[go: up one dir, main page]

WO2006123727A1 - Projection display screen using deflection element and projection display system - Google Patents

Projection display screen using deflection element and projection display system Download PDF

Info

Publication number
WO2006123727A1
WO2006123727A1 PCT/JP2006/309899 JP2006309899W WO2006123727A1 WO 2006123727 A1 WO2006123727 A1 WO 2006123727A1 JP 2006309899 W JP2006309899 W JP 2006309899W WO 2006123727 A1 WO2006123727 A1 WO 2006123727A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
incident
deflecting element
projector
angle
Prior art date
Application number
PCT/JP2006/309899
Other languages
French (fr)
Japanese (ja)
Inventor
Tatsuo Uchida
Baku Katagiri
Toru Kawakami
Yuhei Kuratomi
Original Assignee
Tohoku Techno-Brains Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Techno-Brains Corporation filed Critical Tohoku Techno-Brains Corporation
Publication of WO2006123727A1 publication Critical patent/WO2006123727A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/62Translucent screens

Definitions

  • the present invention relates to a projection display screen and a projection display system, and more particularly to a projection display screen and a projection using a deflection element that provide a display image with a high quality and a high contrast ratio. ⁇ It relates to the cushion display system.
  • the present inventors have realized a high quality display image by using a screen having a diffusion film force instead of a screen having a lenticular lens force used in a conventional projection display (for example, Patent Document 1). reference). Also, a thin rear projection display providing high image quality was realized by matching the allowable incidence angle area of the screen with the emission angle area of the projector light from the deflecting element (Patent Document 2).
  • Patent Document 1 PCT / JP03 / 13050
  • Patent Document 2 Japanese Patent Application No. 2004-190318
  • the inventors of the present invention have determined that it is essential to improve the photopic contrast ratio in order to achieve higher quality, and in order to realize this, diffuse reflection of external light to the viewer side is performed. The challenge was to control it. It is an object of the present invention to provide a projection display screen and a projection display system using a deflecting element, embodying a high-quality thin rear projection display that can solve this problem.
  • a deflecting element that deflects incident light from a projector light incident angle region and emits the deflected light to a deflecting element exit angle region and a deflecting element exit surface region according to the projector light incident angle region, and A black matrix having a transmission surface area aligned with the deflection element exit surface area and an allowable incident angle area matched with the deflection element exit angle area are diffused to diffuse the incident light from the deflection element exit angle area.
  • the deflection element is a prism array in which either one or both of the upper surface and the lower surface of the prism are formed by joining a plurality of planes. Screen described.
  • the diffusion film includes a layered or linear structure having different refractive indexes, and emits incident light from a specific incident allowable angle region to a specific diffusion angle region.
  • FIG. 1 is a schematic sectional view showing an example of a basic form of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing an example of an embodiment of the present invention in which a BM and a light absorbing member are disposed together It is.
  • FIG. 3 is a schematic cross-sectional view showing an example of an embodiment of the present invention in which a prism surface is composed of a plurality of planes.
  • FIG. 4 is a schematic cross-sectional view showing an example of an embodiment of the present invention in which prisms are spaced apart from each other.
  • FIG. 5 is a schematic sectional view showing an example of an embodiment of the present invention using a deflecting element having a light condensing function.
  • FIG. 6 is a schematic cross-sectional view showing an example of an embodiment of the present invention in which the thickness of BM is relatively thick.
  • the basic form of the present invention is, for example, as shown in FIG. 1, a deflecting element 1 that changes the traveling direction of projector light 4, a BM (meaning black matrix; the same applies hereinafter) 2 that absorbs external light, and A diffusion film 3 for diffusing the projector light 4 is laminated in this order.
  • the deflecting element 1 is an optical element having an optical characteristic that deflects incident light having a projector light incident angle region force and outputs the deflected light to a deflecting element exit angle region and a deflecting element exit surface region corresponding to the projector light incident angle region.
  • it consists of a prism array 1.
  • Deflection element 1 and BM2 that should avoid the projector light 4 being absorbed in BM2 are aligned with the transmission surface area 2A of deflection element exit surface area force 3 ⁇ 4M2, and the deflection element exit surface area is BM2. Designed to be included in transparent area 2A.
  • the deflection element 1 and the diffusion film 3 that slide so that all the projector light 4 is diffused to the observation angle region have a deflection element exit angle region. It is designed so that the area is aligned with the allowable incident angle area of the diffusing film 3 and the exit angle area of the deflecting element is included in the allowable incident angle area of the diffusing film 3.
  • the projector light 4 is not absorbed by the BM 2 and is diffused in the observation angle region, so that high projector light utilization efficiency can be realized.
  • the external light 5 is incident on the screen from the observer side, reflected at the air interface of the prism array 1 and emitted to the observer side, and must pass through BM2 twice on the way. Is done. Therefore, a high external light suppression effect is realized.
  • the deflecting element 1 is not limited to the prism array illustrated in FIG. 1, but may be a lens array, a hologram, a mirror array, a fiber array, or the like having similar optical characteristics. A similar effect can be obtained.
  • a light absorbing member may be provided to cover all or part of the deflecting element other than the projector light incident part on the projector light incident side. This also absorbs the external light incident on the screen, and similarly a high external light suppression effect can be obtained.
  • FIG. 2 it is possible to obtain a higher external light 5 suppressing effect by arranging the light absorbing member 7 together with BM2.
  • the prism-shaped total reflection portion is covered with a light absorbing member.
  • the prism-shaped total reflection portion can be covered with the light absorbing member, and a higher effect of suppressing external light 5 can be obtained.
  • the upper surface of the prism is configured by joining a plurality of planes as shown in FIG. 3 (or the lower surface is similarly configured instead of or in addition to the upper surface).
  • the cross-sectional area of the projector light 4 passing through the BM2 surface can be reduced, the transmission surface area 2A can be reduced, and a higher external light 5 suppression effect can be obtained.
  • a projector (not shown) is further arranged on the exit side surface (observer side surface) of the diffusion film 3 so that the projector light has linearly polarized light. Therefore, it is possible to absorb only 50% of outside light that is generally non-polarized light without lowering the projector light utilization efficiency, and to further increase the contrast ratio of the displayed image. Further, by arranging a circular polarizer instead of the polarizer, when the projector light has circularly polarized light, in addition to the above effects, the backscattering in the diffusion film can be absorbed by the circular polarizer, and the display image It is possible to significantly increase the contrast ratio.
  • the deflection element is a prism array
  • the incident surface of the prism It is desirable that the projector light is incident perpendicularly to the projector.
  • the portion forming the transmission surface area of the BM (medium satisfying the transmission surface area) is matched in refractive index with the prism array and Z or the diffusion film.
  • the deflecting element is a prism array
  • a plurality of prisms for deflecting the projector light need not be present on the entire projector light incident side, but as shown in FIG.
  • a force projector that is designed so that all of the deflection element exit surface area is included in the BM transmission surface area is absorbed.
  • 80% or more of the BM is not limited to all of the deflection element exit surface area.
  • the case where it is included in the transmission surface area of the light is allowed, and the case where it is covered is also included in the scope of the present invention.
  • the present invention is not limited to all of the deflection element emission angle areas.
  • the case where 80% or more is included in the allowable incident angle region of the diffusing film is allowed, and the case where force is applied is also included in the scope of the present invention.
  • Fig. 1 shows an example in which the external light 5 incident on the transmission surface area 2A of BM2 is hardly absorbed in the transmission surface area 2A regardless of the incident angle, that is, the thickness of BM2 is almost infinitely small. It was.
  • This example is a force that conforms to a commonly used form of BM.
  • the present invention is not limited to this.
  • FIG. It may be the screen of the embodiment in which the minute is absorbed.
  • the transmission / absorption function of BM2 depends on both the surface area and the angle area, so that it is possible to further suppress the diffuse reflection of the external light 5 to the viewer side, which is preferable.
  • the above-mentioned condition that 80% or more of the deflection element exit surface area is included in the BM transmission surface area is satisfied, and thus the projector light utilization efficiency is the same as in FIG.
  • the width of the conventional BM transmissive surface area is about 30 ⁇ m, in order to obtain an external light absorption function in a practical angular region,
  • the thickness of the BM is preferably 10 m or more, more preferably 20 ⁇ m or more, further preferably 30 ⁇ m or more, and ideally 50 ⁇ m or more.
  • FIG. 5 shows an example of the screen in FIG. 1 in which the deflecting element 6 having a condensing function is used instead of the deflecting element 1 having no condensing function.
  • the deflecting element 6 having a condensing function by condensing the projector light 4 on the BM2 surface by the deflecting element 6 having a condensing function, the transmission surface area 2A of the BM2 surface is reduced and the utilization efficiency of the projector light 4 is reduced. Therefore, it is possible to increase the external light 5 suppression effect.
  • a prism array having a curved upper surface is used as the deflecting element 6 having a condensing function.
  • the lower surface of the prism is used.
  • the surface on which the light 4 is incident or a prism array with curved upper and lower surfaces may be used, or a lens array, hologram, mirror array, fiber array, etc. may be used instead of the prism.
  • the deflecting element is a prism array
  • the individual prisms are sufficiently fine, the assumption that the incident angle of the projector light does not change within one prism holds.
  • the BM absorption surface area can theoretically be set to approximately 100%. Therefore, when using a prism array in which only the upper surface of the prism is curved and the lower surface is flat as shown in FIG. It is desirable that the curve on the upper surface of the prism is such that the cross-sectional shape of the curved surface is a quadratic curve.
  • the ratio of the transmission surface area on the BM surface is not limited to an ideal shape in which the projector light is focused on one point on the BM surface. If it is 80% or less compared to the configuration using the deflecting element 1 having no light condensing function, this is allowed, and such a case is also included in the scope of the present invention.
  • the diffusion film force may also be such that the area from which the projector light is emitted becomes too small and the image may become discontinuous.
  • the deflection characteristics of the deflecting element differ depending on the location of the screen.
  • a part of the external light is absorbed by the BM, so that the contrast ratio can be increased.
  • the force shown in the cross-sectional view of the screen in FIGS. 1 to 6 As long as the above-described conditions are satisfied, a part of the external light is absorbed in the BM, so the structure in the direction perpendicular to the paper in the figure is not particularly limited .
  • the three-dimensional shape of the prism array is a Fresnel lens type prism array shape that can be obtained by rotating the screen cross-sectional figures of FIGS. 1 to 6 around one central axis perpendicular to the screen surface.
  • the prism array shape in which the cross-sectional shapes at all the positions in the vertical direction of FIGS. the effect of suppressing external light can be realized.
  • a BM material and a light-absorbing member material a material that is decomposed by photosensitivity and that peels only the decomposed portion by subsequent cleaning is used.
  • the light absorbing member material, the deflecting element, the BM material, and the diffusing film are laminated in this order, or the light absorbing member material, the deflecting element, and the diffusing film are stacked in this order, and the deflecting element is incident on this. It is preferable to use a manufacturing method in which projector light is incident from the side.
  • the projector light incident on the deflecting element exits to the deflecting element exit area corresponding to the projector light incident angle area according to the deflection characteristics of the deflecting element, and the BM material and Z or the light absorbing member material Is exposed to light, so that the exposed portion becomes the transmission surface area as it is. That is, according to this manufacturing method, the transmission surface area of the BM (in the case of a light absorbing member, the portion not covered by this corresponds to the transmission surface area) is automatically adjusted to the deflection element emission surface area. Can do.
  • the deflecting element can be formed of a lens array, a hologram, a mirror array, a fiber array, or the like in addition to the prism array.
  • Diffusion films are commonly used in the past, and include diffusion films that use diffusion due to internal fine particles, diffusion films that use diffusion due to surface roughness, hologram diffusion films, etc.
  • the prism array is used in the case where the prism array is used as the deflecting element.
  • the projector incident angle with respect to the BM was set to 55 ° to 75 °, and the ratio of the BM absorption area in the BM plane was derived by numerical simulation.
  • the allowable incidence angle region of the diffusion film was set to ⁇ 25 to 25 °. The angle is 0 ° for the direction normal to the prism alignment direction of the prism array (the normal of the surface where the prisms are aligned), and the counterclockwise direction is positive.
  • the angle of inclination of the upper and lower surfaces of the prism is 36 ° and -9 °, respectively, so that projector light with a projector light incident angle of 55 to 75 ° can be incident on the diffusion film without loss. It is possible to deflect in the angular region.
  • the ratio of the absorption surface area of BM is 38% and 74%, respectively.
  • the projector light is incident when the projector light incident angle is 55 °. Is incident on the top surface of the prism at an angle between 54.32 ° and 70.68 °. In addition, when the projector light incident angle is 75 °, the projector light is incident on the upper surface of the prism at an angle of 44.32 ° to 60.68 °.
  • this prism array is made of a material that totally reflects if the incident angle at the air interface is 41 ° or more, the projector light is totally reflected on the top surface of the prism, and the projector light is lost without loss. Can be deflected to an allowable angle range of incident light, and it is theoretically possible to absorb almost 100% of external light.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Overhead Projectors And Projection Screens (AREA)

