[go: up one dir, main page]

WO2005107806A1 - Compositions for affecting weight loss - Google Patents

Compositions for affecting weight loss Download PDF

Info

Publication number
WO2005107806A1
WO2005107806A1 PCT/US2005/013193 US2005013193W WO2005107806A1 WO 2005107806 A1 WO2005107806 A1 WO 2005107806A1 US 2005013193 W US2005013193 W US 2005013193W WO 2005107806 A1 WO2005107806 A1 WO 2005107806A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
individual
opioid
antagonist
composition
Prior art date
Application number
PCT/US2005/013193
Other languages
French (fr)
Inventor
Eckard Weber
Michael Alexander Cowley
Original Assignee
Orexigen Therapeutics, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orexigen Therapeutics, Inc. filed Critical Orexigen Therapeutics, Inc.
Publication of WO2005107806A1 publication Critical patent/WO2005107806A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • A61K31/4523Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
    • A61K31/454Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. pimozide, domperidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/485Morphinan derivatives, e.g. morphine, codeine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/53771,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents

Definitions

  • Obesity is a disorder characterized by the accumulation of excess fat in the body. Obesity has been recognized as one of the leading causes of disease and is emerging as a global problem. Increased instances of complications such as hypertension, non-insulin dependent diabetes mellitus, arteriosclerosis, dyslipidemia, certain forms of cancer, sleep apnea, and osteoarthritis have been related to increased instances of obesity in the general population. [0004] Obesity has been defined in terms of body mass index (BMI). BMI is calculated as weight (kg)/ [height (m)] 2 . According to the guidelines of the U.S. Centers for Disease Control and Prevention (CDC), and the World Health Organization (WHO) (World Health Organization.
  • BMI body mass index
  • compositions for affecting weight loss comprising a first compound and a second compound, where the first compound is an opioid antagonist and the second compound is a cannabinoid receptor antagonist.
  • the present invention is directed to a composition for the treatment of obesity or for affecting weight loss comprising a first compound and a second compound, where the first compound is an opioid antagonist and the second compound is a cannabinoid receptor antagonist.
  • the opioid antagonist antagonizes a ⁇ -opioid receptor (MOP-R) in a mammal.
  • the mammal may be selected from the group consisting of mice, rats, rabbits, guinea pigs, dogs, cats, sheep, goats, cows, primates, such as monkeys, chimpanzees, and apes, and humans.
  • the opioid antagonist is selected from the group consisting of alvimopan, norbinalto himine, nalmefene, naloxone, naltrexone, methylnaltrexone, and nalorphine, and pharmaceutically acceptable salts or prodrugs thereof.
  • the opioid antagonist is a partial opioid agonist. Compounds of this class have some agonist activity at opioid receptors. However, because they are weak agonists, they function as de-facto antagonists. Examples of partial opioid agonists include pentacozine, buprenorphine, nalorphine, propiram, and lofexidine.
  • pharmaceutically acceptable salt refers to a formulation of a compound that does not cause significant irritation to an organism to which it is administered and does not abrogate the biological activity and properties of the compound.
  • Pharmaceutical salts can be obtained by reacting a compound of the invention with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid and the like.
  • Pharmaceutical salts can also be obtained by reacting a compound of the invention with a base to form a salt such as an ammonium salt, an alkali metal salt, such as a sodium or a potassium salt, an alkaline earth metal salt, such as a calcium or a magnesium salt, a salt of organic bases such as dicyclohexylamine, N-methyl- D-glucamine, tris(hydroxymethyl) methylamine, and salts thereof with amino acids such as arginine, lysine, and the like.
  • a "prodrug” refers to an agent that is converted into the parent drug in vivo. Prodrugs are often useful because, in some situations, they may be easier to administer than the parent drug.
  • prodrug may, for instance, be bioavailable by oral administration whereas the parent is not.
  • the prodrug may also have improved solubility in pharmaceutical compositions over the parent drug, or may demonstrate increased palatability or be easier to formulate.
  • An example, without limitation, of a prodrug would be a compound of the present invention which is administered as an ester (the "prodrug") to facilitate transmittal across a cell membrane where water solubility is detrimental to mobility but which then is metabolically hydrolyzed to the carboxylic acid, the active entity, once inside the cell where water-solubility is beneficial.
  • a further example of a prodrug might be a short peptide (polyaminoacid) bonded to an acid group where the peptide is metabolized to provide the active moiety.
  • the second compound is a cannabinoid receptor antagonist.
  • this group of compounds include AM251 [N-(piperidin-l-yl)-l- (2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-lH-pyrazole-3-carboxamide], AM281 [N- (morpholin-l-yl)-l-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-lH-pyrazole-3- carboxamide], AM630 (6-iodo-2-methyl-l-[2-(4-morpholinyl)ethyl]-lH-indol-3-yl](4- methoxyphenyl)methanone), LY320135, and SR141716A (rimonabant), and pharmaceutically acceptable salts or prodrugs thereof.
  • LY320135 and SR141716A have the following structures.
  • the present invention relates to a method of affecting weight loss, comprising identifying an individual in need thereof and treating that individual to antagonize opioid receptor activity and antagonize cannabanoid receptor activity.
  • the individual has a body mass index (BMI) greater than 25.
  • BMI body mass index
  • the individual has a BMI greater than 30.
  • the individual has a BMI greater than 40.
  • the individual may have a BMI less than 25. In these embodiments, it may be beneficial for health or cosmetic purposes to affect weight loss, thereby reducing the BMI even further.
  • opioid receptor activity is antagonized by administering an opioid receptor antagonist.
  • the opioid receptor antagonist may be a MOP receptor antagonist.
  • the opioid receptor antagonist is selected from alvimopan, norbinalto ⁇ himine, nalmefene, naloxone, naltrexone, methylnaltrexone, and nalorphine, and pharmaceutically acceptable salts or prodrugs thereof.
  • the cannabinoid receptor activity is antagonized by administering a cannabinoid receptor antagonist, as described herein.
  • the treating step of the above method comprises administering to the individual a first compound and a second compound, where the first compound is an opioid antagonist and the second compound is a cannabinoid receptor antagonist.
  • the first compound and the second compound are administered more or less simultaneously, h other embodiments the first compound is administered prior to the second compound. In yet other embodiments, the first compound is administered subsequent to the second compound. [0021] In certain embodiments, the first compound and the second compound are administered individually. In other embodiments, the first compound and the second compound are covalently linked to each other such that they form a single chemical entity. The single chemical entity is then digested and is metabolized into two separate physiologically active chemical entities, one of which is the first compound and the other one is the second compound.
  • the present invention relates to a method of increasing satiety in an individual comprising identifying an individual in need thereof and treating that individual to antagonize opioid receptor activity and to antagonize cannabinoid receptor activity.
  • the treating step of the above method comprises administering to the individual a first compound and a second compound, where the first compound is an opioid antagonist and the second compound is a cannabinoid receptor antagonist.
  • the first compound and the second compound are administered nearly simultaneously.
  • the first compound is administered prior to the second compound.
  • the first compound is administered subsequent to the second compound.
  • the present invention relates to a method of suppressing the appetite of an individual comprising identifying an individual in need thereof and treating that individual to antagonize opioid receptor activity and to antagonize cannabinoid receptor activity.
  • the treating step of the above method comprises administering to the individual a first compound and a second compound, where the first compound is an opioid antagonist and the second compound is a cannabinoid receptor antagonist.
  • the first compound and the second compound are administered nearly simultaneously.
  • the first compound is administered prior to the second compound.
  • the first compound is administered subsequent to the second compound.
  • the present invention relates to a method of increasing energy expenditure in an individual comprising identifying an individual in need thereof and treating that individual to antagonize opioid receptor activity and to antagonize cannabinoid receptor activity.
  • the treating step of the above method comprises administering to the individual a first compound and a second compound, where the first compound is an opioid antagonist and the second compound is a cannabinoid receptor antagonist.
  • the first compound and the second compound are administered nearly simultaneously.
  • the first compound is administered prior to the second compound.
  • the first compound is administered subsequent to the second compound.
  • an individual is given a pharmaceutical composition comprising a combination of two or more compounds to affect weight loss.
  • each compound is a separate chemical entity.
  • the two compounds are joined together by a chemical linkage, such as a covalent bond, so that the two different compounds form separate parts of the same molecule.
  • the chemical linkage is selected such that after entry into the body, the linkage is broken, such as by enzymatic action, acid hydrolysis, base hydrolysis, or the like, and the two separate compounds are then formed.
  • the invention in another aspect, relates to a pharmaceutical composition
  • a pharmaceutical composition comprising a combination of an opioid antagonist and a cannabinoid receptor antagonist, as described above, or comprising a linked molecule, as described herein, and a physiologically acceptable carrier, diluent, or excipient, or a combination thereof.
  • pharmaceutical composition refers to a mixture of a compound of the invention with other chemical components, such as diluents or carriers.
  • the pharmaceutical composition facilitates administration of the compound to an organism. Multiple techniques of administering a compound exist in the art including, but not limited to, oral, injection, aerosol, parenteral, and topical administration.
  • compositions can also be obtained by reacting compounds with inorganic or organic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid and the like.
  • carrier defines a chemical compound that facilitates the incorporation of a compound into cells or tissues.
  • DMSO dimethyl sulfoxide
  • DMSO dimethyl sulfoxide
  • the term "diluent” defines chemical compounds diluted in water that will dissolve the compound of interest as well as stabilize the biologically active form of the compound. Salts dissolved in buffered solutions are utilized as diluents in the art. One commonly used buffered solution is phosphate buffered saline because it mimics the salt conditions of human blood. Since buffer salts can control the pH of a solution at low concentrations, a buffered diluent rarely modifies the biological activity of a compound. [0036] The term "physiologically acceptable” defines a carrier or diluent that does not abrogate the biological activity and properties of the compound.
