
- F02C7/228—Dividing fuel between various burners
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C9/00—Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
- F02C9/26—Control of fuel supply
- F02C9/32—Control of fuel supply characterised by throttling of fuel
- F02C9/34—Joint control of separate flows to main and auxiliary burners
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N5/00—Systems for controlling combustion
- F23N5/24—Preventing development of abnormal or undesired conditions, i.e. safety arrangements
- F23N5/242—Preventing development of abnormal or undesired conditions, i.e. safety arrangements using electronic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/28—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
- F23R3/34—Feeding into different combustion zones
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/42—Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
- F23R3/46—Combustion chambers comprising an annular arrangement of several essentially tubular flame tubes within a common annular casing or within individual casings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/01—Purpose of the control system
- F05D2270/11—Purpose of the control system to prolong engine life
- F05D2270/112—Purpose of the control system to prolong engine life by limiting temperatures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/30—Control parameters, e.g. input parameters
- F05D2270/303—Temperature
- F05D2270/3032—Temperature excessive temperatures, e.g. caused by overheating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D2900/00—Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
- F23D2900/14—Special features of gas burners
- F23D2900/14701—Swirling means inside the mixing tube or chamber to improve premixing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2237/00—Controlling
- F23N2237/02—Controlling two or more burners
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R2900/00—Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
- F23R2900/00013—Reducing thermo-acoustic vibrations by active means
Definitions
- the invention relates to a combustion apparatus and to a combustion apparatus constituted in particular by a gas tur ⁇ bine .
- Combustion apparatus is employed in a number of different environments, including gas turbines, furnaces and boil- ers.
- FIG. 1 An example of a typical gas-turbine arrangement is shown in Fig. 1.
- the gas turbine comprises an air inlet 10 at one end followed by a compressor stage 11 in which incoming air is compressed for application to one or more combustors 12, which are distributed circumferentially around the turbine axis 13. Fuel is introduced into the combustors at 14 and is there mixed with a part of the compressed air leaving the compressor stage 11. Hot gases created by combustion in the combustors are directed to a set of turbine blades 15, being guided in the process by a set of guide vanes 16, and the turbine blades 15 and the shaft forming the axis 13 are turned as a result. The turbine blades 15 in turn rotate the blades of the compressor stage 11, so that the compressed air is supplied by the gas turbine itself once this is in opera- tion.
- Fig. 2A Part of a typical combustor is shown in Fig. 2A.
- Fig. 2B is a section along a line III-III shown in Fig. 2A.
- the combustor is in four parts: a front-end part 20, a swirler part 21, a burner pre-chamber part 22 and a combustion volume 23.
- Main fuel is introduced into the swirler 21 by way of the front-end part 20 through a conduit 24, while pilot fuel enters the burner space through a conduit 25 having at its end a pilot-fuel nozzle 29.
- the main and pilot fuel-flows are derived from a fuel-split valve 26, which is fed with a fuel supply 27 representing the total fuel supply to the com ⁇ bustor.
- the main fuel flow enters the swirler through a set of main-fuel nozzles (or injector) 28, from where it is guided along swirler vanes 30, being mixed with incoming com- pressed air in the process.
- the resulting air/fuel mixture maintains a burner flame 30.
- the hot air from this flame en ⁇ ters the combustion volume 23.
- a gas turbine will often com ⁇ prise a number of such combustors, in which case the main and pilot fuel-flow distribution will usually be as shown in Fig. 3.
- a combustion apparatus comprising: a fuel supply line to the apparatus; at least one burner in ⁇ cluding a plurality of fuel-supply lines to the at least one burner, the supply of fuel in the plurality of fuel-supply lines to the at least one burner corresponding to the supply of fuel in the fuel supply line to the apparatus; a combus- tion volume associated with the at least one burner; a tem ⁇ perature sensor located in the apparatus such as to be able to convey temperature information relating to a part of the apparatus which is to be protected against overheating, and a control arrangement arranged to vary, dependent on the tem- perature sensed by the temperature sensor, the fuel supplies to one or more of the at least one burner such as to maintain the temperature of said part to be protected below a prede ⁇ termined maximum limit, while keeping the fuel supply in the fuel supply line to the apparatus substantially constant.
- the plurality of fuel-supply lines may comprise a first, main fuel-supply line and a second, pilot fuel-supply line to each of the at least one burner.
- the first and second fuel-supply lines may be first and second main fuel-supply lines to each of the at least one burner.
- the control arrangement may be arranged to vary the ra ⁇ tio of fuel supplies in the first and second fuel-supply lines in at least one of the at least one burner, while keep ⁇ ing the total fuel supply to that burner substantially con- stant.
- the apparatus may comprise a plurality of burners and the control arrangement may be arranged to vary the ratio of fuel supplies in the first and second fuel- supply lines in one burner, while allowing the total fuel supply to that burner to vary, the variation of the total fuel supply to that burner being compensated by a correspond ⁇ ing opposite variation in the total fuel supply to another one or more burners .
- the combustion apparatus may be a gas turbine engine and the combustion volume may comprise a combustion volume of the gas turbine engine.
- the combustion apparatus may be a boiler or a furnace.
- the temperature sensor may be located on or in the part to be protected, which may be any of: a front face of the at least one burner, a wall of a pre-chamber of the at least one burner, a wall of the combustion volume and a lance situated within a swirl chamber of the burner.
