WO1989002472A1 - Regulation of expression of gm-csf gene - Google Patents
Regulation of expression of gm-csf gene Download PDFInfo
- Publication number
- WO1989002472A1 WO1989002472A1 PCT/AU1988/000370 AU8800370W WO8902472A1 WO 1989002472 A1 WO1989002472 A1 WO 1989002472A1 AU 8800370 W AU8800370 W AU 8800370W WO 8902472 A1 WO8902472 A1 WO 8902472A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- csf
- cells
- binding
- protein
- regulation
- Prior art date
Links
- 230000033228 biological regulation Effects 0.000 title claims abstract description 15
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 title 1
- 210000004027 cell Anatomy 0.000 claims abstract description 98
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 66
- 238000009739 binding Methods 0.000 claims abstract description 41
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 38
- 102000007999 Nuclear Proteins Human genes 0.000 claims abstract description 35
- 108010089610 Nuclear Proteins Proteins 0.000 claims abstract description 35
- 230000027455 binding Effects 0.000 claims abstract description 34
- 108700039691 Genetic Promoter Regions Proteins 0.000 claims abstract description 23
- 238000000034 method Methods 0.000 claims abstract description 18
- 108090000695 Cytokines Proteins 0.000 claims abstract description 16
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 claims abstract description 15
- 102000004269 Granulocyte Colony-Stimulating Factor Human genes 0.000 claims abstract description 14
- 230000006698 induction Effects 0.000 claims abstract description 14
- 102000004127 Cytokines Human genes 0.000 claims abstract description 10
- 210000003714 granulocyte Anatomy 0.000 claims abstract description 7
- 102000007651 Macrophage Colony-Stimulating Factor Human genes 0.000 claims abstract description 5
- 108010046938 Macrophage Colony-Stimulating Factor Proteins 0.000 claims abstract description 5
- 230000003394 haemopoietic effect Effects 0.000 claims abstract description 4
- 230000002265 prevention Effects 0.000 claims abstract description 3
- 239000000284 extract Substances 0.000 claims description 26
- 238000003556 assay Methods 0.000 claims description 14
- 230000003993 interaction Effects 0.000 claims description 11
- 230000005856 abnormality Effects 0.000 claims description 8
- 201000010099 disease Diseases 0.000 claims description 5
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 5
- 230000000694 effects Effects 0.000 claims description 5
- 238000003745 diagnosis Methods 0.000 claims description 4
- 238000001514 detection method Methods 0.000 claims description 3
- 230000005764 inhibitory process Effects 0.000 claims description 3
- 238000012216 screening Methods 0.000 claims description 2
- 238000009472 formulation Methods 0.000 claims 1
- 239000000203 mixture Substances 0.000 claims 1
- 230000012385 regulation of binding Effects 0.000 claims 1
- 108020004414 DNA Proteins 0.000 abstract description 13
- 230000002860 competitive effect Effects 0.000 abstract description 3
- 239000003112 inhibitor Substances 0.000 abstract description 3
- 108091028043 Nucleic acid sequence Proteins 0.000 abstract 1
- 230000010807 negative regulation of binding Effects 0.000 abstract 1
- 108091034117 Oligonucleotide Proteins 0.000 description 31
- PHEDXBVPIONUQT-RGYGYFBISA-N phorbol 13-acetate 12-myristate Chemical compound C([C@]1(O)C(=O)C(C)=C[C@H]1[C@@]1(O)[C@H](C)[C@H]2OC(=O)CCCCCCCCCCCCC)C(CO)=C[C@H]1[C@H]1[C@]2(OC(C)=O)C1(C)C PHEDXBVPIONUQT-RGYGYFBISA-N 0.000 description 30
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 20
- 239000000499 gel Substances 0.000 description 19
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Inorganic materials [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 14
- 210000001744 T-lymphocyte Anatomy 0.000 description 13
- 108020004999 messenger RNA Proteins 0.000 description 11
- 238000013518 transcription Methods 0.000 description 11
- 230000035897 transcription Effects 0.000 description 11
- 108010002386 Interleukin-3 Proteins 0.000 description 10
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 9
- 102100040247 Tumor necrosis factor Human genes 0.000 description 9
- 102000000646 Interleukin-3 Human genes 0.000 description 8
- 239000000872 buffer Substances 0.000 description 8
- 208000032839 leukemia Diseases 0.000 description 7
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 108091036078 conserved sequence Proteins 0.000 description 6
- 239000012634 fragment Substances 0.000 description 6
- 238000011144 upstream manufacturing Methods 0.000 description 6
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 description 5
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 description 5
- 208000010833 Chronic myeloid leukaemia Diseases 0.000 description 5
- 241001529936 Murinae Species 0.000 description 5
- 229920002684 Sepharose Polymers 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 101000746373 Homo sapiens Granulocyte-macrophage colony-stimulating factor Proteins 0.000 description 4
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 244000309466 calf Species 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000004520 electroporation Methods 0.000 description 4
- 210000002889 endothelial cell Anatomy 0.000 description 4
- 210000002950 fibroblast Anatomy 0.000 description 4
- 238000003306 harvesting Methods 0.000 description 4
- 230000001939 inductive effect Effects 0.000 description 4
- 210000004698 lymphocyte Anatomy 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 210000002966 serum Anatomy 0.000 description 4
- 230000000638 stimulation Effects 0.000 description 4
- 230000002103 transcriptional effect Effects 0.000 description 4
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 3
- WOVKYSAHUYNSMH-RRKCRQDMSA-N 5-bromodeoxyuridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(Br)=C1 WOVKYSAHUYNSMH-RRKCRQDMSA-N 0.000 description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 102000046157 human CSF2 Human genes 0.000 description 3
- 210000002540 macrophage Anatomy 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000013612 plasmid Substances 0.000 description 3
- 229920002401 polyacrylamide Polymers 0.000 description 3
- 238000001890 transfection Methods 0.000 description 3
- 101000746367 Homo sapiens Granulocyte colony-stimulating factor Proteins 0.000 description 2
- 108010002350 Interleukin-2 Proteins 0.000 description 2
- 102000000588 Interleukin-2 Human genes 0.000 description 2
- 108010002616 Interleukin-5 Proteins 0.000 description 2
- 102000000743 Interleukin-5 Human genes 0.000 description 2
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 2
- 239000006146 Roswell Park Memorial Institute medium Substances 0.000 description 2
- 108700009124 Transcription Initiation Site Proteins 0.000 description 2
- 102000018594 Tumour necrosis factor Human genes 0.000 description 2
- 108050007852 Tumour necrosis factor Proteins 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 230000001464 adherent effect Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 230000001684 chronic effect Effects 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- 201000001441 melanoma Diseases 0.000 description 2
- 210000001616 monocyte Anatomy 0.000 description 2
- 210000000440 neutrophil Anatomy 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 210000003606 umbilical vein Anatomy 0.000 description 2
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- 208000031261 Acute myeloid leukaemia Diseases 0.000 description 1
- WOVKYSAHUYNSMH-UHFFFAOYSA-N BROMODEOXYURIDINE Natural products C1C(O)C(CO)OC1N1C(=O)NC(=O)C(Br)=C1 WOVKYSAHUYNSMH-UHFFFAOYSA-N 0.000 description 1
- 206010005003 Bladder cancer Diseases 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- 101100506090 Caenorhabditis elegans hil-2 gene Proteins 0.000 description 1
- 101100069853 Caenorhabditis elegans hil-3 gene Proteins 0.000 description 1
- 101100069857 Caenorhabditis elegans hil-4 gene Proteins 0.000 description 1