  • compositions described herein can be administered to a human patient per se, or in pharmaceutical compositions where they are mixed with other active ingredients, as in combination therapy, or suitable carriers or excipient(s).
  • suitable routes of administration may, for example, include oral, rectal, transmucosal, or intestinal administration; parenteral delivery, including intramuscular, subcutaneous, intravenous, intramedullary injections, as well as intrathecal, direct intraventricular, intraperitoneal, intranasal, or intraocular injections.
  • compositions of the present invention may be manufactured in a manner that is itself known, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or tabletting processes.
  • compositions for use in accordance with the present invention thus may be formulated in conventional manner using one or more physiologically acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. Proper formulation is dependent upon the route of administration chosen. Any of the well- known techniques, carriers, and excipients may be used as suitable and as understood in the art; e.g., in Remington's Pharmaceutical Sciences, above.
  • the agents of the invention may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks' s solution, Ringer's solution, or physiological saline buffer.
  • penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.
  • the compounds can be formulated readily by combining the active compounds with pharmaceutically acceptable carriers well known in the art. Such carriers enable the compounds of the invention to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions and the like, for oral ingestion by a patient to be treated.
  • compositions for oral use can be obtained by mixing one or more solid excipient with pharmaceutical combination of the invention, optionally grinding the resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores.
  • suitable excipients are, in particular, fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol; cellulose preparations such as, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl-cellulose, sodium carboxymethylcellulose, and/or polyvinylpyrrolidone (PNP).
  • fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol
  • cellulose preparations such as, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxy
  • disintegrating agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate.
  • Dragee cores are provided with suitable coatings.
  • suitable coatings may be used, which may optionally contain gum arabic, talc, polyvinyl pyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures.
  • Dyestuffs or pigments may be added to the tablets or dragee coatings for identification or to characterize different combinations of active compound doses.
  • compositions which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol.
  • the push-fit capsules can contain the active ingredients in admixture with filler such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers.
  • the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols.
  • stabilizers may be added. All formulations for oral administration should be in dosages suitable for such administration.
  • compositions may take the form of tablets or lozenges formulated in conventional manner.
  • the compounds for use according to the present invention are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebulizer, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas.
  • a suitable propellant e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas.
  • the dosage unit may be determined by providing a valve to deliver a metered amount.
  • Capsules and cartridges of, e.g., gelatin for use in an inhaler or insufflator may be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch.
  • the compounds may be formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion.
  • Formulations for injection may be presented in unit dosage form, e.g., in ampoules or in multi-dose containers, with an added preservative.
  • the compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents.
  • compositions for parenteral administration include aqueous solutions of the active compounds in water-soluble form. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Optionally, the suspension may also contain suitable stabilizers or agents which increase the solubility of the compounds to allow for the preparation of highly concentrated solutions.
  • the active ingredient may be in powder form for constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before use.
  • a suitable vehicle e.g., sterile pyrogen-free water
  • the compounds may also be formulated in rectal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter or other glycerides.
  • the compounds may also be formulated as a depot preparation. Such long acting formulations may be administered by implantation (for example subcutaneously or intramuscularly) or by intramuscular injection.
  • the compounds may be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.
  • a pharmaceutical carrier for the hydrophobic compounds of the invention is a cosolvent system comprising benzyl alcohol, a nonpolar surfactant, a water- miscible organic polymer, and an aqueous phase.
  • VPD co-solvent system is a solution of 3% w/v benzyl alcohol, 8% w/v of the nonpolar surfactant Polysorbate 80TM , and 65% w/v polyethylene glycol 300, made up to volume in absolute ethanol.
  • VPD co-solvent system is a solution of 3% w/v benzyl alcohol, 8% w/v of the nonpolar surfactant Polysorbate 80TM , and 65% w/v polyethylene glycol 300, made up to volume in absolute ethanol.
  • proportions of a co-solvent system may be varied considerably without destroying its solubility and toxicity characteristics.
  • co-solvent components may be varied: for example, other low-toxicity nonpolar surfactants may be used instead of POLYSORBATE 80TM; the fraction size of polyethylene glycol may be varied; other biocompatible polymers may replace polyethylene glycol, e.g., polyvinyl pyrrolidone; and other sugars or polysaccharides may substitute for dextrose.
  • other delivery systems for hydrophobic pharmaceutical compounds may be employed. Liposomes and emulsions are well known examples of delivery vehicles or carriers for hydrophobic drugs. Certain organic solvents such as dimethylsulfoxide also may be employed, although usually at the cost of greater toxicity.
  • the compounds may be delivered using a sustained-release system, such as semipermeable matrices of solid hydrophobic polymers containing the therapeutic agent.
  • sustained-release materials have been established and are well known by those skilled in the art.
  • Sustained-release capsules may, depending on their chemical nature, release the compounds for a few weeks up to over 100 days.
  • additional strategies for protein stabilization may be employed.
  • Many of the compounds used in the pharmaceutical combinations of the invention may be provided as salts with pharmaceutically compatible counterions.
  • Pharmaceutically compatible salts may be formed with many acids, including but not limited to hydrochloric, sulfuric, acetic, lactic, tartaric, malic, succinic, etc.
  • compositions suitable for use in the present invention include compositions where the active ingredients are contained in an amount effective to achieve its intended purpose. More specifically, a therapeutically effective amount means an amount of compound effective to prevent, alleviate or ameliorate symptoms of disease or prolong the survival of the subject being treated. Determination of a therapeutically effective amount is well within the capability of those skilled in the art, especially in light of the detailed disclosure provided herein.
  • the exact formulation, route of administration and dosage for the pharmaceutical compositions of the present invention can be chosen by the individual physician in view of the patient's condition. (See e.g., Fingl et al.
  • the dose range of the composition administered to the patient can be from about 0.5 to 1000 mg/kg of the patient's body weight.
  • the dosage may be a single one or a series of two or more given in the course of one or more days, as is needed by the patient.
  • human dosages for treatment of at least some condition have been established.
  • the present invention will use those same dosages, or dosages that are between about 0.1% and 500%, more preferably between about 25% and 250% of the established human dosage.
  • a suitable human dosage can be inferred from ED 5 o or ID 5 o values, or other appropriate values derived from in vitro or in vivo studies, as qualified by toxicity studies and efficacy studies in animals.
  • the daily dosage regimen for an adult human patient may be, for example, an oral dose of between 0.1 mg and 500 mg of each ingredient, preferably between 1 mg and 250 mg, e.g.
  • compositions of the invention may be administered by continuous intravenous infusion, preferably at a dose of each ingredient up to 400 mg per day.
  • the total daily dosage by oral administration of each ingredient will typically be in the range 1 to 2000 mg and the total daily dosage by parenteral administration will typically be in the range 0.1 to 400 mg.
  • the compounds will be administered for a period of continuous therapy, for example for a week or more, or for months or years.
  • Dosage amount and interval may be adjusted individually to provide plasma levels of the active moiety which are sufficient to maintain the modulating effects, or minimal effective concentration (MEC).
  • MEC minimal effective concentration
  • the MEC will vary for each compound but can be estimated from in vitro data. Dosages necessary to achieve the MEC will depend on individual characteristics and route of administration. However, HPLC assays or bioassays can be used to determine plasma concentrations.
  • Dosage intervals can also be determined using MEC value. Compositions should be administered using a regimen which maintains plasma levels above the MEC for 10-90% of the time, preferably between 30-90% and most preferably between 50-90%.
  • compositions may, if desired, be presented in a pack or dispenser device which may contain one or more unit dosage forms containing the active ingredient.
  • the pack may for example comprise metal or plastic foil, such as a blister pack.
  • the pack or dispenser device may be accompanied by instructions for administration.
  • the pack or dispenser may also be accompanied with a notice associated with the container in form prescribed by a governmental agency regulating the manufacture, use, or sale of pharmaceuticals, which notice is reflective of approval by the agency of the form of the drug for human or veterinary administration.
  • a notice associated with the container in form prescribed by a governmental agency regulating the manufacture, use, or sale of pharmaceuticals which notice is reflective of approval by the agency of the form of the drug for human or veterinary administration.
  • Such notice may be the labeling approved by the U.S. Food and Drug Administration for prescription drugs, or the approved product insert.
  • Compositions comprising a compound of the invention formulated in a compatible pharmaceutical carrier may also be prepared, placed in an appropriate container, and labeled for treatment of an indicated condition.
  • the invention relates to a composition for affecting weight loss comprising a first compound and a second compound, wherein said first compound is an opioid antagonist and said second compound is a cannabinoid receptor antagonist.
  • the invention relates to the composition of the first embodiment, wherein said opioid antagonist antagonizes an opioid receptor in a mammal.
  • the invention relates to the composition of the second embodiment, wherein said opioid receptor is selected from a ⁇ -opioid receptor (MOP-R), a ⁇ -opioid receptor, and a ⁇ -opioid receptor.
  • said opioid antagonist antagonizes a ⁇ -opioid receptor (MOP- R) in a mammal.
  • the invention relates to the composition of the first embodiment, wherein said opioid antagonist is selected from the group consisting of alvimopan, norbinaltorphimine, nalmefene, naloxone, naltrexone, methylnaltrexone, and nalorphine, and pharmaceutically acceptable salts or prodrugs thereof.
  • said opioid antagonist is a partial opioid agonist.