Abstract

A projection display screen using a deflecting element, hardly diffusion-reflecting extraneous light toward the viewer, and having a high contrast ratio at bright places and a projection system are provided. The screen comprises a deflecting element (1) for deflecting the entering light from a projector light entrance angle region and directing the light toward a deflecting element exit angle region and the deflecting element exit surface area corresponding to the projector light entrance angle region, a black matrix (BM) (2) having a transmitting surface area (2A) matching the deflecting element exit surface area, and a diffusion film (3) having an entrance allowable angle region matching the deflecting element exit angle region, diffusing the light entering from the deflecting element exit angle region , and directing the diffused light toward a viewing angle region corresponding to the deflecting element exit angle region. The three are lamination-arranged in order of mention to constitute the screen.

Description

偏向素子を用いたプロジェクシヨンディスプレイ用スクリーン及びプロジェ
Figure imgf000003_0001
Projection display screen and deflector using deflection element
Figure imgf000003_0001
技術分野  Technical field
[0001] 本発明は、プロジェクシヨンディスプレイ用スクリーン及びプロジェクシヨンディスプレ ィシステムに関し、特に高品位 ·高コントラスト比である表示画像を提供する、偏向素 子を用いたプロジヱクシヨンディスプレイ用スクリーン及びプロジヱクシヨンディスプレイ システムに関する。  TECHNICAL FIELD [0001] The present invention relates to a projection display screen and a projection display system, and more particularly to a projection display screen and a projection using a deflection element that provide a display image with a high quality and a high contrast ratio.ヱ It relates to the cushion display system.
背景技術  Background art
[0002] プロジェクシヨンディスプレイの需要が高まるにつれて、表示画像の高品位化が求 められている。  [0002] As the demand for projection displays increases, there is a demand for higher quality display images.
そこで、本発明者らは従来のプロジェクシヨンディスプレイに用いられているレンティ キユラレンズ力もなるスクリーンに代えて、拡散フィルム力もなるスクリーンを用いること により表示画像の高品位ィ匕を実現した (例えば特許文献 1参照)。又、このスクリーン の入射許容角度領域と偏向素子からのプロジェクタ光の出射角度領域を整合するこ とにより、高 、画像品位を提供する薄型リアプロジェクシヨンディスプレイを実現した( 特許文献 2)。  Therefore, the present inventors have realized a high quality display image by using a screen having a diffusion film force instead of a screen having a lenticular lens force used in a conventional projection display (for example, Patent Document 1). reference). Also, a thin rear projection display providing high image quality was realized by matching the allowable incidence angle area of the screen with the emission angle area of the projector light from the deflecting element (Patent Document 2).
特許文献 1: PCT/JP03/13050  Patent Document 1: PCT / JP03 / 13050
特許文献 2:特願 2004-190318 (但し本願出願時では未公開)  Patent Document 2: Japanese Patent Application No. 2004-190318
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] 本発明者らは、更なる高品位ィ匕のために明所コントラスト比の改善が必要不可欠で あると判断し、これを実現するために外光の観察者側への拡散反射を抑制することを 課題とした。本発明は、この課題を解決し得る高品位薄型リアプロジェクシヨンディス プレイを具体化した、偏向素子を用いたプロジェクシヨンディスプレイ用スクリーン及 びプロジェクシヨンディスプレイシステムを提供することを目的とする。 [0003] The inventors of the present invention have determined that it is essential to improve the photopic contrast ratio in order to achieve higher quality, and in order to realize this, diffuse reflection of external light to the viewer side is performed. The challenge was to control it. It is an object of the present invention to provide a projection display screen and a projection display system using a deflecting element, embodying a high-quality thin rear projection display that can solve this problem.
課題を解決するための手段 [0004] 本発明者らは、前記課題の解決手段として、上記高 ヽ画像品位を提供する薄型リ ァプロジェクシヨンディスプレイに対して、従来のレンティキユラレンズからなるスクリー ンに用いられて 、るブラックマトリクス(略号: BM)を応用することにより、外光の観察 者側への拡散反射を大幅に抑制することが可能であると発想し、さらに検討を重ねて 、以下の各請求項に記載される本発明をなした。 Means for solving the problem [0004] As a means for solving the above problems, the present inventors have used a thin rear projection display that provides the above-described high-quality image quality and is used in a screen composed of a conventional lenticular lens. By applying a matrix (abbreviation: BM), it is thought that it is possible to significantly suppress diffuse reflection of the external light to the observer side, and further investigations are described in the following claims. The present invention was made.
[0005] (請求項 1) プロジェクタ光入射角度領域からの入射光を偏向させて該プロジェク タ光入射角度領域に応じた偏向素子出射角度領域及び偏向素子出射面域に出射 させる偏向素子と、前記偏向素子出射面域に整合した透過面域を有するブラックマト リクスと、前記偏向素子出射角度領域に整合した入射許容角度領域を有し前記偏向 素子出射角度領域からの入射光を拡散させて該偏向素子出射角度領域に応じた観 察角度領域に出射させる拡散フィルムとを、この順に積層配置してなる、偏向素子を 用いたプロジェクシヨンディスプレイ用スクリーン。  (Claim 1) A deflecting element that deflects incident light from a projector light incident angle region and emits the deflected light to a deflecting element exit angle region and a deflecting element exit surface region according to the projector light incident angle region, and A black matrix having a transmission surface area aligned with the deflection element exit surface area and an allowable incident angle area matched with the deflection element exit angle area are diffused to diffuse the incident light from the deflection element exit angle area. A projection display screen using a deflection element, in which a diffusion film that emits light in a viewing angle region corresponding to the element emission angle region is laminated in this order.
[0006] (請求項 2) 前記ブラックマトリクスに代えて、又はこれと併せて、前記偏向素子の プロジェクタ光入射側のプロジェクタ光入射部分以外の全部又は一部を覆う光吸収 部材を配設したことを特徴とする請求項 1記載のスクリーン。  [0006] (Claim 2) A light absorbing member that covers all or part of the deflecting element other than the projector light incident part on the projector light incident side is disposed instead of or in combination with the black matrix. The screen according to claim 1.
(請求項 3) 前記偏向素子は、プリズムの上面及び下面が共に単一の平面をなす プリズムアレイであることを特徴とする請求項 1又は 2に記載のスクリーン。  (Claim 3) The screen according to claim 1 or 2, wherein the deflecting element is a prism array in which an upper surface and a lower surface of the prism form a single plane.
[0007] (請求項 4) 前記偏向素子は、プリズムの上面及び下面の何れか一方又は両方が 複数の平面の繋ぎ合わせによって形成されたプリズムアレイであることを特徴とする 請求項 1又は 2に記載のスクリーン。  (Claim 4) The deflection element is a prism array in which either one or both of the upper surface and the lower surface of the prism are formed by joining a plurality of planes. Screen described.
(請求項 5) 前記プリズムの下面がプロジェクタ光入射方向に垂直な単一の平面を なすことを特徴とする請求項 3又は 4に記載のスクリーン。  (Claim 5) The screen according to claim 3 or 4, wherein the lower surface of the prism forms a single plane perpendicular to the incident direction of the projector light.
[0008] (請求項 6) 前記プリズムアレイのプリズム同士が離間配置されたことを特徴とする 請求項 3〜5の何れかに記載のスクリーン。  [0008] (Claim 6) The screen according to any one of claims 3 to 5, wherein the prisms of the prism array are spaced apart from each other.
(請求項 7) 前記偏向させてに代えて集光及び偏向させてとしたことを特徴とする 請求項 1記載のスクリーン。  (Claim 7) The screen according to claim 1, wherein the screen is condensed and deflected instead of being deflected.
(請求項 8) 前記ブラックマトリクスに代えて、又はこれと併せて、前記偏向素子の プロジェクタ光入射側のプロジェクタ光入射部分以外の全部又は一部を覆う光吸収 部材を配設したことを特徴とする請求項 7記載のスクリーン。 (Claim 8) Instead of or in combination with the black matrix, light absorption that covers all or part of the deflecting element other than the projector light incident part on the projector light incident side 8. The screen according to claim 7, further comprising a member.