- the temperature sensor may be located such as to be able to sense the temperature of gases entering the at least one burner.
- the combustion apparatus is a gas turbine, it may be located at a downstream end of the combustion volume such as to be able to sense the temperature of a turbine vane of the gas turbine engine.
- the temperature sensor may be located in a fuel- supply line to the at least one burner.
- the combustion apparatus preferably includes a pressure sensor for sensing pressure variations within the combustion volume, the control arrangement being arranged to addition ⁇ ally vary the fuel supplies to one or more of the at least one burner such as to keep the pressure variations within the combustion volume below a predetermined maximum limit.
- a method for con ⁇ trolling the ratio of fuel in first and second fuel-supply lines feeding a combustion apparatus comprises the steps of: (a) determining if a value of a first parameter, which tends to move the operating point of the apparatus toward a first undesired region of operation, has exceeded a predeter ⁇ mined maximum limit; (b) if so, changing said ratio such as to reduce the value of the first parameter below its predetermined maximum limit; if not, go to (c) ;
- the apparatus may supply a load and the method may com- prise the further steps of:
- step (ii) if so, proceeding with step (a) ; if not, providing a default value of said ratio and going to (i) .
- the method may comprise the further steps of:
- the method may further comprise monitoring the values of one or more further parameters; comparing those values with predetermined maximum limits of those values and, if these predetermined maximum limits are exceeded, influencing the operating point of the apparatus so that it moves further to- ward a predetermined one of the first and second regions.
- the first parameter may be the temperature of a part of the apparatus to be protected from overheating, and the sec ⁇ ond parameter may be the amplitude of pressure variations within a combustion area of the apparatus.
- a further parame ⁇ ter may also be included.
- This further parameter may, for example, be the level of emissions from the apparatus, the method then being such that the influence of the further pa- rameter counterbalances to a predetermined degree the influ ⁇ ence of the second parameter.
- Fig. 1 is a longitudinal section of a typical gas tur ⁇ bine
- Fig. 2A is longitudinal section of a typical combustor and Fig. 2B is a section along line III-III in Fig. 2A;
- Fig. 3 is a block diagram illustrating the derivation of main and pilot fuel supplies in a typical gas turbine with multiple combustors
- Fig. 4 is a graph plotting main/pilot fuel split for different values of load, as relevant to the present inven ⁇ tion;
- Fig. 5 is one example of temperature and pressure sensor placing in a combustion apparatus in accordance with the invention;
- Fig. 6 is a flow chart illustrating a control algorithm which may be employed in the present invention
- Fig. 7 is an exemplary diagram illustrating the effect of the algorithm shown in Fig. 6, and
- Figs 8-15 are further examples of temperature and pres ⁇ sure sensor placing in a combustion apparatus according to the invention.
- the present inventors have recognised that it is possi ⁇ ble to prevent over-heating of a component part of a combus ⁇ tion apparatus due to the combustion process in the combus ⁇ tion area by varying the main/pilot fuel supplies to the com ⁇ bustor without varying the overall fuel supply to the appara- tus .
- Fig. 4 is a graph of load versus main/pilot fuel split.
- A represents a set of operating conditions in which a component part of a combustor is in danger of suffering damage due to overheating.
- the invention strives to derive, for a given load, a division (split) between the main and pilot fuel- flows such that area A is avoided.
- the in ⁇ vention strives to keep operation away from an area B.
- the area B represents a set of operating conditions in which the amplitude of dynamic pressure oscil- lations in the combustion area is undesirably high.
- the frequency of the dynamic pressure oscillations depends on the geometry of the combustor and the characteris ⁇ tics of the acoustic system of which it is a part and may range from below 100 Hz up to several kHz.
- both the temperature of an appropriate point associ ⁇ ated with the combustor and the pressure oscillations are monitored by means of sensors. Referring now to Fig. 5, which corresponds to Fig.
- the temperature and pressure oscillations in this combustor arrangement are measured by placing, firstly, a temperature sensor 32 on a life-critical part of the combustor and, secondly, a pressure sensor 33 within the combustion volume 23.
- the life- critical part is the circumferential wall defining the com ⁇ bustion volume 23.
- the outputs 34 and 35 from the two sen- sors are taken to a control unit 36 and an output 37 of the control unit controls the ratio of main and pilot fuel through the valve 26.
- the control unit 36 contains processing apparatus to carry out an algorithm suitable for keeping the operation of the gas turbine inside the safe area between areas A and B in Fig. 4. An example of such an algorithm is given in Fig. 6 and will now be described.
- step 100 a number of data are input in step 100. These are:
- an "alarm limit”, F which represents the number of alarm flags to be received within a specified time window G before action is taken to change the split between main and pilot flow to the burner;
- X MAX Limit relates to the amplitude of pressure oscil ⁇ lations and that Y MAX Limit relates to the temperature of a life-critical component.
- other parameters are pos- sible (one example is the level of emissions (e.g. NOx) given off by the combustion apparatus) , provided these parameters tend to push the operating condition in opposite directions, i.e. into area A on the one hand and area B on the other.
- step 102 the timer and flags (FlagX and FlagY) relat- ing to the two parameters X and Y are initialized with value zero and in step 104 the calculated engine load is sampled.