  • the invention relates to the composition of the sixth embodiment, wherein said partial opioid agonist is selected from the group consisting of pentacozine, buprenorphine, nalorphine, propiram, and lofexidine.
  • the invention relates to the composition of the first embodiment, wherein said second compound is selected from the group consisting of AM251 [N-(piperidin-l-yl)-l-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-lH- pyrazole-3-carboxamide] , AM281 [N-(morpholin- 1 -yl)- 1 -(2,4-dichlorophenyl)-5-(4- iodophenyl)-4-methyl-lH-pyrazole-3-carboxamide], AM630 (6-iodo-2-methyl-l-[2-(4- morpholinyl)ethyl]-lH-indol-3-yl](4-methoxyphenyl)methanone), LY320135, and SR141716A (rimonabant), and pharmaceutically acceptable salts or prodrugs thereof.
  • AM251 N-(piperidin-l-yl
  • the invention relates to the composition of the first embodiment, wherein said first compound is naltrexone and said second compound is AM251.
  • the invention relates to the composition of the first embodiment, wherein said first compound is naloxone and said second compound is AM251.
  • the invention relates to the composition of the first embodiment, wherein said first compound is nalmefene and said second compound is AM251.
  • the invention relates to the composition of the eleventh embodiment, wherein the naltrexone is in a time-release formulation.
  • the invention in the thirteenth embodiment, relates to a method of affecting weight loss, comprising identifying an individual in need thereof and treating that individual to antagonize opioid receptor activity and to antagonize cannabinoid receptor activity. [0079] In the fourteenth embodiment, the invention relates to the method of the thirteenth embodiment, wherein said individual has a body mass index greater than 25. [0080] In the fifteenth embodiment, the invention relates to the method of the thirteenth embodiment, wherein opioid receptor activity is antagonized by administering an opioid receptor antagonist. [0081] In the sixteenth embodiment, the invention relates to the method of the fifteenth embodiment, wherein the opioid receptor antagonist is a MOP receptor antagonist.
  • the invention relates to the method of the thirteenth embodiment, wherein the opioid receptor antagonist is selected from alvimopan, norbinaltorphimine, nalmefene, naloxone, naltrexone, methylnaltrexone, and nalorphine, and pharmaceutically acceptable salts or prodrugs thereof.
  • the opioid receptor antagonist is selected from alvimopan, norbinaltorphimine, nalmefene, naloxone, naltrexone, methylnaltrexone, and nalorphine, and pharmaceutically acceptable salts or prodrugs thereof.
  • said opioid receptor antagonist is a partial opioid agonist.
  • the invention relates to the method of the eighteenth embodiment, wherein said partial opioid agonist is selected from the group consisting of pentacozine, buprenorphine, nalorphine, propiram, and lofexidine.
  • the invention relates to the method of the thirteenth embodiment through the forty fifth embodiment, wherein cannabinoid receptor activity is antagonized by administering a compound selected from the group consisting of AM251 [N-(piperidin-l-yl)-l-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-lH- pyrazole-3-carboxamide], AM281 [N-(morpholin-l-yl)-l-(2,4-dichlorophenyl)-5-(4- iodophenyl)-4-methyl- 1 H-pyrazole-3 -carboxamide] , AM630 (6-iodo-2-methyl- 1 - [2-(4- morpholinyl)ethyl]- lH-indol-3-yl] (4-methoxyphenyl)methanone), LY320135, and SR141716A (rimonabant),
  • the invention relates to the method of the thirteenth embodiment, wherein said first compound and said second compound are administered nearly simultaneously.
  • the invention relates to the method of the twenty first embodiment, wherein said first compound is administered prior to said second compound.
  • the invention relates to the method of the twenty second embodiment, wherein said first compound is administered subsequent to said second compound.
  • the invention relates to a method of increasing satiety in an individual comprising identifying an individual in need thereof and treating that individual to antagonize opioid receptor activity and to antagonize cannabinoid receptor activity.
  • the invention relates to the method of the twenty fourth embodiment, wherein said treating step comprises administering to said individual a first compound and a second compound, wherein said first compound is an opioid antagonist and said second compound is a cannabinoid receptor antagonist.
  • said treating step comprises administering to said individual a first compound and a second compound, wherein said first compound is an opioid antagonist and said second compound is a cannabinoid receptor antagonist.
  • the invention relates to the method of the twenty fifth embodiment, wherein said first compound and said second compound are administered nearly simultaneously.
  • the invention relates to the method of the twenty fifth embodiment, wherein said first compound is administered prior to said second compound.
  • the invention relates to the method of the twenty fifth embodiment, wherein said first compound is administered subsequent to said second compound.
  • the invention relates to a method of increasing energy expenditure in an individual comprising identifying an individual in need thereof and treating that individual to antagonize opioid receptor activity and to antagonize cannabinoid receptor activity.
  • the invention relates to the method of the twenty ninth embodiment, wherein said treating step comprises administering to said individual a first compound and a second compound, wherein said first compound is an opioid antagonist and said second compound is a cannabinoid receptor antagonist.
  • said invention relates to the method of the thirtieth embodiment, wherein said first compound and said second compound are administered nearly simultaneously.
  • the invention relates to the method of the thirtieth embodiment, wherein said first compound is administered prior to said second compound.
  • the invention relates to the method of the thirtieth embodiment, wherein said first compound is administered subsequent to said second compound.
  • the invention relates to a method of suppressing the appetite of an individual comprising identifying an individual in need thereof and treating that individual to antagonize opioid receptor activity and to antagonize cannabinoid receptor activity.
  • the invention relates to the method of the thirty fifth embodiment, wherein said treating step comprises administering to said individual a first compound and a second compound, wherein said first compound is an opioid antagonist and said second compound is a cannabinoid receptor antagonist.
  • said treating step comprises administering to said individual a first compound and a second compound, wherein said first compound is an opioid antagonist and said second compound is a cannabinoid receptor antagonist.
  • the invention relates to the method of the thirty sixth embodiment, wherein said first compound and said second compound are administered nearly simultaneously.
  • the invention relates to the method of the thirty sixth embodiment, wherein said first compound is administered prior to said second compound.
  • the invention relates to the method of the thirty sixth embodiment, wherein said first compound is administered subsequent to said second compound.
  • the invention relates to a method of affecting weight loss in an individual comprising identifying an individual in need thereof and treating that individual with a combination of naltrexone and AM251.
  • the invention relates to the method of the fortieth embodiment, wherein the individual has a BMI greater than 30.
  • the invention relates to the method of the fortieth embodiment, wherein the individual has a BMI greater than 25.
  • the invention relates to the method of the fortieth embodiment, wherein the naltrexone is in a time-release formulation.
  • the invention relates to the method of the forty third embodiment, wherein the plasma concentration level of both naltrexone and AM251 follow a similar concentration profile.
  • the invention relates to the method of the forty third embodiment, wherein the naltrexone and the AM251 are administered substantially simultaneously.
  • the invention relates to the method of the forty third embodiment, wherein the naltrexone is administered prior to the AM251.
  • the invention relates to the method of the forty third embodiment, wherein the naltrexone is administered subsequent to the AM251. Examples [0112]
  • the examples below are non-limiting and are merely representative of various aspects of the invention.
  • Example 1 Combination of AM251 and naltrexone: [0113] Individuals having a BMI of greater than 25 are identified. Each individual is instructed to take one 20 mg tablet of AM251 on a daily basis, in addition to one 50 mg tablet of naltrexone on a daily basis. [0114] The individuals are monitored for a period of months. It is recommended that the dosage be adjusted so that each individual loses weight at a rate of 10%» of initial weight every 6 months. However, the rate of weigh loss for each individual may be adjusted by the treating physician based on the individual's particular needs. [0115] If the initial dosage is not effective, then the AM251 dosage can be increased by 20 mg per day, though never exceeding 80 mg total per day.
  • the dosage of each of AM251 or naltrexone can be reduced.
  • Naltrexone may also be in a time-release formulation where the dose is administered once a day, but naltrexone gradually enters the blood stream throughout the day, or in the course of a 12 hour period.
  • Example 2 Combination of AM251 and nalmefene: [0117] Individuals having a BMI of greater than 25 are identified. Each individual is instructed to take one 20 mg tablet of AM251 on a daily basis. In addition, each individual is injected with 1 mL of a solution of 100 ⁇ g of nalmefene in 1 mL of saline, intravenously, intramuscularly, or subcutaneously. [0118] The individuals are monitored for a period of months. It is recommended that the dosage be adjusted so that each individual loses weight at a rate of 10% of initial weight every 6 months. However, the rate of weigh loss for each individual may be adjusted by the treating physician based on the individual's particular needs.
  • the AM251 dosage can be increased by 20 mg per day, though never exceeding 80 mg total per day.
  • the dosage of nalmefene may be increased up to 2 mL of a solution of 1 mg of nalmefene in 1 mL of saline. If the initial dosage results in a more rapid weight loss than the above rate, the dosage of each of AM251 or nalmefene can be reduced.
  • Example 3 Combination of AM251 and naloxone:
  • Individuals having a BMI of greater than 25 are identified. Each individual is instructed to take one 20 mg tablet of AM251 on a daily basis. In addition, each individual is injected with 1 mL of a solution of 400 ⁇ g of naloxone in 1 mL of saline, intravenously, intramuscularly, or subcutaneously.
  • the individuals are monitored for a period of months. It is recommended that the dosage be adjusted so that each individual loses weight at a rate of 10% of initial weight every 6 months. However, the rate of weigh loss for each individual may be adjusted by the treating physician based on the individual's particular needs.
  • the AM251 dosage can be increased by 20 mg per day, though never exceeding 80 mg total per day. If the initial dosage results in a more rapid weight loss than the above rate, the dosage of each of AM251 or nalmefene can be reduced.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Emergency Medicine (AREA)
  • Child & Adolescent Psychology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Disclosed are compositions for affecting weight loss comprising a first compound and a second compound, where the first compound is an opioid antagonist and the second compound is a cannabinoid receptor antagonist. Also disclosed are methods of affecting weight loss, increasing energy expenditure, increasing satiety in an individual, or suppressing the appetite of an individual, comprising identifying an individual in need thereof and treating that individual to antagonize opioid receptor activity and to antagonize cannabinoid receptor activity.