[0009] (請求項 9) 前記偏向素子は、プリズムの上面及び下面の何れか一方又は両方が 曲面をなすプリズムアレイであることを特徴とする請求項 7又は 8に記載のスクリーン。 [0009] (Claim 9) The screen according to claim 7 or 8, wherein the deflecting element is a prism array in which one or both of an upper surface and a lower surface of the prism form a curved surface.
(請求項 10) 前記プリズムの下面がプロジェクタ光入射方向に垂直な単一の平面 をなすことを特徴とする請求項 9記載のスクリーン。  (Claim 10) The screen according to claim 9, wherein the lower surface of the prism forms a single plane perpendicular to the incident direction of the projector light.
(請求項 11) 前記プリズムの上面が、断面形状が 2次曲線形状になる曲面をなす ことを特徴とする請求項 9又は 10に記載のスクリーン。  (Claim 11) The screen according to claim 9 or 10, wherein the upper surface of the prism has a curved surface with a quadratic cross-sectional shape.
[0010] (請求項 12) 前記プリズムアレイのプリズム同士が離間配置されたことを特徴とす る請求項 9〜: L 1の何れかに記載のスクリーン。 [0010] (Claim 12) The screen according to any one of claims 9 to L1, wherein the prisms of the prism array are spaced apart from each other.
(請求項 13) 前記ブラックマトリクスの厚さが 10 m以上であることを特徴とする請 求項 1〜12の何れかに記載のスクリーン。  (Claim 13) The screen according to any one of claims 1 to 12, wherein the black matrix has a thickness of 10 m or more.
(請求項 14) 前記ブラックマトリクスの透過面域を満たす媒体の屈折率に対して前 記偏向素子及び前記拡散フィルムの何れか一方又は両方の屈折率がマッチングさ れていることを特徴とする請求項 1〜13の何れかに記載のスクリーン。  (Claim 14) The refractive index of one or both of the deflection element and the diffusion film is matched with the refractive index of the medium satisfying the transmission surface area of the black matrix. Item 14. The screen according to any one of Items 1 to 13.
[0011] (請求項 15) 前記拡散フィルムは、屈折率が互いに異なる層状又は線状構造を内 包し、特定の入射許容角度領域からの入射光を特定の拡散角度領域に出射させる 拡散フィルムであることを特徴とする請求項 1〜14の何れかに記載のスクリーン。 [0011] (Claim 15) The diffusion film includes a layered or linear structure having different refractive indexes, and emits incident light from a specific incident allowable angle region to a specific diffusion angle region. The screen according to claim 1, wherein the screen is provided.
(請求項 16) 更に前記拡散フィルムの出射側表面に偏光子又は円偏光子が配置 されてなる請求項 1〜15の何れかに記載のスクリーン。  (Claim 16) The screen according to any one of claims 1 to 15, wherein a polarizer or a circular polarizer is further disposed on the exit side surface of the diffusion film.
[0012] (請求項 17) 請求項 1〜16の何れかに記載されたスクリーンに組み合せて、該ス クリーンに対してプロジェクタ光入射角度領域力 プロジェクタ光を入射させる投射光 学系を有する、偏向素子を用いたプロジェクシヨンディスプレイシステム。 [0012] (Claim 17) A deflection having a projection optical system for combining the screen according to any one of claims 1 to 16 with projector light incident angle area force incident on the screen. Projection display system using elements.
発明の効果  The invention's effect
[0013] 本発明によれば、外光の観察者側への拡散反射が抑制されて、明所コントラスト比 が高い高品位薄型リアプロジェクシヨンディスプレイを実現することが可能となる。 図面の簡単な説明  [0013] According to the present invention, it is possible to realize a high-quality thin rear projection display in which diffuse reflection of external light to the viewer side is suppressed and the photopic contrast ratio is high. Brief Description of Drawings
[0014] [図 1]本発明の基本形態の 1例を示す概略断面図である。  FIG. 1 is a schematic sectional view showing an example of a basic form of the present invention.
[図 2]BMと光吸収部材を併せて配設した本発明実施形態の 1例を示す概略断面図 である。 FIG. 2 is a schematic cross-sectional view showing an example of an embodiment of the present invention in which a BM and a light absorbing member are disposed together It is.
[図 3]プリズム面が複数の平面で構成された本発明実施形態の 1例を示す概略断面 図である。  FIG. 3 is a schematic cross-sectional view showing an example of an embodiment of the present invention in which a prism surface is composed of a plurality of planes.
[図 4]プリズム同士が離間配置された本発明実施形態の 1例を示す概略断面図であ る。  FIG. 4 is a schematic cross-sectional view showing an example of an embodiment of the present invention in which prisms are spaced apart from each other.
[図 5]集光機能を有する偏向素子を用いた本発明実施形態の 1例を示す概略断面図 である。  FIG. 5 is a schematic sectional view showing an example of an embodiment of the present invention using a deflecting element having a light condensing function.
[図 6]BMの厚みを比較的厚くした本発明実施形態の 1例を示す概略断面図である。 符号の説明  FIG. 6 is a schematic cross-sectional view showing an example of an embodiment of the present invention in which the thickness of BM is relatively thick. Explanation of symbols
[0015] 1 偏向素子 (例:プリズムアレイ) [0015] 1 Deflection element (eg prism array)
2 BM (ブラックマトリクス)  2 BM (Black matrix)
2A 透過面域  2A Transmission surface area
3 拡散フィルム  3 Diffusion film
4 プロジェクタ光  4 Projector light
5 外光  5 Outside light
6 偏向素子 (例:プリズムアレイ;集光機能有り)  6 Deflection element (Example: Prism array; condensing function)
7 光吸収部材  7 Light absorbing member
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 本発明の基本形態は、例えば図 1に示すように、プロジェクタ光 4の進行方向を変 換する偏向素子 1、外光を吸収する BM (ブラックマトリクスの意。以下同じ) 2、及びプ ロジェクタ光 4を拡散させる拡散フィルム 3をこの順に積層配置してなる。偏向素子 1 は、プロジェクタ光入射角度領域力 の入射光を偏向させて該プロジェクタ光入射角 度領域に応じた偏向素子出射角度領域及び偏向素子出射面域に出射させる光学 特性をもたせた光学素子であり、例えばプリズムアレイ 1からなる。  The basic form of the present invention is, for example, as shown in FIG. 1, a deflecting element 1 that changes the traveling direction of projector light 4, a BM (meaning black matrix; the same applies hereinafter) 2 that absorbs external light, and A diffusion film 3 for diffusing the projector light 4 is laminated in this order. The deflecting element 1 is an optical element having an optical characteristic that deflects incident light having a projector light incident angle region force and outputs the deflected light to a deflecting element exit angle region and a deflecting element exit surface region corresponding to the projector light incident angle region. For example, it consists of a prism array 1.
[0017] BM2においてプロジェクタ光 4が吸収されるのを回避すベぐ偏向素子 1と BM2とは 、偏向素子出射面域力 ¾M2の透過面域 2Aと整合し、偏向素子出射面域が BM2の透 過面域 2Aに含まれるように設計されている。又、プロジェクタ光 4が全て観察角度領 域に拡散されるようにすベぐ偏向素子 1と拡散フィルム 3とは、偏向素子出射角度領 域が拡散フィルム 3の入射許容角度領域と整合し、偏向素子出射角度領域が拡散フ イルム 3の入射許容角度領域に含まれるように設計されて!、る。 [0017] Deflection element 1 and BM2 that should avoid the projector light 4 being absorbed in BM2 are aligned with the transmission surface area 2A of deflection element exit surface area force ¾M2, and the deflection element exit surface area is BM2. Designed to be included in transparent area 2A. In addition, the deflection element 1 and the diffusion film 3 that slide so that all the projector light 4 is diffused to the observation angle region have a deflection element exit angle region. It is designed so that the area is aligned with the allowable incident angle area of the diffusing film 3 and the exit angle area of the deflecting element is included in the allowable incident angle area of the diffusing film 3.
[0018] 上記基本形態によれば、プロジェクタ光 4は BM2に吸収されることなぐ且つ観察角 度領域に拡散されるから、高いプロジェクタ光利用効率を実現することが可能である 。一方、外光 5は、観察者側からスクリーンに入射してプリズムアレイ 1の空気界面で 反射し観察者側に出射する力 その途上で BM2を 2回通過しなければならないから、 大部分が吸収される。よって、高い外光抑制効果が実現される。  [0018] According to the basic mode, the projector light 4 is not absorbed by the BM 2 and is diffused in the observation angle region, so that high projector light utilization efficiency can be realized. On the other hand, the external light 5 is incident on the screen from the observer side, reflected at the air interface of the prism array 1 and emitted to the observer side, and must pass through BM2 twice on the way. Is done. Therefore, a high external light suppression effect is realized.