- step 106 a decision is made as to whether or not this load is lower than the threshold C at which it is considered worth altering the main/pilot flow split. If it is lower, no al ⁇ teration takes place and the default engine fuel-flow split map is followed (see step 108) . The procedure is then re ⁇ peated from box 102. On the other hand, should the sampled load be higher than C, then processing passes to step 110.
- step 110 the outputs of sensors 33 and 32, respectively, are read and in step 112 a decision is made as to whether the output of pressure sensor 33 has a value higher than value D or whether the output of temperature sensor 32 has a value higher than E. If either of these conditions is true, then the active pilot control program is activated, otherwise it follows step 114.
- step 114 the pilot flow split map is checked for any change from the default setting. In the case where the flow split map was altered during a previous itera- tion of the active pilot control part of the algorithm, the flow split is retained in step 116, as required in step 126 or 138 for a constant load. The procedure is then repeated from step 102. If the flow split was not changed from the default setting, then the sensor outputs (temperature and pressure parameters) are assumed to be out of range and the active pilot control software is not activated. Consequently the default fuel-split map for the engine is followed (step 108) .
- the pilot flow split was altered in order to avoid regions that could limit the life of a component (re ⁇ gions A and B in Fig. 4), then the split is retained for a constant load. If the load is gradually changing, reading X or Y could exceed its limits, in which case the split will be altered to reduce parameter X or Y, as described in greater detail below. As a result of this, readings X and Y might not exceed their respective limits D and E, in which case the altered split is retained in step 116.
- step 106 when the load has exceeded its limit value C (step 106), but the X, Y parameters have not exceeded their limit values D, E (step 112), the engine follows the default pilot split map. Assuming the active pilot control part of the algorithm is activated, the output of the pressure sensor that was read in step 110 is compared with parameter D (maximum X limit) in step 118. If value D is exceeded, it is assumed that operat- ing conditions are within area B of Fig. 4 and therefore an alarm flag is incremented by 1 in step 120 (it assumes the value 1, since in step 102 the flag was reset to zero) and the timer, which had likewise been reset to zero, starts to count in increments of milliseconds.
- step 122 a decision is taken as to whether or not the number of alarm flags has reached the maximum value F set in step 100. If not, a check is made in step 124 as to whether or not the value of the timer has reached value G. If not, control passes back to step 104. If so, on the other hand, both the timer and the two flags are reset to zero in step 125 and control passes back to step 104. In the event that the alarm limit has been reached in step 122, the main/pilot flow split is incremented in step 126, the timer and the X-flag are both once again re ⁇ set to zero (step 128) and control passes back to step 104. It is assumed here that the particular engine environment in which this routine is being carried out is such that the main/pilot flow split has to be incremented, as opposed to decremented, in order to raise the operating conditions out of area B. In some environments the opposite might be the case.
- step 118 If in step 118 it is decided that the value of parame ⁇ ter X is not too high (i.e., that value D has not been ex ⁇ ceeded) , then the active pilot control program passes from its X-parameter-assessing phase (steps 118-128) to its Y- parameter-assessing phase (steps 132-140). Now the output of the Y-parameter sensor that was sampled in box 110 is checked and, if this value exceeds value E (see step 132), then in step 134 the alarm flag is incremented by 1 and the timer is started to count in ms, as last time.
- step 136 the same procedure is followed involving steps 138 and 140 as was followed in the case of steps 126 and 128, except that this time the main-pilot flow split is changed in the opposite direction. As shown, this means that the split is decremented instead of incremented. Should the result of step 136 be that the alarm limit A has not been reached, steps 124 and 125 are per ⁇ formed, as before, and control is once again passed back to step 104.
- Fig. 7 which, like Fig. 4, is a fuel-split v. load diagram involving areas A and B which are to be avoided.
- Fig. 7 it is assumed that the default split is as shown in curve 60.
- the default map is followed, since the result of steps 112 and 114 is "no". This is step 108.
- the load rises such as to start to encroach on area A. This is shown as point 62 in Fig. 7. Under these circumstances parameter X will not exceed value X, but parameter Y will exceed value E (step 112) .
- step 138 the active pilot control is started and the split is decremented only (step 138) to an assumed point 63.
- step 114 neither X nor Y exceed their limits, so that the result of step 112 is "no".
- the result of step 114 is "yes", since the split has fallen from its de- fault value at 62 to a non-default value at 63. Consequently in step 116 this same split at 63 is retained. In subsequent iterations conditions stay the same, until the load rises such that the split starts again to encroach into area A (point 64) .
- parameter Y is found to exceed its limit, whereas parameter X is not.
- step 112 This results in a further decrementing of the split in step 138 to a lower value at point 65.
- the result of step 112 is again "no"
- the result of step 114 is "yes” and the same split is retained in step 116.
- a further decrement ⁇ ing is performed when the load causes the split to get too close to region A at point 66. The split is this time re ⁇ **d to a point 67.
- parameter Y is lower than its limit, but X has exceeded its limit. Consequently the result of step 112 is "yes” and the split is incremented, but by a smaller amount, in step 126 to a point 68.
- step 114 is "no" and the default split is followed in step 108.
- Figs 8-15 il ⁇ lustrate a number of possible locations for these sensors in order to provide the information necessary for the algorithm.
- the pressure sensor 33 is located in the same re ⁇ gion of the combustion volume as was the case in Fig. 5.
- the temperature sensor 32 is embedded behind the front face 39 of the combustor. Hence the component being pro- tected from overheating in this case is the front face of the combustor .