Description

COMPOSITIONS FOR AFFECTING WEIGHT LOSS
Related Applications [0001] This application claims priority to U.S. provisional Patent Application No. 60/564,001, entitled "COMPOSITIONS FOR AFFECTING WEIGHT LOSS," filed on April 21, 2004, and hereby incorporated by reference in its entirety. Background of the Invention Field of the Invention [0002] The present invention is in the field of pharmaceutical compositions and methods for the treatment of obesity and for affecting weight loss in individuals.
Description of the Related Art [0003] Obesity is a disorder characterized by the accumulation of excess fat in the body. Obesity has been recognized as one of the leading causes of disease and is emerging as a global problem. Increased instances of complications such as hypertension, non-insulin dependent diabetes mellitus, arteriosclerosis, dyslipidemia, certain forms of cancer, sleep apnea, and osteoarthritis have been related to increased instances of obesity in the general population. [0004] Obesity has been defined in terms of body mass index (BMI). BMI is calculated as weight (kg)/ [height (m)]2. According to the guidelines of the U.S. Centers for Disease Control and Prevention (CDC), and the World Health Organization (WHO) (World Health Organization. Physical status: The use and interpretation of anthropometry. Geneva, Switzerland: World Health Organization 1995. WHO Technical Report Series), for adults over 20 years old, BMI falls into one of these categories: below 18.5 is considered underweight, 18.5 - 24.9 is considered normal, 25.0 - 29.9 is considered overweight, and 30.0 and above is considered obese. [0005] Prior to 1994, obesity was generally considered a psychological problem. The discovery of the adipostatic hormone leptin in 1994 (Zhang et al., "Positional cloning of the mouse obese gene and its human homologue," Nature 1994; 372:425-432) brought forth the realization that, in certain cases, obesity may have a biochemical basis. A corollary to this realization was the idea that the treatment of obesity may be achieved by chemical approaches. Since then, a number of such chemical treatments have entered the market. The most famous of these attempts was the introduction of Fen-Phen, a combination of fenfluramine and phentermine. Unfortunately, it was discovered that fenfluramine caused heart-valve complications, which in some cases resulted in the death of the user. Fenfluramine has since been withdrawn from the market. There has been some limited success with other combination therapy approaches, particularly in the field of psychological eating disorders. One such example is Devlin, et al., Int. J. Eating Disord. 28:325-332, 2000, in which a combination of phentermine and fluoxetine showed some efficacy in the treatment of binge eating disorders. Of course, this disorder is an issue for only a small portion of the population. [0006] In addition to those individuals who satisfy a strict definition of medical obesity, a significant portion of the adult population is overweight. These overweight individuals would also benefit from the availability of an effective weight-loss composition. Therefore, there is an unmet need in the art to provide pharmaceutical compositions that can affect weight loss without having other adverse side effects.
Summary of the Invention [0007] Disclosed are compositions for affecting weight loss comprising a first compound and a second compound, where the first compound is an opioid antagonist and the second compound is a cannabinoid receptor antagonist.
Detailed Description of the Preferred Embodiment [0008] In a first aspect, the present invention is directed to a composition for the treatment of obesity or for affecting weight loss comprising a first compound and a second compound, where the first compound is an opioid antagonist and the second compound is a cannabinoid receptor antagonist. [0009] In certain embodiments the opioid antagonist antagonizes a μ-opioid receptor (MOP-R) in a mammal. The mammal may be selected from the group consisting of mice, rats, rabbits, guinea pigs, dogs, cats, sheep, goats, cows, primates, such as monkeys, chimpanzees, and apes, and humans. [0010] In some embodiments the opioid antagonist is selected from the group consisting of alvimopan, norbinalto himine, nalmefene, naloxone, naltrexone, methylnaltrexone, and nalorphine, and pharmaceutically acceptable salts or prodrugs thereof. [0011] In other embodiments, the opioid antagonist is a partial opioid agonist. Compounds of this class have some agonist activity at opioid receptors. However, because they are weak agonists, they function as de-facto antagonists. Examples of partial opioid agonists include pentacozine, buprenorphine, nalorphine, propiram, and lofexidine. [0012] The term "pharmaceutically acceptable salt" refers to a formulation of a compound that does not cause significant irritation to an organism to which it is administered and does not abrogate the biological activity and properties of the compound. Pharmaceutical salts can be obtained by reacting a compound of the invention with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid and the like. Pharmaceutical salts can also be obtained by reacting a compound of the invention with a base to form a salt such as an ammonium salt, an alkali metal salt, such as a sodium or a potassium salt, an alkaline earth metal salt, such as a calcium or a magnesium salt, a salt of organic bases such as dicyclohexylamine, N-methyl- D-glucamine, tris(hydroxymethyl) methylamine, and salts thereof with amino acids such as arginine, lysine, and the like. [0013] A "prodrug" refers to an agent that is converted into the parent drug in vivo. Prodrugs are often useful because, in some situations, they may be easier to administer than the parent drug. They may, for instance, be bioavailable by oral administration whereas the parent is not. The prodrug may also have improved solubility in pharmaceutical compositions over the parent drug, or may demonstrate increased palatability or be easier to formulate. An example, without limitation, of a prodrug would be a compound of the present invention which is administered as an ester (the "prodrug") to facilitate transmittal across a cell membrane where water solubility is detrimental to mobility but which then is metabolically hydrolyzed to the carboxylic acid, the active entity, once inside the cell where water-solubility is beneficial. A further example of a prodrug might be a short peptide (polyaminoacid) bonded to an acid group where the peptide is metabolized to provide the active moiety. [0014] In some embodiments, the second compound is a cannabinoid receptor antagonist. Examples of this group of compounds include AM251 [N-(piperidin-l-yl)-l- (2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-lH-pyrazole-3-carboxamide], AM281 [N- (morpholin-l-yl)-l-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-lH-pyrazole-3- carboxamide], AM630 (6-iodo-2-methyl-l-[2-(4-morpholinyl)ethyl]-lH-indol-3-yl](4- methoxyphenyl)methanone), LY320135, and SR141716A (rimonabant), and pharmaceutically acceptable salts or prodrugs thereof.. LY320135 and SR141716A have the following structures.
Figure imgf000005_0001
[0015] In another aspect, the present invention relates to a method of affecting weight loss, comprising identifying an individual in need thereof and treating that individual to antagonize opioid receptor activity and antagonize cannabanoid receptor activity. [0016] In certain embodiments, the individual has a body mass index (BMI) greater than 25. In other embodiments, the individual has a BMI greater than 30. In still other embodiments, the individual has a BMI greater than 40. However, in some embodiments, the individual may have a BMI less than 25. In these embodiments, it may be beneficial for health or cosmetic purposes to affect weight loss, thereby reducing the BMI even further. [0017] In some embodiments, opioid receptor activity is antagonized by administering an opioid receptor antagonist. The opioid receptor antagonist may be a MOP receptor antagonist. In some embodiments, the opioid receptor antagonist is selected from alvimopan, norbinaltoφhimine, nalmefene, naloxone, naltrexone, methylnaltrexone, and nalorphine, and pharmaceutically acceptable salts or prodrugs thereof. [0018] In other embodiments, the cannabinoid receptor activity is antagonized by administering a cannabinoid receptor antagonist, as described herein. [0019] In some embodiments, the treating step of the above method comprises administering to the individual a first compound and a second compound, where the first compound is an opioid antagonist and the second compound is a cannabinoid receptor antagonist. [0020] In some embodiments the first compound and the second compound are administered more or less simultaneously, h other embodiments the first compound is administered prior to the second compound. In yet other embodiments, the first compound is administered subsequent to the second compound. [0021] In certain embodiments, the first compound and the second compound are administered individually. In other embodiments, the first compound and the second compound are covalently linked to each other such that they form a single chemical entity. The single chemical entity is then digested and is metabolized into two separate physiologically active chemical entities, one of which is the first compound and the other one is the second compound. [0022] In another aspect, the present invention relates to a method of increasing satiety in an individual comprising identifying an individual in need thereof and treating that individual to antagonize opioid receptor activity and to antagonize cannabinoid receptor activity. [0023] In some embodiments, the treating step of the above method comprises administering to the individual a first compound and a second compound, where the first compound is an opioid antagonist and the second compound is a cannabinoid receptor antagonist. [0024] In some embodiments the first compound and the second compound are administered nearly simultaneously. In other embodiments the first compound is administered prior to the second compound. In yet other embodiments, the first compound is administered subsequent to the second compound. [0025] In yet another aspect, the present invention relates to a method of suppressing the appetite of an individual comprising identifying an individual in need thereof and treating that individual to antagonize opioid receptor activity and to antagonize cannabinoid receptor activity. [0026] In some embodiments, the treating step of the above method comprises administering to the individual a first compound and a second compound, where the first compound is an opioid antagonist and the second compound is a cannabinoid receptor antagonist. [0027] In some embodiments the first compound and the second compound are administered nearly simultaneously. In other embodiments the first compound is administered prior to the second compound. In yet other embodiments, the first compound is administered subsequent to the second compound. [0028] In another aspect, the present invention relates to a method of increasing energy expenditure in an individual comprising identifying an individual in need thereof and treating that individual to antagonize opioid receptor activity and to antagonize cannabinoid receptor activity. [0029] In some embodiments, the treating step of the above method comprises administering to the individual a first compound and a second compound, where the first compound is an opioid antagonist and the second compound is a cannabinoid receptor antagonist. [0030] In some embodiments the first compound and the second compound are administered nearly simultaneously. In other embodiments the first compound is administered prior to the second compound. In yet other embodiments, the first compound is administered subsequent to the second compound. [0031] In certain embodiments disclosed herein, an individual is given a pharmaceutical composition comprising a combination of two or more compounds to affect weight loss. In some of these embodiments, each compound is a separate chemical entity. However, in other embodiments, the two compounds are joined together by a chemical linkage, such as a covalent bond, so that the two different compounds form separate parts of the same molecule. The chemical linkage is selected such that after entry into the body, the linkage is broken, such as by enzymatic action, acid hydrolysis, base hydrolysis, or the like, and the two separate compounds are then formed. [0032] In another aspect, the invention relates to a pharmaceutical composition comprising a combination of an opioid antagonist and a cannabinoid receptor antagonist, as described above, or comprising a linked molecule, as described herein, and a physiologically acceptable carrier, diluent, or excipient, or a combination thereof. [0033] The term "pharmaceutical composition" refers to a mixture of a compound of the invention with other chemical components, such as diluents or carriers. The pharmaceutical composition facilitates administration of the compound to an organism. Multiple techniques of administering a compound exist in the art including, but not limited to, oral, injection, aerosol, parenteral, and topical administration. Pharmaceutical compositions can also be obtained by reacting compounds with inorganic or organic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid and the like. [0034] The term "carrier" defines a chemical compound that facilitates the incorporation of a compound into cells or tissues. For example dimethyl sulfoxide (DMSO) is a commonly utilized carrier as it facilitates the uptake of many organic compounds into the cells or tissues of an organism. [0035] The term "diluent" defines chemical compounds diluted in water that will dissolve the compound of interest as well as stabilize the biologically active form of the compound. Salts dissolved in buffered solutions are utilized as diluents in the art. One commonly used buffered solution is phosphate buffered saline because it mimics the salt conditions of human blood. Since buffer salts can control the pH of a solution at low concentrations, a buffered diluent rarely modifies the biological activity of a compound. [0036] The term "physiologically acceptable" defines