[0019] 尚、偏向素子 1は、図 1に例示したプリズムアレイに限らず、同様の光学特性をもた せたレンズアレイ、ホログラム、ミラーアレイ、ファイバーアレイ等で構成してもよぐそ の場合にも同様の効果を得ることが可能である。  [0019] The deflecting element 1 is not limited to the prism array illustrated in FIG. 1, but may be a lens array, a hologram, a mirror array, a fiber array, or the like having similar optical characteristics. A similar effect can be obtained.
又、本発明では、 BMを配設する代わりに、偏向素子のプロジェクタ光入射側のプ ロジェクタ光入射部分以外の全部又は一部を覆う光吸収部材を配設してもょ 、。これ によっても、スクリーンに入射した外光を吸収することができ、同様に高い外光抑制効 果が得られる。或いは、例えば図 2に示すように、 BM2と併せて前記光吸収部材 7を 配設することにより、更に高い外光 5抑制効果を得ることが可能である。尚、図 2では プリズム形状の全反射部分を光吸収部材で覆って 、な 、が、プリズムを形成する媒 体と光吸収部材に屈折率差が存在すれば、全反射光は吸収されな 、ためプリズム 形状の全反射部分を光吸収部材で覆うことが可能となり、より高い外光 5抑制効果を 得ることができる。  In the present invention, instead of providing the BM, a light absorbing member may be provided to cover all or part of the deflecting element other than the projector light incident part on the projector light incident side. This also absorbs the external light incident on the screen, and similarly a high external light suppression effect can be obtained. Alternatively, for example, as shown in FIG. 2, it is possible to obtain a higher external light 5 suppressing effect by arranging the light absorbing member 7 together with BM2. In FIG. 2, the prism-shaped total reflection portion is covered with a light absorbing member. However, if there is a refractive index difference between the medium forming the prism and the light absorbing member, the total reflected light is not absorbed. Therefore, the prism-shaped total reflection portion can be covered with the light absorbing member, and a higher effect of suppressing external light 5 can be obtained.
[0020] 又、偏向素子としてプリズムアレイを用いる場合、図 3に示すようにプリズムの上面を 複数の平面の繋ぎ合わせによって構成する(或いは上面に代え又は加えて下面を同 様に構成する)ことにより、 BM2面を通過するプロジェクタ光 4断面積を小さくし、透 過面域 2Aを小さくすることが可能であり、より高い外光 5抑制効果を得ることが可能で ある。  [0020] When a prism array is used as the deflecting element, the upper surface of the prism is configured by joining a plurality of planes as shown in FIG. 3 (or the lower surface is similarly configured instead of or in addition to the upper surface). As a result, the cross-sectional area of the projector light 4 passing through the BM2 surface can be reduced, the transmission surface area 2A can be reduced, and a higher external light 5 suppression effect can be obtained.
又、本発明では、上記基本形態に加えて、更に拡散フィルム 3の出射側表面 (観察 者側表面)に偏光子(図示省略)を配置することで、プロジェクタ光が直線偏光を有す る場合、プロジェクタ光利用効率を低下させることなぐ一般的に無偏光である外光 のみを 50%吸収し、表示画像のコントラスト比をより一層高めることが可能である。更 に、偏光子に代えて円偏光子を配置することで、プロジェクタ光が円偏光を有する場 合、上記効果に加えて拡散フィルムにおける後方散乱を円偏光子により吸収すること ができ、表示画像のコントラスト比を格段に高めることが可能である。この場合、プロジ ェクタ光の利用効率を高くするためには、プロジェクタ光の偏光が偏向素子によって 崩されないことが重要であり、このためには、偏向素子がプリズムアレイである場合、 プリズムの入射面に対してプロジェクタ光が垂直に入射することが望ましい。又、同様 の理由により、この場合には BMの透過面域を形成する部分 (透過面域を満たす媒質 )がプリズムアレイ及び Z又は拡散フィルムと屈折率的にマッチングされて 、ることが 望ましい。 Further, in the present invention, in addition to the basic form described above, a projector (not shown) is further arranged on the exit side surface (observer side surface) of the diffusion film 3 so that the projector light has linearly polarized light. Therefore, it is possible to absorb only 50% of outside light that is generally non-polarized light without lowering the projector light utilization efficiency, and to further increase the contrast ratio of the displayed image. Further In addition, by arranging a circular polarizer instead of the polarizer, when the projector light has circularly polarized light, in addition to the above effects, the backscattering in the diffusion film can be absorbed by the circular polarizer, and the display image It is possible to significantly increase the contrast ratio. In this case, in order to increase the use efficiency of the projector light, it is important that the polarization of the projector light is not broken by the deflection element. For this purpose, when the deflection element is a prism array, the incident surface of the prism It is desirable that the projector light is incident perpendicularly to the projector. For the same reason, in this case, it is desirable that the portion forming the transmission surface area of the BM (medium satisfying the transmission surface area) is matched in refractive index with the prism array and Z or the diffusion film.
[0021] 又、偏向素子がプリズムアレイである場合、プロジェクタ光を偏向させる複数のプリ ズムは、プロジェクタ光入射側の全体でなくとも一部に存在すればよいから、例えば 図 4に示すように、個々のプリズム同士を離間配置することにより、不必要な界面にお ける外光 5の反射を抑え、より高い外光抑制効果を得ることが可能である。  [0021] When the deflecting element is a prism array, a plurality of prisms for deflecting the projector light need not be present on the entire projector light incident side, but as shown in FIG. By separating the individual prisms from each other, it is possible to suppress reflection of outside light 5 at unnecessary interfaces and obtain a higher effect of suppressing outside light.
ところで、上述の基本形態及びこれに偏光子を付加した形態では、偏向素子出射 面域の全てが BMの透過面域に含まれるように設計したものを挙げた力 プロジェクタ 光の一部が吸収されることを許容し、外光抑制効果を高める目的で BMの透過面域を 小さくする設計も有用であることから、本発明では、偏向素子出射面域の全てに限ら ずその 80%以上が BMの透過面域に含まれる場合を許容し、カゝかる場合も本発明範 囲に含むものとする。同様に、偏向素子出射面域以外の全ての領域力 ¾Mの吸収面 域で覆われている必要は必ずしもなぐ偏向素子出射面域以外の領域の一部のみ 力 ¾Mの吸収面域で覆われている場合であっても外光抑制効果を得ることが可能で ある。  By the way, in the basic form described above and the form in which a polarizer is added to this, a force projector that is designed so that all of the deflection element exit surface area is included in the BM transmission surface area is absorbed. In order to increase the external light suppression effect, it is also useful to make the BM transmission surface area small, so in the present invention, 80% or more of the BM is not limited to all of the deflection element exit surface area. The case where it is included in the transmission surface area of the light is allowed, and the case where it is covered is also included in the scope of the present invention. Similarly, it is not always necessary to cover all the area forces other than the deflection element exit surface area by the absorption surface area of ¾M. Only a part of the area other than the deflection element exit surface area is covered by the absorption area of force ¾M. Even if it is, it is possible to obtain an external light suppression effect.
[0022] 又、偏向素子出射角度領域と拡散フィルムの入射許容角度領域に関しても、製造 上不可避的な誤差が生じることが考えられるので、本発明では、偏向素子出射角度 領域の全てに限らずその 80%以上が拡散フィルムの入射許容角度領域に含まれる 場合を許容し、力かる場合も本発明範囲に含むものとする。  [0022] In addition, since it is conceivable that an inevitable error occurs in the production of the deflection element emission angle area and the allowable incidence angle area of the diffusion film, the present invention is not limited to all of the deflection element emission angle areas. The case where 80% or more is included in the allowable incident angle region of the diffusing film is allowed, and the case where force is applied is also included in the scope of the present invention.