- Figs 9 and 10 show two different locations for the tem ⁇ perature sensor 32 in a combustor disclosed in a published European patent application, number EP 0899506, filed in the name of ABB Research Ltd.
- the combustor comprises a swirl generator stage 40 followed by a pre- chamber stage 41 followed by a combustion volume 42.
- the main-flow and pilot-flow conduits are, as before, conduits 24 and 25, respectively, while the flow-split valve is valve 26 and the incoming fuel supply to the combustor is supply 27.
- the temperature sensor 32 is embedded in the wall of the pre-chamber 43, while in Fig. 10 the same sensor is located in a front wall of the combustion volume 42.
- the components being protected from over ⁇ heating are, respectively, the pre-chamber wall and front wall of the combustion volume.
- the pressure sensor 33 is, as in Figs 5 and 8, located in an upstream part of the combus- tion volume 42.
- Fig. 11 which is taken from published patent applica ⁇ tion number EP 1510755, filed in the name of Alstom Technol ⁇ ogy Ltd, shows yet another possible location for the tempera ⁇ ture sensor 32.
- This is at the end of a burner lance 50 lo- cated within a swirl chamber 51.
- the first fuel supply from conduit 24 flows through the annular cavities of a swirl generator 52, where it is introduced into the chamber 51, while the second fuel supply from conduit 25 flows through the lance 50, from whose tip it emerges to- gether with air.
- the temperature sensor is preferably lo ⁇ cated at the lance tip, since it is this part of the lance which will be most prone to overheating.
- the pressure sensor 33 is situated in the combustion volume down ⁇ stream of the swirl generator.
- the temperature sensor has been mounted in or on the component being monitored for overheating.
- Three examples of this are given in Figs 12-14, which are based on the combustor 12 shown in Fig. 1.
- All three examples feature the main and pilot fuel con ⁇ duits 24, 25, the fuel-split valve 26 fed with the total flow 27 to the burner, the temperature and pressure sensors 32 and 33 and the control unit 36.
- the tem ⁇ perature sensor 32 is located outside the combustor 12 so as to be able to measure the temperature of the air in the com ⁇ pressor discharge area.
- the temperature sensor is in this case part of the standard instrumentation for control of the gas turbine. This arrangement allows components such as the burner and other parts of, or adjacent to, the combustor to be protected against overheating.
- One advantage with this ar- rangement is that the sensor is easily accessible and the signal already available.
- control is used to prevent high dynamic pressure oscillations from occurring, which in some systems has an effect on the location of the flame.
- This in turn, can provide information on the metal temperature in a component.
- the pressure sensor 33 is lo ⁇ cated in an upstream part of the combustion volume, as be ⁇ fore .
- Fig. 13 it is assumed that so-called regenerative cooling is applied to the combustor.
- the tem ⁇ perature sensor 33 is located inside the hood of the combus ⁇ tor and downstream of the cooling air outlet, while the pres ⁇ sure sensor 33 may also be located within the hood space.
- the dynamic pressure oscillations appear as a flow changing di- rection with a certain frequency.
- the oscillation may be registered outside the combustion volume in a volume con ⁇ nected (through the burner) to the source of the oscillation, namely the heat released by the flame.
- the temperature sensor 32 is located at the very downstream end of the combustion volume so as to form a measurement corresponding to the temperature of the first turbine vane 15, which in this case is the component to be protected.
- Two major factors determining the heat load of the turbine vane is the temperature profile exiting the com ⁇ bustion volume and the turbulent flow field generated by the combustor, which enhances the heat transfer on the vane surface.
- the tem ⁇ perature profile is affected by the fuel distribution and hence the split between pilot and main. A direct link can therefore be seen between the metal temperature on the sur ⁇ face of the vane and the setting of the fuel-split valve.
- the pressure sensor 33 is situated at the upstream end of the combustion volume, as in most of the earlier examples.
- Fig. 15 illustrates yet another possible arrangement.
- the temperature sensor 32 is located such as to measure the temperature of the fuel supply 27 feeding the fuel-split valve 26.
- the pressure sensor is situated in the upstream part of the combustion volume.
- the principle behind this arrangement is not unlike that behind the Fig. 12 arrangement.
- pressure oscillations are triggered by a particular operating condition, more specifically a parameter such as the air temperature downstream of the compressor or the fuel tempera ⁇ ture. When the pulsations start, this indicates that the flame has moved to a certain location in the combustor. This location in certain systems corresponds to increased heat transfer, which increases the metal temperature for the com ⁇ ponent to be protected.
- the algorithm therefore, through a monitoring of the fuel temperature, acts to move the flame back to a safer region.
- the fuel-split being controlled is that between main and pilot in a single burner.
- the present invention will control the split be ⁇ tween the two or more main fuel supplies to the combustor, while keeping the total supply to the combustor constant, as mentioned earlier.
- Another possible scenario occurs when there is more than one combustor in a gas turbine.
- the split between main and pilot (or between two or more main supplies) in one combustor may involve a change in the total amount of fuel supplied to that combustor - i.e., the total amount is not kept constant - provided the total amount of fuel supplied to one or more of the other combustors is adjusted to compensate.
- the total fuel supply to the whole combustion apparatus is kept constant for a particular load.