a carrier or diluent that does not abrogate the biological activity and properties of the compound. [0037] The pharmaceutical compositions described herein can be administered to a human patient per se, or in pharmaceutical compositions where they are mixed with other active ingredients, as in combination therapy, or suitable carriers or excipient(s). Techniques for formulation and administration of the compounds of the instant application may be found in "Remington's Pharmaceutical Sciences," Mack Publishing Co., Easton, PA, 18th edition, 1990. [0038] Suitable routes of administration may, for example, include oral, rectal, transmucosal, or intestinal administration; parenteral delivery, including intramuscular, subcutaneous, intravenous, intramedullary injections, as well as intrathecal, direct intraventricular, intraperitoneal, intranasal, or intraocular injections. [0039] Alternately, one may administer the compound in a local rather than systemic manner, for example, via injection of the compound directly in the renal or cardiac area, often in a depot or sustained release formulation. Furthermore, one may administer the drug in a targeted drug delivery system, for example, in a liposome coated with a tissue-specific antibody. The liposomes will be targeted to and taken up selectively by the organ. [0040] The pharmaceutical compositions of the present invention may be manufactured in a manner that is itself known, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or tabletting processes. [0041] Pharmaceutical compositions for use in accordance with the present invention thus may be formulated in conventional manner using one or more physiologically acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. Proper formulation is dependent upon the route of administration chosen. Any of the well- known techniques, carriers, and excipients may be used as suitable and as understood in the art; e.g., in Remington's Pharmaceutical Sciences, above. [0042] For injection, the agents of the invention may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks' s solution, Ringer's solution, or physiological saline buffer. For transmucosal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art. [0043] For oral administration, the compounds can be formulated readily by combining the active compounds with pharmaceutically acceptable carriers well known in the art. Such carriers enable the compounds of the invention to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions and the like, for oral ingestion by a patient to be treated. Pharmaceutical preparations for oral use can be obtained by mixing one or more solid excipient with pharmaceutical combination of the invention, optionally grinding the resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients are, in particular, fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol; cellulose preparations such as, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl-cellulose, sodium carboxymethylcellulose, and/or polyvinylpyrrolidone (PNP). If desired, disintegrating agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate. [0044] Dragee cores are provided with suitable coatings. For this purpose, concentrated sugar solutions may be used, which may optionally contain gum arabic, talc, polyvinyl pyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for identification or to characterize different combinations of active compound doses. [0045] Pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol. The push-fit capsules can contain the active ingredients in admixture with filler such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols. In addition, stabilizers may be added. All formulations for oral administration should be in dosages suitable for such administration. [0046] For buccal administration, the compositions may take the form of tablets or lozenges formulated in conventional manner. [0047] For administration by inhalation, the compounds for use according to the present invention are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebulizer, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas. In the case of a pressurized aerosol the dosage unit may be determined by providing a valve to deliver a metered amount. Capsules and cartridges of, e.g., gelatin for use in an inhaler or insufflator may be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch. [0048] The compounds may be formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion. Formulations for injection may be presented in unit dosage form, e.g., in ampoules or in multi-dose containers, with an added preservative. The compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents. [0049] Pharmaceutical formulations for parenteral administration include aqueous solutions of the active compounds in water-soluble form. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Optionally, the suspension may also contain suitable stabilizers or agents which increase the solubility of the compounds to allow for the preparation of highly concentrated solutions. [0050] Alternatively, the active ingredient may be in powder form for constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before use. [0051] The compounds may also be formulated in rectal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter or other glycerides. [0052] In addition to the formulations described previously, the compounds may also be formulated as a depot preparation. Such long acting formulations may be administered by implantation (for example subcutaneously or intramuscularly) or by intramuscular injection. Thus, for example, the compounds may be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt. [0053] A pharmaceutical carrier for the hydrophobic compounds of the invention is a cosolvent system comprising benzyl alcohol, a nonpolar surfactant, a water- miscible organic polymer, and an aqueous phase. A common cosolvent system used is the VPD co-solvent system, which is a solution of 3% w/v benzyl alcohol, 8% w/v of the nonpolar surfactant Polysorbate 80™ , and 65% w/v polyethylene glycol 300, made up to volume in absolute ethanol. Naturally, the proportions of a co-solvent system may be varied considerably without destroying its solubility and toxicity characteristics. Furthermore, the identity of the co-solvent components may be varied: for example, other low-toxicity nonpolar surfactants may be used instead of POLYSORBATE 80™; the fraction size of polyethylene glycol may be varied; other biocompatible polymers may replace polyethylene glycol, e.g., polyvinyl pyrrolidone; and other sugars or polysaccharides may substitute for dextrose. [0054] Alternatively, other delivery systems for hydrophobic pharmaceutical compounds may be employed. Liposomes and emulsions are well known examples of delivery vehicles or carriers for hydrophobic drugs. Certain organic solvents such as dimethylsulfoxide also may be employed, although usually at the cost of greater toxicity. Additionally, the compounds may be delivered using a sustained-release system, such as semipermeable matrices of solid hydrophobic polymers containing the therapeutic agent. Various sustained-release materials have been established and are well known by those skilled in the art. Sustained-release capsules may, depending on their chemical nature, release the compounds for a few weeks up to over 100 days. Depending on the chemical nature and the biological stability of the therapeutic reagent, additional strategies for protein stabilization may be employed. [0055] Many of the compounds used in the pharmaceutical combinations of the invention may be provided as salts with pharmaceutically compatible counterions. Pharmaceutically compatible salts may be formed with many acids, including but not limited to hydrochloric, sulfuric, acetic, lactic, tartaric, malic, succinic, etc. Salts tend to be more soluble in aqueous or other protonic solvents than are the corresponding free acid or base forms. [0056] Pharmaceutical compositions suitable for use in the present invention include compositions where the active ingredients are contained in an amount effective to achieve its intended purpose. More specifically, a therapeutically effective amount means an amount of compound effective to prevent, alleviate or ameliorate symptoms of disease or prolong the survival of the subject being treated. Determination of a therapeutically effective amount is well within the capability of those skilled in the art, especially in light of the detailed disclosure provided herein. [0057] The exact formulation, route of administration and dosage for the pharmaceutical compositions of the present invention can be chosen by the individual physician in view of the patient's condition. (See e.g., Fingl et al. 1975, in "The Pharmacological Basis of Therapeutics", Ch. 1 p. 1). Typically, the dose range of the composition administered to the patient can be from about 0.5 to 1000 mg/kg of the patient's body weight. The dosage may be a single one or a series of two or more given in the course of one or more days, as is needed by the patient. Note that for almost all of the specific compounds mentioned in the present disclosure, human dosages for treatment of at least some condition have been established. Thus, in most instances, the present invention will use those same dosages, or dosages that are between about 0.1% and 500%, more preferably between about 25% and 250% of the established human dosage. Where no human dosage is established, as will be the case for newly-discovered pharmaceutical compounds, a suitable human dosage can be inferred from ED5o or ID5o values, or other appropriate values derived from in vitro or in vivo studies, as qualified by toxicity studies and efficacy studies in animals. [0058] Although the exact dosage will be determined on a drug-by-drug basis, in most cases, some generalizations regarding the dosage can be made. The daily dosage regimen for an adult human patient may be, for example, an oral dose of between 0.1 mg and 500 mg of each ingredient, preferably between 1 mg and 250 mg, e.g. 5 to 200 mg or an intravenous, subcutaneous, or intramuscular dose of each ingredient between 0.01 mg and 100 mg, preferably between 0.1 mg and 60 mg, e.g. 1 to 40 mg of each ingredient of the pharmaceutical compositions of the present invention or a pharmaceutically acceptable salt thereof calculated as the free base, the composition being administered 1 to 4 times per day. Alternatively the compositions of the invention may be administered by continuous intravenous infusion, preferably at a dose of each ingredient up to 400 mg per day. Thus, the total daily dosage by oral administration of each ingredient will typically be in the range 1 to 2000 mg and the total daily dosage by parenteral administration will typically be in the range 0.1 to 400 mg. Suitably the compounds will be administered for a period of continuous therapy, for example for a week or more, or for months or years. [0059] Dosage amount and interval may be adjusted individually to provide plasma levels of the active moiety which are sufficient to maintain the modulating effects, or minimal effective concentration (MEC). The MEC will vary for each compound but can be estimated from in vitro data. Dosages necessary to achieve the MEC will depend on individual characteristics and route of administration. However, HPLC assays or bioassays can be used to determine plasma concentrations. [0060] Dosage intervals can also be determined using MEC value. Compositions should be administered using a regimen which maintains plasma levels above the MEC for 10-90% of the time, preferably between 30-90% and most preferably between 50-90%. [0061] In cases of local administration or selective uptake, the effective local concentration of the drug may not be related to plasma concentration. [0062] The amount of composition administered will, of course, be dependent on the subject being treated, on the subject's weight, the severity of the affliction, the manner of administration and the judgment of the prescribing physician. [0063] The compositions may, if desired, be presented in a pack or dispenser device which may contain one or more unit dosage forms containing the active ingredient. The pack may for example comprise metal or plastic foil, such as a blister pack. The pack or dispenser device may be accompanied by instructions for administration. The pack or dispenser may also be accompanied with a notice associated with the container in form prescribed by a governmental agency regulating the manufacture, use, or sale of pharmaceuticals, which notice is reflective of approval by the agency of the form of the drug for human or veterinary administration. Such notice, for example, may be the labeling approved by the U.S. Food and Drug Administration for prescription drugs, or the approved product insert. Compositions comprising a compound of the invention formulated in a compatible pharmaceutical carrier may also be prepared, placed in an appropriate container, and labeled for treatment of an indicated condition. [0064] It will be understood by those of skill in the art that numerous and various modifications can be made without departing from the spirit of the present invention. Therefore, it should be clearly understood that the forms of the present invention are illustrative only and are not intended to limit the scope of the present invention.
