USRE31285E - Method for manufacturing a filter of electrically charged electret fiber material and electret filters obtained according to said method - Google Patents
Method for manufacturing a filter of electrically charged electret fiber material and electret filters obtained according to said method Download PDFInfo
- Publication number
- USRE31285E USRE31285E US06/328,027 US32802781A USRE31285E US RE31285 E USRE31285 E US RE31285E US 32802781 A US32802781 A US 32802781A US RE31285 E USRE31285 E US RE31285E
- Authority
- US
- United States
- Prior art keywords
- filter
- foil
- fibers
- electret
- fibrous web
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H13/00—Other non-woven fabrics
- D04H13/02—Production of non-woven fabrics by partial defibrillation of oriented thermoplastics films
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D39/00—Filtering material for liquid or gaseous fluids
- B01D39/14—Other self-supporting filtering material ; Other filtering material
- B01D39/16—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
- B01D39/1607—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
- B01D39/1623—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
- B01D39/163—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin sintered or bonded
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/04—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres having existing or potential cohesive properties, e.g. natural fibres, prestretched or fibrillated artificial fibres
- D04H1/06—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres having existing or potential cohesive properties, e.g. natural fibres, prestretched or fibrillated artificial fibres by treatment to produce shrinking, swelling, crimping or curling of fibres
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4282—Addition polymers
- D04H1/4291—Olefin series
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H13/00—Other non-woven fabrics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/04—Additives and treatments of the filtering material
- B01D2239/0435—Electret
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/06—Filter cloth, e.g. knitted, woven non-woven; self-supported material
- B01D2239/0604—Arrangement of the fibres in the filtering material
- B01D2239/0636—Two or more types of fibres present in the filter material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/06—Filter cloth, e.g. knitted, woven non-woven; self-supported material
- B01D2239/069—Special geometry of layers
- B01D2239/0695—Wound layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/10—Filtering material manufacturing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S264/00—Plastic and nonmetallic article shaping or treating: processes
- Y10S264/48—Processes of making filters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S55/00—Gas separation
- Y10S55/05—Methods of making filter
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S55/00—Gas separation
- Y10S55/39—Electrets separator
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2922—Nonlinear [e.g., crimped, coiled, etc.]
Definitions
- the invention is related to a method for manufacturing a filter of electrically charged electret fiber material, consisting of a highmolecular non-polar substance, comprising the continuous supply of a foil of said substance, the drawing, charging and fibrillating of the foil and the processing of the thus fiber material into a filter.
- the invention aimes to provide a method for manufacturing a filter with which such a structure of the filter is obtained, that mechanical as well as filtering characteristics of the filter satisfy high demands.
- the method according to the invention is characterized in that by a suitable choice of the foil and/or by the type of drawing, crimpable fiber material is manufactured, this is wound in uncrimped condition to a fibrous package and that subsequently the crimping is effected.
- the fibers crimped after being made into a package in which they already have a certain mutual coherence, the fibers interlock and strengthen their coherence with the result that they form a firm filter which appears to stand a mechanical loading. Moreover, it appears that the pores of the filter have become more erratic concerning their shape and have become more uniform in measure and distribution; by this the catching of dust by the charged fibers is improved, as appears from a lower penetration and therefore a better functioning of the filter.
- the foil is during fibrillation as well as the netlike fiber fleece, obtained by this, slightly tensioned during winding, by which the spontaneous tendency to crimp of the fibers is oppressed.
- the fiber package of the desired volume After the fiber package of the desired volume is wound, it is taken from the winding means for instance by cutting it in the axial direction. The tension, with which it is wound, then falls off so the crimping of the fibers takes place.
- the filter is subjected to a heat treatment, for instance by putting it during about 15 minutes in an oven at about 70° C.
- the filter may, if necessary, still further be consolidated and compacted by subjecting it to a needle treatment.
- the crimpability of the fibers is according to a further feature of the invention obtained in that a foil is used in which at least two substances with different drawing- or crimping characteristics are incorporated in a non-homogeneous mixture.
- a foil is used being a laminate of said substances.
- the crimping characteristics of the thus obtained fibers are more uniform and reproducable, so it is avoided that the filter has weak parts or parts being too pervious.
- the draw- or crimp characteristics of the used substances may differ as result of the fact that the substances are of different type. However, they also can be of the same type; the difference in characteristics then are caused by a difference in molecular weight of or admixtures, or in the case of a laminate by the fact that the substance of the one layer is predrawn and that of the other layer is not drawn or not drawn in the same measure.
- the crimpability of the fibers is obtained or improved by the fact that the foil during or after drawing is deformed strongly for instance by moving it over a sharp edge.
- the invention is also related to filters manufactured according to the above method.
- filters differ with regard to known filters in that they have better mechanical characteristics, an improved homogenity and an improved filter action. They are in particular suited for those applications in which the catching of bacteria is of importance, such as ventilation systems for operating rooms and laboratories as face masks, and as a filter in suction cleaners, either as a dust bag or as a discharge filter. Moreover, they have the advantage that they are more resilient than filters of not crimped fibers, so that they can be pressed together for saving space during transport and storage.
- the product obtained by the method according to the invention can besides being used as filter, also be used as a dust remover.
- a piece of the filter material By rubbing a piece of the filter material over a surface, e.g. the surface of a record, the surface becomes completely free of dust while the coherence of the fibers as result of their crimp avoids that loose fibers of the filter material remain on the surface.
- FIG. 1 shows schematically the method according to the invention
- FIG. 2 shows the penetration as function of the loading with dust of a crimped filter according to the invention and of a comparable not-crimped filter.
- Each of the extruders 31 and 32 supply a component of the high molecular weight, polymeric substance, each of them differing in molecular weight, to a common nozzle 33 with the strip-like extrusion mouth 34.
- the thus obtained foil 1, in which both components are present in a laminate-shaped non-homogeneous distribution, is after passing the rollers 3 and 4 subjected to a first drawing between the roller pair 5 and 6 and the roller pair 9 and 10 rotating at a higher speed, in which it is drawn over an edge 7 of a block 8 provided with a schematically indicated heater 15.
- the foil 1 is subjected to a second drawing while it is advanced over a bent plate 12, provided with a schematically indicated heater 16.
- the foil 1 is electrically charged by the spray device 18, comprising corona wires 25 being connected to a not shown high-tension source and of which the plate 12 forms the anti-pole.
- the splittable electret foil 1 obtained in this manner subsequently is advanced via the support roll 20 over the needle roll 29, which fibrillates the foil 1 to a fibrillated fiber band 35. Subsequently, the latter is widened by the spreading device 36 to a net-like fiber fleece 37 and wound on to the roll 38.
- a fiber mat of the desired thickness When in this way a fiber mat of the desired thickness is wound, it is taken from the roll 38 by cutting it in the direction of the axis of the roll or by pushing it from the roll 38 without cutting.
- the fibers of which the fiber mat exists now are not held anymore in straightened shape and crimp spontaneously as result of the different measure of relaxation-crimp in both components of the high-molecular substance of which they are made.
- the fibers mesh with each other and form a filter mat with a homogeneous and firm structure, which is further still improved by a heat treatment of about 15 minutes in an oven not shown in the drawing, of which the temperature is kept at about 70° C.
- FIG. 2 shows a diagram in which on the ordinate penetration, defined as the ratio of the dust concentration behind the filter to that before the filter is shown in percentages, and on the abscis the dust loading of the filter in g/m 2 .
- the solid line shows the result for a crimped electret filter obtained according to the invention and the dashed line for a comparable not crimped electret filter.
- the diagram shows, that the penetration of perviousness for the not catched dust of the electret filter of crimped fibers with increasing dust loading is subsequently lower than that of the filter of not crimped fibers, so in practice the crimped filter has a much longer life-time than the not-crimped filter.
- a laminate having a thickness of 50/ ⁇ m and a width of 6 cm consisting of polypropylene with a melt flow index of 1.5 and polypropylene with a melt flow index of 8 is drawn with an initial speed of 13 m/minute over block 8, having a temperature of about 100° C., in a draw ratio of 1:6 and subsequently over the plate 12 having a temperature of about 150° C. in a draw ratio of 1:1.5.
- the corona wires 25 are present 5 mm above the foil and have a tension of -10 kV with regard to the plate 12.
- the foil is fibrillated with a needle roller with 60 rows of which the needles are positioned at a mutual distance of 0.5 mm.
- the obtained split fiber band is spread to a width of 90 cm and is wound in 170 layers to a fiber mat with a thickness of 3 mm.
- the fiber mat is taken from the roll and is placed during 15 minutes in an oven at 70° C.
- the obtained filter cloth appeared to have a density of 250 g/m 2 .
- the solid line shows the filter features of this cloth.
- the filter of not crimped fibers compared herewith, of which filter the dashed line shows the features, is obtained by in the same manner drawing, fibrillating and winding a foil with the same dimensions but comprising exclusively polypropylene with a melt flow index of 1.5 and winding it to a filter bat with also a density of 250 g/m 2 .
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Filtering Materials (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
- Nonwoven Fabrics (AREA)
Abstract
A method for forming a filter of electrically charged electret fiber material, consisting of a high molecular weight, nonpolar polymeric substance, comprising drawing, charging, and fibrillating a foil of said high molecular weight substance. The fibrillated foil is wound and then crimping is effected.
Description
The invention is related to a method for manufacturing a filter of electrically charged electret fiber material, consisting of a highmolecular non-polar substance, comprising the continuous supply of a foil of said substance, the drawing, charging and fibrillating of the foil and the processing of the thus fiber material into a filter.
Such a method is known. However, it appeared that in the filters obtained according to said method the coherence in the fiber mass is often insufficient in particular for that application in which the filter has to endure mechanical vibrations or is mechanically loaded in another way. Moreover, the filter effect does not satisfy completely the expectations because of the fact, that the penetration in a high loading with dust increases too rapidly.
The invention aimes to provide a method for manufacturing a filter with which such a structure of the filter is obtained, that mechanical as well as filtering characteristics of the filter satisfy high demands.
To obtain this, the method according to the invention is characterized in that by a suitable choice of the foil and/or by the type of drawing, crimpable fiber material is manufactured, this is wound in uncrimped condition to a fibrous package and that subsequently the crimping is effected.
By having the fibers crimped after being made into a package, in which they already have a certain mutual coherence, the fibers interlock and strengthen their coherence with the result that they form a firm filter which appears to stand a mechanical loading. Moreover, it appears that the pores of the filter have become more erratic concerning their shape and have become more uniform in measure and distribution; by this the catching of dust by the charged fibers is improved, as appears from a lower penetration and therefore a better functioning of the filter.
To be able to wind the fiber material in a not-crimped condition to a fiber package, the foil is during fibrillation as well as the netlike fiber fleece, obtained by this, slightly tensioned during winding, by which the spontaneous tendency to crimp of the fibers is oppressed.
After the fiber package of the desired volume is wound, it is taken from the winding means for instance by cutting it in the axial direction. The tension, with which it is wound, then falls off so the crimping of the fibers takes place.
To strengthen the crimp and also to fix the crimp and with that the coherence of the fibers according to a preferred embodiment of the method according to the invention. The filter is subjected to a heat treatment, for instance by putting it during about 15 minutes in an oven at about 70° C.
The filter may, if necessary, still further be consolidated and compacted by subjecting it to a needle treatment.
The crimpability of the fibers is according to a further feature of the invention obtained in that a foil is used in which at least two substances with different drawing- or crimping characteristics are incorporated in a non-homogeneous mixture.
According to a preferred embodiment of the method a foil is used being a laminate of said substances. The crimping characteristics of the thus obtained fibers are more uniform and reproducable, so it is avoided that the filter has weak parts or parts being too pervious. The draw- or crimp characteristics of the used substances may differ as result of the fact that the substances are of different type. However, they also can be of the same type; the difference in characteristics then are caused by a difference in molecular weight of or admixtures, or in the case of a laminate by the fact that the substance of the one layer is predrawn and that of the other layer is not drawn or not drawn in the same measure.
In another embodiment of the method according to the invention, the crimpability of the fibers is obtained or improved by the fact that the foil during or after drawing is deformed strongly for instance by moving it over a sharp edge.
The invention is also related to filters manufactured according to the above method. These filters differ with regard to known filters in that they have better mechanical characteristics, an improved homogenity and an improved filter action. They are in particular suited for those applications in which the catching of bacteria is of importance, such as ventilation systems for operating rooms and laboratories as face masks, and as a filter in suction cleaners, either as a dust bag or as a discharge filter. Moreover, they have the advantage that they are more resilient than filters of not crimped fibers, so that they can be pressed together for saving space during transport and storage.
The product obtained by the method according to the invention can besides being used as filter, also be used as a dust remover. By rubbing a piece of the filter material over a surface, e.g. the surface of a record, the surface becomes completely free of dust while the coherence of the fibers as result of their crimp avoids that loose fibers of the filter material remain on the surface.
The invention will now be described with the aid of a drawing.
FIG. 1 shows schematically the method according to the invention;
FIG. 2 shows the penetration as function of the loading with dust of a crimped filter according to the invention and of a comparable not-crimped filter.
Each of the extruders 31 and 32 supply a component of the high molecular weight, polymeric substance, each of them differing in molecular weight, to a common nozzle 33 with the strip-like extrusion mouth 34. The thus obtained foil 1, in which both components are present in a laminate-shaped non-homogeneous distribution, is after passing the rollers 3 and 4 subjected to a first drawing between the roller pair 5 and 6 and the roller pair 9 and 10 rotating at a higher speed, in which it is drawn over an edge 7 of a block 8 provided with a schematically indicated heater 15. Between the roller pair 9 and 10 and the roller pair 13 and 14 rotating at a still higher speed the foil 1 is subjected to a second drawing while it is advanced over a bent plate 12, provided with a schematically indicated heater 16. At the same time, the foil 1 is electrically charged by the spray device 18, comprising corona wires 25 being connected to a not shown high-tension source and of which the plate 12 forms the anti-pole. The splittable electret foil 1 obtained in this manner subsequently is advanced via the support roll 20 over the needle roll 29, which fibrillates the foil 1 to a fibrillated fiber band 35. Subsequently, the latter is widened by the spreading device 36 to a net-like fiber fleece 37 and wound on to the roll 38.
When in this way a fiber mat of the desired thickness is wound, it is taken from the roll 38 by cutting it in the direction of the axis of the roll or by pushing it from the roll 38 without cutting. The fibers of which the fiber mat exists now are not held anymore in straightened shape and crimp spontaneously as result of the different measure of relaxation-crimp in both components of the high-molecular substance of which they are made. The fibers mesh with each other and form a filter mat with a homogeneous and firm structure, which is further still improved by a heat treatment of about 15 minutes in an oven not shown in the drawing, of which the temperature is kept at about 70° C.
FIG. 2 shows a diagram in which on the ordinate penetration, defined as the ratio of the dust concentration behind the filter to that before the filter is shown in percentages, and on the abscis the dust loading of the filter in g/m2. The solid line shows the result for a crimped electret filter obtained according to the invention and the dashed line for a comparable not crimped electret filter.
The diagram shows, that the penetration of perviousness for the not catched dust of the electret filter of crimped fibers with increasing dust loading is subsequently lower than that of the filter of not crimped fibers, so in practice the crimped filter has a much longer life-time than the not-crimped filter.
According to the method described with the aid of FIG. 1 a laminate having a thickness of 50/μm and a width of 6 cm consisting of polypropylene with a melt flow index of 1.5 and polypropylene with a melt flow index of 8 is drawn with an initial speed of 13 m/minute over block 8, having a temperature of about 100° C., in a draw ratio of 1:6 and subsequently over the plate 12 having a temperature of about 150° C. in a draw ratio of 1:1.5. The corona wires 25 are present 5 mm above the foil and have a tension of -10 kV with regard to the plate 12. The foil is fibrillated with a needle roller with 60 rows of which the needles are positioned at a mutual distance of 0.5 mm. The obtained split fiber band is spread to a width of 90 cm and is wound in 170 layers to a fiber mat with a thickness of 3 mm. The fiber mat is taken from the roll and is placed during 15 minutes in an oven at 70° C. The obtained filter cloth appeared to have a density of 250 g/m2.
In FIG. 2 the solid line shows the filter features of this cloth. The filter of not crimped fibers compared herewith, of which filter the dashed line shows the features, is obtained by in the same manner drawing, fibrillating and winding a foil with the same dimensions but comprising exclusively polypropylene with a melt flow index of 1.5 and winding it to a filter bat with also a density of 250 g/m2.
During testing both filters showed practically no difference in flow resistance and the resistance increased for both filters only in neglectable measure.
Claims (6)
1. A method for manufacturing a filter of electrically charged electret fiber material, consisting of a high-molecular weight, non-polar polymeric substance, comprising the steps of: continuously supplying a foil of said substance, drawing, charging and fibrillating of the foil and the processing of the thus obtained filter material into a filter, selecting the foil and/or the type of drawing to manufacture spontaneously crimpable fiber material, winding said material in uncrimped condition to a fibrous package and subsequently effecting crimping to interlock the fibers of said fibrous package.
2. A method according to claim 1, further comprising the step of heat treating the filter.
3. A method according to claim 1, wherein a foil is used in which at least two substances with different drawing or crimping characteristics are incorporated in a non-homogeneous mixture.
4. A method according to claim 3, wherein a foil is used being a laminate of said at least two substances.
5. A method according to claim 1, further comprising the step of deforming the foil during or after the step of drawing.
6. A filter produced by the method according to claim 1. .Iadd. 7. An electret fibrous web comprising fibers fibrillated from a film of a high-molecular-weight nonpolar substance and which contain electric charges embedded therein so as to enhance filtration properties of the web, said fibers being crimped after fibrillation and intermeshed with one another, said fibrous web being capable of being loaded with high amounts of dust while still maintaining high filtration efficiency. .Iaddend..Iadd. 8. An electret fibrous web of claim 7 in which said fibers comprise polypropylene. .Iaddend..Iadd. 9. An electret fibrous web of claim 7 in which said fibers are fibrillated from a film that comprises a laminate of at least two different high-molecular-weight nonpolar substances. .Iaddend..Iadd. 10. An electret fibrous web of claim 9 in which both of said different substances comprise polypropylene. .Iaddend.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NLAANVRAGE7614376,A NL181632C (en) | 1976-12-23 | 1976-12-23 | ELECTRIC FILTER AND METHOD FOR MANUFACTURING THAT. |
NL7614376 | 1976-12-23 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US05/862,768 Reissue US4178157A (en) | 1976-12-23 | 1977-12-21 | Method for manufacturing a filter of electrically charged electret fiber material and electret filters obtained according to said method |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE31285E true USRE31285E (en) | 1983-06-21 |
Family
ID=19827446
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US05/862,768 Expired - Lifetime US4178157A (en) | 1976-12-23 | 1977-12-21 | Method for manufacturing a filter of electrically charged electret fiber material and electret filters obtained according to said method |
US06/328,027 Expired - Lifetime USRE31285E (en) | 1976-12-23 | 1981-12-07 | Method for manufacturing a filter of electrically charged electret fiber material and electret filters obtained according to said method |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US05/862,768 Expired - Lifetime US4178157A (en) | 1976-12-23 | 1977-12-21 | Method for manufacturing a filter of electrically charged electret fiber material and electret filters obtained according to said method |
Country Status (14)
Country | Link |
---|---|
US (2) | US4178157A (en) |
JP (1) | JPS5388272A (en) |
BE (1) | BE862156A (en) |
CA (1) | CA1105217A (en) |
CH (1) | CH627803A5 (en) |
DD (1) | DD133299A5 (en) |
DE (1) | DE2756826C2 (en) |
DK (1) | DK152016C (en) |
FR (1) | FR2374939A1 (en) |
GB (1) | GB1572199A (en) |
IE (1) | IE46020B1 (en) |
IT (1) | IT1091525B (en) |
LU (1) | LU78749A1 (en) |
NL (1) | NL181632C (en) |
Cited By (121)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4513049A (en) | 1983-04-26 | 1985-04-23 | Mitsui Petrochemical Industries, Ltd. | Electret article |
USRE32171E (en) | 1974-03-25 | 1986-06-03 | Minnesota Mining And Manufacturing Company | Method for the manufacture of an electret fibrous filter |
US4807619A (en) | 1986-04-07 | 1989-02-28 | Minnesota Mining And Manufacturing Company | Resilient shape-retaining fibrous filtration face mask |
US4874399A (en) | 1988-01-25 | 1989-10-17 | Minnesota Mining And Manufacturing Company | Electret filter made of fibers containing polypropylene and poly(4-methyl-1-pentene) |
US5230800A (en) * | 1992-02-20 | 1993-07-27 | Minnesota Mining And Manufacturing Company | Scrim inserted electrostatic fibrous filter web |
US5266369A (en) * | 1988-09-21 | 1993-11-30 | Toray Industries, Inc. | Packaging material made of electret material and packaging method |
US5268009A (en) * | 1992-12-22 | 1993-12-07 | Teledyne Industries, Inc. | Portable air filter system |
US5304227A (en) * | 1990-11-30 | 1994-04-19 | Mitsui Petrochemical Industries, Ltd. | Electret filters |
US5374458A (en) * | 1992-03-13 | 1994-12-20 | Minnesota Mining And Manufacturing Company | Molded, multiple-layer face mask |
US5411576A (en) * | 1993-03-26 | 1995-05-02 | Minnesota Mining And Manufacturing Company | Oily mist resistant electret filter media and method for filtering |
US5436054A (en) * | 1993-10-20 | 1995-07-25 | Toyo Boseki Kabushiki Kaisha | Electret Filter |
US5496507A (en) * | 1993-08-17 | 1996-03-05 | Minnesota Mining And Manufacturing Company | Method of charging electret filter media |
US5499917A (en) * | 1993-06-29 | 1996-03-19 | Minnesota Mining And Manufacturing Company | Dental isolation dam |
US5641555A (en) * | 1993-08-17 | 1997-06-24 | Minnesota Mining And Manufacturing Company | Cup-shaped filtration mask having an undulated surface |
US5706804A (en) * | 1996-10-01 | 1998-01-13 | Minnesota Mining And Manufacturing Company | Liquid resistant face mask having surface energy reducing agent on an intermediate layer therein |
US5724677A (en) * | 1996-03-08 | 1998-03-10 | Minnesota Mining And Manufacturing Company | Multi-part headband and respirator mask assembly and process for making same |
US5792242A (en) * | 1996-02-26 | 1998-08-11 | Minnesota Mining And Manufacturing Co. | Electrostatic fibrous filter web |
US5807366A (en) * | 1994-12-08 | 1998-09-15 | Milani; John | Absorbent article having a particle size gradient |
US5814570A (en) * | 1994-06-27 | 1998-09-29 | Kimberly-Clark Worldwide, Inc. | Nonwoven barrier and method of making the same |
US5821178A (en) * | 1994-12-30 | 1998-10-13 | Kimberly-Clark Worldwide, Inc. | Nonwoven laminate barrier material |
US5830810A (en) * | 1995-07-19 | 1998-11-03 | Kimberly-Clark Worldwide, Inc. | Nonwoven barrier and method of making the same |
US5834384A (en) * | 1995-11-28 | 1998-11-10 | Kimberly-Clark Worldwide, Inc. | Nonwoven webs with one or more surface treatments |
US5998308A (en) | 1994-02-22 | 1999-12-07 | Kimberly-Clark Worldwide, Inc. | Nonwoven barrier and method of making the same |
US6070579A (en) | 1996-03-08 | 2000-06-06 | 3M Innovative Properties Company | Elastomeric composite headband |
US6102039A (en) | 1997-12-01 | 2000-08-15 | 3M Innovative Properties Company | Molded respirator containing sorbent particles |
US6110588A (en) | 1999-02-05 | 2000-08-29 | 3M Innovative Properties Company | Microfibers and method of making |
US6110260A (en) | 1998-07-14 | 2000-08-29 | 3M Innovative Properties Company | Filter having a change indicator |
US6174964B1 (en) | 1999-09-24 | 2001-01-16 | 3M Innovative Properties Company | Fluorochemical oligomer and use thereof |
US6213122B1 (en) | 1997-10-01 | 2001-04-10 | 3M Innovative Properties Company | Electret fibers and filter webs having a low level of extractable hydrocarbons |
US6273938B1 (en) | 1999-08-13 | 2001-08-14 | 3M Innovative Properties Company | Channel flow filter |
US6280824B1 (en) | 1999-01-29 | 2001-08-28 | 3M Innovative Properties Company | Contoured layer channel flow filtration media |
US6279570B1 (en) | 1999-03-02 | 2001-08-28 | 3M Innovative Properties Company | Filter support, assembly and system |
US6288157B1 (en) | 1999-05-11 | 2001-09-11 | 3M Innovative Properties Company | Alkylated fluorochemical oligomers and use thereof |
US6365088B1 (en) | 1998-06-26 | 2002-04-02 | Kimberly-Clark Worldwide, Inc. | Electret treatment of high loft and low density nonwoven webs |
US6375886B1 (en) | 1999-10-08 | 2002-04-23 | 3M Innovative Properties Company | Method and apparatus for making a nonwoven fibrous electret web from free-fiber and polar liquid |
US6391807B1 (en) | 1999-09-24 | 2002-05-21 | 3M Innovative Properties Company | Polymer composition containing a fluorochemical oligomer |
US6391948B1 (en) | 1999-12-14 | 2002-05-21 | 3M Innovative Properties Company | Triazine compounds and use thereof |
US6394090B1 (en) | 1999-02-17 | 2002-05-28 | 3M Innovative Properties Company | Flat-folded personal respiratory protection devices and processes for preparing same |
US6398847B1 (en) * | 1998-07-02 | 2002-06-04 | 3M Innovative Properties Company | Method of removing contaminants from an aerosol using a new electret article |
US6406657B1 (en) | 1999-10-08 | 2002-06-18 | 3M Innovative Properties Company | Method and apparatus for making a fibrous electret web using a wetting liquid and an aqueous polar liquid |
US6419729B1 (en) | 2000-04-17 | 2002-07-16 | 3M Innovative Properties Company | Filter assemblies with adhesive attachment systems |
US6420024B1 (en) | 2000-12-21 | 2002-07-16 | 3M Innovative Properties Company | Charged microfibers, microfibrillated articles and use thereof |
US6454986B1 (en) | 1999-10-08 | 2002-09-24 | 3M Innovative Properties Company | Method of making a fibrous electret web using a nonaqueous polar liquid |
US6454839B1 (en) | 1999-10-19 | 2002-09-24 | 3M Innovative Properties Company | Electrofiltration apparatus |
EP1258267A2 (en) | 1995-03-09 | 2002-11-20 | Minnesota Mining And Manufacturing Company | Flat-folded personal respiratory protection devices and process for preparing same |
US6484722B2 (en) | 1995-09-11 | 2002-11-26 | 3M Innovative Properties Company | Flat-folded personal respiratory protection devices and processes for preparing same |
US6524488B1 (en) | 1998-06-18 | 2003-02-25 | 3M Innovative Properties Company | Method of filtering certain particles from a fluid using a depth loading filtration media |
US6525127B1 (en) | 1999-05-11 | 2003-02-25 | 3M Innovative Properties Company | Alkylated fluorochemical oligomers and use thereof in the treatment of fibrous substrates |
US6537932B1 (en) | 1997-10-31 | 2003-03-25 | Kimberly-Clark Worldwide, Inc. | Sterilization wrap, applications therefor, and method of sterilizing |
US6589317B2 (en) | 2001-08-10 | 2003-07-08 | 3M Innovative Properties Company | Structured surface filtration media array |
US6630231B2 (en) | 1999-02-05 | 2003-10-07 | 3M Innovative Properties Company | Composite articles reinforced with highly oriented microfibers |
US6680114B2 (en) | 2001-05-15 | 2004-01-20 | 3M Innovative Properties Company | Fibrous films and articles from microlayer substrates |
US20040024262A1 (en) * | 1999-05-11 | 2004-02-05 | Jariwala Chetan P | Alkylated fluorochemical oligomers and use thereof in the treatment of fibrous substrates |
US20040112213A1 (en) * | 2001-04-07 | 2004-06-17 | Klaus Dominiak | Combination filter for filtering fluids |
US6758884B2 (en) | 2002-08-07 | 2004-07-06 | 3M Innovative Properties Company | Air filtration system using point ionization sources |
US6874499B2 (en) | 2002-09-23 | 2005-04-05 | 3M Innovative Properties Company | Filter element that has a thermo-formed housing around filter material |
US20050160907A1 (en) * | 2004-01-22 | 2005-07-28 | 3M Innovative Properties Company | Air filtration system using point ionization sources |
US6923182B2 (en) | 2002-07-18 | 2005-08-02 | 3M Innovative Properties Company | Crush resistant filtering face mask |
US20060196157A1 (en) * | 2005-03-03 | 2006-09-07 | Greer Paul A | Conformal filter cartridges and methods |
WO2007037903A2 (en) | 2005-09-16 | 2007-04-05 | 3M Innovative Properties Company | Abrasive article with integrated filter and method of making same |
US20070287366A1 (en) * | 2006-06-13 | 2007-12-13 | 3M Innovative Properties Company | Abrasive article and methods of making and using the same |
US20080229672A1 (en) * | 2007-03-20 | 2008-09-25 | 3M Innovative Properties Company | Abrasive article and method of making and using the same |
US20080233850A1 (en) * | 2007-03-20 | 2008-09-25 | 3M Innovative Properties Company | Abrasive article and method of making and using the same |
US20080276805A1 (en) * | 2005-04-22 | 2008-11-13 | Marcus Lotgerink-Bruinenberg | Vehicle Passenger Compartment Air Filter Devices |
WO2009038904A1 (en) | 2007-09-20 | 2009-03-26 | 3M Innovative Properties Company | Filtering face-piece respirator that has expandable mask body |
US20090293279A1 (en) * | 2008-06-02 | 2009-12-03 | 3M Innovative Properties Company | Method of making electret articles based on zeta potential |
US20100252047A1 (en) * | 2009-04-03 | 2010-10-07 | Kirk Seth M | Remote fluorination of fibrous filter webs |
US20110041471A1 (en) * | 2007-12-06 | 2011-02-24 | Sebastian John M | Electret webs with charge-enhancing additives |
EP2298095A2 (en) | 2009-09-18 | 2011-03-23 | 3M Innovative Properties Co. | Horizontal flat-fold filtering face-piece respirator having indicia of symmetry |
EP2298096A2 (en) | 2009-09-18 | 2011-03-23 | 3M Innovative Properties Co. | Filtering face respirator having grasping feature indicator |
EP2298419A1 (en) | 2009-09-18 | 2011-03-23 | 3M Innovative Properties Co. | Flat-fold filtering face-piece respirator having structural weld pattern |
EP2314353A1 (en) | 2009-10-23 | 2011-04-27 | 3M Innovative Properties Company | Filtering face-piece respirator having parallel line weld pattern in mask body |
US20110137082A1 (en) * | 2008-06-02 | 2011-06-09 | Li Fuming B | Charge-enhancing additives for electrets |
US20110154987A1 (en) * | 2008-06-02 | 2011-06-30 | Li Fuming B | Electret webs with charge-enhancing additives |
WO2011090586A2 (en) | 2009-12-30 | 2011-07-28 | 3M Innovative Properties Company | Filtering face-piece respirator having an auxetic mesh in the mask body |
EP2412407A1 (en) | 2010-07-26 | 2012-02-01 | 3M Innovative Properties Co. | Filtering face-piece respiratory having foam shaping layer |
EP2428127A2 (en) | 2007-05-03 | 2012-03-14 | 3M Innovative Properties Company | Maintenance-free respirator that has concave portions on opposing sides of mask top section |
WO2012064507A1 (en) | 2010-11-08 | 2012-05-18 | 3M Innovative Properties Company | Zinc oxide containing filter media and methods of forming the same |
WO2012068091A2 (en) | 2010-11-19 | 2012-05-24 | 3M Innovative Properties Company | Filtering face-piece respirator having an overmolded face seal |
US8790449B2 (en) | 2009-04-03 | 2014-07-29 | 3M Innovative Properties Company | Electret webs with charge-enhancing additives |
WO2014172308A2 (en) | 2013-04-19 | 2014-10-23 | 3M Innovative Properties Company | Electret webs with charge-enhancing additives |
WO2015130591A1 (en) | 2014-02-27 | 2015-09-03 | 3M Innovative Properties Company | Respirator having elastic straps having openwork structure |
WO2015199972A1 (en) | 2014-06-23 | 2015-12-30 | 3M Innovative Properties Company | Electret webs with charge-enhancing additives |
WO2016028553A1 (en) | 2014-08-18 | 2016-02-25 | 3M Innovative Properties Company | Respirator including polymeric netting and method of forming same |
US9284669B2 (en) | 2009-04-03 | 2016-03-15 | 3M Innovative Properties Company | Processing aids for olefinic webs, including electret webs |
WO2016069342A1 (en) | 2014-10-31 | 2016-05-06 | 3M Innovative Properties Company | Respirator having corrugated filtering structure |
WO2016089940A1 (en) | 2014-12-04 | 2016-06-09 | 3M Innovative Properties Company | Respirator valve |
WO2016090072A1 (en) | 2014-12-04 | 2016-06-09 | 3M Innovative Properties Company | Flat-fold respirator |
WO2016090082A1 (en) | 2014-12-04 | 2016-06-09 | 3M Innovative Properties Company | Respirator nosepiece |
WO2016090067A1 (en) | 2014-12-04 | 2016-06-09 | 3M Innovative Properties Company | Respirator tab |
WO2016089937A1 (en) | 2014-12-04 | 2016-06-09 | 3M Innovative Properties Company | Respirator headband |
US20160250649A1 (en) * | 2013-10-15 | 2016-09-01 | Yupo Corporation | Filter |
WO2016182989A1 (en) | 2015-05-12 | 2016-11-17 | 3M Innovative Properties Company | Respirator tab |
US9539532B2 (en) | 2010-01-18 | 2017-01-10 | 3M Innovative Properties Company | Air filter with sorbent particles |
WO2017066284A1 (en) | 2015-10-12 | 2017-04-20 | 3M Innovative Properties Company | Filtering face-piece respirator including functional material and method of forming same |
WO2017083289A1 (en) | 2015-11-11 | 2017-05-18 | 3M Innovative Properties Company | Shape retaining flat-fold respirator |
WO2017100045A1 (en) | 2015-12-11 | 2017-06-15 | 3M Innovative Properties Company | Fluorinated piperazine sulfonamides |
US9815068B2 (en) | 2012-12-28 | 2017-11-14 | 3M Innovative Properties Company | Electret webs with charge-enhancing additives |
WO2018005040A1 (en) | 2016-06-27 | 2018-01-04 | 3M Innovative Properties Company | Fluorochemical piperazine carboxamides |
WO2018048675A1 (en) | 2016-09-09 | 2018-03-15 | 3M Innovative Properties Company | Partially fluorinated aromatic esters |
WO2018081227A1 (en) | 2016-10-28 | 2018-05-03 | 3M Innovative Properties Company | Respirator including reinforcing element |
WO2018127831A1 (en) | 2017-01-05 | 2018-07-12 | 3M Innovative Properties Company | Electret webs with charge-enhancing additives |
US10040621B2 (en) | 2014-03-20 | 2018-08-07 | 3M Innovative Properties Company | Filtering face-piece respirator dispenser |
EP3391943A1 (en) | 2007-05-03 | 2018-10-24 | 3M Innovative Properties Company | Maintenance-free flat-fold respirator that includes a graspable tab |
US10130833B2 (en) | 2009-11-18 | 2018-11-20 | 3M Innovative Properties Company | Reinforced filter media |
US10182603B2 (en) | 2012-12-27 | 2019-01-22 | 3M Innovative Properties Company | Filtering face-piece respirator having strap-activated folded flange |
US10662165B2 (en) | 2016-05-31 | 2020-05-26 | 3M Innovative Properties Company | Fluorochemical piperazine carboxamides |
US11027231B2 (en) | 2016-11-17 | 2021-06-08 | 3M Innovative Properties Company | Air filter with visual filter life indicator zone and sorbent-loaded visual reference zone |
US11083916B2 (en) | 2008-12-18 | 2021-08-10 | 3M Innovative Properties Company | Flat fold respirator having flanges disposed on the mask body |
US11116998B2 (en) | 2012-12-27 | 2021-09-14 | 3M Innovative Properties Company | Filtering face-piece respirator having folded flange |
WO2023031697A1 (en) | 2021-09-01 | 2023-03-09 | 3M Innovative Properties Company | Anti-virus respirator and mask |
US11786853B2 (en) | 2020-08-10 | 2023-10-17 | F.N. Smith Corporation | Facepiece electrostatic charging devices and methods thereof |
US11813581B2 (en) | 2017-07-14 | 2023-11-14 | 3M Innovative Properties Company | Method and adapter for conveying plural liquid streams |
US11904191B2 (en) | 2007-05-03 | 2024-02-20 | 3M Innovative Properties Company | Anti-fog respirator |
EP4349419A1 (en) | 2022-10-07 | 2024-04-10 | 3M Innovative Properties Company | Disposable, flat-fold respirator having increased stiffness in selected areas |
US11982031B2 (en) * | 2020-01-27 | 2024-05-14 | 3M Innovative Properties Company | Substituted thiol melt additives |
US12005277B2 (en) | 2013-07-15 | 2024-06-11 | 3M Innovative Properties Company | Respirator having optically active exhalation valve |
WO2024137158A1 (en) | 2022-12-21 | 2024-06-27 | 3M Innovative Properties Company | Shirred filter media and methods of making and using the same |
WO2024214065A1 (en) | 2023-04-13 | 2024-10-17 | 3M Innovative Properties Company | Filter media for filtration devices and methods of making and using the same |
WO2024214054A1 (en) | 2023-04-13 | 2024-10-17 | 3M Innovative Properties Company | Respiratory protection devices and methods of manufacturing the same |
US12150502B2 (en) | 2018-01-03 | 2024-11-26 | 3M Innovative Properties Company | Respirator including transversely-extending pleat and method of forming same |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2927238A1 (en) * | 1978-07-07 | 1980-01-17 | Holm Varde As | PLASTIC REINFORCING FIBERS AND METHOD FOR THEIR PRODUCTION |
JPS55113520A (en) * | 1979-02-26 | 1980-09-02 | Sansou Jushi Kogyo Kk | Electret fiber |
US4308223A (en) * | 1980-03-24 | 1981-12-29 | Albany International Corp. | Method for producing electret fibers for enhancement of submicron aerosol filtration |
FR2480807A1 (en) * | 1980-04-18 | 1981-10-23 | Seplast Sa | PROCESS FOR THE SUPERFICIAL TREATMENT OF A FIBROUS, NON-WOVEN AND VERY ACOUSTIC FILTERING LAYER, FORMING ELECTRET AND ITS APPLICATION TO FILTERS AND RESPIRATORY MASKS, IN PARTICULAR |
US4376642A (en) * | 1980-08-18 | 1983-03-15 | Biotech Electronics Ltd. | Portable air cleaner unit |
US4456648A (en) * | 1983-09-09 | 1984-06-26 | Minnesota Mining And Manufacturing Company | Particulate-modified electret fibers |
DE3509857C2 (en) * | 1984-03-19 | 1994-04-28 | Toyo Boseki | Electretized dust filter and its manufacture |
DE3908498C2 (en) * | 1988-03-15 | 1997-08-21 | Maico Elektroapparate | Fan |
DE3904623A1 (en) * | 1989-02-16 | 1990-08-23 | Sandler Helmut Helsa Werke | Filter in particular for a vehicle |
JP2788976B2 (en) * | 1989-04-26 | 1998-08-20 | ジャパンゴアテック株式会社 | Filter material |
CA2037942A1 (en) * | 1990-03-12 | 1991-09-13 | Satoshi Matsuura | Process for producing an electret, a film electret, and an electret filter |
JPH04330907A (en) * | 1991-05-02 | 1992-11-18 | Mitsui Petrochem Ind Ltd | Manufacturing method of electret filter |
DE4241517C2 (en) * | 1992-12-10 | 1995-09-21 | Freudenberg Carl Fa | Method and device for producing a spunbonded nonwoven |
EP0646416A1 (en) * | 1993-10-04 | 1995-04-05 | Trion Inc. | Bipolar charged filter and method of using same |
ES2181800T3 (en) * | 1994-10-31 | 2003-03-01 | Kimberly Clark Co | HEAVY DENSITY FILTER MEDIA, HIGH DENSITY. |
WO1996037276A1 (en) * | 1995-05-25 | 1996-11-28 | Kimberly-Clark Worldwide, Inc. | Filter matrix |
US6211100B1 (en) * | 1996-04-30 | 2001-04-03 | Minnesota Mining And Manufacturing Company | Synthetic filter media |
US5898981A (en) * | 1996-04-30 | 1999-05-04 | Minnesota Mining & Manufacturing Company | Synthetic filter media and method for manufacturing same |
IL119809A (en) * | 1996-12-11 | 2001-06-14 | Nicast Ltd | Device for manufacture of composite filtering material and method of its manufacture |
US5871836A (en) * | 1997-08-27 | 1999-02-16 | Airflo Europe N.V. | Composite pleated fibrous structures containing split film fibers |
IL132945A0 (en) * | 1999-06-07 | 2001-03-19 | Nicast Ltd | Filtering material and device and method of its manufacture |
EP1236494B1 (en) * | 2001-03-02 | 2003-10-15 | Airflo Europe N.V. | Composite filter and method of making the same |
US6969484B2 (en) | 2001-06-18 | 2005-11-29 | Toray Industries, Inc. | Manufacturing method and device for electret processed product |
US6827764B2 (en) | 2002-07-25 | 2004-12-07 | 3M Innovative Properties Company | Molded filter element that contains thermally bonded staple fibers and electrically-charged microfibers |
US7235122B2 (en) * | 2004-11-08 | 2007-06-26 | E. I. Du Pont De Nemours And Company | Filtration media for filtering particulate material from gas streams |
US20060137317A1 (en) * | 2004-12-28 | 2006-06-29 | Bryner Michael A | Filtration media for filtering particulate material from gas streams |
US9134471B2 (en) | 2006-06-28 | 2015-09-15 | 3M Innovative Properties Company | Oriented polymeric articles and method |
US7981177B2 (en) * | 2007-04-18 | 2011-07-19 | Transweb, Llc | Filtration media having a slit-film layer |
US8282712B2 (en) | 2008-04-07 | 2012-10-09 | E I Du Pont De Nemours And Company | Air filtration medium with improved dust loading capacity and improved resistance to high humidity environment |
JP2011528610A (en) * | 2008-06-30 | 2011-11-24 | スリーエム イノベイティブ プロパティズ カンパニー | Method for in situ formation of metal nanoclusters in a porous substrate field |
US20110290119A1 (en) | 2009-02-20 | 2011-12-01 | 3M Innovative Properties Company | Antimicrobial electret web |
DE102009037740A1 (en) * | 2009-08-17 | 2011-02-24 | Oerlikon Textile Gmbh & Co. Kg | Method and device for producing a grass yarn |
US9610588B2 (en) | 2013-10-21 | 2017-04-04 | E I Du Pont De Nemours And Company | Electret nanofibrous web as air filtration media |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3378997A (en) * | 1965-09-28 | 1968-04-23 | Matsui Mitsuo | Method and apparatus for manufacturing bulky crimped yarn from synthetic resin films |
US3550517A (en) * | 1968-06-07 | 1970-12-29 | Bell & Howell Co | Triangulation rangefinding mechanism with locking device |
US3578739A (en) * | 1969-05-13 | 1971-05-18 | Du Pont | Apparatus for applying electrostatic charge to fibrous structure |
US3608024A (en) * | 1967-02-09 | 1971-09-21 | Polymer Processing Res Inst | Method for producing crimped conjugated split fiber |
US3966597A (en) * | 1970-07-28 | 1976-06-29 | Teijin Limited | Oil or organic solvent-absorbent |
US3998916A (en) * | 1974-03-25 | 1976-12-21 | N.V. Verto | Method for the manufacture of an electret fibrous filter |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3336174A (en) * | 1965-04-06 | 1967-08-15 | Eastman Kodak Co | Method of making a fibrous filter product |
GB1094933A (en) * | 1965-04-20 | 1967-12-13 | Ici Ltd | Self-crimping filaments |
GB1151076A (en) * | 1966-01-31 | 1969-05-07 | Chori Co Ltd | Method and Apparatus for Manufacturing Bulky Crimped Yarn from Synthetic Resin Films. |
GB1167631A (en) * | 1967-03-20 | 1969-10-15 | Shell Int Research | Process and apparatus for the fibrillation of thermoplastic films |
BE789078A (en) * | 1971-09-22 | 1973-03-21 | Tno | METHOD AND DEVICE FOR PROVIDING PLASTIC FOIL |
-
1976
- 1976-12-23 NL NLAANVRAGE7614376,A patent/NL181632C/en not_active IP Right Cessation
-
1977
- 1977-12-20 DE DE2756826A patent/DE2756826C2/en not_active Expired
- 1977-12-21 US US05/862,768 patent/US4178157A/en not_active Expired - Lifetime
- 1977-12-22 DK DK575777A patent/DK152016C/en not_active IP Right Cessation
- 1977-12-22 LU LU78749A patent/LU78749A1/xx unknown
- 1977-12-22 GB GB53497/77A patent/GB1572199A/en not_active Expired
- 1977-12-22 IE IE2607/77A patent/IE46020B1/en unknown
- 1977-12-22 IT IT69885/77A patent/IT1091525B/en active
- 1977-12-22 BE BE183712A patent/BE862156A/en not_active IP Right Cessation
- 1977-12-23 JP JP15543277A patent/JPS5388272A/en active Granted
- 1977-12-23 FR FR7739041A patent/FR2374939A1/en active Granted
- 1977-12-23 CA CA293,855A patent/CA1105217A/en not_active Expired
- 1977-12-23 DD DD7700202926A patent/DD133299A5/en unknown
- 1977-12-23 CH CH1600877A patent/CH627803A5/en not_active IP Right Cessation
-
1981
- 1981-12-07 US US06/328,027 patent/USRE31285E/en not_active Expired - Lifetime
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3378997A (en) * | 1965-09-28 | 1968-04-23 | Matsui Mitsuo | Method and apparatus for manufacturing bulky crimped yarn from synthetic resin films |
US3608024A (en) * | 1967-02-09 | 1971-09-21 | Polymer Processing Res Inst | Method for producing crimped conjugated split fiber |
US3550517A (en) * | 1968-06-07 | 1970-12-29 | Bell & Howell Co | Triangulation rangefinding mechanism with locking device |
US3578739A (en) * | 1969-05-13 | 1971-05-18 | Du Pont | Apparatus for applying electrostatic charge to fibrous structure |
US3966597A (en) * | 1970-07-28 | 1976-06-29 | Teijin Limited | Oil or organic solvent-absorbent |
US3998916A (en) * | 1974-03-25 | 1976-12-21 | N.V. Verto | Method for the manufacture of an electret fibrous filter |
USRE30782E (en) | 1974-03-25 | 1981-10-27 | Minnesota Mining And Manufacturing Company | Method for the manufacture of an electret fibrous filter |
Cited By (190)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE32171E (en) | 1974-03-25 | 1986-06-03 | Minnesota Mining And Manufacturing Company | Method for the manufacture of an electret fibrous filter |
US4513049A (en) | 1983-04-26 | 1985-04-23 | Mitsui Petrochemical Industries, Ltd. | Electret article |
US4807619A (en) | 1986-04-07 | 1989-02-28 | Minnesota Mining And Manufacturing Company | Resilient shape-retaining fibrous filtration face mask |
US4874399A (en) | 1988-01-25 | 1989-10-17 | Minnesota Mining And Manufacturing Company | Electret filter made of fibers containing polypropylene and poly(4-methyl-1-pentene) |
US5266369A (en) * | 1988-09-21 | 1993-11-30 | Toray Industries, Inc. | Packaging material made of electret material and packaging method |
US5304227A (en) * | 1990-11-30 | 1994-04-19 | Mitsui Petrochemical Industries, Ltd. | Electret filters |
US5230800A (en) * | 1992-02-20 | 1993-07-27 | Minnesota Mining And Manufacturing Company | Scrim inserted electrostatic fibrous filter web |
US5374458A (en) * | 1992-03-13 | 1994-12-20 | Minnesota Mining And Manufacturing Company | Molded, multiple-layer face mask |
US5268009A (en) * | 1992-12-22 | 1993-12-07 | Teledyne Industries, Inc. | Portable air filter system |
US5411576A (en) * | 1993-03-26 | 1995-05-02 | Minnesota Mining And Manufacturing Company | Oily mist resistant electret filter media and method for filtering |
US5472481A (en) * | 1993-03-26 | 1995-12-05 | Minnesota Mining And Manufacturing Company | Oily mist resistant electret filter media |
US5499917A (en) * | 1993-06-29 | 1996-03-19 | Minnesota Mining And Manufacturing Company | Dental isolation dam |
US5643507A (en) * | 1993-08-17 | 1997-07-01 | Minnesota Mining And Manufacturing Company | Filter media having an undulated surface |
US5496507A (en) * | 1993-08-17 | 1996-03-05 | Minnesota Mining And Manufacturing Company | Method of charging electret filter media |
US5641555A (en) * | 1993-08-17 | 1997-06-24 | Minnesota Mining And Manufacturing Company | Cup-shaped filtration mask having an undulated surface |
US6783574B1 (en) | 1993-08-17 | 2004-08-31 | Minnesota Mining And Manufacturing Company | Electret filter media and filtering masks that contain electret filter media |
US6119691A (en) | 1993-08-17 | 2000-09-19 | Minnesota Mining And Manufacturing Company | Electret filter media |
US5436054A (en) * | 1993-10-20 | 1995-07-25 | Toyo Boseki Kabushiki Kaisha | Electret Filter |
US5998308A (en) | 1994-02-22 | 1999-12-07 | Kimberly-Clark Worldwide, Inc. | Nonwoven barrier and method of making the same |
US5814570A (en) * | 1994-06-27 | 1998-09-29 | Kimberly-Clark Worldwide, Inc. | Nonwoven barrier and method of making the same |
US5916204A (en) | 1994-12-08 | 1999-06-29 | Kimberly-Clark Worldwide, Inc. | Method of forming a particle size gradient in an absorbent article |
US5807366A (en) * | 1994-12-08 | 1998-09-15 | Milani; John | Absorbent article having a particle size gradient |
US5821178A (en) * | 1994-12-30 | 1998-10-13 | Kimberly-Clark Worldwide, Inc. | Nonwoven laminate barrier material |
US20040237964A1 (en) * | 1995-03-09 | 2004-12-02 | 3M Innovative Properties Company | Flat-folded personal respiratory protection devices and processes for preparing same |
US20050139218A1 (en) * | 1995-03-09 | 2005-06-30 | 3M Innovative Properties Company | Flat-folded personal respiratory protection devices and processes for preparing same |
US8375950B2 (en) | 1995-03-09 | 2013-02-19 | 3M Innovative Properties Company | Flat-folded personal respiratory protection devices and processes for preparing same |
EP1258267A2 (en) | 1995-03-09 | 2002-11-20 | Minnesota Mining And Manufacturing Company | Flat-folded personal respiratory protection devices and process for preparing same |
US6886563B2 (en) | 1995-03-09 | 2005-05-03 | 3M Innovative Properties Company | Flat-folded personal respiratory protection devices and processes for preparing same |
US7069930B2 (en) | 1995-03-09 | 2006-07-04 | 3M Innovative Properties Company | Flat-folded personal respiratory protection devices and processes for preparing same |
US20060180152A1 (en) * | 1995-03-09 | 2006-08-17 | 3M Innovative Properties Company | Flat-folded personal respiratory protection devices and processes for preparing same |
EP2229983A1 (en) | 1995-03-09 | 2010-09-22 | 3M Innovative Properties Company | Flat-folded personal respiratory protection devices |
US8146594B2 (en) | 1995-03-09 | 2012-04-03 | 3M Innovative Properties Company | Flat-folded personal respiratory protection devices |
US5830810A (en) * | 1995-07-19 | 1998-11-03 | Kimberly-Clark Worldwide, Inc. | Nonwoven barrier and method of making the same |
US6715489B2 (en) | 1995-09-11 | 2004-04-06 | 3M Innovative Properties Company | Processes for preparing flat-folded personal respiratory protection devices |
US6484722B2 (en) | 1995-09-11 | 2002-11-26 | 3M Innovative Properties Company | Flat-folded personal respiratory protection devices and processes for preparing same |
US6536434B1 (en) | 1995-09-11 | 2003-03-25 | 3M Innovative Properties Company | Flat-folded personal respiratory protection devices and processes for preparing same |
US6722366B2 (en) | 1995-09-11 | 2004-04-20 | 3M Innovative Properties Company | Method of making a flat-folded personal respiratory protection device |
US5834384A (en) * | 1995-11-28 | 1998-11-10 | Kimberly-Clark Worldwide, Inc. | Nonwoven webs with one or more surface treatments |
US5800769A (en) * | 1996-02-26 | 1998-09-01 | Haskett; Thomas E. | Method for forming an electrostatic fibrous filter web |
US5792242A (en) * | 1996-02-26 | 1998-08-11 | Minnesota Mining And Manufacturing Co. | Electrostatic fibrous filter web |
US6070579A (en) | 1996-03-08 | 2000-06-06 | 3M Innovative Properties Company | Elastomeric composite headband |
US5724677A (en) * | 1996-03-08 | 1998-03-10 | Minnesota Mining And Manufacturing Company | Multi-part headband and respirator mask assembly and process for making same |
US6148817A (en) | 1996-03-08 | 2000-11-21 | 3M Innovative Properties Company | Multi-part headband and respirator mask assembly and process for making same |
US5706804A (en) * | 1996-10-01 | 1998-01-13 | Minnesota Mining And Manufacturing Company | Liquid resistant face mask having surface energy reducing agent on an intermediate layer therein |
US6213122B1 (en) | 1997-10-01 | 2001-04-10 | 3M Innovative Properties Company | Electret fibers and filter webs having a low level of extractable hydrocarbons |
US6776951B2 (en) | 1997-10-01 | 2004-08-17 | 3M Innovative Properties Company | Method of making electret fibers |
US6237595B1 (en) | 1997-10-01 | 2001-05-29 | 3M Innovative Properties Company | Predicting electret performance by measuring level of extractable hydrocarbons |
US6319452B1 (en) | 1997-10-01 | 2001-11-20 | 3M Innovative Properties Company | Method of making electret fibers that have low level of extractable hydrocarbon material |
US6537932B1 (en) | 1997-10-31 | 2003-03-25 | Kimberly-Clark Worldwide, Inc. | Sterilization wrap, applications therefor, and method of sterilizing |
US6102039A (en) | 1997-12-01 | 2000-08-15 | 3M Innovative Properties Company | Molded respirator containing sorbent particles |
US6234171B1 (en) | 1997-12-01 | 2001-05-22 | 3M Innovative Properties Company | Molded respirator containing sorbent particles |
US6524488B1 (en) | 1998-06-18 | 2003-02-25 | 3M Innovative Properties Company | Method of filtering certain particles from a fluid using a depth loading filtration media |
US6365088B1 (en) | 1998-06-26 | 2002-04-02 | Kimberly-Clark Worldwide, Inc. | Electret treatment of high loft and low density nonwoven webs |
US6808551B2 (en) | 1998-07-02 | 2004-10-26 | 3M Innovative Properties Company | Method of using fluorinated electrets |
US6432175B1 (en) * | 1998-07-02 | 2002-08-13 | 3M Innovative Properties Company | Fluorinated electret |
US20040207125A1 (en) * | 1998-07-02 | 2004-10-21 | 3M Innovative Properties Company | Method of making a respirator that has a fluorinated electret |
US6562112B2 (en) | 1998-07-02 | 2003-05-13 | 3M Innovative Properties Company | Fluorinated electret |
US6660210B2 (en) | 1998-07-02 | 2003-12-09 | 3M Innovative Properties Company | Method of making fluorinated electrets |
US6398847B1 (en) * | 1998-07-02 | 2002-06-04 | 3M Innovative Properties Company | Method of removing contaminants from an aerosol using a new electret article |
US6953544B2 (en) | 1998-07-02 | 2005-10-11 | 3M Innovative Properties Company | Method of making a respirator that has a fluorinated electret |
US6110260A (en) | 1998-07-14 | 2000-08-29 | 3M Innovative Properties Company | Filter having a change indicator |
US6280824B1 (en) | 1999-01-29 | 2001-08-28 | 3M Innovative Properties Company | Contoured layer channel flow filtration media |
US6752889B2 (en) | 1999-01-29 | 2004-06-22 | 3M Innovative Properties Company | Contoured layer channel flow filtration media |
US6110588A (en) | 1999-02-05 | 2000-08-29 | 3M Innovative Properties Company | Microfibers and method of making |
US6630231B2 (en) | 1999-02-05 | 2003-10-07 | 3M Innovative Properties Company | Composite articles reinforced with highly oriented microfibers |
US6432532B2 (en) | 1999-02-05 | 2002-08-13 | 3M Innovative Properties Company | Microfibers and method of making |
US6432347B1 (en) | 1999-02-05 | 2002-08-13 | 3M Innovative Properties Company | Process of making a microfibrillated article |
US7014803B2 (en) | 1999-02-05 | 2006-03-21 | 3M Innovative Properties Company | Composite articles reinforced with highly oriented microfibers |
US6394090B1 (en) | 1999-02-17 | 2002-05-28 | 3M Innovative Properties Company | Flat-folded personal respiratory protection devices and processes for preparing same |
US6279570B1 (en) | 1999-03-02 | 2001-08-28 | 3M Innovative Properties Company | Filter support, assembly and system |
US6525127B1 (en) | 1999-05-11 | 2003-02-25 | 3M Innovative Properties Company | Alkylated fluorochemical oligomers and use thereof in the treatment of fibrous substrates |
US20040024262A1 (en) * | 1999-05-11 | 2004-02-05 | Jariwala Chetan P | Alkylated fluorochemical oligomers and use thereof in the treatment of fibrous substrates |
US6288157B1 (en) | 1999-05-11 | 2001-09-11 | 3M Innovative Properties Company | Alkylated fluorochemical oligomers and use thereof |
US6273938B1 (en) | 1999-08-13 | 2001-08-14 | 3M Innovative Properties Company | Channel flow filter |
US6284843B1 (en) | 1999-09-24 | 2001-09-04 | 3M Innovative Properties Company | Fluorochemical oligomer and use thereof |
US6174964B1 (en) | 1999-09-24 | 2001-01-16 | 3M Innovative Properties Company | Fluorochemical oligomer and use thereof |
US6391807B1 (en) | 1999-09-24 | 2002-05-21 | 3M Innovative Properties Company | Polymer composition containing a fluorochemical oligomer |
US6406657B1 (en) | 1999-10-08 | 2002-06-18 | 3M Innovative Properties Company | Method and apparatus for making a fibrous electret web using a wetting liquid and an aqueous polar liquid |
US6454986B1 (en) | 1999-10-08 | 2002-09-24 | 3M Innovative Properties Company | Method of making a fibrous electret web using a nonaqueous polar liquid |
US20020110610A1 (en) * | 1999-10-08 | 2002-08-15 | 3M Innovative Properties Company | Apparatus for making a nonwoven fibrous electret web from free-fiber and polar liquid |
US20020190434A1 (en) * | 1999-10-08 | 2002-12-19 | 3M Innovative Properties Company | Method and apparatus for making a fibrous electret web using a wetting liquid and an aqueous polar liquid |
US6824718B2 (en) | 1999-10-08 | 2004-11-30 | 3M Innovative Properties Company | Process of making a fibrous electret web |
US6375886B1 (en) | 1999-10-08 | 2002-04-23 | 3M Innovative Properties Company | Method and apparatus for making a nonwoven fibrous electret web from free-fiber and polar liquid |
US6471746B2 (en) | 1999-10-19 | 2002-10-29 | 3M Innovative Properties Company | Electrofiltration process |
US6454839B1 (en) | 1999-10-19 | 2002-09-24 | 3M Innovative Properties Company | Electrofiltration apparatus |
US6391948B1 (en) | 1999-12-14 | 2002-05-21 | 3M Innovative Properties Company | Triazine compounds and use thereof |
US6419729B1 (en) | 2000-04-17 | 2002-07-16 | 3M Innovative Properties Company | Filter assemblies with adhesive attachment systems |
US6420024B1 (en) | 2000-12-21 | 2002-07-16 | 3M Innovative Properties Company | Charged microfibers, microfibrillated articles and use thereof |
US20020172816A1 (en) * | 2000-12-21 | 2002-11-21 | 3M Innovative Properties Company | Charged microfibers, microfibrillated articles and use thereof |
US6849329B2 (en) | 2000-12-21 | 2005-02-01 | 3M Innovative Properties Company | Charged microfibers, microfibrillated articles and use thereof |
US20040112213A1 (en) * | 2001-04-07 | 2004-06-17 | Klaus Dominiak | Combination filter for filtering fluids |
US6986804B2 (en) | 2001-04-07 | 2006-01-17 | 3M Innovative Properties Company | Combination filter for filtering fluids |
US6680114B2 (en) | 2001-05-15 | 2004-01-20 | 3M Innovative Properties Company | Fibrous films and articles from microlayer substrates |
US6589317B2 (en) | 2001-08-10 | 2003-07-08 | 3M Innovative Properties Company | Structured surface filtration media array |
US6923182B2 (en) | 2002-07-18 | 2005-08-02 | 3M Innovative Properties Company | Crush resistant filtering face mask |
US6758884B2 (en) | 2002-08-07 | 2004-07-06 | 3M Innovative Properties Company | Air filtration system using point ionization sources |
US6874499B2 (en) | 2002-09-23 | 2005-04-05 | 3M Innovative Properties Company | Filter element that has a thermo-formed housing around filter material |
US20050161045A1 (en) * | 2002-09-23 | 2005-07-28 | 3M Innovative Properties Company | Method of making a filter cartridge that uses thermoforming step |
US7497217B2 (en) | 2002-09-23 | 2009-03-03 | 3M Innovative Properties Company | Method of making a filter cartridge using a thermoforming step |
US7141098B2 (en) | 2004-01-22 | 2006-11-28 | 3M Innovative Properties Company | Air filtration system using point ionization sources |
US20050160907A1 (en) * | 2004-01-22 | 2005-07-28 | 3M Innovative Properties Company | Air filtration system using point ionization sources |
US20060196157A1 (en) * | 2005-03-03 | 2006-09-07 | Greer Paul A | Conformal filter cartridges and methods |
US7419526B2 (en) | 2005-03-03 | 2008-09-02 | 3M Innovative Properties Company | Conformal filter cartridges and methods |
US20080276805A1 (en) * | 2005-04-22 | 2008-11-13 | Marcus Lotgerink-Bruinenberg | Vehicle Passenger Compartment Air Filter Devices |
WO2007037903A2 (en) | 2005-09-16 | 2007-04-05 | 3M Innovative Properties Company | Abrasive article with integrated filter and method of making same |
US7338355B2 (en) | 2006-06-13 | 2008-03-04 | 3M Innovative Properties Company | Abrasive article and methods of making and using the same |
US20070287366A1 (en) * | 2006-06-13 | 2007-12-13 | 3M Innovative Properties Company | Abrasive article and methods of making and using the same |
US7628829B2 (en) | 2007-03-20 | 2009-12-08 | 3M Innovative Properties Company | Abrasive article and method of making and using the same |
US20080233850A1 (en) * | 2007-03-20 | 2008-09-25 | 3M Innovative Properties Company | Abrasive article and method of making and using the same |
US20080229672A1 (en) * | 2007-03-20 | 2008-09-25 | 3M Innovative Properties Company | Abrasive article and method of making and using the same |
US11904191B2 (en) | 2007-05-03 | 2024-02-20 | 3M Innovative Properties Company | Anti-fog respirator |
EP3391943A1 (en) | 2007-05-03 | 2018-10-24 | 3M Innovative Properties Company | Maintenance-free flat-fold respirator that includes a graspable tab |
EP4134136A1 (en) | 2007-05-03 | 2023-02-15 | 3M Innovative Properties Company | Maintenance-free flat-fold respirator that includes a graspable tab |
EP2428127A2 (en) | 2007-05-03 | 2012-03-14 | 3M Innovative Properties Company | Maintenance-free respirator that has concave portions on opposing sides of mask top section |
US11877604B2 (en) | 2007-05-03 | 2024-01-23 | 3M Innovative Properties Company | Maintenance-free respirator that has concave portions on opposing sides of mask top section |
WO2009038904A1 (en) | 2007-09-20 | 2009-03-26 | 3M Innovative Properties Company | Filtering face-piece respirator that has expandable mask body |
US20110041471A1 (en) * | 2007-12-06 | 2011-02-24 | Sebastian John M | Electret webs with charge-enhancing additives |
US8529671B2 (en) | 2007-12-06 | 2013-09-10 | 3M Innovative Properties Comany | Electret webs with charge-enhancing additives |
US20110137082A1 (en) * | 2008-06-02 | 2011-06-09 | Li Fuming B | Charge-enhancing additives for electrets |
US20110154987A1 (en) * | 2008-06-02 | 2011-06-30 | Li Fuming B | Electret webs with charge-enhancing additives |
US20090293279A1 (en) * | 2008-06-02 | 2009-12-03 | 3M Innovative Properties Company | Method of making electret articles based on zeta potential |
US7765698B2 (en) | 2008-06-02 | 2010-08-03 | 3M Innovative Properties Company | Method of making electret articles based on zeta potential |
US8613795B2 (en) | 2008-06-02 | 2013-12-24 | 3M Innovative Properties Company | Electret webs with charge-enhancing additives |
US11083916B2 (en) | 2008-12-18 | 2021-08-10 | 3M Innovative Properties Company | Flat fold respirator having flanges disposed on the mask body |
US20100252047A1 (en) * | 2009-04-03 | 2010-10-07 | Kirk Seth M | Remote fluorination of fibrous filter webs |
US9284669B2 (en) | 2009-04-03 | 2016-03-15 | 3M Innovative Properties Company | Processing aids for olefinic webs, including electret webs |
WO2010114826A1 (en) | 2009-04-03 | 2010-10-07 | 3M Innovative Properties Company | Remote fluorination of fibrous filter webs |
US10464001B2 (en) | 2009-04-03 | 2019-11-05 | 3M Innovative Properties Company | Remote fluorination of fibrous filter webs |
US8790449B2 (en) | 2009-04-03 | 2014-07-29 | 3M Innovative Properties Company | Electret webs with charge-enhancing additives |
EP2298095A2 (en) | 2009-09-18 | 2011-03-23 | 3M Innovative Properties Co. | Horizontal flat-fold filtering face-piece respirator having indicia of symmetry |
EP2298096A2 (en) | 2009-09-18 | 2011-03-23 | 3M Innovative Properties Co. | Filtering face respirator having grasping feature indicator |
EP2298419A1 (en) | 2009-09-18 | 2011-03-23 | 3M Innovative Properties Co. | Flat-fold filtering face-piece respirator having structural weld pattern |
US9826786B2 (en) | 2009-09-18 | 2017-11-28 | 3M Innovative Properties Company | Horizontal flat-fold filtering face-piece respirator having indicia of symmetry |
EP2314353A1 (en) | 2009-10-23 | 2011-04-27 | 3M Innovative Properties Company | Filtering face-piece respirator having parallel line weld pattern in mask body |
US10130833B2 (en) | 2009-11-18 | 2018-11-20 | 3M Innovative Properties Company | Reinforced filter media |
WO2011090586A2 (en) | 2009-12-30 | 2011-07-28 | 3M Innovative Properties Company | Filtering face-piece respirator having an auxetic mesh in the mask body |
US9539532B2 (en) | 2010-01-18 | 2017-01-10 | 3M Innovative Properties Company | Air filter with sorbent particles |
EP2412407A1 (en) | 2010-07-26 | 2012-02-01 | 3M Innovative Properties Co. | Filtering face-piece respiratory having foam shaping layer |
US8585808B2 (en) | 2010-11-08 | 2013-11-19 | 3M Innovative Properties Company | Zinc oxide containing filter media and methods of forming the same |
US8753434B2 (en) | 2010-11-08 | 2014-06-17 | 3M Innovative Properties Company | Zinc oxide containing filter media and methods of forming the same |
WO2012064507A1 (en) | 2010-11-08 | 2012-05-18 | 3M Innovative Properties Company | Zinc oxide containing filter media and methods of forming the same |
WO2012068091A2 (en) | 2010-11-19 | 2012-05-24 | 3M Innovative Properties Company | Filtering face-piece respirator having an overmolded face seal |
US10182603B2 (en) | 2012-12-27 | 2019-01-22 | 3M Innovative Properties Company | Filtering face-piece respirator having strap-activated folded flange |
US11116998B2 (en) | 2012-12-27 | 2021-09-14 | 3M Innovative Properties Company | Filtering face-piece respirator having folded flange |
US9815068B2 (en) | 2012-12-28 | 2017-11-14 | 3M Innovative Properties Company | Electret webs with charge-enhancing additives |
US9815067B2 (en) | 2013-04-19 | 2017-11-14 | 3M Innovative Properties Company | Electret webs with charge-enhancing additives |
WO2014172308A2 (en) | 2013-04-19 | 2014-10-23 | 3M Innovative Properties Company | Electret webs with charge-enhancing additives |
US12005277B2 (en) | 2013-07-15 | 2024-06-11 | 3M Innovative Properties Company | Respirator having optically active exhalation valve |
US10010892B2 (en) * | 2013-10-15 | 2018-07-03 | Yupo Corporation | Filter |
US20160250649A1 (en) * | 2013-10-15 | 2016-09-01 | Yupo Corporation | Filter |
US10653901B2 (en) | 2014-02-27 | 2020-05-19 | 3M Innovative Properties Company | Respirator having elastic straps having openwork structure |
WO2015130591A1 (en) | 2014-02-27 | 2015-09-03 | 3M Innovative Properties Company | Respirator having elastic straps having openwork structure |
US10040621B2 (en) | 2014-03-20 | 2018-08-07 | 3M Innovative Properties Company | Filtering face-piece respirator dispenser |
US10240269B2 (en) | 2014-06-23 | 2019-03-26 | 3M Innovative Properties Company | Electret webs with charge-enhancing additives |
WO2015199972A1 (en) | 2014-06-23 | 2015-12-30 | 3M Innovative Properties Company | Electret webs with charge-enhancing additives |
WO2016028553A1 (en) | 2014-08-18 | 2016-02-25 | 3M Innovative Properties Company | Respirator including polymeric netting and method of forming same |
US11033763B2 (en) | 2014-08-18 | 2021-06-15 | 3M Innovative Properties Company | Respirator including polymeric netting and method of forming same |
WO2016069342A1 (en) | 2014-10-31 | 2016-05-06 | 3M Innovative Properties Company | Respirator having corrugated filtering structure |
WO2016089937A1 (en) | 2014-12-04 | 2016-06-09 | 3M Innovative Properties Company | Respirator headband |
WO2016090082A1 (en) | 2014-12-04 | 2016-06-09 | 3M Innovative Properties Company | Respirator nosepiece |
US11445771B2 (en) | 2014-12-04 | 2022-09-20 | 3M Innovative Properties Company | Respirator valve |
US11517775B2 (en) | 2014-12-04 | 2022-12-06 | 3M Innovative Properties Company | Respirator headband |
WO2016090072A1 (en) | 2014-12-04 | 2016-06-09 | 3M Innovative Properties Company | Flat-fold respirator |
WO2016089940A1 (en) | 2014-12-04 | 2016-06-09 | 3M Innovative Properties Company | Respirator valve |
US10863784B2 (en) | 2014-12-04 | 2020-12-15 | 3M Innovative Properties Company | Flat-fold respirator |
WO2016090067A1 (en) | 2014-12-04 | 2016-06-09 | 3M Innovative Properties Company | Respirator tab |
US11413481B2 (en) | 2015-05-12 | 2022-08-16 | 3M Innovative Properties Company | Respirator tab |
WO2016182989A1 (en) | 2015-05-12 | 2016-11-17 | 3M Innovative Properties Company | Respirator tab |
EP3711618A1 (en) | 2015-05-12 | 2020-09-23 | 3M Innovative Properties Company | Respirator tab |
WO2017066284A1 (en) | 2015-10-12 | 2017-04-20 | 3M Innovative Properties Company | Filtering face-piece respirator including functional material and method of forming same |
US11213080B2 (en) | 2015-11-11 | 2022-01-04 | 3M Innovative Properties Company | Shape retaining flat-fold respirator |
WO2017083289A1 (en) | 2015-11-11 | 2017-05-18 | 3M Innovative Properties Company | Shape retaining flat-fold respirator |
WO2017100045A1 (en) | 2015-12-11 | 2017-06-15 | 3M Innovative Properties Company | Fluorinated piperazine sulfonamides |
US10662165B2 (en) | 2016-05-31 | 2020-05-26 | 3M Innovative Properties Company | Fluorochemical piperazine carboxamides |
US10947348B2 (en) | 2016-06-27 | 2021-03-16 | 3M Innovative Properties Company | Fluorochemical piperazine carboxamides |
WO2018005040A1 (en) | 2016-06-27 | 2018-01-04 | 3M Innovative Properties Company | Fluorochemical piperazine carboxamides |
US10590072B2 (en) | 2016-09-09 | 2020-03-17 | 3M Innovative Properties Company | Partially fluorinated aromatic esters |
WO2018048675A1 (en) | 2016-09-09 | 2018-03-15 | 3M Innovative Properties Company | Partially fluorinated aromatic esters |
WO2018081227A1 (en) | 2016-10-28 | 2018-05-03 | 3M Innovative Properties Company | Respirator including reinforcing element |
US11027231B2 (en) | 2016-11-17 | 2021-06-08 | 3M Innovative Properties Company | Air filter with visual filter life indicator zone and sorbent-loaded visual reference zone |
WO2018127831A1 (en) | 2017-01-05 | 2018-07-12 | 3M Innovative Properties Company | Electret webs with charge-enhancing additives |
US11813581B2 (en) | 2017-07-14 | 2023-11-14 | 3M Innovative Properties Company | Method and adapter for conveying plural liquid streams |
US12150502B2 (en) | 2018-01-03 | 2024-11-26 | 3M Innovative Properties Company | Respirator including transversely-extending pleat and method of forming same |
US11982031B2 (en) * | 2020-01-27 | 2024-05-14 | 3M Innovative Properties Company | Substituted thiol melt additives |
US11786853B2 (en) | 2020-08-10 | 2023-10-17 | F.N. Smith Corporation | Facepiece electrostatic charging devices and methods thereof |
WO2023031697A1 (en) | 2021-09-01 | 2023-03-09 | 3M Innovative Properties Company | Anti-virus respirator and mask |
EP4349419A1 (en) | 2022-10-07 | 2024-04-10 | 3M Innovative Properties Company | Disposable, flat-fold respirator having increased stiffness in selected areas |
WO2024137158A1 (en) | 2022-12-21 | 2024-06-27 | 3M Innovative Properties Company | Shirred filter media and methods of making and using the same |
WO2024214065A1 (en) | 2023-04-13 | 2024-10-17 | 3M Innovative Properties Company | Filter media for filtration devices and methods of making and using the same |
WO2024214054A1 (en) | 2023-04-13 | 2024-10-17 | 3M Innovative Properties Company | Respiratory protection devices and methods of manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
DE2756826A1 (en) | 1978-07-06 |
JPS5388272A (en) | 1978-08-03 |
CA1105217A (en) | 1981-07-21 |
DD133299A5 (en) | 1978-12-27 |
IE46020L (en) | 1978-06-23 |
NL181632C (en) | 1987-10-01 |
GB1572199A (en) | 1980-07-23 |
IE46020B1 (en) | 1983-01-26 |
CH627803A5 (en) | 1982-01-29 |
FR2374939B1 (en) | 1982-11-26 |
DK575777A (en) | 1978-06-24 |
DK152016C (en) | 1988-07-11 |
LU78749A1 (en) | 1978-04-17 |
FR2374939A1 (en) | 1978-07-21 |
BE862156A (en) | 1978-06-22 |
JPS5714467B2 (en) | 1982-03-24 |
US4178157A (en) | 1979-12-11 |
IT1091525B (en) | 1985-07-06 |
DE2756826C2 (en) | 1985-08-22 |
NL7614376A (en) | 1978-06-27 |
NL181632B (en) | 1987-05-04 |
DK152016B (en) | 1988-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE31285E (en) | Method for manufacturing a filter of electrically charged electret fiber material and electret filters obtained according to said method | |
KR100218126B1 (en) | Electrostatic fibrous filter web with scrim | |
USRE32171E (en) | Method for the manufacture of an electret fibrous filter | |
US4749348A (en) | Apparatus for manufacturing an electret filter medium | |
US4048075A (en) | Filter cartridge | |
US4789504A (en) | Electretized material for a dust filter | |
US6133165A (en) | Bulky polytetrafluoroethylene filament and split yarn, method of producting thereof, method of producing cotton-like materials by using said filament or split yarn and filter cloth for dust collection | |
US4652282A (en) | Electretized material for a dust filter | |
EP1570121B1 (en) | Improved fibrous nonwoven web | |
US5531235A (en) | Cigarette filter micropleated web and method of manufacture | |
KR101919253B1 (en) | Sheath-core type composite yarn containing Dielectric Inorganic Compounds and Non-woven For Electrostatic Air Filter | |
JPH0663176B2 (en) | Electret manufacturing method and product thereof | |
JPH03185169A (en) | Web containing stable fiber and its manufacture | |
JPS6245307A (en) | Density gradient type thermally molded filter | |
US4355067A (en) | Scouring material | |
CH638940A5 (en) | METHOD FOR PRODUCING A LIQUID PERMEABLE ELECTRIC RESISTANCE HEATING ELEMENT. | |
US3501361A (en) | Method for producing cigarette filters | |
JPH0568821A (en) | Air filter and its manufacture | |
CS199943B1 (en) | Filter element in cigarette filters and method of its manufacture | |
JPH08281029A (en) | Filter for air conditioner | |
DE2216283A1 (en) | Bonded fibrous fleeces - contg nylon/nylon-6,6-copolyamide bonding fibres |