- the invention has been described predominantly in connection with gas turbines, it may also be used in other combustion-related environments, such as furnaces or boilers.
- the two parameters being monitored were not necessarily those of temperature and pressure. Instead other “competing” parameters may be monitored and used as pa ⁇ rameters X and Y in the algorithm.
- “competing” is meant that the parameters have a "push-pull" effect on the operat- ing condition, moving it nearer to area A on the one hand and nearer to area B on the other.
- One such parameter that may be monitored is that of emissions, e.g. NOx.
- the two main parameters may still be temperature and pres ⁇ sure, but one or more other parameters may also be monitored and used to influence the split. Again, NOx emissions is a possible example of such other parameters.
- a further branch could be added to the algorithm alongside the branch involving pa ⁇ rameter Y.
- Limit “H” could be set in step 100, as with the other limits.
- a "yes” result from such a "limit H” step would feed a "FlagZ” step similar to the FlagX and FlagY steps 120, 134. This would increment FlagZ by 1 and start a third timer similar to the other timers.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Turbines (AREA)
- Regulation And Control Of Combustion (AREA)
- Feeding And Controlling Fuel (AREA)
- Control Of Combustion (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP06830487.2A EP1974139B1 (en) | 2006-01-19 | 2006-12-08 | Fuel ratio control in a combustion apparatus with multiple fuel supply lines |
CN2006800513538A CN101360900B (en) | 2006-01-19 | 2006-12-08 | Fuel ratio control in a combustion apparatus with multiple fuel supply lines |
US12/087,906 US8313324B2 (en) | 2006-01-19 | 2006-12-08 | Fuel ratio control in a combustion apparatus with multiple fuel supply lines |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB0601038A GB2434437B (en) | 2006-01-19 | 2006-01-19 | Improvements in or relating to combustion apparatus |
GB0601038.3 | 2006-01-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007082608A1 true WO2007082608A1 (en) | 2007-07-26 |
Family
ID=36010550
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2006/069494 WO2007082608A1 (en) | 2006-01-19 | 2006-12-08 | Fuel ratio control in a combustion apparatus with multiple fuel supply lines |
Country Status (6)
Country | Link |
---|---|
US (1) | US8313324B2 (en) |
EP (1) | EP1974139B1 (en) |
CN (1) | CN101360900B (en) |
GB (1) | GB2434437B (en) |
RU (1) | RU2411385C2 (en) |
WO (1) | WO2007082608A1 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2348256A1 (en) * | 2010-01-26 | 2011-07-27 | Alstom Technology Ltd | Method for operating a gas turbine and gas turbine |
EP2442031A1 (en) | 2010-10-13 | 2012-04-18 | Siemens Aktiengesellschaft | Combustion device with pulsed fuel split |
EP2538139A2 (en) | 2011-06-20 | 2012-12-26 | Alstom Technology Ltd | Method for operating a combustion device and combustion device for implementing the method |
EP2873924A1 (en) | 2013-11-15 | 2015-05-20 | Siemens Aktiengesellschaft | Intelligent control method with predictive emissions monitoring ability for a gas turbine combustor |
EP3101343A1 (en) | 2015-06-05 | 2016-12-07 | Siemens Aktiengesellschaft | Intelligent control method with variable thresholds based on vibration readings |
EP3128238A1 (en) | 2015-08-05 | 2017-02-08 | Siemens Aktiengesellschaft | Intelligent control of combustion with time series and by-pass filters |
EP3220050A1 (en) | 2016-03-16 | 2017-09-20 | Siemens Aktiengesellschaft | Burner for a gas turbine |
EP3301366A1 (en) | 2016-09-29 | 2018-04-04 | Siemens Aktiengesellschaft | A technique for controlling operating point of a combustion system by using pilot-air |
EP3450850A1 (en) | 2017-09-05 | 2019-03-06 | Siemens Aktiengesellschaft | A gas turbine combustor assembly with a trapped vortex cavity |
US11434825B2 (en) | 2014-06-02 | 2022-09-06 | Siemens Energy Global GmbH & Co. KG | Method and device to control a fuel split in a combustion device |
US12006881B2 (en) | 2020-12-01 | 2024-06-11 | Siemens Energy Global GmbH & Co. KG | Method of controlling a combustor |
US12180900B2 (en) | 2020-12-01 | 2024-12-31 | Siemens Energy Global GmbH & Co. KG | Method of controlling a combustor |
Families Citing this family (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4959523B2 (en) * | 2007-11-29 | 2012-06-27 | 株式会社日立製作所 | Combustion device, method for modifying combustion device, and fuel injection method for combustion device |
US9097185B2 (en) | 2009-05-26 | 2015-08-04 | Alstom Technology Ltd | Stabilizing a gas turbine engine via incremental tuning |
US9890714B2 (en) | 2009-05-26 | 2018-02-13 | Ansaldo Energia Ip Uk Limited | Automated extended turndown of a gas turbine engine combined with incremental tuning to maintain emissions and dynamics |