Some Embodiments of the Invention [0065] Some of the embodiments of the present invention are as follows: [0066] In the first embodiment, the invention relates to a composition for affecting weight loss comprising a first compound and a second compound, wherein said first compound is an opioid antagonist and said second compound is a cannabinoid receptor antagonist. [0067] In the second embodiment, the invention relates to the composition of the first embodiment, wherein said opioid antagonist antagonizes an opioid receptor in a mammal. [0068] In the third embodiment, the invention relates to the composition of the second embodiment, wherein said opioid receptor is selected from a μ-opioid receptor (MOP-R), a κ-opioid receptor, and a δ-opioid receptor. [0069] h the fourth embodiment, the invention relates to the composition of the second embodiment, wherein said opioid antagonist antagonizes a μ-opioid receptor (MOP- R) in a mammal. [0070] In the fifth embodiment, the invention relates to the composition of the first embodiment, wherein said opioid antagonist is selected from the group consisting of alvimopan, norbinaltorphimine, nalmefene, naloxone, naltrexone, methylnaltrexone, and nalorphine, and pharmaceutically acceptable salts or prodrugs thereof. [0071] In the sixth embodiment, the invention relates to the composition of the first embodiment, wherein said opioid antagonist is a partial opioid agonist. [0072] In the seventh embodiment, the invention relates to the composition of the sixth embodiment, wherein said partial opioid agonist is selected from the group consisting of pentacozine, buprenorphine, nalorphine, propiram, and lofexidine. [0073] In the eighth embodiment, the invention relates to the composition of the first embodiment, wherein said second compound is selected from the group consisting of AM251 [N-(piperidin-l-yl)-l-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-lH- pyrazole-3-carboxamide] , AM281 [N-(morpholin- 1 -yl)- 1 -(2,4-dichlorophenyl)-5-(4- iodophenyl)-4-methyl-lH-pyrazole-3-carboxamide], AM630 (6-iodo-2-methyl-l-[2-(4- morpholinyl)ethyl]-lH-indol-3-yl](4-methoxyphenyl)methanone), LY320135, and SR141716A (rimonabant), and pharmaceutically acceptable salts or prodrugs thereof. [0074] In the ninth embodiment, the invention relates to the composition of the first embodiment, wherein said first compound is naltrexone and said second compound is AM251. [0075] In the tenth embodiment, the invention relates to the composition of the first embodiment, wherein said first compound is naloxone and said second compound is AM251. [0076] In the eleventh embodiment, the invention relates to the composition of the first embodiment, wherein said first compound is nalmefene and said second compound is AM251. [0077] In the twelfth embodiment, the invention relates to the composition of the eleventh embodiment, wherein the naltrexone is in a time-release formulation. [0078] In the thirteenth embodiment, the invention relates to a method of affecting weight loss, comprising identifying an individual in need thereof and treating that individual to antagonize opioid receptor activity and to antagonize cannabinoid receptor activity. [0079] In the fourteenth embodiment, the invention relates to the method of the thirteenth embodiment, wherein said individual has a body mass index greater than 25. [0080] In the fifteenth embodiment, the invention relates to the method of the thirteenth embodiment, wherein opioid receptor activity is antagonized by administering an opioid receptor antagonist. [0081] In the sixteenth embodiment, the invention relates to the method of the fifteenth embodiment, wherein the opioid receptor antagonist is a MOP receptor antagonist. [0082] In the seventeenth embodiment, the invention relates to the method of the thirteenth embodiment, wherein the opioid receptor antagonist is selected from alvimopan, norbinaltorphimine, nalmefene, naloxone, naltrexone, methylnaltrexone, and nalorphine, and pharmaceutically acceptable salts or prodrugs thereof. [0083] In the eighteenth embodiment, the invention relates to the method of the fifteenth embodiment, wherein said opioid receptor antagonist is a partial opioid agonist. [0084] In the nineteenth embodiment, the invention relates to the method of the eighteenth embodiment, wherein said partial opioid agonist is selected from the group consisting of pentacozine, buprenorphine, nalorphine, propiram, and lofexidine. [0085] In the twentieth embodiment, the invention relates to the method of the thirteenth embodiment through the forty fifth embodiment, wherein cannabinoid receptor activity is antagonized by administering a compound selected from the group consisting of AM251 [N-(piperidin-l-yl)-l-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-lH- pyrazole-3-carboxamide], AM281 [N-(morpholin-l-yl)-l-(2,4-dichlorophenyl)-5-(4- iodophenyl)-4-methyl- 1 H-pyrazole-3 -carboxamide] , AM630 (6-iodo-2-methyl- 1 - [2-(4- morpholinyl)ethyl]- lH-indol-3-yl] (4-methoxyphenyl)methanone), LY320135, and SR141716A (rimonabant), and pharmaceutically acceptable salts or prodrugs thereof. [0086] In the twenty first embodiment, the invention relates to the method of the thirteenth embodiment, wherein said first compound and said second compound are administered nearly simultaneously. [0087] In the twenty second embodiment, the invention relates to the method of the twenty first embodiment, wherein said first compound is administered prior to said second compound. [0088] In the twenty third embodiment, the invention relates to the method of the twenty second embodiment, wherein said first compound is administered subsequent to said second compound. [0089] In the twenty fourth embodiment, the invention relates to a method of increasing satiety in an individual comprising identifying an individual in need thereof and treating that individual to antagonize opioid receptor activity and to antagonize cannabinoid receptor activity. [0090] In the twenty fifth embodiment, the invention relates to the method of the twenty fourth embodiment, wherein said treating step comprises administering to said individual a first compound and a second compound, wherein said first compound is an opioid antagonist and said second compound is a cannabinoid receptor antagonist. [0091] In the twenty sixth embodiment, the invention relates to the method of the twenty fifth embodiment, wherein said first compound and said second compound are administered nearly simultaneously. [0092] In the twenty seventh embodiment, the invention relates to the method of the twenty fifth embodiment, wherein said first compound is administered prior to said second compound. [0093] In the twenty eighth embodiment, the invention relates to the method of the twenty fifth embodiment, wherein said first compound is administered subsequent to said second compound. [0094] In the twenty ninth embodiment, the invention relates to a method of increasing energy expenditure in an individual comprising identifying an individual in need thereof and treating that individual to antagonize opioid receptor activity and to antagonize cannabinoid receptor activity. [0095] In the thirtieth embodiment, the invention relates to the method of the twenty ninth embodiment, wherein said treating step comprises administering to said individual a first compound and a second compound, wherein said first compound is an opioid antagonist and said second compound is a cannabinoid receptor antagonist. [0096] In the thirty first embodiment, the invention relates to the method of the thirtieth embodiment, wherein said first compound and said second compound are administered nearly simultaneously. [0097] In the thirty second embodiment, the invention relates to the method of the thirtieth embodiment, wherein said first compound is administered prior to said second compound. [0098] In the thirty fourth embodiment, the invention relates to the method of the thirtieth embodiment, wherein said first compound is administered subsequent to said second compound. [0099] In the thirty fifth embodiment, the invention relates to a method of suppressing the appetite of an individual comprising identifying an individual in need thereof and treating that individual to antagonize opioid receptor activity and to antagonize cannabinoid receptor activity. [0100] In the thirty sixth embodiment, the invention relates to the method of the thirty fifth embodiment, wherein said treating step comprises administering to said individual a first compound and a second compound, wherein said first compound is an opioid antagonist and said second compound is a cannabinoid receptor antagonist. [0101] In the thirty seventh embodiment, the invention relates to the method of the thirty sixth embodiment, wherein said first compound and said second compound are administered nearly simultaneously. [0102] In the thirty eighth embodiment, the invention relates to the method of the thirty sixth embodiment, wherein said first compound is administered prior to said second compound. [0103] In the thirty ninth embodiment, the invention relates to the method of the thirty sixth embodiment, wherein said first compound is administered subsequent to said second compound. [0104] In the fortieth embodiment, the invention relates to a method of affecting weight loss in an individual comprising identifying an individual in need thereof and treating that individual with a combination of naltrexone and AM251. [0105] In the forty first embodiment, the invention relates to the method of the fortieth embodiment, wherein the individual has a BMI greater than 30. [0106] In the forty second embodiment, the invention relates to the method of the fortieth embodiment, wherein the individual has a BMI greater than 25. [0107] In the forty third embodiment, the invention relates to the method of the fortieth embodiment, wherein the naltrexone is in a time-release formulation. [0108] In the forty fourth embodiment, the invention relates to the method of the forty third embodiment, wherein the plasma concentration level of both naltrexone and AM251 follow a similar concentration profile. [0109] In the forty fifth embodiment, the invention relates to the method of the forty third embodiment, wherein the naltrexone and the AM251 are administered substantially simultaneously. [0110] In the forty sixth embodiment, the invention relates to the method of the forty third embodiment, wherein the naltrexone is administered prior to the AM251. [0111] In the forty seventh embodiment, the invention relates to the method of the forty third embodiment, wherein the naltrexone is administered subsequent to the AM251. Examples [0112] The examples below are non-limiting and are merely representative of various aspects of the invention.
Example 1 : Combination of AM251 and naltrexone: [0113] Individuals having a BMI of greater than 25 are identified. Each individual is instructed to take one 20 mg tablet of AM251 on a daily basis, in addition to one 50 mg tablet of naltrexone on a daily basis. [0114] The individuals are monitored for a period of months. It is recommended that the dosage be adjusted so that each individual loses weight at a rate of 10%» of initial weight every 6 months. However, the rate of weigh loss for each individual may be adjusted by the treating physician based on the individual's particular needs. [0115] If the initial dosage is not effective, then the AM251 dosage can be increased by 20 mg per day, though never exceeding 80 mg total per day. If the initial dosage results in a more rapid weight loss than the above rate, the dosage of each of AM251 or naltrexone can be reduced. [0116] In some cases, it is beneficial to administer one dose of AM251 per day in conjunction with two or three or more doses of naltrexone throughout the day. Naltrexone may also be in a time-release formulation where the dose is administered once a day, but naltrexone gradually enters the blood stream throughout the day, or in the course of a 12 hour period.
Example 2: Combination of AM251 and nalmefene: [0117] Individuals having a BMI of greater than 25 are identified. Each individual is instructed to take one 20 mg tablet of AM251 on a daily basis. In addition, each individual is injected with 1 mL of a solution of 100 μg of nalmefene in 1 mL of saline, intravenously, intramuscularly, or subcutaneously. [0118] The individuals are monitored for a period of months. It is recommended that the dosage be adjusted so that each individual loses weight at a rate of 10% of initial weight every 6 months. However, the rate of weigh loss for each individual may be adjusted by the treating physician based on the individual's particular needs. [0119] If the initial dosage is not effective, then the AM251 dosage can be increased by 20 mg per day, though never exceeding 80 mg total per day. In addition, the dosage of nalmefene may be increased up to 2 mL of a solution of 1 mg of nalmefene in 1 mL of saline. If the initial dosage results in a more rapid weight loss than the above rate, the dosage of each of AM251 or nalmefene can be reduced.
Example 3 : Combination of AM251 and naloxone: [0120] Individuals having a BMI of greater than 25 are identified. Each individual is instructed to take one 20 mg tablet of AM251 on a daily basis. In addition, each individual is injected with 1 mL of a solution of 400 μg of naloxone in 1 mL of saline, intravenously, intramuscularly, or subcutaneously. [0121] The individuals are monitored for a period of months. It is recommended that the dosage be adjusted so that each individual loses weight at a rate of 10% of initial weight every 6 months. However, the rate of weigh loss for each individual may be adjusted by the treating physician based on the individual's particular needs. [0122] If the initial dosage is not effective, then the AM251 dosage can be increased by 20 mg per day, though never exceeding 80 mg total per day. If the initial dosage results in a more rapid weight loss than the above rate, the dosage of each of AM251 or nalmefene can be reduced.
Example 4 Dose-response experiments: [0123] Seventy, four week old, male C57/B16J" mice (Jackson Laboratory), 22- 30 g were sham injected daily with 0.1 mL 0.9% saline (pH 7.4) for 1 week prior to the experiments. Animals were weighed and randomized to 1 of 7 weight-matched dose groups (0, 1.5, 3, 5.5, 10, 18, and 30 mg/kg; n=10/group for AM251; 0, 1.5, 3, 5.5, 10, 18, and 30 mg/kg; n=3/group for naltrexone) the day before experiments began. Food was removed between 4:30-5:30 pm the day before the experiment. Animals received a 0.3 mL bolus (AM251) or 0.1 mL bolus (naltrexone) intraperitoneal injection between 9-10:30 am, and food was provided immediately following injection. 3 animals/group received injections on each testing day (i.e., 3 runs of 3/group; 1 run of 1/group). Food was weighed 1, 2, 4, 8, and 24 h post-injection. Cumulative food intake ± SEM was calculated and analyzed using Prizm. The SEM for these numbers were calculated to be between 0.0062 and 0.11. Doses were log transformed and fit to a sigmoidal curve, food intake was expressed as a proportion of the food intake in saline treated animals. From the curve, the EC5o at each time point for each drug was determined. [0124] The results are set forth in the table below:
Figure imgf000020_0001