- 101100230428 Caenorhabditis elegans hil-5 gene Proteins 0.000 description 1
- 101100338243 Caenorhabditis elegans hil-6 gene Proteins 0.000 description 1
- 101100026373 Caenorhabditis elegans nhl-1 gene Proteins 0.000 description 1
- 102100035959 Cationic amino acid transporter 2 Human genes 0.000 description 1
- 101000654316 Centruroides limpidus Beta-toxin Cll2 Proteins 0.000 description 1
- 108010035563 Chloramphenicol O-acetyltransferase Proteins 0.000 description 1
- PHEDXBVPIONUQT-UHFFFAOYSA-N Cocarcinogen A1 Natural products CCCCCCCCCCCCCC(=O)OC1C(C)C2(O)C3C=C(C)C(=O)C3(O)CC(CO)=CC2C2C1(OC(C)=O)C2(C)C PHEDXBVPIONUQT-UHFFFAOYSA-N 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 108010062580 Concanavalin A Proteins 0.000 description 1
- 239000003298 DNA probe Substances 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 206010014958 Eosinophilic leukaemia Diseases 0.000 description 1
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 108700005091 Immunoglobulin Genes Proteins 0.000 description 1
- 102100039064 Interleukin-3 Human genes 0.000 description 1
- 206010025323 Lymphomas Diseases 0.000 description 1
- 101000746372 Mus musculus Granulocyte-macrophage colony-stimulating factor Proteins 0.000 description 1
- 101001034843 Mus musculus Interferon-induced transmembrane protein 1 Proteins 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 238000000636 Northern blotting Methods 0.000 description 1
- 108020005187 Oligonucleotide Probes Proteins 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 108010021757 Polynucleotide 5'-Hydroxyl-Kinase Proteins 0.000 description 1
- 102000008422 Polynucleotide 5'-hydroxyl-kinase Human genes 0.000 description 1
- 239000012979 RPMI medium Substances 0.000 description 1
- 108700008625 Reporter Genes Proteins 0.000 description 1
- 108091006231 SLC7A2 Proteins 0.000 description 1
- 208000009359 Sezary Syndrome Diseases 0.000 description 1
- 208000021388 Sezary disease Diseases 0.000 description 1
- 208000029052 T-cell acute lymphoblastic leukemia Diseases 0.000 description 1
- 108700026226 TATA Box Proteins 0.000 description 1
- 108091036066 Three prime untranslated region Proteins 0.000 description 1
- 102000006601 Thymidine Kinase Human genes 0.000 description 1
- 108020004440 Thymidine kinase Proteins 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 238000000376 autoradiography Methods 0.000 description 1
- 102000023732 binding proteins Human genes 0.000 description 1
- 108091008324 binding proteins Proteins 0.000 description 1
- 201000001531 bladder carcinoma Diseases 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 229950004398 broxuridine Drugs 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 230000009918 complex formation Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 230000003511 endothelial effect Effects 0.000 description 1
- 239000002158 endotoxin Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 210000003979 eosinophil Anatomy 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 229920006008 lipopolysaccharide Polymers 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000003226 mitogen Substances 0.000 description 1
- 201000005962 mycosis fungoides Diseases 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- 239000002751 oligonucleotide probe Substances 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 1
- 230000001124 posttranscriptional effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 210000002536 stromal cell Anatomy 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 238000003146 transient transfection Methods 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 208000010570 urinary bladder carcinoma Diseases 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/6863—Cytokines, i.e. immune system proteins modifying a biological response such as cell growth proliferation or differentiation, e.g. TNF, CNF, GM-CSF, lymphotoxin, MIF or their receptors
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/52—Cytokines; Lymphokines; Interferons
- C07K14/53—Colony-stimulating factor [CSF]
- C07K14/535—Granulocyte CSF; Granulocyte-macrophage CSF
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Biochemistry (AREA)
- Organic Chemistry (AREA)
- Hematology (AREA)
- Biomedical Technology (AREA)
- Urology & Nephrology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- General Health & Medical Sciences (AREA)
- Cell Biology (AREA)
- General Physics & Mathematics (AREA)
- Zoology (AREA)
- Physics & Mathematics (AREA)
- Food Science & Technology (AREA)
- Microbiology (AREA)
- Pathology (AREA)
- Toxicology (AREA)
- Analytical Chemistry (AREA)
- Gastroenterology & Hepatology (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Peptides Or Proteins (AREA)
Abstract
A method for controlling the expression of granulocyte/macrophage colony stimulating factor (GM-CSF) in cells which express GM-CSF, or for controlling the expression of other haemopoietic cytokines which contain the Ck-1 or Ck-2 DNA sequences in cells where they are expressed, which comprises the step of regulation of the binding of nuclear protein(s) in said cells with Ck-1 and Ck-2 in the promoter region of the GM-CSF gene or the said haemopoietic cytokine genes. The step of regulation of the binding of the nuclear protein(s) with Ck-1 and Ck-2 sequences may consist of the induction or promotion of binding, or alternatively, it may consist of the prevention or inhibition of binding. By way of example, regulation of the binding of the nuclear protein(s) may be effected by the use of DNA of a sequence which will act as a competitive inhibitor in the binding of protein(s).
Description
REGULATION OF EXPRESSION OF GM-CSF GENE This invention relates to the regulation of the expression of the gene for human granulocyte/macrophage colony stimulating factor (GM-CSF), as well as to diagnosis of leukaemia and other related diseases which might be associated with abnormalities in the cells expressing GM-CSF. Human granulocyte/macrophage colony stimulating factor (GM-CSF) is a 22-kDa glycoprotein which stimulates the formation of granulocyte, macrophage, granulocyte/macrophage and eosinophil colonies from normal bone marrow progenitor cells in vitro (1). GM-CSF has a direct action also on the function of mature peripheral blood granulocytes (2,3). The gene encoding human GM-CSF is 2.5 -3 kb long (4,5) and maps to the long arm of chromosome 5 (6). Antigen or mitogen activated T cells and T cell lines produce relatively high levels of GM-CSF (7,8,9). Other cytokines such as interleukin-l and tumour necrosis factor (TNF) activate the expression of the GM-CSF gene in endothelial cells (10). Primary human stromal cells can also be induced to produce GM-CSF (11). It appears that there may be multiple forms of control of GM-CSF production, both at a transcriptional and post- transcriptional level. mRNA stability has been shown to be involved in controlling the induction of mouse GM-CSF in macrophages (12) and a sequence in the 3' untranslated region is responsible for the instability of GM-CSF mRNA(13). It was recently reported that a 650bp fragment from the promoter region of the hGM-CSF was involved in T cell-specific expression of the gene and was only active in PHA/PMA-stimulated T cells (14). Computer analysis of the GM-CSF genes from mouse and man has shown that the most highly conserved sequences are in the promoter region and in the 3' non-coding sequence of the mRNA (5), indicating the potential importance of these regions in the regulation of expression of these genes. Homologies with other cytokines can also be found especially in the promoter region of the genes (5,15,16). It has now been discovered that sequences within the promoter region of the GM-CSF gene, especially those sequences shared with other cytokine genes, are the binding sites for nuclear proteins which confer cellspecificity or inducibility on the GM-CSF gene. Accordingly, in a first aspect of the present invention, there is provided a method for controlling the expression of granulocyte/macrophage colony stimulating factor (GM-CSF) in cells which express GM-CSF, or for controlling the expression of other haemopoietic cytokines containing CK-1 or CK-2 in cells where they are expressed, which comprises the step of regulation of the binding of nuclear protein(s) in said cells with the promoter region of the GM-CSF gene. The step of regulation of the binding of the nuclear protein(s) with the promoter region of the GM-CSF gene may consist of induction or promotion of such binding, or alternatively it may consist of prevention or inhibition of such binding. By way of example only, regulation of the binding of the nuclear protein(s) may be effected by inhibition of protein binding using specific inhibitors having affinity for CK-1 or CK-2, or by use of DNA of an appropriate sequence to act as a competitive inhibitor in the binding of protein. In a particular aspect of this invention, it is the binding of the nuclear protein(s) with the region within the GM-CSF promoter region which is close to the transcription start site, more particularly the region spanning the cytokine-l (CK-1) and/or cytokine-2 (CK-2) specific sequences of the promoter region, which is regulated. By way of example, the method of this aspect of the invention includes induction of the formation of the complex described herein as nuclear factor (NF)-GMb. NF-GMb is thus formed by interaction of nuclear protein from GM-CSF expressing cells with the promoter region spanning the CK-1 and CK-2 specific sequences. The NF-GMb complex then regulates the transcription of this gene. As described herein, NF-GMb is inducible and accompanies production of GM-CSF mRNA. Furthermore this complex is absent in cell lines not producing GM-CSF. In another aspect, the present invention extends to the diagnosis of leukaemia and other related diseases which might be associated with abnormalities in the expression of GM-CSF. In this aspect of the invention detection of abberations or abnormalities in the identity of the nuclear protein(s) or the promoter region to which these nuclear protein(s) bind, or in the nature of the binding between the nuclear protein(s) and the promoter region, provides an indication of altered production of GM-CSF. Abnormalities which may arise in this regard would include lack of capacity of the protein(s) to bind to DNA. Such an abnormality may, for example, be detected by a DNA-gel retardation assay as described herein, or by competitive ELISA techniques. Abnormalities associated with lack of capacity to activate transcription may be detected by use of an in vitro transcription system to screen for function. The gel retardation assay as described herein may also be used as a screen for agents which might inhibit the binding of nuclear protein(s) to the promoter region. In work leading to the present invention, the interaction of nuclear proteins from cells which express GM-CSF and cells where GM-CSF is not produced with synthetic oligonucleotides spanning conserved regions'of the GM-CSF promoter, has been examined. As a result of this work, it has been shown.that there are cell-specific as well as inducible nuclear proteins which interact with DNA fragments from the GM-CSF promoters. Comparison of the promoter regions from a number of cytokine genes has revealed some homologous sequences conserved between different genes and across species (5,14,15). One decanucleotide sequence (cytokine (CK)-1), 5'GRGRTTYCAY3' (R=A or G; Y=C or T) is found in both human and murine IL-2, IL-3, GM-CSF and G-CSF genes (Fig 4). In addition a second sequence (CK-2), 5'TCAGRTA3', lying 3' to the decanucleotide, is conserved in both human and murine GM-CSF and IL-3 genes (Fig 4). This sequence is not found in human or murine G-CSF or IL-2. The CK-1 sequence is also repeated further upstream in the human GM-CSF (14) and murine IL-3 (31) genes but without the extra flanking conserved sequence. A 41bp oligonucleotide probe spanning the CK-1 and CK-2 sequences has been designed to elucidate their role in nuclear protein binding. These two sequences are flanked by GM-CSF sequences not conserved-in the other genes. Two DNA-protein complexes which are specific for the 41bp oligonucleotide spanning these conserved sequences have been identified. It would appear that these two complexes are generated by two or more different proteins since the proteins involved in these complexes (described herein as NF-GMa and NF-GMb) elute from a heparin-sepharose column at 0.1-0.3M KC1 and 0.6M KC1, respectively. The CK-1 sequence has been postulated to account for the co-ordinate expression of some of these genes in activated T cells (14,15). However, G-CSF is not expressed in activated T cells (13) despite the fact that its promoter contains -a copy of CK-1. It seems unlikely, therefore, that this sequence alone is responsible for T cell expression of GM-CSF or IL-3. However; the extended conserved sequence of CK-1 and CK-2 noted above between GM-CSF and IL-3 genes may be involved in T cell expression of these genes. It is noteworthy that IL-3 and GM-CSF are often co-ordinately expressed following Con A stimulation of murine T cell clones (35). Treatment of U5637 cells with PMA results in an increase in GM-CSF mRNA and an increase in the level of the NF-GMb complex but not NF-GMa. The ability to induce the NF-GMb complex in PMA-treated U5637 cells, concomitant with GM-CSF mRNA production suggests that the protein(s) involved in the NF-GMb complex may be responsible for the inducibility of the GM-CSF gene. The situation observed here parallels that found with proteins binding to the octamer motif of the immunoglobulin genes (25,26). Two proteins, one of which is lymphoid specific, bind to this motif. The lymphoid specific protein is inducible with lipopolysaccharide (26) as is NF-GMb with PMA in US 637 cells. Extracts from a human melanoma LiBr cell line contain the protein(s) responsible for NF-GMa, but NF-GMb could not be induced by PMA treatment of these cells. Nuclear proteins prepared from the mouse SP2 cell line did not bind specifically to the GM-CSF conserved sequence. It would appear, therefore, that the protein(s) which bind to this GM-CSF sequence are limited in their cellular distribution. The result is consistent with previous results which show that a GM-CSF/CAT fusion gene is expressed in activated T cells but not in a human B-lymphoblastoid cell line (14). Further features of the present invention will be apparent from the follow.ing detailed description and drawings. In the drawings: Figure 1 shows (a) Restriction enzyme map of the promoter region of the human GM-CSF gene. The sequence is numbered from the start of transcription (+1). The sequence between the SacI site at -11 and -96 is expanded to show both the sequence conserved between the cytokine genes and the TATA box sequence. P;PstI,S;SacI, D;Dde I. (b) The sequence of the 41bp synthetic oligonucleotide which span the conserved GAGATTCCAC and TCAGGTA sequences. The conserved regions are underlined. Fiaure 2 shows interaction of nuclear proteins from PMA-treated U5637 cells with synthetic oligonucleotides. (a) Competition assays to determine the specificity of binding to the synthetic 41bop annealed oligonucleotides 0.2ng radiolabelled oligonucleotides was mixed with 2pg nuclear protein and 2 pg poly (dI:dC). Increasing concentrations of the specific oligonucleotide (GM) (lanes 2-5) or unrelated oligonucleotide (X) (lanes 7-10) were added; lanes 1 & 6, no competitor; lanes 2 & 7, 5ng lanes 3 & 8, lOng; lanes 4 & 9, 25ng; lanes 5 & 10, 50ng; a and b indicate the two specific complexes NF-GMa and NF-GMb, F indicates the unbound oligonucleotide. (b) Separation of U5637 nuclear extract on heparin sepharose. The KC1 concentration (M) used for elution is indicated under each track. Lanes 1, 3, 5 and 7 had 50mM KC1 in the binding reactions and lanes 2, 4, 6 and 8 had 200mM KC1. Figure 3 shows: (a) Interaction of nuclear proteins, from different cell lines after PMA treatment, with the synthetic oligonucleotides. Extracts from PMA-treated HUT78 cells (2pig) (lane 1), U5637 cells (2pg) (lane 2), SP2 cells (6pg) (lane 3), LiBr cells (6pig) (lane 4) were used with 0.2ng radiolabelled oligonucleotides; lane 5 had not protein. a and b indicate the specific complexes and F indicates the unbound oligonucleotide. (b) Effect of PMA treatment on the formation of the NF-GMa and NF-GMb complexes. Lane 1, untreated U5637 cells; lane 2, PMA-treated U5637 cells; lane 4, untreated LiBr cells, lane 5, PMA-treated LiBr cells. Figure 4 shows the conserved sequences found in the promoter region of cytokine genes. All the sequences have been compared to the human GM-CSF sequence. The non conserved bases are shown in small letters. The numbering is relative to the transcription start site of each gene (+1). Figure 5 shows densitometer scans of gel retardation assays in which various oligonucleotides were assessed for the degree of competition of binding with a radio labelled GM-CSF sequence incorporating CK-1. Fiaure 6 shows gel retardation assays using various oligonucleotides incorporating CK-1 and HUT78 T-cell extract. Fiaure 7 shows transfectioh of Jurkat cells with single or multiple copies of CK-1 from either GM-CSF or G-CSF cloned upstream of tkCAT in pBLCAT2. Lane 1, pGCK-1 + PMA; lane 2, pGCK-l; lane 3, pGMCK-l + PMA; lane 4, pGMCK-l; lane 5, pG(4)CK-I + PMA; lane 6, pG(4)CK-l; lane 7, pGM(5)CK-1 + PMA; lane 8, pGM(S)CK-l; lane 9, pBLCAT2; lane 10, 1 unit of CAT enzyme. (The number in brackets after the pG or pGM symbols is the number of copies of the sequence cloned upstream of the tk promoter.) Fiaure 8 shows identification of the molecular weight of NF-GMa by photocross linking. Track 1, NF-GMa complex; track 2; + 200 fold excess cold GM oligo; track 3, + 200 fold excess cold x/y oligo. Molecular.weight markers are indicated beside the gel. Fiaure 9 shows TNF-a induction of NF-GMa. HUVE cells (a) or FLOW cells (b) were grown in the presence of TNF-a for the indicated times. NF-GMa was detected in nuclear extracts using the GM-CSF sequence as a radio labelled probe. a, NF-GMa; f, unbound DNA. Figure 10 shows that CK-1 responds to TNF-a. FLOW cells were transfected with the following DNA samples: (1) no DNA; (2) and (3) pSV2 CAT; (4) and (5) pBL CK-1(4); (6) and (7) pBL CAT2. Lanes 2, 4 and 6 were treated for lOhr with 100 units/ml TNF-a before harvesting and assaying for CAT activity. MATERIALS AND METHODS DNA probes. Two complementary 41bp oligonucleotides were synthesiaed with EcoRI ends (Fig.lb). Each oligonucleotide was end-labelled with y-32P-ATP (Bresa) and polynucleotide kinase (Pharmacia). The radiolabelled oligonucleotides were annealed by heating to 1000C for 3 min in 25mM Tris-HCl pH7.6, 150mM NaCl and cooling at room temperature for 15 min. Unlabelled oligonucleotides were also annealed as described above to give a final concentration of lOng/pl and used as specific competitors in the binding reactions. Cell lines U5637 is a human bladder carcinoma cell line which constitutively produces GM-CSF and G-CSF (18). HUT78 is a T-lymphoblastoid cell line derived from a patient with Sezary syndrome (19). SP2 10-Ag 14 is a mouse myeloma cell (20) and LiBr is a human melanoma cell line (21). Jurkat cells are a human t-lymphoblastoid cell line; FLOW cells are an embryonic fibroblast primary cell line, and human umbilical vein endothelial cells are also primary cultures. GM-CSF mRNA can be detected in U5637 and HUT78 cells but not in LiBr and SP2 cells. All cell lines were routinely grown in RPMI medium supplemented with 10% foetal calf serum. Cells were harvested at lox106 cellsSml or at 80% confluence for non-adherent and adherent cell lines respectively, following treatment for 6hr with l0ng/ml of phorbol-12 myristate-13-acetate (PMA). Untreated cells were grown for the same period of time but without PMA. Preparation of nuclear extracts. Nuclei were prepared as described by Dignam et.al. (22). Nuclear proteins were extracted by constant agitation for 30 min with 0.5M KC1 at 40C. Following centrifugation at 20,000 rpm for 30 min (Beckman TL100.3) the supernatant was dialysed against three changes of TM buffer containing 100mM KC1 for 12-16 hrs. (TM buffer is 50mM Tris-HCl pH7.6, 12mM MgCl2, lmM EDTA, lmM DTT, 20% glycerol; 23). The protein extracts were stored at -70tC. Protein concentration was determined using the Bio-Rad assay (Bio-Rad). Gel retardation assays. For binding reactions, 0.1-1.0 ng of radiolabelled fragment (5-10,000 cpm) was mixed with 1-3pg of nuclear extract in a final volume of 20p1 containing 25mM Tris-HCl pH7.6, 6.25mM MgCl2, 0.5mM EDTA, 0.5mM DTT, 10% glycerol and 80-200mM KC1. 0.5-3pg of poly (dI:dC) was used in all reactions as non-specific competitor. Specific. competitors were added to each reaction as described in individual experiments. The reactions were analysed on 5% polyacrylamide gels in low ionic strength buffer (24). The gels were pre-electrophoresed at 20V/cm for 2 hr and electrophoresed at the same voltage for 1-2 hr. Following electrophoresis the gels were dried and autoradiographed overnight or for 1-2 days. Binding reactions with synthetic oligonucleotides were as described above. The retardation patterns were analysed on 11% polyacrylamide gels in 0.5 x TBE (1.0 x TBE is 50mM Tris/borate pH8.3, lmM EDTA). Heparin-Sepharose column chromatography. A lml heparin-sepharose (Pharmacia) column was equilibrated with TM buffer containing 100mM KC1 (TM.1). Six mg of crude nuclear extract from PMA-treated U5637 cells was loaded onto the column in the- same buffer. Following extensive washing with TM.1 the bound protein was eluted in a stepwise fashion with 3ml each of 200, 300 and 600mM KC1 in TM buffer. The eluates from each salt concentration were collected, dialysed into TM.1 and the protein concentration estimated with the Bio-Rad assay. The fractions were tested for binding activity to the synthetic oligonucleotides. Transfection of Jurkat cells. Jurkat cells were passage several days before transfection and grown to a density of lx106 cells/ml in RPMI supplemented with 10% foetal calf serum. Cells were harvested and washed twice in electroporation buffer (20mM HEPES, pH 7.6, 157mm NaCl, 5mM KC1, 0.1% glucose) and resuspended at lox107 cells/ml for electroporation. Aliquots of 2x106 cells were mixed with 15pg DNA and 10% foetal calf serum and placed on ice for 15 mins. Electroporation was with a Bio-Rad Gene Pulsar with settings of 270V and 960pF. The cuvettes were placed on ice for a further 10 min and then transferred to a T25 flask with 8ml RPMI with 10% foetal calf serum and incubated for 40-48 hr before harvesting. For stimulation, cells were treated with PMA (20pg/ml) and PHA (2pg/ml) for 16 hr before harvesting. Cells were harvested by centrifugation, washed in PBS and cytoplasmic extracts prepared according to Gorman et.al. (36). Protein concentration was assayed and CAT assays performed on all extracts using 25pg of protein in each assay. RESULTS A conserved cytokine-specific sequence binds nuclear proteins. Two complementary oligonucleotides (each 41 bp long) spanning the sequence 5'GAGATTCCAC3' (Fig.lb), were synthesized in order to investigate the interaction of nuclear proteins with this sequence. Two specific retarded complexes, labelled a and b in Fig.2a, were generated with extracts from PMA-stimulated HUT78 or U5637 cells. These complexes will be referred to as nuclear factor (NF)-GMa and NF-GMb. These two complexes could be competed out completely with 50ng of unlabelled annealed oligonucleotides (Fig.2a, lanes 1-5) but not by the same concentration of an unrelated oligoncleotide (Fig.2a, lanes 6-10) nor with 3pg of poly (dI:dC) (not shown). Other retarded complexes running higher on the gel or closer to the free DNA are not consistently observed and cannot be competed with increasing concentrations of specific competitor (Fig.2a). Increasing the salt concentration in the binding reactions from 80mM to 200mM greatly reduces this non-specific interaction and enhances the specific interactions by approximately 3-fold (data now shown). Subsequent binding reactions were therefore carried out at 200mM KC1. The two retarded complexes could result either from interaction with multimers of the same protein or with two distinct proteins. The nuclear extract from U5637 cells was fractionated on a heparin-sepharose column. The proteins eluting from the column with 0.1M, 0.2M, 0.3M and 0.6M KCl were tested in retardation assays (Fig.2b). The protein(s) responsible for the NF-GMa complex eluted from the column with 0.1-0.3M KC1 and that for NF-GMb with 0.6M KC1 (Fig.2b, lanes 5, 6 and 7, 8), suggesting the involvement of two distinct proteins in these complexes. Cell specific interactions with the conserved cytokine sequence. We have compared the retardation band patterns obtained with extracts prepared from U5637, HUT78, LiBr and SP2 cell lines. The extracts were all prepared from cells treated for 6hr with 10ng/ml PMA. Both of the specific retarded bands, NF-GMa and NF-GMb were obtained using the radio labelled oligonucleotides and extracts from PMA-treated U5637 and HUT78 cells (Fig.3a, lanes 1 and 2), although HUT78 cell extracts always yielded a 3-4 fold concentration of the proteins involved in both these complexes. Extracts from the SP2 cell line did not result in either of the specific complexes but gave a diffuse retarded band migrating above NF-GMa (Fig.3a, lane 3). This interaction is competed with increasing concentrations of poly (dI:dC). Extracts from PMA-treated LiBr cells bound to the GM-CSF specific oligonucleotide giving rise to NF-GMa but not NF-GMb. The amount of NF-GMa formed with extracts from LiBr cells was always approximately 3-fold lower than that seen in HUT78 or U5637 cells (Fig.3a, lane 4). Effect of PMA stimulation on the formtaion of NF-GMa and NF-GMb DNA-protein complexes. In order to determine if PMA treatment induced the production of the proteins involved in the two cytokine specific complexes, extracts were prepared from the U5637 and LiBr cell lines before and after PMA treatment. The retarded patterns obtained with these extracts indicate that in U5637 cells the protein involved in the NF-GMb complex was induced 5-10 fold (Fig.3b, compare lanes 1 and 2). In LiBr cells this induction was not observed and no change in the level of NF-GMa was seen (Fig.3b, lanes 3 and 4). Definition of binding sites of nuclear proteins. As previously described, the CK-1 sequence is conserved across a large number of cytokines, notably IL-3, G-CSF and IL-5 (see Table 1). CK-2 on the other hand is present only in GM-CSF and IL-3. TABLE 1 CK-1 SEOUENCES hGM (1) G A G A T T C C A C hGM (2) G g G A T T a C Ag 7/10 mGM G A G A T T C C A C 10/10 hIL-3 G A G g T T C C A t 8/10 mIL-3 (1) G A G g T T C C A t 8/10 mIL-3 (2) G A G A T T C C A C 10/10 hIL-2 G g G A T T t C A C 8/10 mIL-2 G g G A T T t C A C 8/10 h-G G A G A T T C C A C 10/10 m-G G A G A T T C C c C 9/10 hIL-5 a A G A T T C t t C 7/10 hIL-6 a g G t T T C C A a 6/10 h-IFN (R) G A G t T T C C t t 7/10 hIL-4 (R) G A a A T T a C A C 8/10 consensus G R G N T T N C N N In order to define the precise binding sites of the nuclear proteins, double stranded oligonucleotides spanning the CK-1 sequence and flanking DNA from a number of cytokine gene regions have been constructed (see Table 2)r and used in competition assays. It should be noted that these oligonucleotides of between 35-45 base pairs were totally different except for the ten base pairs of the CK-1 sequence. The exceptions are GM-CSF and IL-3, where the CK-2 sequence is also present TABLE 2 GM CK1 CK2 5' AATTCTGATAAGGGCCAGGAGATTCCACAGTTCAGGTAGTTG3' 3 'GACTATTCCCGGTCCTCTAAGGTGTCAAGTCCATCAACTTAA5' X 5 'TCGAGAGCTCCCGGGTCGACTGCAGAAGCTTC3' 3 'CTCGAGGGCCCAGCTGACGTCTTCGAAGAGCT5' G 5' AATTCAAAGGAGGATCAGAGATTCCACAATTTCACAAAACG3' 3 'GTTTCCTCCTAGTCTCTAAGGTGTTAAAGTGTTTTGCTTAA5' IL3 5'CTGTGGTTTTCTATGGAGGTTCCATGTCAGATAAAGATCC3' 3' GACACCAAAAGATACCTCCAAGGTACACTCTATTTCTAGGS' ILS 5' GATGTATTAACCCAAAGATTCTTCGTAATAGAAAAT3' 3'CTACATAATTGGGTTTCTAAGAAGCATTATCTTTTA5' CK2 5'TCGAGAGCTCCTCAGGTAACTGCAGAAGCTTC3' 3 'AGCTCTCGAGGAGTCCATTGACGTCTTCGAAG5' Gel retardation assays in which an oligonucleotide based on the GM-CSF sequence incorporating CK-1 was radio labelled with 32P and mixed with nuclear proteins from cells that only produced NF-GMa (HUT 78 T-cell extract) resulted in a single specific retarded band (see Fig.6). The oligonucleotides in Table 2 were assessed for the degree of competition of binding. Gels were densitometer scanned and the percent competition calculated from controls with no competitor added. Fig.5 plots the densitometer scans and shows that there was efficient competition for binding not only by "cold" GM-CSF oligonucleotide but also those derived from IL-3, G-CSF and IL-5 incorporating the CK-1 region In contrast, oligonucleotides not having a CK-1 or CK-1 like sequence (X) or only having CK-2 did not compete. Some decrease in binding was observed with the controls but this was less and more inconsistent than competition where the oligonucleotide incorporated the CK-1 region. These results demonstrate that NF-GMa is a distinct protein binding only to the CK-1 motif. Transcriptional properties of CK-1. To determine the functional significance of the CK-1 sequence, transient transfection experiments were carried out in Jurkat cells. Plasmids were constructed with either single or multiple copies of the CK-1 sequence from GM-CSF or G-CSF upstream of the thymidine kinase (tk) gene in pBLCAT (37) (Fig.7). The GM-CSF sequence also contains the CK-2 sequence which is necessary for binding of NF-GMb These plasmids were transfected into Jurkat cells by electroporation. Cell extracts were assayed for CAT activity (36) 48 hr after transfection. A single copy of either the GM-CSF or G-CSF CK-1 sequence cloned in either orientation upstream of the tk promoter enhanced transcription by 2-3 fold (Fig.7). Multiple copies of either sequence appeared to have an additive effect enhancing transcription from the tk promoter by 5-10 fold (Fig.7). Treatment of the transfected cells with phorbol myristate acetate (PMA) and phyto-haemagluttinin (PHA) for 12 hr prior to harvest resulted in approx. 30% increase in transcription. The vector pBLCAT2 did not respond to PMA/PHA stimulation. These results show that CK-1, and its binding protein NF-GMa, acts as a positive regulator of transcription. It has the properties of a transcriptional enhancer sequence, being functional in either orientation relative to the direction of transcription and multiple copies function in an additive manner. Identification of the proteins involved in the NF-GMa complex. To identify the protein(s) responsible for forming the NF-GMa complex a modification of the uv-cross linking method of Wu et.al. (38) was employed. A 40 bp fragment of DNA containing the G-CSF CK-1 sequence was labelled with 32P-dATP and bromodeoxyuridine (BUdR) by chain elongation. The probe was incubated with crude nuclear extract from the HUT78 cells in a scaied up binding reaction (see Materials and Methods). The substitution of T residues with BUdR did not interfere with NF-GMa complex formation. The NF-GMa complex was excised from a standard polyacrylamide retardation gel following exposure of the gel to uv light and autoradiography. The gel slice was incubated in SDS load buffer and electrophoresed on a 10% SDS Laemmli gel. A single protein of molecular weight 43 kD was identified on the protein gel (Fig.8). When 50 fold molar excess CK-1 competitor was added to the binding reaction this protein band was eliminated but in a reaction containing the same quantity of an unrelated DNA fragment as competitor, the 43 kD protein was present (Fig.8). NF-GMa and NF-GMb in leukaemia. Nuclear proteins were extracted by normal procedures from peripheral blood mononuclear cells prepared from patients with acute myeloid (AML) or other forms of leukaemia. All samples checked had > 80% leukaemic blasts. The presence of NF-GMa and NF-GMb were determined by the standard gel retardation procedure (described in Materials and Methods) using the GM-CSF 40bp fragment of DNA as a radiolabelled probe. A number of normal samples including purified lymphocytes, neutrophils and monocytes were also tested. The results are summarised in the attached Tables 3 and 4. The NF-GMa protein is present in most leukaemic or normal cells tested. This finding is in agreement with the previous finding of NF-GMa in most cell lines in culture. On the other hand, NF-GMb is absent in all normal cells so far tested with one exception. One normal lymphocyte sample contained low levels of NF-GMb. Of the 24 AML samples tested 8 contained NF-GMb, i.e. 33% of samples. Of the 11 samples from other leukaemias tested, only one T cell acute lymphocytic leukaemia contained NF-GMb. If, as proposed, the induction of NF-GMb is required for GM-CSF expression then the presence of NF-GMb in 30% of acute myeloid leukaemias may lead to the expression of GM-CSF in these cells. Recently, it has been shown that of 22 AML samples analysed for GM-CSF expression by Northern blotting of mRNA, half contained mRNA for GM-CSF. On the other hand, analysis of some chronic myeloid leukaemia (CML) or acute lymphocytic leukaemia (ALL) samples did not reveal GM-CSF mRNA (39). This finding of NF-GMb in some cases of AML may be correlated with the ability of these cells to synthesize GM-CSF. Therefore it may be feasible to diagnose a subset of AML patients, (i.e. those expressing GM-CSF) by screening for the presence of NF-GMb. TABLE 3 NF-GMa and NF-GMb in leukaemic cells. Disease No.of samples Presence of GMa GMb AML 24 23 8 ALL 3 2 CML 2 1 CLL 2 Lymphoma 1 1 Eosinophilic leukaemia 1 1 CGL 1 1 NHL 1 1 ALL, acute lymphocytic leukaemia; CML, chronic myeloid leukaemia; CLL, chronic lymphocyte leukaemia; CGL, chronic granulocyte leukaemia; NHL, non-Hodgkin's lymphoma. TABLE 4 Presence of NF-GMa and NF-GMb in normal blood cells. Cell type Presence of GMa GMb Lymphocytes (7)* 6 Neutrophils (10) 10 Monocytes (2) 1 T Blasts** (2) 2 * refers to the number of different samples tested. ** Normal T-cells grown for 1 week in presence of PHA. Induction of NF-GMa in endothelial cells and fibroblasts. Treatment of endothelial cells or fibroblasts with TNF-a leads to an induction of GM-CSF and G-CSF mRNA (10). The mechanism of induction has been shown to be at the transcriptional level (40). Because NF-GMa and NF-GMb may be involved in GM-CSF transcription, the response of these proteins to TNF-a treatment has been analysed. Both human umbilical vein endothelial (HUVE) cells and embryonic fibroblasts (FLOW) contain low levels of NF-GMa and barely detectable levels of NF-GMb. Treatment of either cell type with 100ng/ml TNF-a induces the level of NF-GMa binding to the GM-CSF 40bp sequence (Fig.9a and b). This increase is time dependent reaching maximum levels at 6hr treatment and decreasing to almost basal levels by 24hr. No consistent changes are seen in the level of NF-GMb (not shown). The induction of NF-GMa can be correlated with the ability of CK-1 sequence to direct TNF-a dependent transcription when transfected into FLOW cells. A plasmid containing 4 copies of the G-CSF CK-1 sequence upstream of the tk promoter and the CAT reporter gene was transcribed at high levels only after TNF-a treatment of the cells for 10-12hr (Fig.10). Therefore under certain conditions in some cell types NF-GMa is an inducible protein which may be involved in GM-CSF induction by TNF-. Those skilled in the art will appreciate that the invention described herein is susceptible to variations and modifications other than those specifically described. It is to be understood that the invention includes all such variations and modifications which fall within its spirit and scope. REFERENCES: 1. Metcalf, D., Begley, C.G., Johnson, G.R., Nicola, N.A., Vadas, M.A., Lopez, A.F., Williamson, D.J., Wong, G.G., Clark, S.C. and Wang, E.A. (1986). Blood 67:37-45. 2. Vadas, M.A., Nicola, N. and Metcalf, D. (1983). J.Immunol. 130:795-799. 3. Lopez, A.F., Williamson, D.J., Gamble, J.R., Begley, C.G., Harland, J.M., Klebanoff, S.J., Waltersdorph, A., Wong, G., Clark, S.C. and Vadas, M.A. (1986). J.Clin.Invest. -Ai7:1220-1228. 4. Huebner, K., Isobe, M., Croce, C.M., Golde, D.W., Kaufman, S.E. and Gasson, J.C. (1985). Science 2;1Q: 1282-1285. 5. Myatake, S., Otsuka, T., Yokota, T., Lee, R. and Arai, K. (1985). EMBO J. 4:2561-2568. 6. Le Beau, M.M., Westbrook, C.A., Diaz, M.O., Larson, R.A., Rowley, J.D., Gasson, J.C., Golde, D.W. and Sheer, C.J. (1986) Science, 231:984-987. 7. Rimaldi, A., Young, D.C. and Griffin, J.D. (1987), Blood 69:1409-1413. 8. Wong, g.G., Witek, J.S., Temple, P.A., Wilkens, K.M., Leary, A.C., Luxenburg, D.P., Jones, S.S., Brown, E.L., Kay, R.M., Orr, E.C., Shoemaker, C., Golde, D.W., Kaufman, R.J.,-Hewick, R.M., Wang, E.A. and Clark, S.C. (1985) Science 228:810815. 9. Chen, I.S.Y., Quan, S.G. and Golde, D.W. (1983) Proc.Natl.Acad.Sci.USA. 80:7006-7009. 10. Munker, R., Gasson, J.., Ogawa, M. and Koeffler, H.P. (1986) Nature, London 323:79-82. 11. Clarke, S.C. and Kamen, R. (1987) Science 236:1229-1237. 12. Thorens, B., Mermod, J-J, and Vassalli, P. (1987), Cell 48:671-679. 13. Shaw, G. and Kamen, R. (1986) Cell 46:659-667. 14. Chan, J.Y., Slamon, D.J., Nimer, S.D., Golde, D.W. and Gasson, J.C. (1986) Proc.Natl.Acad.Sci. A8:8669-8673. 15. Stanley, E., Metcalf, D., Sobieszczuk, P., Gough, N.M. and Dunn, A.R. (1985), EMBO J. 4:2569-2573. 16. Tsuchiya, M., Raziro, Y. and Nagata, S. (1987), Eur.J.Biochem. 165, 7-12. 17. Maniatis, T., Fritsch, E.F. and Sambrook, J. (1982), Molecular Clonina. A Laboratory Manual. Cold Spring Harbor. 18. Welte, K., Platzer, E., Lu, L., Gabrilove, J.L., Levi, E., Mertelsmann, R. and Moore, M.A.S. (1985), Proc.Natl.Acad.Sci.USA 82:1529-1530. 19. Gazder, A.F., Carney, D.N., Bunn, P.A., Russell, E.K., Jaffe, E.S., Schechter, G.P. and Guccion, J.G. (1980), Blood 55:408-417. 20. Shulman, M., Wilde, C.D. and Kohler, G., (1978), Nature (London) 276:269-270. 21. Asano, S. and Riglar (1981), Cancer Res. 41:1199-1204. 22. Dignam, J.D., Lebowitz, R.M. and Roeder, R.G. (1983), Nucl.Acids Res. 11:1475-1489. 23. Jones, K.A., Yamamoto, K.R. and Tjian, R. (1985), Cell 42, 559-572. 24. Sen, R. and Baltimore, D. (1986), Cell 46, 705-716. 25. Landolfi, N., Capra, J.D. and Tucker, P.W. (1986), Nature (London) 323:548-551. 26. Staudt, L.M., Singh, H., Sen, R., Wirth, T., Sharp, P.A. and Baltimore, D. (1986) Nature (London) 323:640-643. 27. Royer, H.D. and Reinherz, E.L. (1987), Proc.Natl.Acad.Sci.USA 84:323-236. 28. Maniatis, T., Goodbourn, S. and Fisher, J.A. (1987) Science 236:1237-1245. 29. Goodbourn, S., Burstein, H. and Maniatis, T. (1986), Cell 45:601-610. 30. Zinn, K. and Maniatis, T. (1986), Cell 45:611-618. 31. Campbell, H.D., Ymer, S., Fung, M.C. and Young, I.G. (1985), Eur.J.Biochem. 150:297-304. 32. Holbrook, N.J., Smith, K.A., Fornace, A.J., Comean, C.M., Wiskocil, R.L. and Crabtree, G.C. (1984), Proc.Natl.Acad.Sci.USA 81:1634-1638. 33. Fuse, A., Fujita, T., Yasumitsu, H., Kashima, N., Hasegawa, R. and Taniguchi, T. (1984), Nucl.Acids.Res. 12:9323-9331. 34. Nagata, S., Tsuchiya, M., Asano, S., Yamamoto, O., Hirata, Y., Kubota, N., Oheda, M., Nomura, H. and Yamazaki, T. (1986), EMBOJ. 5:575-581. 35. Kelso, A. and Metcalf, D. (1985), Exo.Hematol. 13:7-15. 36. Gorman, C.M., Moffat, L.F. and Howard, B.H. (1982), Mol.Cell.Biol. 2:1044-1051. 37. Luckow, B. and Schutz, G. (1987), Nucl.Acids Res. 15:5490. 38. Wu, C., Wilson, S., Walker, B., David, I., Paisley, T., Zimarino, U. and Ueda, H. (1987), Science 234:1247-1253. 39. Young, D.C., Wagner, K. and Griffin, J.D. (1987). J.C1in.Invest. A7:100-106. 40. Seelentag, K., Mermod, J-J., Montesano, R. and Vassalli, P. (1987), EMBO J ±:2261-2265.
Claims
1. A method for controlling the expression of granulocyte/macrophage colony stimulating factor (GM-CSF) in cells which express GM-CSF, or for controlling the expression of other haemopoietic cytokines containing CK-1 or CK-2 in cells where they are expressed, which cqmprises the step of regulation of the binding of nuclear.
protein(s) in said cells with the promoter region of the
GM-CSF gene.
2. A method according to claim 1, wherein said regulation step comprises induction or promotion of said binding of nuclear protein(s) with said promoter region.
3. A method according to claim 1, wherein said regulation step comprises prevention or inhibition of said binding of nuclear protein(s) with said promoter region.
4. A method according to claim 1, wherein said regulation step comprises regulation of binding of said nuclear protein(s) to the region spanning the cytokine-l (CK-1) and/or cytokine-2 (CK-2) specific sequences of the promoter region of the GM-CSF gene.
5. A method according to claim 4, wherein said regulation step comprises induction of the formulation of the NF-GMa and/or NF-GMb complexes by interaction of nuclear protein(s) with said region spanning the CK-1 and/or CK-2 specific sequences.
6. A method of diagnosis of diseases associated with abnormalities in the expression of GN-CSF, which comprises the step of detection of abberations or abnormalities in the identities of nuclear protein(s) in GM-CSF expressing cells, in the promoter region of the GM-CSF gene in said cells, or in the nature of binding of said nuclear protein(s) with said promoter region.
7. A method of diagnosis of diseases associated with the expression of GM-CSF which comprises the step of detection of the NF-GMa and/or NF-GMb nuclear protein(s) in cell samples taken from a patient.
8. A method for the determination of an agent which is effective in controlling the binding of nuclear protein(s) with the promoter region of GM-CSF gene in cells which express GM-CSF, which comprises the step of screening the effect of a candidate agent on a nuclear extract in a gel retardation assay.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AUPI449387 | 1987-09-21 | ||
AUPI4493 | 1987-09-21 | ||
AUPI6787 | 1988-02-16 | ||
AUPI678788 | 1988-02-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1989002472A1 true WO1989002472A1 (en) | 1989-03-23 |
Family
ID=25643362
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/AU1988/000370 WO1989002472A1 (en) | 1987-09-21 | 1988-09-21 | Regulation of expression of gm-csf gene |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0391911A4 (en) |
JP (1) | JPH03502040A (en) |
WO (1) | WO1989002472A1 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1991002067A1 (en) * | 1989-07-27 | 1991-02-21 | MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. | Regulation of nerve growth factor synthesis in the central nervous system |
WO1991011521A1 (en) * | 1990-01-26 | 1991-08-08 | La Jolla Cancer Research Foundation | Polypeptides encoding transcriptional activators and uses thereof |
WO1992013092A1 (en) * | 1991-01-18 | 1992-08-06 | Oncogene Science, Inc. | Methods of transcriptionally modulating expression of hematopoietic growth factor genes |
WO1992013091A1 (en) * | 1991-01-18 | 1992-08-06 | Oncogene Science, Inc. | Methods of transcriptionally modulating expression of oncogenes and tumor suppressor genes |
WO1992013063A1 (en) * | 1991-01-18 | 1992-08-06 | Oncogene Science, Inc. | Methods of transcriptionally modulating expression of growth factor genes and growth factor receptor genes |
US5580722A (en) * | 1989-07-18 | 1996-12-03 | Oncogene Science, Inc. | Methods of determining chemicals that modulate transcriptionally expression of genes associated with cardiovascular disease |
US5665543A (en) * | 1989-07-18 | 1997-09-09 | Oncogene Science, Inc. | Method of discovering chemicals capable of functioning as gene expression modulators |
US5863733A (en) * | 1989-07-18 | 1999-01-26 | Oncogene Science, Inc. | Methods of transcriptionally modulating gene expression and of discovering chemicals capable of functioning as gene expression modulators |
US5912168A (en) * | 1996-08-30 | 1999-06-15 | Genesis Research & Development Corporation Limited | CD95 regulatory gene sequences |
WO1999040220A3 (en) * | 1998-02-06 | 1999-10-07 | Glaxo Group Ltd | Method of screening therapeutic agents |
US6165712A (en) * | 1989-07-18 | 2000-12-26 | Osi Pharmaceuticals, Inc. | Methods of transcriptionally modulating expression of viral genes and genes useful for production of proteins |
US6589733B1 (en) | 1989-07-18 | 2003-07-08 | Osi Pharmaceuticals, Inc. | Methods of preparing compositions comprising chemicals capable of transcriptional modulators |
US7910523B2 (en) | 2003-05-23 | 2011-03-22 | Board Of Regents, The University Of Texas System | Structure based and combinatorially selected oligonucleoside phosphorothioate and phosphorodithioate aptamer targeting AP-1 transcription factors |
US11926817B2 (en) | 2019-08-09 | 2024-03-12 | Nutcracker Therapeutics, Inc. | Microfluidic apparatus and methods of use thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0291893A1 (en) * | 1987-05-19 | 1988-11-23 | The Du Pont Merck Pharmaceutical Company | Stable human cell lines expressing an indicator gene product under virus-specific genetic controls |
-
1988
- 1988-09-21 JP JP63507827A patent/JPH03502040A/en active Pending
- 1988-09-21 WO PCT/AU1988/000370 patent/WO1989002472A1/en not_active Application Discontinuation
- 1988-09-21 EP EP19880908117 patent/EP0391911A4/en not_active Withdrawn
Non-Patent Citations (11)
Title |
---|
European J. Biochemistry, Volume 169, pages 7 to 12, issued 1987 (Heidelburg, West Germany), M. TSUCHIYA et al, 'The Chromosomal Gene Structure for Murine Granulocyte Colony-Stimulating Factor'. * |
FEBS Letters, Volume 180, No. 2, pages 271 to 274, issued January, 1985 (Amsterdam, Netherlands), D.A. HUME et al, 'Regulation of the Production of Granulocyte-Macrophage Colony-Stimulating Factor by Macrophage-like Tumour Cell lines'. * |
J. Clinical Investigation, Volume 79, No. 6, pages 1700 to 1705, issued June, 1986 (New York, U.S.A.), A. TOBLER et al, 'Granulocyte-Macrophage Colony-Stimulating Factor'. * |
J. Immunology, Volume 136, No. 5, pages 1718 to 1725, issued March, 1986 (Baltimore, U.S.A.), A. KELSO et al, 'Independent Regulation of Granulocyte-Macrophage Colony-Stimulating Factor and Multilineage Colony-Stimulating Factor Production in T Lymphocyte Clones'. * |
Nature, Volume 322, pages 697-701, issued 21 August, 1986 (London, England), M. PTASHNE, 'Gene Regulation by Proteins Acting Nearby and at a Distance'. * |
Proceedings National Academy Science U.S.A., Volume 83, pages 8669 to 8673, issued November, 1986 (Washington, U.S.A.), J.Y. CHAN et al, 'Regulation of Expression of Human Granulocyte/Macrophage Colony-Stimulating Factor'. * |
Proceedings Royal Society London, B, Volume 230, pages 389-423, issued 22 May, 1987 (Cambridge, England), D. METCALF, 'The Molecular Control of Normal and Leukaemic Granulocytes and Macrophages', see pages 395 to 396. * |
See also references of EP0391911A4 * |
The EMBO Journal, Volume 4, No. 10, pages 2561 to 2568, issued October, 1985 (Oxford, England), S. MIYATAKE et al, 'Structure of the Chromosomal Gene for Granulocyte-Macrophage Colony-Stimulating Factor: Comparison of the Mouse and Human Genes'. * |
The EMBO Journal, Volume 4, No. 10, pages 2569 to 2573, issued October, 1985 (Oxford, England), E. STANLEY et al, 'The Structure and Expression of the Murine Gene Encoding Granulocyte-Macrophage Colony-Stimulating Factor : Evidence for Utilization of Alternative Promoters'. * |
The EMBO Journal, Volume 6, No. 8, pages 2261 to 2265, issued August, 1987 (Oxford, England), W.K. SEELENTAG et al, 'Additive Effects of Interleukin 1 and Tumour Necrosis Factor-alpha on the Accumulation of the Three Granulocyte and Macrophage Colony-Stimulating Factor m RNAs in Human Endorhelial Cells'. * |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6376175B1 (en) | 1989-07-18 | 2002-04-23 | Osi Pharmaceuticals, Inc. | Methods of discovering chemicals capable of functioning as gene expression modulators |
US5580722A (en) * | 1989-07-18 | 1996-12-03 | Oncogene Science, Inc. | Methods of determining chemicals that modulate transcriptionally expression of genes associated with cardiovascular disease |
US6589733B1 (en) | 1989-07-18 | 2003-07-08 | Osi Pharmaceuticals, Inc. | Methods of preparing compositions comprising chemicals capable of transcriptional modulators |
EP0483249B1 (en) * | 1989-07-18 | 2003-04-23 | OSI Pharmaceuticals, Inc. | Method of transcriptionally modulating gene expression and of discovering chemicals capable of functioning as gene expression modulators |
US6203976B1 (en) | 1989-07-18 | 2001-03-20 | Osi Pharmaceuticals, Inc. | Methods of preparing compositions comprising chemicals capable of transcriptional modulation |
US6136779A (en) * | 1989-07-18 | 2000-10-24 | Osi Pharmaceuticals, Inc. | Methods of specifically transcriptionally modulating the expression of gene of interest |
US5863733A (en) * | 1989-07-18 | 1999-01-26 | Oncogene Science, Inc. | Methods of transcriptionally modulating gene expression and of discovering chemicals capable of functioning as gene expression modulators |
US5665543A (en) * | 1989-07-18 | 1997-09-09 | Oncogene Science, Inc. | Method of discovering chemicals capable of functioning as gene expression modulators |
US5976793A (en) * | 1989-07-18 | 1999-11-02 | Oncogene Science, Inc. | Methods of transcriptionally modulating gene expression and of discovering chemicals capable as gene expression modulators |
US5846720A (en) * | 1989-07-18 | 1998-12-08 | Oncogene Science, Inc. | Methods of determining chemicals that modulate expression of genes associated with cardiovascular disease |
US6165712A (en) * | 1989-07-18 | 2000-12-26 | Osi Pharmaceuticals, Inc. | Methods of transcriptionally modulating expression of viral genes and genes useful for production of proteins |
WO1991002067A1 (en) * | 1989-07-27 | 1991-02-21 | MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. | Regulation of nerve growth factor synthesis in the central nervous system |
WO1991011521A1 (en) * | 1990-01-26 | 1991-08-08 | La Jolla Cancer Research Foundation | Polypeptides encoding transcriptional activators and uses thereof |
US5863737A (en) * | 1990-01-26 | 1999-01-26 | La Jolla Cancer Research Foundation | Methods of using polypeptides encoding transcriptional activators |
US5734036A (en) * | 1990-01-26 | 1998-03-31 | The Burnham Institute | Nucleic acids encoding transcriptional activators |
US5580958A (en) * | 1990-01-26 | 1996-12-03 | La Jolla Cancer Research Foundation | Polypeptides encoding transcriptional activators and uses thereof |
WO1992013092A1 (en) * | 1991-01-18 | 1992-08-06 | Oncogene Science, Inc. | Methods of transcriptionally modulating expression of hematopoietic growth factor genes |
WO1992013091A1 (en) * | 1991-01-18 | 1992-08-06 | Oncogene Science, Inc. | Methods of transcriptionally modulating expression of oncogenes and tumor suppressor genes |
WO1992013063A1 (en) * | 1991-01-18 | 1992-08-06 | Oncogene Science, Inc. | Methods of transcriptionally modulating expression of growth factor genes and growth factor receptor genes |
US5912168A (en) * | 1996-08-30 | 1999-06-15 | Genesis Research & Development Corporation Limited | CD95 regulatory gene sequences |
WO1999040220A3 (en) * | 1998-02-06 | 1999-10-07 | Glaxo Group Ltd | Method of screening therapeutic agents |
US9567579B2 (en) | 2003-05-23 | 2017-02-14 | Board Of Regents, The University Of Texas System | Structure based and combinatorially selected oligonucleoside phosphorothioate and phosphorodithioate aptamer targeting AP-1 transcription factors |
US7910523B2 (en) | 2003-05-23 | 2011-03-22 | Board Of Regents, The University Of Texas System | Structure based and combinatorially selected oligonucleoside phosphorothioate and phosphorodithioate aptamer targeting AP-1 transcription factors |
US11926817B2 (en) | 2019-08-09 | 2024-03-12 | Nutcracker Therapeutics, Inc. | Microfluidic apparatus and methods of use thereof |
Also Published As
Publication number | Publication date |
---|---|
JPH03502040A (en) | 1991-05-16 |
EP0391911A1 (en) | 1990-10-17 |
EP0391911A4 (en) | 1990-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Shannon et al. | Nuclear proteins interacting with the promoter region of the human granulocyte/macrophage colony-stimulating factor gene. | |
US5049659A (en) | Proteins which induce immunological effector cell activation and chemattraction | |
Matsushima et al. | Interleukin 8 and MCAF: novel inflammatory cytokines inducible by IL 1 and TNF | |
Andersen et al. | Allelic polymorphism in transcriptional regulatory regions of HLA-DQB genes. | |
Schall | Biology of the RANTES/SIS cytokine family | |
US5426181A (en) | DNA encoding cytokine-induced protein, TSG-14 | |
Ney et al. | Purification of the human NF-E2 complex: cDNA cloning of the hematopoietic cell-specific subunit and evidence for an associated partner | |
Kotenko et al. | Identification of the functional interleukin-22 (IL-22) receptor complex: the IL-10R2 chain (IL-10Rβ) is a common chain of both the IL-10 and IL-22 (IL-10-related T cell-derived inducible factor, IL-TIF) receptor complexes | |
Miyatake et al. | Structure of the chromosomal gene for murine interleukin 3. | |
Dunn et al. | Requirement for nuclear factor (NF)-kappa B p65 and NF-interleukin-6 binding elements in the tumor necrosis factor response region of the granulocyte colony-stimulating factor promoter | |
Shannon et al. | A novel tumor necrosis factor-responsive transcription factor which recognizes a regulatory element in hemopoietic growth factor genes | |
Ziegler et al. | Induction of macrophage inflammatory protein-1 beta gene expression in human monocytes by lipopolysaccharide and IL-7. | |
Youn et al. | A novel chemokine, macrophage inflammatory protein-related protein-2, inhibits colony formation of bone marrow myeloid progenitors. | |
WO1989002472A1 (en) | Regulation of expression of gm-csf gene | |
Danoff et al. | Cloning, genomic organization, and chromosomal localization of the Scya5 gene encoding the murine chemokine RANTES. | |
US5602008A (en) | DNA encoding a liver expressed chemokine | |
DE69230136T2 (en) | CYTOKIN-INDUCED PROTEIN, TSG-6, HIS DNA AND USE | |
WO1996016979A9 (en) | Expressed chemokines, their production and uses | |
US6210905B1 (en) | Tumor necrosis factor stimulated gene 6 (TSG-6) binding molecules | |
Wu et al. | Molecular cloning of a zinc finger protein which binds to the heptamer of the signal sequence for V (D) J recombination | |
Forssmann et al. | Hemofiltrate CC chemokines with unique biochemical properties: HCC-1/CCL14a and HCC-2/CCL15 | |
Sherry et al. | Macrophage inflammatory proteins 1 and 2: an overview | |
EP0341273B1 (en) | Biological materials, processes for producing biological materials and for using such materials in therapy | |
WO1989004836A1 (en) | Neutrophil-activating factor | |
Berger et al. | The chemokine C10: immunological and functional analysis of the sequence encoded by the novel second exon |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE FR GB IT LU NL SE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1988908117 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1988908117 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1988908117 Country of ref document: EP |