RU2516773C2 (en) * | 2009-08-13 | 2014-05-20 | Сименс Акциенгезелльшафт | Gas turbine engine |
WO2011042037A1 (en) * | 2009-10-09 | 2011-04-14 | Siemens Aktiengesellschaft | Combustion apparatus |
FR2951245B1 (en) * | 2009-10-13 | 2013-05-17 | Snecma | MULTI-POINT INJECTION DEVICE FOR A TURBOMACHINE COMBUSTION CHAMBER |
US8417433B2 (en) | 2010-04-30 | 2013-04-09 | Alstom Technology Ltd. | Dynamically auto-tuning a gas turbine engine |
US9927818B2 (en) | 2010-05-24 | 2018-03-27 | Ansaldo Energia Ip Uk Limited | Stabilizing a gas turbine engine via incremental tuning during transients |
DE102011102720B4 (en) * | 2010-05-26 | 2021-10-28 | Ansaldo Energia Switzerland AG | Combined cycle power plant with exhaust gas recirculation |
US8584648B2 (en) | 2010-11-23 | 2013-11-19 | Woodward, Inc. | Controlled spark ignited flame kernel flow |
US9476347B2 (en) | 2010-11-23 | 2016-10-25 | Woodward, Inc. | Controlled spark ignited flame kernel flow in fuel-fed prechambers |
US9172217B2 (en) | 2010-11-23 | 2015-10-27 | Woodward, Inc. | Pre-chamber spark plug with tubular electrode and method of manufacturing same |
US20130040254A1 (en) * | 2011-08-08 | 2013-02-14 | General Electric Company | System and method for monitoring a combustor |
US20130327050A1 (en) * | 2012-06-07 | 2013-12-12 | General Electric Company | Controlling flame stability of a gas turbine generator |
FR2996285B1 (en) * | 2012-10-01 | 2014-09-12 | Turbomeca | TURBOMACHINE COMBUSTION ASSEMBLY WITH A VARIATION IN AIR SUPPLY. |
US20140182298A1 (en) * | 2012-12-28 | 2014-07-03 | Exxonmobil Upstream Research Company | Stoichiometric combustion control for gas turbine system with exhaust gas recirculation |
US9856848B2 (en) | 2013-01-08 | 2018-01-02 | Woodward, Inc. | Quiescent chamber hot gas igniter |
US9765682B2 (en) | 2013-06-10 | 2017-09-19 | Woodward, Inc. | Multi-chamber igniter |
US8839762B1 (en) | 2013-06-10 | 2014-09-23 | Woodward, Inc. | Multi-chamber igniter |
EP2927599A1 (en) * | 2014-03-31 | 2015-10-07 | Siemens Aktiengesellschaft | Method for regulating a distribution of fuel at different burner stages |
US9909508B2 (en) * | 2014-06-26 | 2018-03-06 | General Electric Company | Automatic combustion system characterization |
US9653886B2 (en) | 2015-03-20 | 2017-05-16 | Woodward, Inc. | Cap shielded ignition system |
US9840963B2 (en) | 2015-03-20 | 2017-12-12 | Woodward, Inc. | Parallel prechamber ignition system |
US10465907B2 (en) | 2015-09-09 | 2019-11-05 | General Electric Company | System and method having annular flow path architecture |
US9890689B2 (en) | 2015-10-29 | 2018-02-13 | Woodward, Inc. | Gaseous fuel combustion |
CN105863843A (en) * | 2016-06-17 | 2016-08-17 | 山东钢铁股份有限公司 | Coal gas pressurizing machine and gas turbine pressure regulating method |
US20180135532A1 (en) * | 2016-11-15 | 2018-05-17 | General Electric Company | Auto-thermal fuel nozzle flow modulation |
US10830443B2 (en) * | 2016-11-30 | 2020-11-10 | General Electric Company | Model-less combustion dynamics autotune |
CN106766975A (en) * | 2016-12-31 | 2017-05-31 | 广州龙鑫蓄热工业炉有限公司 | A kind of autocontrol method and its device of aluminum melting furnace system |
US11411235B2 (en) * | 2017-02-18 | 2022-08-09 | Daimler Ag | Method for detecting and lessening fuel starvation in fuel cell systems |
US10598380B2 (en) | 2017-09-21 | 2020-03-24 | General Electric Company | Canted combustor for gas turbine engine |
CN108387378B (en) * | 2018-01-22 | 2019-11-15 | 西安航天动力试验技术研究所 | A kind of engine test Propellant Supply low frequency pulsating suppressing method and system |
CN108800130B (en) * | 2018-07-20 | 2023-11-28 | 华电电力科学研究院有限公司 | Low-nitrogen combustion system capable of inhibiting combustion oscillation and control method thereof |
EP3845740B1 (en) * | 2019-12-31 | 2024-04-03 | ANSALDO ENERGIA S.p.A. | Gas turbine assembly |
US11774093B2 (en) | 2020-04-08 | 2023-10-03 | General Electric Company | Burner cooling structures |
CN113464285A (en) * | 2021-08-02 | 2021-10-01 | 中国航发贵阳发动机设计研究所 | Built-in double-oil-way fuel header pipe mounting structure |
WO2023102927A1 (en) * | 2021-12-10 | 2023-06-15 | Siemens Energy Co., Ltd. | Method and apparatus for controlling operation of a combustor, and a combustor |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1205653A1 (en) * | 2000-11-13 | 2002-05-15 | ALSTOM Power N.V. | Burner with staged fuel injection and method of operation |
EP1331448A2 (en) * | 2002-01-29 | 2003-07-30 | General Electric Company | Fuel control and tuning method for dry low NOx gas turbine engines |
EP1387062A2 (en) * | 2002-08-02 | 2004-02-04 | General Electric Company | Method/system for mapping a combustor in a gas turbine engine |