Claims

WHAT IS CLAIMED IS:
1. A composition for affecting weight loss comprising a first compound and a second compound, wherein said first compound is an opioid antagonist and said second compound is a camiabinoid receptor antagonist.
2. The composition of claim 1, wherein the opioid antagonist antagonizes an opioid receptor in a mammal, said opioid receptor selected from a μ-opioid receptor (MOP-R), a κ-opioid receptor, and a δ-opioid receptor.
3. The composition of claim 1, wherein the opioid antagonist is selected from the group consisting of alvimopan, norbinaltorphimine, nalmefene, naloxone, naltrexone, methylnaltrexone, and nalorphine, and pharmaceutically acceptable salts or prodrugs thereof.
4. The composition of claim 1, wherein the opioid antagonist is a partial opioid agonist.
5. The composition of claim 4, wherein the partial opioid agonist is selected from the group consisting of pentacozine, buprenorphine, nalorphine, propiram, and lofexidine.
6. The composition of claim 1, wherein said second compound is selected from the group consisting of AM251 [N-(piperidin-l-yl)-l-(2,4-dichlorophenyl)-5-(4- iodophenyl)-4-methyl-lH-pyrazole-3-carboxamide], AM281 [N-(morpholin-l-yl)-l-(2,4- dichlorophenyl)-5-(4-iodophenyl)-4-methyl-lH-pyrazole-3-carboxamide], AM630 (6-iodo- 2-methyl-l-[2-(4-morpholinyl)ethyl]-lH-indol-3-yl](4-methoxyphenyl)methanone), LY320135, and SR141716A (rimonabant), and pharmaceutically acceptable salts or prodrugs thereof.
7. The composition of claim 1, wherein said first compound is naltrexone and said second compound is AM251 [N-(piperidin-l-yl)-l-(2,4-dichlorophenyl)-5-(4- iodophenyl)-4-methyl- lΗ-pyrazole-3-carboxamide] .
8. The composition of claim 1, wherein said first compound is naloxone and said second compound is AM251 [N-(piperidin-l-yl)-l-(2,4-dichlorophenyl)-5-(4- iodophenyl)-4-methyl-lH-pyrazole-3-carboxamide].
9. The composition of claim 1, wherein said first compound is namafene and said second compound is AM251 [N-(piperidin-l-yl)-l-(2,4-dichlorophenyl)-5-(4- iodophenyl)-4-methyl-lH-pyrazole-3-carboxamide].
10. A method of affecting weight loss, comprising identifying an individual in need thereof and treating that individual to antagonize opioid receptor activity and to antagonize cannabinoid receptor activity.
11. The method of the claim 10, wherein said individual has a body mass index greater than 25.
12. The method of the claim 10, wherein opioid receptor activity is antagonized by administering an opioid receptor antagonist.
13. The method of the claim 12, wherein the opioid receptor antagonist is a μ-opioid receptor (MOP-R) antagonist.
14. The method of the claim 12, wherein the opioid receptor antagonist is selected from alvimopan, norbinaltorphimine, nalmefene, naloxone, naltrexone, methylnaltrexone, and nalorphine, and pharmaceutically acceptable salts or prodrugs thereof.
15. The method of the claim 12, wherein said opioid receptor antagonist is a partial opioid agonist.
16. The method of the claim 15, wherein said partial opioid agonist is selected from the group consisting of pentacozine, buprenorphine, nalorphine, propiram, and lofexidine.
17. The method of the claim 10, wherein cannabinoid receptor activity is antagonized by administering a compound selected from the group consisting of AM251 [N-(piperidin-l-yl)-l-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-lH-pyrazole-3- carboxamide], AM281 [N-(morpholin-l-yl)-l-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4- methyl-lH-pyrazole-3 -carboxamide], AM630 (6-iodo-2-methyl-l -[2-(4- morpholinyl)ethyl]-lH-indol-3-yl](4-methoxyphenyl)methanone), LY320135, and SR141716A (rimonabant), and pharmaceutically acceptable salts or prodrugs thereof.
18. A method of affecting weight loss in an individual comprising identifying an individual in need thereof and treating that individual with a combination of naltrexone and AM251.
19. The method of claim 18, wherein the individual has a BMI greater than
25.
20. The method of claim 18, wherein the plasma concentration level of both naltrexone and AM251 follow a similar concentration profile.
PCT/US2005/013193 2004-04-21 2005-04-19 Compositions for affecting weight loss WO2005107806A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US56400104P 2004-04-21 2004-04-21
US60/564,001 2004-04-21

Publications (1)

Publication Number Publication Date
WO2005107806A1 true WO2005107806A1 (en) 2005-11-17

Family

ID=34966534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/013193 WO2005107806A1 (en) 2004-04-21 2005-04-19 Compositions for affecting weight loss

Country Status (2)

Country Link
US (1) US20060100205A1 (en)
WO (1) WO2005107806A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007056300A2 (en) * 2005-11-03 2007-05-18 Alkermes, Inc. Methods and compositions for the treatment of brain reward system disorders by combination therapy
WO2009120735A1 (en) * 2008-03-27 2009-10-01 Us Worldmeds Llc Composition and method for transmucosal delivery of lofexidine
CN101838233A (en) * 2010-05-27 2010-09-22 北京万全阳光医学技术有限公司 Preparation method of alvimopan key intermediate