又、図 1では、 BM2の透過面域 2Aに入射した外光 5がその入射角度によらず透過 面域 2A内で殆ど吸収されない、即ち BM2の厚さが無限小に近い場合の例を示した。 この例は、一般に行われる BMの使用形態に準じたものである力 本発明はこれに限 らず、例えば図 6に示すように、 BM2の厚みをより厚くし、外光 5の急角度入射分が吸 収されるようにした実施形態のスクリーンであってもよい。この形態のスクリーンでは、 BM2の透過.吸収機能が面域及び角度領域の両方に依存するものとなるから、外光 5の観察者側への拡散反射をより一層抑制できて好ましい。尚、この実施形態でも、 偏向素子出射面域の 80%以上が BMの透過面域に含まれるという前述の条件は成 立するので、プロジェクタ光の利用効率は図 1の場合と同様である。従来の一般的な BMの透過面域の幅(図の上下方向の長さ)が約 30 μ mであることを考えれば、実用 的な角度領域における外光の吸収機能を得るためには、 BMの厚さは 10 m以上が 好ましぐより好ましくは 20 μ m以上、更に好ましくは 30 μ m以上、理想的には 50 μ m 以上である。 Fig. 1 shows an example in which the external light 5 incident on the transmission surface area 2A of BM2 is hardly absorbed in the transmission surface area 2A regardless of the incident angle, that is, the thickness of BM2 is almost infinitely small. It was. This example is a force that conforms to a commonly used form of BM. The present invention is not limited to this. For example, as shown in FIG. It may be the screen of the embodiment in which the minute is absorbed. In this type of screen, the transmission / absorption function of BM2 depends on both the surface area and the angle area, so that it is possible to further suppress the diffuse reflection of the external light 5 to the viewer side, which is preferable. In this embodiment as well, the above-mentioned condition that 80% or more of the deflection element exit surface area is included in the BM transmission surface area is satisfied, and thus the projector light utilization efficiency is the same as in FIG. Considering that the width of the conventional BM transmissive surface area (length in the vertical direction in the figure) is about 30 μm, in order to obtain an external light absorption function in a practical angular region, The thickness of the BM is preferably 10 m or more, more preferably 20 μm or more, further preferably 30 μm or more, and ideally 50 μm or more.
[0023] 次に、図 5には、図 1において、集光機能を有さない偏向素子 1に代えて集光機能 を有する偏向素子 6としたスクリーンの 1例を示した。図示のように、集光機能を有す る偏向素子 6により BM2面にプロジェクタ光 4を集光させることで、 BM2面の透過面域 2Aを小さくし、プロジェクタ光 4の利用効率を低下させることなく外光 5抑制効果を高 めることが可能である。  Next, FIG. 5 shows an example of the screen in FIG. 1 in which the deflecting element 6 having a condensing function is used instead of the deflecting element 1 having no condensing function. As shown in the figure, by condensing the projector light 4 on the BM2 surface by the deflecting element 6 having a condensing function, the transmission surface area 2A of the BM2 surface is reduced and the utilization efficiency of the projector light 4 is reduced. Therefore, it is possible to increase the external light 5 suppression effect.
[0024] 尚、図 5の例では、集光機能を有する偏向素子 6としてプリズムの上面 (全反射させ る面)が湾曲したプリズムアレイを用いたが、これに代えてプリズムの下面(プロジェク タ光 4を入射させる面)或いは上下面が湾曲したプリズムアレイを用いてもよぐ又、プ リズムに代えて、レンズアレイ、ホログラム、ミラーアレイ、ファイバーアレイ等を用いて もよく、同様の効果を得ることができる。  In the example of FIG. 5, a prism array having a curved upper surface (total reflection surface) is used as the deflecting element 6 having a condensing function. Instead, the lower surface of the prism (projector) is used. (The surface on which the light 4 is incident) or a prism array with curved upper and lower surfaces may be used, or a lens array, hologram, mirror array, fiber array, etc. may be used instead of the prism. Obtainable.
[0025] 尚、偏向素子がプリズムアレイである場合に関しては、個々のプリズムが十分微細 であると考えると、プロジェクタ光入射角度が 1つのプリズム内で変化しないという仮 定が成り立ち、このときプリズムの湾曲した面として 2次曲線面を用いることで、プロジ ェクタ光を BM面の 1点に集光させることが可能となる。これにより理論的には BMの吸 収面域を略 100%とすることが可能であるので、図 5に示すようなプリズム上面のみが 湾曲しており下面が平面であるプリズムアレイを用いる場合には、プリズム上面の湾 曲を、該湾曲面の断面形状が 2次曲線形状になるものとすることが望ましい。 [0026] 集光機能を有する偏向素子 6を用いたスクリーンの観察者側表面に偏光子又は円 偏光子を配置する場合、及び面域のみならず角度領域に依存した透過'吸収機能を 有する BMを用いた場合、及び BMに代え又はカ卩えて前記光吸収部材を配設した場 合、及び集光機能を有する偏向素子 6がプリズム同士を離間配置したプリズムアレイ である場合に関しては、集光機能のない偏向素子 1の場合に前述したのと同様の議 論が成り立つ。 [0025] Regarding the case where the deflecting element is a prism array, assuming that the individual prisms are sufficiently fine, the assumption that the incident angle of the projector light does not change within one prism holds. By using a quadratic curved surface as the curved surface, the projector light can be focused on one point on the BM surface. As a result, the BM absorption surface area can theoretically be set to approximately 100%. Therefore, when using a prism array in which only the upper surface of the prism is curved and the lower surface is flat as shown in FIG. It is desirable that the curve on the upper surface of the prism is such that the cross-sectional shape of the curved surface is a quadratic curve. [0026] When a polarizer or a circular polarizer is arranged on the surface on the viewer side of the screen using the deflecting element 6 having a condensing function, and a BM having a transmission 'absorption function depending not only on the surface area but also on the angle area When the light absorbing member is disposed instead of or in addition to BM, and when the deflecting element 6 having the light condensing function is a prism array in which the prisms are spaced apart from each other, In the case of the deflecting element 1 having no function, the same argument as described above holds.
[0027] 又、偏向素子出射面域と BMの透過面域の整合性、及び偏向素子出射角度領域と 拡散フィルムの入射許容角度領域の整合性についても、集光機能のない偏向素子 1 の場合に前述したのと同様の議論が成り立つ。  [0027] Also, in the case of the deflecting element 1 having no condensing function, the matching between the deflecting element exit surface area and the BM transmitting surface area and the consistency between the deflecting element exit angle area and the allowable incident angle area of the diffusion film The same argument holds as described above.
ここで外光は BMを 2度通過し、 BMの吸収率が 2乗で効くから、プロジェクタ光を集 光させることによる外光抑制効果の増分は非常に大きい。そこで、集光機能を有する 偏向素子 6を用 、た形態では、 BM面にぉ 、てプロジェクタ光が 1点に集光する理想 的な形態に限定せず、 BM面における透過面域の割合が、集光機能のない偏向素子 1を用いた形態に比べ 80%以下であるならばこれを許容し、かかる場合も本発明範 囲に含むものとする。  Here, the external light passes through the BM twice, and the absorption factor of the BM works as a square. Therefore, the increase of the external light suppression effect by collecting the projector light is very large. Therefore, with the deflection element 6 having a light condensing function, the ratio of the transmission surface area on the BM surface is not limited to an ideal shape in which the projector light is focused on one point on the BM surface. If it is 80% or less compared to the configuration using the deflecting element 1 having no light condensing function, this is allowed, and such a case is also included in the scope of the present invention.
[0028] 尤も、 BMの透過面域が小さ過ぎると拡散フィルム力もプロジェクタ光が出射する面 域が小さくなり過ぎ、画像が不連続なものとなる虞がある力 これに対しては、プロジ ェクタ光が集光後に発散することを利用し、 BMと拡散フィルムとを互いに離して配置 することにより、画像の不連続性を目立たなくして拡散フィルムにプロジェクタ光を入 射させること〖こより回避することができる。  [0028] However, if the transmission surface area of the BM is too small, the diffusion film force may also be such that the area from which the projector light is emitted becomes too small and the image may become discontinuous. By using the divergence of the light after condensing and arranging the BM and the diffusion film apart from each other, it is possible to avoid projecting the projector light into the diffusion film without making the discontinuity of the image inconspicuous. it can.
[0029] 上記の議論を成り立たせるためには、プロジェクタとスクリーンの位置関係、及び該 プロジェクタ力ものプロジェクタ光出射角度を厳密に調整し、プロジェクシヨンシステム として整合を取り、プロジェクタ光入射角度領域力 プロジェクタ光を入射させること が肝要である。  [0029] In order to make the above argument valid, the positional relationship between the projector and the screen, and the projector light emission angle of the projector power are strictly adjusted to obtain the matching as the projection system. It is important to make light incident.
ここでプロジェクタ光入射角度領域はスクリーンの場所毎に異なるから、偏向素子 の偏向特性はスクリーンの場所毎に異なることが望ましいが、スクリーン全面に亘りー 様な偏向特性であっても前述の条件が成り立つ以上、 BMにおいて外光の一部が吸 収されるので、コントラスト比を高めることが可能である。 [0030] 又、図 1〜6ではスクリーンの断面図を示した力 前述の条件が成り立つ以上、 BM において外光の一部が吸収されるので、図の紙面垂直方向の構造に関しては特に 限定されない。具体的には、例えばプリズムアレイを用いる場合、その立体形状を、 図 1〜6のスクリーン断面図形をスクリーン面に垂直な或る 1つの中心軸の回りに回転 してできるフレネルレンズ型プリズムアレイ形状とすることが感覚的に最も容易に理解 可能であるが、前述の条件が成り立つ以上、例えば図 1〜6の紙面垂直方向のあら ゆる位置での断面形状が全て同一となるプリズムアレイ形状としても、外光の抑制効 果を実現することができる。 Here, since the projector light incident angle region varies depending on the location of the screen, it is desirable that the deflection characteristics of the deflecting element differ depending on the location of the screen. As long as this holds, a part of the external light is absorbed by the BM, so that the contrast ratio can be increased. [0030] In addition, the force shown in the cross-sectional view of the screen in FIGS. 1 to 6 As long as the above-described conditions are satisfied, a part of the external light is absorbed in the BM, so the structure in the direction perpendicular to the paper in the figure is not particularly limited . Specifically, for example, when a prism array is used, the three-dimensional shape of the prism array is a Fresnel lens type prism array shape that can be obtained by rotating the screen cross-sectional figures of FIGS. 1 to 6 around one central axis perpendicular to the screen surface. However, as long as the above conditions are satisfied, for example, the prism array shape in which the cross-sectional shapes at all the positions in the vertical direction of FIGS. In addition, the effect of suppressing external light can be realized.
[0031] 本発明のスクリーンを製造するには、 BM材料及び光吸収部材材料として感光によ り分解、その後の洗浄により前記分解した部分のみ剥離する材料を用い、偏向素子 、 BM材料、拡散フィルムをこの順に、又は、光吸収部材材料、偏向素子、 BM材料、 拡散フィルムをこの順に、又は、光吸収部材材料、偏向素子、拡散フィルムをこの順 に、積層配置し、これに偏向素子の入射側からプロジェクタ光を入射させる製造方法 によるのが好ましい。  [0031] In order to manufacture the screen of the present invention, as a BM material and a light-absorbing member material, a material that is decomposed by photosensitivity and that peels only the decomposed portion by subsequent cleaning is used. The light absorbing member material, the deflecting element, the BM material, and the diffusing film are laminated in this order, or the light absorbing member material, the deflecting element, and the diffusing film are stacked in this order, and the deflecting element is incident on this. It is preferable to use a manufacturing method in which projector light is incident from the side.
[0032] 上記製造方法によれば、偏向素子に入射したプロジェクタ光は偏向素子の偏向特 性に従ってプロジェクタ光入射角度領域に応じた偏向素子出射領域に出射し、 BM 材料及び Z又は光吸収部材材料を感光させるから、該感光した部分がそのまま透過 面域になる。即ち、この製造方法によれば、 BMの透過面域 (光吸収部材の場合は、 これに覆われない部分が透過面域に該当する)を自動的に偏向素子出射面域に整 合させることができる。尚、偏向素子は前述のようにプリズムアレイの他、レンズアレイ 、ホログラム、ミラーアレイ、ファイバーアレイ等で形成し得る。拡散フィルムは、従来 一般に用いられて 、る内部の微粒子による拡散を用いた拡散フィルムや、表面の面 粗による拡散を用いた拡散フィルム、ホログラム拡散フィルム等が挙げられる力 特に 明確なプロジェクタ光入射許容角度領域とそれに整合した拡散角度領域を持っため 、屈折率が互いに異なる層状又は線状構造を内包し、特定の入射許容角度領域か らの入射光を特定の拡散角度領域に出射させる拡散フィルムが好ましく用い得る。 実施例  [0032] According to the above manufacturing method, the projector light incident on the deflecting element exits to the deflecting element exit area corresponding to the projector light incident angle area according to the deflection characteristics of the deflecting element, and the BM material and Z or the light absorbing member material Is exposed to light, so that the exposed portion becomes the transmission surface area as it is. That is, according to this manufacturing method, the transmission surface area of the BM (in the case of a light absorbing member, the portion not covered by this corresponds to the transmission surface area) is automatically adjusted to the deflection element emission surface area. Can do. As described above, the deflecting element can be formed of a lens array, a hologram, a mirror array, a fiber array, or the like in addition to the prism array. Diffusion films are commonly used in the past, and include diffusion films that use diffusion due to internal fine particles, diffusion films that use diffusion due to surface roughness, hologram diffusion films, etc. A diffusion film that includes an angle region and a diffusion angle region matched with the angle region and includes a layered or linear structure having different refractive indexes and emits incident light from a specific incident allowable angle region to a specific diffusion angle region. It can be preferably used. Example
[0033] 実施例では、偏向素子としてプリズムアレイを用いた場合について、プリズムアレイ に対するプロジェクタ光入射角度を 55° 〜75° とし、 BM面内における BMの吸収面 域の割合を数値的シミュレーションにより導出した。ここで、拡散フィルムの入射許容 角度領域を- 25〜25° とした。尚、角度はプリズムアレイのプリズム並び方向に対する 法線 (プリズムが並ぶ面の法線)方向を 0° とし、半時計回りを正とする。 In the embodiment, the prism array is used in the case where the prism array is used as the deflecting element. The projector incident angle with respect to the BM was set to 55 ° to 75 °, and the ratio of the BM absorption area in the BM plane was derived by numerical simulation. Here, the allowable incidence angle region of the diffusion film was set to −25 to 25 °. The angle is 0 ° for the direction normal to the prism alignment direction of the prism array (the normal of the surface where the prisms are aligned), and the counterclockwise direction is positive.
図 1に示す光学系において、プリズムの上面、下面の傾斜角度を夫々 36° 、-9° と することで、プロジェクタ光入射角度が 55〜75° であるプロジェクタ光をロスなく拡散 フィルムの入射許容角度領域に偏向させることが可能である。プロジェクタ光入射角 度が 55° 、75° の場合、 BMの吸収面域の割合が夫々 38%、 74%である。  In the optical system shown in Fig. 1, the angle of inclination of the upper and lower surfaces of the prism is 36 ° and -9 °, respectively, so that projector light with a projector light incident angle of 55 to 75 ° can be incident on the diffusion film without loss. It is possible to deflect in the angular region. When the projector light incident angle is 55 ° and 75 °, the ratio of the absorption surface area of BM is 38% and 74%, respectively.
一方、図 5に示す光学系において、プリズム下面をプロジェクタ光入射方向に対し て垂直にし、プリズム上面の湾曲形状を 2次曲線形状とすると、プロジェクタ光入射角 度が 55° の場合にはプロジェクタ光はプリズムの上面に 54.32° 〜70.68° の角度で 入射する。又、プロジェクタ光入射角度が 75° の場合にはプロジェクタ光はプリズム の上面に 44.32° 〜60.68° の角度で入射する。このプリズムアレイは空気界面にお ける入射角度が 41° 以上であれば全反射する材料で作られているので、プロジェク タ光はプリズム上面にぉ 、て全反射し、プロジェクタ光をロスなく拡散フィルムの入射 許容角度領域に偏向させることが可能であり、且つ理論的には外光を略 100%吸収 することが可能である。  On the other hand, in the optical system shown in FIG. 5, if the prism bottom surface is perpendicular to the projector light incident direction and the prism top surface is curved to a quadratic curve, the projector light is incident when the projector light incident angle is 55 °. Is incident on the top surface of the prism at an angle between 54.32 ° and 70.68 °. In addition, when the projector light incident angle is 75 °, the projector light is incident on the upper surface of the prism at an angle of 44.32 ° to 60.68 °. Since this prism array is made of a material that totally reflects if the incident angle at the air interface is 41 ° or more, the projector light is totally reflected on the top surface of the prism, and the projector light is lost without loss. Can be deflected to an allowable angle range of incident light, and it is theoretically possible to absorb almost 100% of external light.

Claims

請求の範囲 The scope of the claims
[1] プロジェクタ光入射角度領域からの入射光を偏向させて該プロジェクタ光入射角度 領域に応じた偏向素子出射角度領域及び偏向素子出射面域に出射させる偏向素 子と、前記偏向素子出射面域に整合した透過面域を有するブラックマトリクスと、前記 偏向素子出射角度領域に整合した入射許容角度領域を有し前記偏向素子出射角 度領域からの入射光を拡散させて該偏向素子出射角度領域に応じた観察角度領域 に出射させる拡散フィルムとを、この順に積層配置してなる、偏向素子を用いたプロ ジェクシヨンディスプレイ用スクリーン。  [1] A deflecting element that deflects incident light from a projector light incident angle region and emits the deflected light to a deflecting element exit angle region and a deflecting element exit surface region according to the projector light incident angle region, and the deflecting element exit surface region And a black matrix having a transmission surface area matched to the deflection element, and an incident allowable angle area matched to the deflection element emission angle area, and diffusing incident light from the deflection element emission angle area to the deflection element emission angle area. A projection display screen using a deflecting element, which is formed by laminating and arranging a diffusion film that emits light in the corresponding observation angle region.
[2] 前記ブラックマトリクスに代えて、又はこれと併せて、前記偏向素子のプロジェクタ光 入射側のプロジェクタ光入射部分以外の全部又は一部を覆う光吸収部材を配設した ことを特徴とする請求項 1記載のスクリーン。  [2] A light absorbing member that covers all or part of the deflection element other than the projector light incident portion on the projector light incident side is disposed instead of or in combination with the black matrix. Item 1. A screen according to item 1.
[3] 前記偏向素子は、プリズムの上面及び下面が共に単一の平面をなすプリズムァレ ィであることを特徴とする請求項 1又は 2に記載のスクリーン。 3. The screen according to claim 1, wherein the deflection element is a prism array in which an upper surface and a lower surface of the prism form a single plane.
[4] 前記偏向素子は、プリズムの上面及び下面の何れか一方又は両方が複数の平面 の繋ぎ合わせによって形成されたプリズムアレイであることを特徴とする請求項 1又は[4] The deflecting element is a prism array in which either one or both of an upper surface and a lower surface of a prism are formed by joining a plurality of planes.
2に記載のスクリーン。 2. The screen according to 2.
[5] 前記プリズムの下面がプロジェクタ光入射方向に垂直な単一の平面をなすことを特 徴とする請求項 3又は 4に記載のスクリーン。  5. The screen according to claim 3 or 4, wherein the lower surface of the prism forms a single plane perpendicular to the incident direction of the projector light.
[6] 前記プリズムアレイのプリズム同士が離間配置されたことを特徴とする請求項 3〜5 の何れかに記載のスクリーン。 6. The screen according to any one of claims 3 to 5, wherein the prisms of the prism array are spaced apart from each other.
[7] 前記偏向させてに代えて集光及び偏向させてとしたことを特徴とする請求項 1記載 のスクリーン。 7. The screen according to claim 1, wherein the screen is condensed and deflected instead of being deflected.
[8] 前記ブラックマトリクスに代えて、又はこれと併せて、前記偏向素子のプロジェクタ光 入射側のプロジェクタ光入射部分以外の全部又は一部を覆う光吸収部材を配設した ことを特徴とする請求項 7記載のスクリーン。  [8] A light absorbing member that covers all or part of the deflecting element other than the projector light incident portion on the projector light incident side is disposed instead of or in combination with the black matrix. Item 7. The screen according to item 7.
[9] 前記偏向素子は、プリズムの上面及び下面の何れか一方又は両方が曲面をなす プリズムアレイであることを特徴とする請求項 7又は 8に記載のスクリーン。  9. The screen according to claim 7, wherein the deflection element is a prism array in which either one or both of the upper surface and the lower surface of the prism form a curved surface.
[10] 前記プリズムの下面がプロジェクタ光入射方向に垂直な単一の平面をなすことを特 徴徴ととすするる請請求求項項 99記記載載ののススククリリーーンン。。 [10] The lower surface of the prism forms a single plane perpendicular to the incident direction of the projector light. The scukuleen as described in claim 99. .
[11] 前前記記ププリリズズムムのの上上面面がが、、断断面面形形状状がが 22次次曲曲線線形形状状ににななるる曲曲面面ををななすすここととをを特特徴徴ととすす るる請請求求項項 99又又はは 1100にに記記載載ののススククリリーーンン。。  [11] The upper surface of the above-mentioned pre-rismum is characterized by a curved surface in which the cross-sectional surface shape is a 22nd-order curved linear shape. Skeleton as described in claim 99 or 1100. .
[12] 前前記記ププリリズズムムアアレレイイののププリリズズムム同同士士がが離離間間配配置置さされれたたここととをを特特徴徴ととすするる請請求求項項 99〜〜11 11のの何何れれかかにに記記載載ののススククリリーーンン。。 [12] Claims 99 to 99 characterized in that the above-mentioned pre-listism of the above-mentioned pre-listism of the above-mentioned pre-listism is arranged at a distance from each other. ~ 11 11 Skukurien as described in any one of 11-11. .
[13] 前前記記ブブララッッククママトトリリククススのの厚厚ささがが 1100 mm以以上上ででああるるここととをを特特徴徴ととすするる請請求求項項 11〜〜1122のの 何何れれかかにに記記載載ののススククリリーーンン。。 [13] The claim according to claim 11 characterized in that the thickness of the black bear trimmer is above 1100 mm. ~ Skulleneen described in any one of ~ 1122. .
[14] 前前記記ブブララッッククママトトリリククススのの透透過過面面域域をを満満たたすす媒媒体体のの屈屈折折率率にに対対ししてて前前記記偏偏向向素素子子及及 びび前前記記拡拡散散フフィィルルムムのの何何れれかか一一方方又又はは両両方方のの屈屈折折率率ががママッッチチンンググさされれてていいるるここととをを 特特徴徴ととすするる請請求求項項 11〜〜1133のの何何れれかかにに記記載載ののススククリリーーンン。。 [14] In contrast to the refractive index ratio of the medium medium that fully fills the transmission / transmission surface area of the above-mentioned Brackack Kumamatotrix, The refractive index of one or both of the directional elements and the above-mentioned diffuse diffusion film is adjusted. Claim Skeleton as described in any one of Claims 11 to 1133, which is characterized as a special feature. .
[15] 前前記記拡拡散散フフィィルルムムはは、、屈屈折折率率がが互互いいにに異異ななるる層層状状又又はは線線状状構構造造をを内内包包しし、、特特定定のの 入入射射許許容容角角度度領領域域かかららのの入入射射光光をを特特定定のの拡拡散散角角度度領領域域にに出出射射ささせせるる拡拡散散フフィィルルムム ででああるるここととをを特特徴徴ととすするる請請求求項項 11〜〜1144のの何何れれかかにに記記載載ののススククリリーーンン。。  [15] The above-mentioned diffuse diffusion film includes a layered structure or a linear structure in which the refractive index is different from each other. The incident incident light from the specific incident allowable angle of incidence angle range area is emitted to the specific diffusion angle angle range area. A script as described in any one of claims 11 to 1144, characterized in that it is a feature of the diffusion and diffusion film that is to be diffused. Lean. .
[16] 更更にに前前記記拡拡散散フフィィルルムムのの出出射射側側表表面面にに偏偏光光子子又又はは円円偏偏光光子子がが配配置置さされれててななるる請請 求求項項 11〜〜1155のの何何れれかかにに記記載載ののススククリリーーンン。。  [16] Furthermore, polarized light photons or circularly polarized light photons are arranged on the surface of the outgoing and outgoing radiation side of the above-mentioned diffuse diffusion film. Claims described in any one of claims 11 to 1155. .
[17] 請請求求項項 11〜〜1166のの何何れれかかにに記記載載さされれたたススククリリーーンンにに組組みみ合合せせてて、、該該ススククリリーーンンにに対対しし ててププロロジジェェククタタ光光入入射射角角度度領領域域力力 ププロロジジェェククタタ光光をを入入射射ささせせるる投投射射光光学学系系をを有有すするる * [17] Combining the scukurinen described in any one of claims 11 to 1166 in combination with the sccrily Projection projection optics system that makes incident light incident on incident light incident angle angle range of light incident on the projector Have a system *
PCT/JP2006/309899 2005-05-20 2006-05-18 Projection display screen using deflection element and projection display system WO2006123727A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-148265 2005-05-20
JP2005148265A JP2006323284A (en) 2005-05-20 2005-05-20 Screen for projection display using deflection element and projection display system

Publications (1)

Publication Number Publication Date
WO2006123727A1 true WO2006123727A1 (en) 2006-11-23

Family

ID=37431299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309899 WO2006123727A1 (en) 2005-05-20 2006-05-18 Projection display screen using deflection element and projection display system

Country Status (3)

Country Link
JP (1) JP2006323284A (en)
TW (1) TW200710536A (en)
WO (1) WO2006123727A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113433693A (en) * 2021-06-16 2021-09-24 合肥疆程技术有限公司 Display system, vehicle-mounted head-up display and vehicle

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008191172A (en) * 2007-01-31 2008-08-21 Tohoku Univ Wide incident angle range lens sheet and rear projection display screen
JP5119680B2 (en) * 2007-02-21 2013-01-16 セイコーエプソン株式会社 Screen and projection system
JP5358280B2 (en) * 2009-05-12 2013-12-04 日立コンシューマエレクトロニクス株式会社 Projection board device and transmissive screen used therefor
TWI414673B (en) * 2009-12-08 2013-11-11 Ind Tech Res Inst Light guide microstructure plate, light guiding method, and application on window structure
JP5750355B2 (en) * 2011-10-17 2015-07-22 株式会社有沢製作所 Transmission screen and rear projection device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62249134A (en) * 1986-04-22 1987-10-30 Mitsubishi Rayon Co Ltd rear projection screen
JPS6330835A (en) * 1986-07-24 1988-02-09 Matsushita Electric Ind Co Ltd Transmission type screen
JPS6332528A (en) * 1986-07-25 1988-02-12 Matsushita Electric Ind Co Ltd Transmission type screen
JPS63139331A (en) * 1986-12-01 1988-06-11 Mitsubishi Rayon Co Ltd Rear projection screen
JPH032742A (en) * 1989-05-30 1991-01-09 Dainippon Printing Co Ltd Transmission type screen
JPH0627535A (en) * 1992-07-06 1994-02-04 Casio Comput Co Ltd Transmissive screen and rear projection display
JP2000180973A (en) * 1998-12-18 2000-06-30 Mitsubishi Rayon Co Ltd Transmission screen
JP2002090888A (en) * 2000-09-14 2002-03-27 Toppan Printing Co Ltd Rear projection display device
JP2002277963A (en) * 2001-03-21 2002-09-25 Mitsubishi Electric Corp Back projection screen
WO2004034145A1 (en) * 2002-10-11 2004-04-22 Tohoku Techno-Brains Corporation Screen for rear projection display
JP2004206037A (en) * 2002-10-31 2004-07-22 Dainippon Printing Co Ltd Fresnel lens sheet, transmissive screen and back projection display device
JP4073133B2 (en) * 1999-11-25 2008-04-09 株式会社前川製作所 Automatic creasing method and apparatus for deboning chicken thigh meat

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62249134A (en) * 1986-04-22 1987-10-30 Mitsubishi Rayon Co Ltd rear projection screen
JPS6330835A (en) * 1986-07-24 1988-02-09 Matsushita Electric Ind Co Ltd Transmission type screen
JPS6332528A (en) * 1986-07-25 1988-02-12 Matsushita Electric Ind Co Ltd Transmission type screen
JPS63139331A (en) * 1986-12-01 1988-06-11 Mitsubishi Rayon Co Ltd Rear projection screen
JPH032742A (en) * 1989-05-30 1991-01-09 Dainippon Printing Co Ltd Transmission type screen
JPH0627535A (en) * 1992-07-06 1994-02-04 Casio Comput Co Ltd Transmissive screen and rear projection display
JP2000180973A (en) * 1998-12-18 2000-06-30 Mitsubishi Rayon Co Ltd Transmission screen
JP4073133B2 (en) * 1999-11-25 2008-04-09 株式会社前川製作所 Automatic creasing method and apparatus for deboning chicken thigh meat
JP2002090888A (en) * 2000-09-14 2002-03-27 Toppan Printing Co Ltd Rear projection display device
JP2002277963A (en) * 2001-03-21 2002-09-25 Mitsubishi Electric Corp Back projection screen
WO2004034145A1 (en) * 2002-10-11 2004-04-22 Tohoku Techno-Brains Corporation Screen for rear projection display
JP2004206037A (en) * 2002-10-31 2004-07-22 Dainippon Printing Co Ltd Fresnel lens sheet, transmissive screen and back projection display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113433693A (en) * 2021-06-16 2021-09-24 合肥疆程技术有限公司 Display system, vehicle-mounted head-up display and vehicle

Also Published As

Publication number Publication date
TW200710536A (en) 2007-03-16
JP2006323284A (en) 2006-11-30

Similar Documents

Publication Publication Date Title
US6728032B2 (en) Rear projection display system
JP2888602B2 (en) A device that introduces a collimated image into the observer's field of view
JP2019101055A (en) Aerial video display device
EP1731943B1 (en) Optical device and virtual image display device
US9618744B2 (en) Optical device and virtual image display apparatus
TWI243609B (en) Screen
US10078222B2 (en) Light guide device and virtual-image display device
US9354500B2 (en) Screen for reflective projector
US20060092513A1 (en) Polarizing beam splitter and display including the same
CN110161758B (en) Light conversion structure, backlight module and virtual reality display device
WO2006123727A1 (en) Projection display screen using deflection element and projection display system
TW523609B (en) Illumination optical system and projector using the same
CN115997157A (en) Space suspended image information display system and light source device used therein
CN100593325C (en) Compound optics and projection optics
JP2005010545A (en) Transmission screen and rear projection image display device using the same
JP4747408B2 (en) Screen and 3D display system using it
US20090086167A1 (en) Projection type image displaying apparatus
JP4041397B2 (en) Image display device
CA2470138C (en) Projector screen for image projection
JP2014052555A (en) Reflective screen and stereoscopic video image display system
CN100372384C (en) Holographic screen projection televisions with optical correction
JP5397912B2 (en) Reflective recursive front screen and reflective stereoscopic display screen
CN116149065A (en) Optical module and wearable equipment
CN211905753U (en) Optical lens
JPH10221642A (en) Image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06746587

Country of ref document: EP

Kind code of ref document: A1