WO2005010437A1 (en) * | 2003-07-24 | 2005-02-03 | Alstom Technology Ltd | Method for reducing nox emissions from a burner assembly, comprising several burners, and burner assembly for carrying out said method |
WO2005093327A1 (en) * | 2004-03-29 | 2005-10-06 | Alstom Technology Ltd | Combustion chamber for a gas turbine and associated operating method |
WO2005095863A1 (en) * | 2004-03-31 | 2005-10-13 | Alstom Technology Ltd | Burner |
EP1662116A1 (en) * | 2004-11-24 | 2006-05-31 | General Electric Company | Multiple chamber combustion system for a gas turbine |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1028954A1 (en) | 1981-11-10 | 1983-07-15 | Всесоюзный Научно-Исследовательский Институт Автоматизации Черной Металлургии Научно-Производственного Объединения "Черметавтоматика" | Method of automatic control of heating furnace heat condition |
US4854127A (en) * | 1988-01-14 | 1989-08-08 | General Electric Company | Bimodal swirler injector for a gas turbine combustor |
CN1020206C (en) * | 1988-11-28 | 1993-03-31 | 通用电气公司 | Gas fuel splitting device for gas turbine combustor |
RU2059092C1 (en) | 1991-04-23 | 1996-04-27 | Акционерное общество открытого типа "Самарский научно-технический комплекс "Двигатели НК" | Method of supplying fuel to nozzles of multi-nozzle combustion chamber of gass turbine engine |
RU2162953C2 (en) | 1997-03-12 | 2001-02-10 | Акционерное общество открытого типа Самарский научно-технический комплекс им. Н.Д. Кузнецова | Gas-turbine engine fuel-feed control method |
DE19737998A1 (en) | 1997-08-30 | 1999-03-04 | Abb Research Ltd | Burner device |
RU2131531C1 (en) | 1997-12-02 | 1999-06-10 | Дзарданов Юрий Андреевич | Automatic-control system for fuel supply to gas- turbine engine combustion chamber |
EP1251244B1 (en) * | 2001-04-17 | 2010-09-01 | Alstom Technology Ltd | Method for suppressing combustion fluctuations in a gas turbine |
JP2004132255A (en) * | 2002-10-10 | 2004-04-30 | Mitsubishi Heavy Ind Ltd | Combustor control device |
EP1585889A2 (en) * | 2003-01-22 | 2005-10-19 | Vast Power Systems, Inc. | Thermodynamic cycles using thermal diluent |
EP1510755B1 (en) | 2003-09-01 | 2016-09-28 | General Electric Technology GmbH | Burner with lance and staged fuel supply. |
GB0323255D0 (en) * | 2003-10-04 | 2003-11-05 | Rolls Royce Plc | Method and system for controlling fuel supply in a combustion turbine engine |
US7246002B2 (en) * | 2003-11-20 | 2007-07-17 | General Electric Company | Method for controlling fuel splits to gas turbine combustor |
US7168254B2 (en) * | 2004-02-17 | 2007-01-30 | Honeywell International Inc. | Control logic for fuel controls on APUs |
-
2006
- 2006-01-19 GB GB0601038A patent/GB2434437B/en not_active Expired - Fee Related
- 2006-12-08 CN CN2006800513538A patent/CN101360900B/en active Active
- 2006-12-08 WO PCT/EP2006/069494 patent/WO2007082608A1/en active Application Filing
- 2006-12-08 EP EP06830487.2A patent/EP1974139B1/en active Active
- 2006-12-08 RU RU2008133989/06A patent/RU2411385C2/en active
- 2006-12-08 US US12/087,906 patent/US8313324B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1205653A1 (en) * | 2000-11-13 | 2002-05-15 | ALSTOM Power N.V. | Burner with staged fuel injection and method of operation |
EP1331448A2 (en) * | 2002-01-29 | 2003-07-30 | General Electric Company | Fuel control and tuning method for dry low NOx gas turbine engines |
EP1387062A2 (en) * | 2002-08-02 | 2004-02-04 | General Electric Company | Method/system for mapping a combustor in a gas turbine engine |
WO2005010437A1 (en) * | 2003-07-24 | 2005-02-03 | Alstom Technology Ltd | Method for reducing nox emissions from a burner assembly, comprising several burners, and burner assembly for carrying out said method |
WO2005093327A1 (en) * | 2004-03-29 | 2005-10-06 | Alstom Technology Ltd | Combustion chamber for a gas turbine and associated operating method |
WO2005095863A1 (en) * | 2004-03-31 | 2005-10-13 | Alstom Technology Ltd | Burner |
EP1662116A1 (en) * | 2004-11-24 | 2006-05-31 | General Electric Company | Multiple chamber combustion system for a gas turbine |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9062886B2 (en) | 2010-01-26 | 2015-06-23 | Alstom Technology Ltd. | Sequential combustor gas turbine including a plurality of gaseous fuel injection nozzles and method for operating the same |
EP2348256A1 (en) * | 2010-01-26 | 2011-07-27 | Alstom Technology Ltd | Method for operating a gas turbine and gas turbine |
EP2442031A1 (en) | 2010-10-13 | 2012-04-18 | Siemens Aktiengesellschaft | Combustion device with pulsed fuel split |
WO2012049035A1 (en) | 2010-10-13 | 2012-04-19 | Siemens Aktiengesellschaft | Combustion device with pulsed fuel split |
US9822710B2 (en) | 2010-10-13 | 2017-11-21 | Siemens Aktiengesellschaft | Combustion device with pulsed fuel split |
EP2538139A2 (en) | 2011-06-20 | 2012-12-26 | Alstom Technology Ltd | Method for operating a combustion device and combustion device for implementing the method |
US9249979B2 (en) | 2011-06-20 | 2016-02-02 | Alstom Technology Ltd. | Controlling a combustion device to lower combustion-induced pulsations by changing and resetting fuel stagings at different rates of change |
EP2873924A1 (en) | 2013-11-15 | 2015-05-20 | Siemens Aktiengesellschaft | Intelligent control method with predictive emissions monitoring ability for a gas turbine combustor |
US11434825B2 (en) | 2014-06-02 | 2022-09-06 | Siemens Energy Global GmbH & Co. KG | Method and device to control a fuel split in a combustion device |
EP3101343A1 (en) | 2015-06-05 | 2016-12-07 | Siemens Aktiengesellschaft | Intelligent control method with variable thresholds based on vibration readings |
WO2016193069A1 (en) | 2015-06-05 | 2016-12-08 | Siemens Aktiengesellschaft | Intelligent control method with variable thresholds based on vibration readings |
EP3128238A1 (en) | 2015-08-05 | 2017-02-08 | Siemens Aktiengesellschaft | Intelligent control of combustion with time series and by-pass filters |
EP3220050A1 (en) | 2016-03-16 | 2017-09-20 | Siemens Aktiengesellschaft | Burner for a gas turbine |
WO2018060054A1 (en) | 2016-09-29 | 2018-04-05 | Siemens Aktiengesellschaft | A technique for controlling operating point of a combustion system by using pilot-air |
EP3301366A1 (en) | 2016-09-29 | 2018-04-04 | Siemens Aktiengesellschaft | A technique for controlling operating point of a combustion system by using pilot-air |
EP3450850A1 (en) | 2017-09-05 | 2019-03-06 | Siemens Aktiengesellschaft | A gas turbine combustor assembly with a trapped vortex cavity |
WO2019048387A1 (en) | 2017-09-05 | 2019-03-14 | Siemens Aktiengesellschaft | A gas turbine combustor assembly with a trapped vortex feature |
US11371710B2 (en) | 2017-09-05 | 2022-06-28 | Siemens Energy Global GmbH & Co. KG | Gas turbine combustor assembly with a trapped vortex feature |
US12006881B2 (en) | 2020-12-01 | 2024-06-11 | Siemens Energy Global GmbH & Co. KG | Method of controlling a combustor |
US12180900B2 (en) | 2020-12-01 | 2024-12-31 | Siemens Energy Global GmbH & Co. KG | Method of controlling a combustor |
Also Published As
Publication number | Publication date |
---|---|
RU2008133989A (en) | 2010-02-27 |
EP1974139B1 (en) | 2018-08-22 |
CN101360900B (en) | 2012-01-11 |
GB2434437A (en) | 2007-07-25 |
RU2411385C2 (en) | 2011-02-10 |
GB0601038D0 (en) | 2006-03-01 |
US8313324B2 (en) | 2012-11-20 |
GB2434437B (en) | 2011-01-26 |
EP1974139A1 (en) | 2008-10-01 |
CN101360900A (en) | 2009-02-04 |
US20090217672A1 (en) | 2009-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1974139B1 (en) | Fuel ratio control in a combustion apparatus with multiple fuel supply lines | |
EP2486328B1 (en) | Combustion apparatus | |
CN101166935B (en) | Adjustment method and adjustment equipment for gas turbine combustor working curve | |
EP2224114B1 (en) | System for engine turn down by controlling compressor extraction air flows | |
EP3521593B1 (en) | Gas turbine combustor, gas turbine, and control method for gas turbine combustor | |
US20110016876A1 (en) | Method for the control of gas turbine engines | |
JP3737159B2 (en) | Method for adjustment of a gas turbomachinery | |
JP2007138949A (en) | Method and device for operating gas turbine engine system | |
JP2014109276A (en) | System and method for operating gas turbine in turndown mode | |
EP2442031A1 (en) | Combustion device with pulsed fuel split | |
US20120088197A1 (en) | System and method for determining a flame condition in a combustor | |
EP3061945B1 (en) | Method for controlling the operation of a gas turbine with sequential combustion | |
KR100785546B1 (en) | Flame temperature control and regulation system of single-shaft gas turbine | |
Bulat et al. | Active control of fuel splits in gas turbine DLE combustion systems | |
JPH10317991A (en) | Gas turbine | |
EP3222915B1 (en) | A gas-turbine plant provided with thermoacoustic instability detection and method of controlling a gas-turbine plant | |
EP3784890B1 (en) | Combustion system control | |
EP4075065A1 (en) | Method for operation of a gas turbine | |
JPH10205754A (en) | Monitoring device for gas turbine combustor | |
KR200178129Y1 (en) | Combustor of gas turbine engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2006830487 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 5480/DELNP/2008 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200680051353.8 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2008133989 Country of ref document: RU Kind code of ref document: A |
|
WWP | Wipo information: published in national office |
Ref document number: 2006830487 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12087906 Country of ref document: US |