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050215552A1 (en) * 2002-05-17 2005-09-29 Gadde Kishore M Method for treating obesity
EP3173082A1 (en) * 2002-05-17 2017-05-31 Duke University Method for treating obesity
ES2639579T3 (en) 2003-04-29 2017-10-27 Orexigen Therapeutics, Inc. Compositions for affecting weight loss comprising an opioid antagonist and bupropion
US7713959B2 (en) * 2004-01-13 2010-05-11 Duke University Compositions of an anticonvulsant and mirtazapine to prevent weight gain
US20060160750A1 (en) * 2004-01-13 2006-07-20 Krishnan K R R Compositions of an anticonvulsant and an antipsychotic drug and methods of using the same for affecting weight loss
US7429580B2 (en) 2004-01-13 2008-09-30 Orexigen Therapeutics, Inc. Compositions of an anticonvulsant and an antipsychotic drug and methods of using the same for affecting weight loss
JP2007536229A (en) * 2004-05-03 2007-12-13 デューク・ユニバーシティー Composition for acting on weight loss
EP1951212A2 (en) 2005-11-22 2008-08-06 Orexigen Therapeutics, Inc. Compositions and methods for increasing insulin sensitivity
US8916195B2 (en) 2006-06-05 2014-12-23 Orexigen Therapeutics, Inc. Sustained release formulation of naltrexone
KR101654176B1 (en) 2006-11-09 2016-09-09 오렉시젠 세러퓨틱스 인크. Layered pharmaceutical formulations comprising an intermediate rapidly dissolving layer
KR20090090316A (en) 2006-11-09 2009-08-25 오렉시젠 세러퓨틱스 인크. Unit dose packages and methods of administration for administering weight loss drugs
MX2010012909A (en) 2008-05-30 2011-02-25 Orexigen Therapeutics Inc Methods for treating visceral fat conditions.
BRPI0902481B8 (en) 2009-07-31 2021-05-25 Soc Beneficente De Senhoras Hospital Sirio Libanes pharmaceutical composition comprising hemopressin and its use.
ES2762113T3 (en) 2010-01-11 2020-05-22 Nalpropion Pharmaceuticals Inc Methods of providing weight loss therapy in patients with major depression
WO2013152109A1 (en) * 2012-04-04 2013-10-10 Dana-Farber Cancer Institute, Inc. Trpv4 antagonist and methods of use thereof
LT3730132T (en) 2012-06-06 2022-08-25 Nalpropion Pharmaceuticals Llc Composition for use in a method of treating overweight and obesity in patients with high cardiovascular risk

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004009015A2 (en) * 2002-07-18 2004-01-29 Merck & Co., Inc. Combination therapy for the treatment of obesity
US20040122033A1 (en) * 2002-12-10 2004-06-24 Nargund Ravi P. Combination therapy for the treatment of obesity

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3885046A (en) * 1969-12-04 1975-05-20 Burroughs Wellcome Co Meta chloro or fluoro substituted alpha-T-butylaminopropionphenones in the treatment of depression
BE759838A (en) * 1969-12-04 1971-06-03 Wellcome Found KETONES WITH BIOLOGICAL ACTIVITY
US4089855A (en) * 1976-04-23 1978-05-16 Cornell Research Foundation, Inc. Process for the stereoselective reduction of 6- and 8-keto morphine and morphinan derivatives with formamidinesulfinic acid and compounds obtained thereby
US4172896A (en) * 1978-06-05 1979-10-30 Dainippon Pharmaceutical Co., Ltd. Methane-sulfonamide derivatives, the preparation thereof and composition comprising the same
US4513006A (en) * 1983-09-26 1985-04-23 Mcneil Lab., Inc. Anticonvulsant sulfamate derivatives
US5266574A (en) * 1984-04-09 1993-11-30 Ian S. Zagon Growth regulation and related applications of opioid antagonists
US4689332A (en) * 1984-04-09 1987-08-25 Research Corporation Growth regulation and related applications of opioid antagonists
US4673679A (en) * 1986-05-14 1987-06-16 E. I. Du Pont De Nemours And Company Use of prodrugs of 3-hydroxymorphinans to prevent bitter taste upon buccal, nasal or sublingual administration
US5719197A (en) * 1988-03-04 1998-02-17 Noven Pharmaceuticals, Inc. Compositions and methods for topical administration of pharmaceutically active agents
GB9217295D0 (en) * 1992-08-14 1992-09-30 Wellcome Found Controlled released tablets
US5512593A (en) * 1993-03-02 1996-04-30 John S. Nagle Composition and method of treating depression using natoxone or naltrexone in combination with a serotonin reuptake inhibitor
US5541231A (en) * 1993-07-30 1996-07-30 Glaxo Wellcome Inc. Stabilized Pharmaceutical
GB9315856D0 (en) * 1993-07-30 1993-09-15 Wellcome Found Stabilized pharmaceutical
US5358970A (en) * 1993-08-12 1994-10-25 Burroughs Wellcome Co. Pharmaceutical composition containing bupropion hydrochloride and a stabilizer
AU3419995A (en) * 1994-09-19 1996-04-09 Du Pont Merck Pharmaceutical Company, The Combination of an opioid antagonist and a selective serotonin reuptake inhibitor for treatment of alcoholism and alcohol dependence
US5713488A (en) * 1996-01-24 1998-02-03 Farrugia; John V. Condom dispenser
AU724993B2 (en) * 1996-03-13 2000-10-05 Yale University Smoking cessation treatments using naltrexone and related compounds
ATE224189T1 (en) * 1996-06-28 2002-10-15 Ortho Mcneil Pharm Inc ANTICONVULSIVE SULFAMATE DERIVATIVES FOR THE TREATMENT OF OBESITY
FR2758723B1 (en) * 1997-01-28 1999-04-23 Sanofi Sa USE OF CENTRAL CANNABINOID RECEPTOR ANTAGONISTS FOR THE PREPARATION OF DRUGS
US6262049B1 (en) * 1997-10-28 2001-07-17 Schering Corporation Method of reducing nicotine and tobacco craving in mammals
AU2483599A (en) * 1998-01-29 1999-08-16 Sepracor, Inc. Pharmaceutical uses of optically pure (-)-bupropion
US20030144174A1 (en) * 1998-12-09 2003-07-31 Miles B. Brennan Methods for identifying compounds useful for the regulation of body weight and associated conditions
ES2238999T3 (en) * 1999-02-24 2005-09-16 University Of Cincinnati USE OF SULFAMATE DERIVATIVES TO TREAT DISORDERS IN THE CONTROL OF IMPULSES.
MXPA01009893A (en) * 1999-04-01 2003-07-28 Esperion Therapeutics Inc Ether compounds, compositions, and uses thereof.
JP2003521470A (en) * 1999-04-06 2003-07-15 セプラコア インコーポレーテッド Derivatives of venlafaxine and methods for their preparation and use
US6420369B1 (en) * 1999-05-24 2002-07-16 Ortho-Mcneil Pharmaceutical, Inc. Anticonvulsant derivatives useful in treating dementia
US7056890B2 (en) * 1999-06-14 2006-06-06 Vivus, Inc. Combination therapy for effecting weight loss and treating obesity
US6071918A (en) * 1999-07-21 2000-06-06 Dupont Pharmaceuticals Company Combination of an opioid antagonist and a selective serotonin reuptake inhibitor for treatment of alcoholism and alcohol dependence
US6403657B1 (en) * 1999-10-04 2002-06-11 Martin C. Hinz Comprehensive pharmacologic therapy for treatment of obesity
GB2355191A (en) * 1999-10-12 2001-04-18 Laxdale Ltd Combination formulations for fatigue, head injury and strokes
US6437147B1 (en) * 2000-03-17 2002-08-20 Novo Nordisk Imidazole compounds
US6191117B1 (en) * 2000-07-10 2001-02-20 Walter E. Kozachuk Methods of producing weight loss and treatment of obesity
US6569449B1 (en) * 2000-11-13 2003-05-27 University Of Kentucky Research Foundation Transdermal delivery of opioid antagonist prodrugs
US20040029941A1 (en) * 2002-05-06 2004-02-12 Jennings Julianne E. Zonisamide use in obesity and eating disorders
US20050215552A1 (en) * 2002-05-17 2005-09-29 Gadde Kishore M Method for treating obesity
EP3173082A1 (en) * 2002-05-17 2017-05-31 Duke University Method for treating obesity
ES2639579T3 (en) * 2003-04-29 2017-10-27 Orexigen Therapeutics, Inc. Compositions for affecting weight loss comprising an opioid antagonist and bupropion
US7759358B2 (en) * 2003-07-23 2010-07-20 Crooks Peter A Oral bioavailable prodrugs
US7429580B2 (en) * 2004-01-13 2008-09-30 Orexigen Therapeutics, Inc. Compositions of an anticonvulsant and an antipsychotic drug and methods of using the same for affecting weight loss
US20060160750A1 (en) * 2004-01-13 2006-07-20 Krishnan K R R Compositions of an anticonvulsant and an antipsychotic drug and methods of using the same for affecting weight loss
US7713959B2 (en) * 2004-01-13 2010-05-11 Duke University Compositions of an anticonvulsant and mirtazapine to prevent weight gain
JP2007536229A (en) * 2004-05-03 2007-12-13 デューク・ユニバーシティー Composition for acting on weight loss
MX2007001366A (en) * 2004-08-03 2007-04-02 Orexigen Therapeutics Inc Combination of bupropion and a second compound for affecting weight loss.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004009015A2 (en) * 2002-07-18 2004-01-29 Merck & Co., Inc. Combination therapy for the treatment of obesity
US20040122033A1 (en) * 2002-12-10 2004-06-24 Nargund Ravi P. Combination therapy for the treatment of obesity

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN ET AL: "Synergistic effects of cannabinoid inverse agonist AM251 and opioid antagonist nalmefene on food intake", BRAIN RES, vol. 999, January 2004 (2004-01-01) - 2004, pages 22 - 230, XP002334087 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007056300A2 (en) * 2005-11-03 2007-05-18 Alkermes, Inc. Methods and compositions for the treatment of brain reward system disorders by combination therapy
WO2007056300A3 (en) * 2005-11-03 2008-01-17 Alkermes Inc Methods and compositions for the treatment of brain reward system disorders by combination therapy
WO2009120735A1 (en) * 2008-03-27 2009-10-01 Us Worldmeds Llc Composition and method for transmucosal delivery of lofexidine
CN101838233A (en) * 2010-05-27 2010-09-22 北京万全阳光医学技术有限公司 Preparation method of alvimopan key intermediate

Also Published As

Publication number Publication date
US20060100205A1 (en) 2006-05-11

Similar Documents

Publication Publication Date Title
US11278544B2 (en) Compositions for affecting weight loss
US20060100205A1 (en) Compositions for affecting weight loss
US20060058293A1 (en) Combination of bupropion and a second compound for affecting weight loss
EP3132792B1 (en) Composition and methods for increasing insulin sensitivity
US20070117827A1 (en) Compositions for affecting weight loss
US20050277579A1 (en) Compositions for affecting weight loss
KR101477043B1 (en) Therapeutic or prophylactic agent for dyskinesia
EP1870096A2 (en) Compositions for affecting weight loss
CA2518579A1 (en) Method for appetite suppression

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase