US9692381B2 - Symmetric linear equalization circuit with increased gain - Google Patents
Symmetric linear equalization circuit with increased gain Download PDFInfo
- Publication number
- US9692381B2 US9692381B2 US15/237,171 US201615237171A US9692381B2 US 9692381 B2 US9692381 B2 US 9692381B2 US 201615237171 A US201615237171 A US 201615237171A US 9692381 B2 US9692381 B2 US 9692381B2
- Authority
- US
- United States
- Prior art keywords
- codeword
- mos transistors
- signal
- inputs
- frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003321 amplification Effects 0.000 claims abstract description 101
- 238000003199 nucleic acid amplification method Methods 0.000 claims abstract description 101
- 230000001419 dependent effect Effects 0.000 claims abstract description 26
- 238000000034 method Methods 0.000 claims description 27
- 230000000295 complement effect Effects 0.000 claims description 13
- 239000003990 capacitor Substances 0.000 claims description 8
- 238000006880 cross-coupling reaction Methods 0.000 claims description 4
- 230000008878 coupling Effects 0.000 abstract description 20
- 238000010168 coupling process Methods 0.000 abstract description 20
- 238000005859 coupling reaction Methods 0.000 abstract description 20
- 239000013598 vector Substances 0.000 description 25
- 230000011664 signaling Effects 0.000 description 23
- 238000004891 communication Methods 0.000 description 20
- 238000013461 design Methods 0.000 description 14
- 238000001514 detection method Methods 0.000 description 6
- 238000013459 approach Methods 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 3
- 238000001914 filtration Methods 0.000 description 2
- 150000003071 polychlorinated biphenyls Chemical class 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03G—CONTROL OF AMPLIFICATION
- H03G3/00—Gain control in amplifiers or frequency changers
- H03G3/20—Automatic control
- H03G3/30—Automatic control in amplifiers having semiconductor devices
- H03G3/3089—Control of digital or coded signals
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/02—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
- H03F1/0205—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/26—Modifications of amplifiers to reduce influence of noise generated by amplifying elements
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/32—Modifications of amplifiers to reduce non-linear distortion
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/32—Modifications of amplifiers to reduce non-linear distortion
- H03F1/3211—Modifications of amplifiers to reduce non-linear distortion in differential amplifiers
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/56—Modifications of input or output impedances, not otherwise provided for
- H03F1/565—Modifications of input or output impedances, not otherwise provided for using inductive elements
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/45—Differential amplifiers
- H03F3/45071—Differential amplifiers with semiconductor devices only
- H03F3/45076—Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
- H03F3/45179—Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/45—Differential amplifiers
- H03F3/45071—Differential amplifiers with semiconductor devices only
- H03F3/45076—Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
- H03F3/45179—Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
- H03F3/45197—Pl types
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03G—CONTROL OF AMPLIFICATION
- H03G1/00—Details of arrangements for controlling amplification
- H03G1/0005—Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal
- H03G1/0017—Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal the device being at least one of the amplifying solid state elements of the amplifier
- H03G1/0029—Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal the device being at least one of the amplifying solid state elements of the amplifier using FETs
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03G—CONTROL OF AMPLIFICATION
- H03G3/00—Gain control in amplifiers or frequency changers
- H03G3/20—Automatic control
- H03G3/30—Automatic control in amplifiers having semiconductor devices
- H03G3/3036—Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/294—Indexing scheme relating to amplifiers the amplifier being a low noise amplifier [LNA]
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/301—Indexing scheme relating to amplifiers the loading circuit of an amplifying stage comprising a coil
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/366—Multiple MOSFETs are coupled in parallel
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2203/00—Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
- H03F2203/45—Indexing scheme relating to differential amplifiers
- H03F2203/45022—One or more added resistors to the amplifying transistors in the differential amplifier
Definitions
- the present invention relates to communications systems circuits generally, and more particularly to the amplification, equalization, and frequency compensation of signal receivers for high-speed multi-wire serial interfaces used for chip-to-chip communication.
- digital information In modern digital systems, digital information has to be processed in a reliable and efficient way.
- digital information is to be understood as information available in discrete, i.e., discontinuous values. Bits, collection of bits, but also numbers from a finite set can be used to represent digital information.
- bus In most chip-to-chip, or device-to-device communication systems, communication takes place over a plurality of wires to increase the aggregate bandwidth. A single or pair of these wires may be referred to as a channel or link and multiple channels create a communication bus between the electronic components.
- buses are typically made of electrical conductors in the package between chips and motherboards, on printed circuit boards (“PCBs”) boards or in cables and connectors between PCBs. In high frequency applications, microstrip or stripline PCB traces may be used.
- Common methods for transmitting signals over bus wires include single-ended and differential signaling methods. In applications requiring high speed communications, those methods can be further optimized in terms of power consumption and pin-efficiency, especially in high-speed communications. More recently, vector signaling methods as described in Cronie I, Cronie II, and Cronie III have been proposed to further optimize the trade-offs between power consumption, pin efficiency and noise robustness of chip-to-chip communication systems. In those vector signaling systems, the digital information is transformed into a different representation space in the form of a vector codeword that is chosen in order to optimize the power consumption, pin-efficiency and speed trade-offs based on the transmission channel properties and communication system design constraints.
- Communications signal receiver circuits providing amplification and frequency compensation are described, incorporating particular design features providing increased signal gain without increased noise, thus an increased signal-to-noise or SNR ratio. Certain embodiments also provide improved signal dynamic range and linearity. In some applications the potential gain increase may be traded off for extended bandwidth, support for support additional signal inputs, and/or lower power.
- FIGS. 1A-1C show three example prior art circuits illustrating the basic elements of single-ended signal amplification, differential signal amplification, and differential amplification with linear frequency-dependent equalization.
- FIGS. 2A and 2B illustrate aspects of the invention, with FIG. 2A showing the basic elements of the design and FIG. 2B providing an embodiment of a differential amplifier with equalization.
- FIGS. 3A and 3B show two embodiments using different approaches that extend the differential amplifier with equalization to support the four signals of an ENRZ vector signaling code receiver.
- FIG. 4 illustrates a further embodiment extending the differential amplifier with equalization to support the four signals of an ENRZ vector signaling code receiver.
- FIG. 5 shows an embodiment incorporating CMOS transistor pairs into the differential amplifier with equalization.
- FIG. 6 illustrates an embodiment extending the amplifier with equalization incorporating CMOS transistor pairs to support the four signals of an ENRZ vector signaling code receiver.
- FIG. 7 illustrates a second embodiment extending the amplifier with equalization incorporating CMOS transistor pairs to support the four signals of an ENRZ vector signaling code receiver.
- FIG. 8 illustrates a further embodiment extending the amplifier with equalization incorporating CMOS transistor pairs to support the four signals of an ENRZ vector signaling code receiver.
- FIG. 9 shows a complete embodiment of an ENRZ detector, incorporating three instances of a ENRZ vector signaling code receiver as shown in FIG. 3A , FIG. 3B , or FIG. 8 .
- FIG. 10 illustrates an alternate embodiment of the circuit of FIG. 3A .
- a receiver for vector signaling encoded information accepts multiple wire inputs corresponding to the multiple components of a codeword. Commonly, different voltage, current, etc. levels are used for signaling and more than two levels might be used to represent each codeword element, such as a ternary signaling code wherein each wire signal has one of three values.
- Receivers may incorporate amplification, frequency-dependent amplification, signal conditioning, and filtering such as obtained with the continuous time linear equalization or “CTLE” filtering method. These functions may be embodied individually, or combined into multifunction circuits. As will be shown, such multifunction circuits may reduce power consumption, facilitate improved signal to noise ratio, increase circuit dynamic range, and/or enable higher speed signaling.
- circuits are described for the efficient equalization and pre-sample-processing of vector signal coded data transmitted over physical channels such that the signals are resilient to common mode noise, do not require a common reference at the transmission and reception points, and can produce a higher pin efficiency than conventional differential signaling with relatively low power dissipation for encoding and decoding.
- signals may undergo significant change in amplitude, waveform, and other characteristics between transmitter and receiver, due to the transmission characteristics of communications channel.
- 400 mV amplitude signals at the transmitter may be attenuated by the channel to less than 20 mV at the receiver, with significantly greater attenuation at higher frequencies resulting in slow signal transitions and other distortions.
- receiver noise becomes a significant issue, with the inherent noise level of the first amplifier stage often constraining the achievable signal-to-noise ratio of the overall system.
- Receiver dynamic range is also significant, as the same receiver design expected to operate with high attenuation signal paths may also be used with extremely short and thus low attenuation connections.
- FIG. 1A illustrates a model of the basic operation of a MOS transistor amplifier. Supplied with source current Id from a load impedance R L , a transistor with transconductance gm may achieve a small-signal gain of gm ⁇ R L , barring any secondary circuit effects. If the inherent noise of the transistor is nrms (in RMS voltage units,) the effective signal-to-noise ratio or SNR is thus gm ⁇ R L /nrms and the current consumption is Id.
- the amplification is gm ⁇ R L ⁇ (Vg 1 ⁇ Vg 2 ) and the noise is ⁇ square root over (2) ⁇ nrms, leading to a SNR of gm ⁇ R L / ⁇ square root over (2) ⁇ nrms with a current consumption of 2 ⁇ Id.
- FIG. 1C shows a known CTLE model of a differential amplifier circuit. Its noise characteristics and maximum achievable gain remain unchanged from the basic differential amplifier model of FIG. 1B , but the introduction of the parallel Rs and Cs combination between the transistor sources introduces a frequency-dependent gain characteristic, with gain at low frequencies considerably reduced compared to the gain at high frequencies, which approaches the maximum achievable gain value.
- CTLE amplifier circuits may be found in Tajalli I.
- FIG. 2A illustrates the behavior of a differential amplifier with CTLE behavior in accordance with at least one aspect of the invention.
- Input nodes Vg 1 and Vg 2 are coupled not only to the transistor gates, but also via capacitors Cs to the source of the opposing pair's transistor. Effectively, each transistor thus provides both common-source-mode amplification of its gate input signal, while simultaneously providing common-gate-mode amplification of the other input signal, resulting in a doubling of the effective gain.
- the maximum achievable amplification is thus 2+gm ⁇ R L while the uncorrelated noise for the transistor pair is ⁇ square root over (2) ⁇ nrms, leading to a SNR of ⁇ square root over (2) ⁇ gm ⁇ R L /nrms with a current consumption of 2 ⁇ Id.
- the model of FIG. 2A has twice the gain and two times better SNR with the same current consumption, compared to the known art configuration of FIG. 1C .
- FIG. 2A A practical embodiment of FIG. 2A is shown in the schematic of FIG. 2B .
- Differential output signals Out 1 and Out 2 are developed across output resistors R L , with the current sinks at each transistor source setting operating current for the differential transistor pair.
- FIG. 2B illustrates an exemplary circuit for CTLE of analog signals.
- the circuit includes a first amplification element M 1 and a second amplification element M 2 .
- the first and second amplification elements are arranged in a differential configuration, such as a long-tailed pair, and they preferably have matched characteristics.
- the amplification elements each have an inverting input and a non-inverting input.
- the inverting input is the gate of each transistor, and the non-inverting input is the source of that transistor.
- a signal at the transistor gate is amplified in a common source configuration, and a signal at the transistor source is amplified in a common gate configuration.
- a first signal input is provided at an input node Vg 1 with a direct connection to the inverting input of the first amplification element M 1
- a second signal input is provided at an input node Vg 2 with a direct connection to the inverting input of the second amplification element M 2
- This frequency-dependent connection is made through a series capacitor with capacitance Cs.
- This frequency-dependent connection is also made through a series capacitor with capacitance Cs.
- the roles of the inverting and non-inverting inputs of the amplification elements are reversed.
- the first signal input Vg 1 is provided with a direct connection to the non-inverting input of the first amplification element M 1
- a second signal input Vg 2 is provided with a direct connection to the non-inverting input of the second amplification element M 2
- another frequency-dependent connection from the second signal input Vg 2 to the inverting input of the first amplification element M 1 are also a frequency-dependent connection from the first signal input Vg i to the inverting input of the second amplification element M 2
- the frequency-dependent connections utilize the opposite amplification element input from the direct connections, resulting in increased gain.
- the frequency-dependent CTLE characteristics may be computed in a similar manner as with a conventional CTLE design.
- Cs in an embodiment such as shown in FIG. 2B will be approximately twice as large as Cs in a conventional embodiment such as that of FIG. 1C .
- the additional input capacitance of the transistor gate paralleled with Cs may be an issue in some applications, but is generally tractable for typical values of input impedance and CTLE pole-zero frequency.
- increased gains of 3-6 dB were seen over conventional designs depending on the characteristics of external circuitry.
- the frequency-determining Cs/Rs combination may be extended to networks of multiple pole-zero pairs, and that one or more of the frequency-determining elements may be represented by effective circuit impedance at a node, parasitic capacitance at a node, etc.
- Ensemble NRZ (also know as ENRZ or H4 code) is a proprietary vector signaling code providing significant benefits over conventional NRZ and differential pair operation.
- ENRZ encodes three bits of information over four wires, using all possible permutations of the signal vectors (+1, ⁇ 1 ⁇ 3, ⁇ 1 ⁇ 3, ⁇ 1 ⁇ 3) and ( ⁇ 1, +1 ⁇ 3, +1 ⁇ 3, +1 ⁇ 3).
- ENRZ is a balanced quaternary code, although any single codeword uses only two of the four possible signal levels.
- the balanced codewords give ENRZ desirable pseudo-differential characteristics, including low SSO noise, induced noise immunity, and reference-less receiver operation.
- Equation 1 applying three instances of Equation 1 with different permutations of receive signal input values to the four variables is sufficient to detect each code word of ENRZ.
- the input permutations producing the three results R 0 , R 1 , R 2 based on Equations 2, 3 and 4 are sufficient to unambiguously identify each code word of vector signaling code ENRZ as represented by receive signal input values A, B, C, D.
- Equations 2, 3 and 4 describe linear combinations using only sums and differences, it will be apparent that other equivalent equations, as one example presenting a sum of two differences, may be produced using normal arithmetic factoring and grouping operations.
- R 0 ( A+C ) ⁇ ( B+D ) (Eqn. 2)
- R 1 ( C+D ) ⁇ ( A+B ) (Eqn. 3)
- R 2 ( C+B ) ⁇ ( D+A ) (Eqn. 4)
- a two input differential input circuit such as shown in FIG. 2B may be extended to provide such analog computation capability suitable for ENRZ detection or detection of other vector signaling codes with similar characteristics.
- FIG. 3A incorporates two distinct instances of the differential input stages of FIG. 2B , with paralleled input pairs M 1 /M 2 and M 3 /M 4 each accepting two inputs, Vg 1 /Vg 2 and Vg 3 /Vg 4 respectively, using the direct plus capacitive input method of the previous example on each of the four inputs.
- each differential pair computes the analog difference of its inputs, and paralleling two such pairs with a common load results in an output representing the sum of the two differential pair signals, the resulting outputs Out 1 and Out 2 represent the uninverted and inverted results of the equation ( Vg 1 ⁇ Vg 2 )+( Vg 3 ⁇ Vg 4 )
- the maximum amplification is 2 ⁇ gm ⁇ R L and the noise is 2 ⁇ nrms, leading to a SNR of gm ⁇ R L /nrms with a current consumption of 4 ⁇ Id.
- the embodiment of FIG. 3A has twice the gain and ⁇ square root over (2) ⁇ better SNR with the same current consumption.
- a circuit includes a first amplification element (M 1 ) and a second amplification element (M 2 ) with matched characteristics in a differential configuration, and a third amplification element (M 3 ) and a fourth amplification element with matched characteristics in a differential configuration.
- Each of these amplification elements has a first input (e.g., the gate) and a second input (e.g., the source).
- a first load impedance e.g., a resistor with resistance RL
- an output node Out 1 is provided for obtaining a signal at the first load impedance.
- a second load impedance is shared by the second amplification element and fourth amplification element, and an output node Out 2 is provided for obtaining a signal at the second load impedance.
- a first signal input Vg 1 , second signal input Vg 2 , third signal input Vg 3 , and fourth signal input Vg 4 each directly connect to a first input of the corresponding first, second, third, and fourth amplification elements, respectively.
- FIG. 3B An alternative embodiment providing equivalent ENRZ CTLE functionality is illustrated in FIG. 3B , where two inputs Vg 1 and Vg 2 are connected to the gates of transistors M 1 and M 2 , while the second two inputs Vg 3 and Vg 4 are connected via input capacitors Cs to the sources of transistors M 2 and M 1 .
- the maximum amplification is gm ⁇ R L and the noise is ⁇ square root over (2) ⁇ nrms, leading to a SNR of gm ⁇ R L / ⁇ square root over (2) ⁇ nrms with a current consumption of 2 ⁇ Id.
- the power consumption is half that of the embodiment of FIG. 3A .
- the embodiment of FIG. 3B has lower power consumption, reduced gain and noise, as well as a simpler circuit topology.
- FIG. 10 Another alternative embodiment providing equivalent ENRZ CLTE functionality is illustrated in FIG. 10 , which has the same basic structure and performance characteristics as the circuit of FIG. 3A , but with the inputs via input capacitors Cs connecting to the same side of the other differential pair.
- FIG. 9 A system embodiment of an ENRZ detector using three instances of the circuit of FIG. 3A is illustrated in FIG. 9 .
- Each of identical ENRZ CTLE elements 910 , 920 , and 930 are as described in FIG. 3A .
- Inputs A, B, C, D are received wire signals from four wires carrying ENRZ signals, and are connected to 910 , 920 , and 930 as described by Equations 2, 3, and 4.
- the permuted input signals A, B, C, and D are redundantly labeled to the left of elements 920 and 930 in parenthesis.
- Three sets of differential outputs Mode 1 H/Mode 1 L, Mode 2 H/Mode 2 L, and Mode 3 H/Mode 3 L are produced and in a preferred embodiment will represent the three bits of data encoded in the ENRZ signals.
- the circuit of FIG. 3B includes a first amplification element (M 1 ) and a second amplification element (M 2 ) with matched characteristics in a differential configuration.
- Each of these amplification elements has a first input and a second input, e.g. a gate and a source.
- a first load impedance such as a resistor with resistance R L , is provided for the first amplification element, and a second load impedance for the second amplification element.
- a first signal input node Vg 1 and a second signal input node Vg 2 are each directly connected to a first input of the corresponding first and second amplification elements.
- a third signal input Vg 3 is connected to the second input of the second amplification element, and a fourth signal input Vg 4 is connected to the second input of the first amplification element.
- the signal obtained at the output nodes Out 1 and Out 2 at the first and second load impedances represents inverted and non-inverted sums of differences of the input signals.
- the gain from inputs Vg 1 and Vg 2 can potentially differ from that from inputs Vg 3 and Vg 4 as the former are direct inputs to transistor gate inputs of common source amplifiers, while the latter are capacitively coupled to the transistor sources of common gate amplifiers.
- this issue is moot, as these imbalances are quite small for typical input frequency ranges and CTLE frequency/gain profiles.
- multiple iterations of the sum of difference computation are typically performed, as one example with different orderings of input signals as described by Equations 2, 3, and 4, and subsequent interpretation of these multiple results tends to mitigate any potential imbalance.
- FIG. 4 illustrates an alternate topology providing both direct gate input and capacitively coupled source connection of each input signal.
- the circuit of FIG. 3A made the latter connection to the transistor on the opposite side of the same differential pair
- the circuit of FIG. 4 connects to the transistor on the opposite side of the other differential pair.
- This functionally equivalent but topologically distinct embodiment provides additional symmetry, which may facilitate layout and/or reduce potential circuit imbalances.
- FIG. 5 shows another embodiment of a differential amplifier with equalization, where each of the amplification elements is a set of complimentary MOS (CMOS) transistors.
- CMOS complimentary MOS
- each input connects not only to the differential transistor gates, but also via capacitors Cs to the opposing differential transistor's source or drain in a fully symmetric manner.
- Cs complimentary MOS
- the P- and N-channel transistors in each set they both provide common source amplification of their gate input signals, with their output currents effectively in parallel.
- differential outputs Out 1 and Out 2 are developed across load resistor Rd.
- the value of Rd will be approximately twice the value of R L in the previous examples to obtain comparable gain.
- the combinations of Cs and Rs set the pole and zero frequencies of the CTLE function.
- FIGS. 3A and 3B One familiar with the art will recognize that the same approaches previously shown in FIGS. 3A and 3B to extend the basic designs of FIGS. 2A and 2B to support ENRZ code may also be applied to the design of FIG. 5 .
- FIG. 6 One such embodiment is illustrated in FIG. 6 , which applies the approach described in FIG. 3A to the circuit of FIG. 5 to support the four inputs of an ENRZ receiver.
- FIG. 7 which applies the approach described in FIG. 3B to the circuit of FIG. 5 to support the four inputs of an ENRZ receiver.
- a further embodiment shown in FIG. 8 combines the complementary transistor differential amplifiers of FIG. 5 , the ENRZ detecting sum-of-differences computation of FIG. 3A , and the symmetrical cross-coupling of FIG. 4 .
- a first amplification element is made up of a set M 1 /M 2 of complementary MOS transistors
- a second amplification element is made up of a set M 3 /M 4 of complementary MOS transistors.
- the first and second amplification elements have matched characteristics and are arranged in a differential configuration.
- a third amplification element is made up of a set M 7 /M 8 of complementary MOS transistors
- a fourth amplification element is made up of a set M 5 /M 6 of complementary MOS transistors.
- the third and fourth amplification elements have matched characteristics and are arranged in a differential configuration.
- Each of the first, second, third, and fourth amplification elements has a first input and a second input.
- the first input of an amplification element may include one or more gates in a complementary MOS transistor pair
- the second input of an amplification pair may include one or more sources of the complementary MOS transistor pair.
- first input and “second input” are mere labels of convenience, so the “first input” can be a transistor source, while the “second input” can be a transistor gate.
- a first load impedance is shared by the first amplification element and third amplification element
- a second load impedance is shared by the second amplification element and fourth amplification element.
- First, second, third, and fourth signal input nodes (Vg 1 , Vg 2 , Vg 3 , Vg 4 , respectively) each are directly connected to a first input of the corresponding first, second, third, and fourth amplification elements, respectively.
- the signals obtained by the first output node Out 1 at the first load impedance and by the second output node Out 2 at the second load impedance represent inverted and non-inverted sums of differences of the input signals.
- Other known techniques for introducing frequency-dependent gain into an amplifier circuit are also directly applicable to the described embodiments.
- the load resistance described herein may optionally be comprised of a combination of resistance and inductance, or inductance alone, to provide additional high-frequency gain peaking or bandwidth extension.
- an analog computation circuit includes at least two differential pairs of amplification elements.
- the amplification elements may include, for example, individual MOS transistors or CMOS amplifier pairs.
- Each of the amplification elements has an inverting input and a non-inverting input.
- the inverting input is an input at a gate of an NMOS transistor, while the non-inverting input is an input at the source of the NMOS transistor.
- Each of the differential pairs of amplification elements includes a first amplification element and a second amplification element.
- the first amplification elements have outputs connected to a first differential summing output node
- the second amplification elements have outputs connected to a second differential summing output node.
- the differential summing output nodes are connected to respective load impedance.
- the voltage across the load resistor has a value that reflects of a sum of outputs of the connected amplification elements.
- the differential summing output nodes could be connected to a current mirror or other circuitry adapted to provide an output that reflects a sum of the outputs of the connected amplification elements.
- the analog computation circuit is further provided with a plurality of gain-enhancing couplings, such as capacitive couplings.
- a plurality of gain-enhancing couplings such as capacitive couplings.
- These capacitive couplings fall under two groups: a first plurality and second plurality of gain-enhancing capacitive couplings.
- Each of the first plurality of gain-enhancing capacitive couplings connects the inverting input of one of the first amplification elements with the non-inverting input of one of the second amplification elements.
- Each of the second plurality of gain-enhancing capacitive couplings connects the inverting input of one of the second amplification elements with the non-inverting input of one of the first amplification elements.
- each of first and second plurality of capacitive couplings is connected between amplification elements in the same differential pair, as illustrated in FIG. 3A and FIG. 6 .
- each of the first and second plurality of capacitive couplings is connected between amplification elements in different differential pairs. As illustrated in FIG. 4 and FIG. 8 .
- some of the capacitive couplings are connected within a differential pair and other capacitive couplings are connected across different differential pairs.
- the couplings are connected in a cyclic coupling configuration, as illustrated in FIG. 10 .
- each of the inverting inputs is coupled with a unique non-inverting input. That is, each of the inverting inputs of the first amplification elements is connected through one of the first plurality of capacitive couplings with the non-inverting input of a respective second amplification element, and conversely, each of the inverting inputs of the second amplification elements is connected through one of the second plurality of capacitive couplings with the non-inverting input of a respective first amplification element.
- the analog computation circuit further includes a plurality of signal input nodes.
- each of the signal input nodes has a direct connection to the inverting input of a respective one of the amplification elements.
- each of the signal input nodes has a direct connection to the non-inverting input of a respective one of the amplification elements.
- the analog computation circuits described herein are employed in a vector signal decoder.
- the ENRZ vector code encodes three bits of information over four wires, using all possible permutations of the signal vectors (+1, ⁇ 1 ⁇ 3, ⁇ 1 ⁇ 3, ⁇ 1 ⁇ 3) and ( ⁇ 1, +1 ⁇ 3, +1 ⁇ 3, +1 ⁇ 3).
- the voltages on the four wires are represented as (A, B, C, D)
- each of the analog computation circuits can decode one bit of the three-bit code by performing one of the operations described in Equations 2-4, above. Three such circuits operate in parallel on different permutations of the input voltages to return the values of R 0 , R 1 , and R 2 .
- An exemplary vector signal decoder is illustrated in FIG. 9 .
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Amplifiers (AREA)
- Theoretical Computer Science (AREA)
Abstract
Description
R=(J+L)−(K+M) (Eqn. 1)
R 0=(A+C)−(B+D) (Eqn. 2)
R 1=(C+D)−(A+B) (Eqn. 3)
R 2=(C+B)−(D+A) (Eqn. 4)
(Vg 1 −Vg 2)+(Vg 3 −Vg 4)
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/237,171 US9692381B2 (en) | 2014-05-16 | 2016-08-15 | Symmetric linear equalization circuit with increased gain |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/280,305 US9148087B1 (en) | 2014-05-16 | 2014-05-16 | Symmetric is linear equalization circuit with increased gain |
US14/869,346 US9419564B2 (en) | 2014-05-16 | 2015-09-29 | Symmetric linear equalization circuit with increased gain |
US15/237,171 US9692381B2 (en) | 2014-05-16 | 2016-08-15 | Symmetric linear equalization circuit with increased gain |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/869,346 Continuation US9419564B2 (en) | 2014-05-16 | 2015-09-29 | Symmetric linear equalization circuit with increased gain |
Publications (2)
Publication Number | Publication Date |
---|---|
US20170040965A1 US20170040965A1 (en) | 2017-02-09 |
US9692381B2 true US9692381B2 (en) | 2017-06-27 |
Family
ID=54149710
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/280,305 Active US9148087B1 (en) | 2014-05-16 | 2014-05-16 | Symmetric is linear equalization circuit with increased gain |
US14/869,346 Active US9419564B2 (en) | 2014-05-16 | 2015-09-29 | Symmetric linear equalization circuit with increased gain |
US15/237,171 Active US9692381B2 (en) | 2014-05-16 | 2016-08-15 | Symmetric linear equalization circuit with increased gain |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/280,305 Active US9148087B1 (en) | 2014-05-16 | 2014-05-16 | Symmetric is linear equalization circuit with increased gain |
US14/869,346 Active US9419564B2 (en) | 2014-05-16 | 2015-09-29 | Symmetric linear equalization circuit with increased gain |
Country Status (1)
Country | Link |
---|---|
US (3) | US9148087B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9939467B1 (en) * | 2016-10-14 | 2018-04-10 | Analog Devices, Inc. | Wide-range precision RF peak detector |
Families Citing this family (66)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9246713B2 (en) | 2010-05-20 | 2016-01-26 | Kandou Labs, S.A. | Vector signaling with reduced receiver complexity |
US9077386B1 (en) | 2010-05-20 | 2015-07-07 | Kandou Labs, S.A. | Methods and systems for selection of unions of vector signaling codes for power and pin efficient chip-to-chip communication |
US9288082B1 (en) | 2010-05-20 | 2016-03-15 | Kandou Labs, S.A. | Circuits for efficient detection of vector signaling codes for chip-to-chip communication using sums of differences |
US9251873B1 (en) | 2010-05-20 | 2016-02-02 | Kandou Labs, S.A. | Methods and systems for pin-efficient memory controller interface using vector signaling codes for chip-to-chip communications |
US9985634B2 (en) | 2010-05-20 | 2018-05-29 | Kandou Labs, S.A. | Data-driven voltage regulator |
US9268683B1 (en) | 2012-05-14 | 2016-02-23 | Kandou Labs, S.A. | Storage method and apparatus for random access memory using codeword storage |
CN105122758B (en) | 2013-02-11 | 2018-07-10 | 康杜实验室公司 | High bandwidth interchip communication interface method and system |
EP2979388B1 (en) | 2013-04-16 | 2020-02-12 | Kandou Labs, S.A. | Methods and systems for high bandwidth communications interface |
EP2997704B1 (en) | 2013-06-25 | 2020-12-16 | Kandou Labs S.A. | Vector signaling with reduced receiver complexity |
US9806761B1 (en) | 2014-01-31 | 2017-10-31 | Kandou Labs, S.A. | Methods and systems for reduction of nearest-neighbor crosstalk |
JP6317474B2 (en) | 2014-02-02 | 2018-04-25 | カンドウ ラボズ ソシエテ アノニム | Method and apparatus for low power chip-to-chip communication using constrained ISI ratio |
EP3111607B1 (en) | 2014-02-28 | 2020-04-08 | Kandou Labs SA | Clock-embedded vector signaling codes |
US9509437B2 (en) | 2014-05-13 | 2016-11-29 | Kandou Labs, S.A. | Vector signaling code with improved noise margin |
US9148087B1 (en) | 2014-05-16 | 2015-09-29 | Kandou Labs, S.A. | Symmetric is linear equalization circuit with increased gain |
US9852806B2 (en) | 2014-06-20 | 2017-12-26 | Kandou Labs, S.A. | System for generating a test pattern to detect and isolate stuck faults for an interface using transition coding |
US9112550B1 (en) | 2014-06-25 | 2015-08-18 | Kandou Labs, SA | Multilevel driver for high speed chip-to-chip communications |
CN106797352B (en) | 2014-07-10 | 2020-04-07 | 康杜实验室公司 | High signal-to-noise characteristic vector signaling code |
US9432082B2 (en) | 2014-07-17 | 2016-08-30 | Kandou Labs, S.A. | Bus reversable orthogonal differential vector signaling codes |
US9444654B2 (en) | 2014-07-21 | 2016-09-13 | Kandou Labs, S.A. | Multidrop data transfer |
WO2016019384A1 (en) | 2014-08-01 | 2016-02-04 | Kandou Labs, S.A. | Orthogonal differential vector signaling codes with embedded clock |
US9674014B2 (en) | 2014-10-22 | 2017-06-06 | Kandou Labs, S.A. | Method and apparatus for high speed chip-to-chip communications |
US9608845B2 (en) * | 2015-02-27 | 2017-03-28 | Huawei Technologies Co., Ltd. | Transmit apparatus and method |
CN113225159B (en) | 2015-06-26 | 2024-06-07 | 康杜实验室公司 | High-speed communication system |
US10055372B2 (en) | 2015-11-25 | 2018-08-21 | Kandou Labs, S.A. | Orthogonal differential vector signaling codes with embedded clock |
EP3176945B1 (en) * | 2015-12-04 | 2019-09-11 | ams AG | Switched capacitor integrator |
WO2017132292A1 (en) | 2016-01-25 | 2017-08-03 | Kandou Labs, S.A. | Voltage sampler driver with enhanced high-frequency gain |
US10242749B2 (en) | 2016-04-22 | 2019-03-26 | Kandou Labs, S.A. | Calibration apparatus and method for sampler with adjustable high frequency gain |
CN115085727A (en) | 2016-04-22 | 2022-09-20 | 康杜实验室公司 | High performance phase locked loop |
US10003454B2 (en) | 2016-04-22 | 2018-06-19 | Kandou Labs, S.A. | Sampler with low input kickback |
CN109417521B (en) | 2016-04-28 | 2022-03-18 | 康杜实验室公司 | Low power multi-level driver |
WO2017189931A1 (en) | 2016-04-28 | 2017-11-02 | Kandou Labs, S.A. | Vector signaling codes for densely-routed wire groups |
US10153591B2 (en) | 2016-04-28 | 2018-12-11 | Kandou Labs, S.A. | Skew-resistant multi-wire channel |
US11071499B2 (en) * | 2016-05-17 | 2021-07-27 | Case Western Reserve University | Multichannel ultra-low noise amplifier |
US9977073B2 (en) * | 2016-06-10 | 2018-05-22 | Integrated Device Technoloy, Inc. | On-die verification of resistor fabricated in CMOS process |
US9906358B1 (en) | 2016-08-31 | 2018-02-27 | Kandou Labs, S.A. | Lock detector for phase lock loop |
US10411922B2 (en) | 2016-09-16 | 2019-09-10 | Kandou Labs, S.A. | Data-driven phase detector element for phase locked loops |
US9825636B1 (en) * | 2016-10-20 | 2017-11-21 | Arm Limited | Apparatus and method for reduced latency signal synchronization |
US10200188B2 (en) | 2016-10-21 | 2019-02-05 | Kandou Labs, S.A. | Quadrature and duty cycle error correction in matrix phase lock loop |
US10372665B2 (en) | 2016-10-24 | 2019-08-06 | Kandou Labs, S.A. | Multiphase data receiver with distributed DFE |
US10200218B2 (en) | 2016-10-24 | 2019-02-05 | Kandou Labs, S.A. | Multi-stage sampler with increased gain |
US11512262B2 (en) * | 2017-03-17 | 2022-11-29 | University Of Ottawa | Azaphenothiazines and azaphenoxazines as antioxidants |
US10116468B1 (en) | 2017-06-28 | 2018-10-30 | Kandou Labs, S.A. | Low power chip-to-chip bidirectional communications |
US10686583B2 (en) | 2017-07-04 | 2020-06-16 | Kandou Labs, S.A. | Method for measuring and correcting multi-wire skew |
US10203226B1 (en) | 2017-08-11 | 2019-02-12 | Kandou Labs, S.A. | Phase interpolation circuit |
US10326623B1 (en) | 2017-12-08 | 2019-06-18 | Kandou Labs, S.A. | Methods and systems for providing multi-stage distributed decision feedback equalization |
WO2019133897A1 (en) * | 2017-12-28 | 2019-07-04 | Kandou Labs, S.A. | Synchronously-switched multi-input demodulating comparator |
US10554380B2 (en) | 2018-01-26 | 2020-02-04 | Kandou Labs, S.A. | Dynamically weighted exclusive or gate having weighted output segments for phase detection and phase interpolation |
KR102487502B1 (en) | 2018-02-14 | 2023-01-12 | 에스케이하이닉스 주식회사 | Buffering Circuit and Semiconductor Apparatus and System Using the Same |
US10965254B2 (en) * | 2018-06-04 | 2021-03-30 | Stmicroelectronics S.R.L. | Low noise amplifier circuit for a thermal varying resistance |
KR102707165B1 (en) * | 2018-06-12 | 2024-09-13 | 칸도우 랩스 에스에이 | Passive multi-input comparator for orthogonal codes on multi-wire buses |
US10931249B2 (en) | 2018-06-12 | 2021-02-23 | Kandou Labs, S.A. | Amplifier with adjustable high-frequency gain using varactor diodes |
KR102541995B1 (en) | 2018-06-18 | 2023-06-12 | 에스케이하이닉스 주식회사 | Amplifier circuit, semiconductor apparatus and semiconductor system using the same |
WO2020010543A1 (en) * | 2018-07-11 | 2020-01-16 | 华为技术有限公司 | Signal generation device, method, and system |
US10447218B1 (en) * | 2018-07-16 | 2019-10-15 | Realtek Semiconductor Corp. | Hybrid differential amplifier and method thereof |
CN109067374A (en) * | 2018-09-03 | 2018-12-21 | 北京航天控制仪器研究所 | A kind of multi-stage cross coupling tiny differential signal amplification circuit and method |
US11183983B2 (en) | 2018-09-10 | 2021-11-23 | Kandou Labs, S.A. | Programmable continuous time linear equalizer having stabilized high-frequency peaking for controlling operating current of a slicer |
US10721106B1 (en) | 2019-04-08 | 2020-07-21 | Kandou Labs, S.A. | Adaptive continuous time linear equalization and channel bandwidth control |
US10574487B1 (en) | 2019-04-08 | 2020-02-25 | Kandou Labs, S.A. | Sampler offset calibration during operation |
US10608849B1 (en) | 2019-04-08 | 2020-03-31 | Kandou Labs, S.A. | Variable gain amplifier and sampler offset calibration without clock recovery |
US10680634B1 (en) | 2019-04-08 | 2020-06-09 | Kandou Labs, S.A. | Dynamic integration time adjustment of a clocked data sampler using a static analog calibration circuit |
US10819303B1 (en) * | 2019-10-17 | 2020-10-27 | Qualcomm Incorporated | Amplifier with gain boosting |
CN111835305B (en) * | 2020-07-01 | 2024-09-17 | 牛芯半导体(深圳)有限公司 | Novel programmable linear equalization circuit |
TWI770634B (en) * | 2020-10-14 | 2022-07-11 | 立積電子股份有限公司 | Amplifier device and duplexer circuit |
US11303484B1 (en) | 2021-04-02 | 2022-04-12 | Kandou Labs SA | Continuous time linear equalization and bandwidth adaptation using asynchronous sampling |
US11374800B1 (en) | 2021-04-14 | 2022-06-28 | Kandou Labs SA | Continuous time linear equalization and bandwidth adaptation using peak detector |
US11456708B1 (en) | 2021-04-30 | 2022-09-27 | Kandou Labs SA | Reference generation circuit for maintaining temperature-tracked linearity in amplifier with adjustable high-frequency gain |
Citations (259)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US668687A (en) | 1900-12-06 | 1901-02-26 | Louis G Mayer | Thill-coupling. |
US780883A (en) | 1903-11-18 | 1905-01-24 | Mortimer Livingston Hinchman | Advertising device. |
US3196351A (en) | 1962-06-26 | 1965-07-20 | Bell Telephone Labor Inc | Permutation code signaling |
US3636463A (en) | 1969-12-12 | 1972-01-18 | Shell Oil Co | Method of and means for gainranging amplification |
US3939468A (en) | 1974-01-08 | 1976-02-17 | Whitehall Corporation | Differential charge amplifier for marine seismic applications |
US4163258A (en) | 1975-12-26 | 1979-07-31 | Sony Corporation | Noise reduction system |
US4181967A (en) | 1978-07-18 | 1980-01-01 | Motorola, Inc. | Digital apparatus approximating multiplication of analog signal by sine wave signal and method |
US4206316A (en) | 1976-05-24 | 1980-06-03 | Hughes Aircraft Company | Transmitter-receiver system utilizing pulse position modulation and pulse compression |
US4276543A (en) | 1979-03-19 | 1981-06-30 | Trw Inc. | Monolithic triple diffusion analog to digital converter |
US4486739A (en) | 1982-06-30 | 1984-12-04 | International Business Machines Corporation | Byte oriented DC balanced (0,4) 8B/10B partitioned block transmission code |
US4499550A (en) | 1982-09-30 | 1985-02-12 | General Electric Company | Walsh function mixer and tone detector |
US4722084A (en) | 1985-10-02 | 1988-01-26 | Itt Corporation | Array reconfiguration apparatus and methods particularly adapted for use with very large scale integrated circuits |
US4772845A (en) | 1987-01-15 | 1988-09-20 | Raytheon Company | Cable continuity testor including a sequential state machine |
US4774498A (en) | 1987-03-09 | 1988-09-27 | Tektronix, Inc. | Analog-to-digital converter with error checking and correction circuits |
US4864303A (en) | 1987-02-13 | 1989-09-05 | Board Of Trustees Of The University Of Illinois | Encoder/decoder system and methodology utilizing conservative coding with block delimiters, for serial communication |
US4897657A (en) | 1988-06-13 | 1990-01-30 | Integrated Device Technology, Inc. | Analog-to-digital converter having error detection and correction |
US4974211A (en) | 1989-03-17 | 1990-11-27 | Hewlett-Packard Company | Digital ultrasound system with dynamic focus |
US5053974A (en) | 1987-03-31 | 1991-10-01 | Texas Instruments Incorporated | Closeness code and method |
US5166956A (en) | 1990-05-21 | 1992-11-24 | North American Philips Corporation | Data transmission system and apparatus providing multi-level differential signal transmission |
US5168509A (en) | 1989-04-12 | 1992-12-01 | Kabushiki Kaisha Toshiba | Quadrature amplitude modulation communication system with transparent error correction |
US5283761A (en) | 1992-07-22 | 1994-02-01 | Mosaid Technologies Incorporated | Method of multi-level storage in DRAM |
US5287305A (en) | 1991-06-28 | 1994-02-15 | Sharp Kabushiki Kaisha | Memory device including two-valued/n-valued conversion unit |
US5311516A (en) | 1992-05-29 | 1994-05-10 | Motorola, Inc. | Paging system using message fragmentation to redistribute traffic |
US5331320A (en) | 1991-11-21 | 1994-07-19 | International Business Machines Corporation | Coding method and apparatus using quaternary codes |
US5412689A (en) | 1992-12-23 | 1995-05-02 | International Business Machines Corporation | Modal propagation of information through a defined transmission medium |
US5449895A (en) | 1993-12-22 | 1995-09-12 | Xerox Corporation | Explicit synchronization for self-clocking glyph codes |
US5459465A (en) | 1993-10-21 | 1995-10-17 | Comlinear Corporation | Sub-ranging analog-to-digital converter |
US5461379A (en) | 1993-12-14 | 1995-10-24 | At&T Ipm Corp. | Digital coding technique which avoids loss of synchronization |
US5511119A (en) | 1993-02-10 | 1996-04-23 | Bell Communications Research, Inc. | Method and system for compensating for coupling between circuits of quaded cable in a telecommunication transmission system |
US5553097A (en) | 1994-06-01 | 1996-09-03 | International Business Machines Corporation | System and method for transporting high-bandwidth signals over electrically conducting transmission lines |
US5566193A (en) | 1994-12-30 | 1996-10-15 | Lucent Technologies Inc. | Method and apparatus for detecting and preventing the communication of bit errors on a high performance serial data link |
US5599550A (en) | 1989-11-18 | 1997-02-04 | Kohlruss; Gregor | Disposable, biodegradable, wax-impregnated dust-cloth |
US5659353A (en) | 1995-03-17 | 1997-08-19 | Bell Atlantic Network Services, Inc. | Television distribution system and method |
US5727006A (en) | 1996-08-15 | 1998-03-10 | Seeo Technology, Incorporated | Apparatus and method for detecting and correcting reverse polarity, in a packet-based data communications system |
US5802356A (en) | 1996-11-13 | 1998-09-01 | Integrated Device Technology, Inc. | Configurable drive clock |
US5825808A (en) | 1996-04-04 | 1998-10-20 | General Electric Company | Random parity coding system |
US5856935A (en) | 1996-05-08 | 1999-01-05 | Motorola, Inc. | Fast hadamard transform within a code division, multiple access communication system |
US5875202A (en) | 1996-03-29 | 1999-02-23 | Adtran, Inc. | Transmission of encoded data over reliable digital communication link using enhanced error recovery mechanism |
US5945935A (en) | 1996-11-21 | 1999-08-31 | Matsushita Electric Industrial Co., Ltd. | A/D converter and A/D conversion method |
US5949060A (en) | 1996-11-01 | 1999-09-07 | Coincard International, Inc. | High security capacitive card system |
US5982954A (en) | 1996-10-21 | 1999-11-09 | University Technology Corporation | Optical field propagation between tilted or offset planes |
US5995016A (en) | 1996-12-17 | 1999-11-30 | Rambus Inc. | Method and apparatus for N choose M device selection |
US5999016A (en) | 1996-10-10 | 1999-12-07 | Altera Corporation | Architectures for programmable logic devices |
US6005895A (en) | 1996-12-20 | 1999-12-21 | Rambus Inc. | Apparatus and method for multilevel signaling |
US6084883A (en) | 1997-07-07 | 2000-07-04 | 3Com Corporation | Efficient data transmission over digital telephone networks using multiple modulus conversion |
US6119263A (en) | 1997-04-30 | 2000-09-12 | Hewlett-Packard Company | System and method for transmitting data |
US6172634B1 (en) | 1998-02-25 | 2001-01-09 | Lucent Technologies Inc. | Methods and apparatus for providing analog-fir-based line-driver with pre-equalization |
US6175230B1 (en) | 1999-01-14 | 2001-01-16 | Genrad, Inc. | Circuit-board tester with backdrive-based burst timing |
US6232908B1 (en) | 1997-09-29 | 2001-05-15 | Nec Corporation | A/D converter having a dynamic encoder |
US20010006538A1 (en) | 1999-05-25 | 2001-07-05 | Simon Thomas D. | Symbol-based signaling device for an elctromagnetically-coupled bus system |
US6278740B1 (en) | 1998-11-19 | 2001-08-21 | Gates Technology | Multi-bit (2i+2)-wire differential coding of digital signals using differential comparators and majority logic |
US20010055344A1 (en) | 2000-06-26 | 2001-12-27 | Samsung Electronics Co., Ltd. | Signal transmission circuit and method for equalizing disparate delay times dynamically, and data latch circuit of semiconductor device implementing the same |
US6346907B1 (en) | 1998-08-07 | 2002-02-12 | Agere Systems Guardian Corp. | Analog-to-digital converter having voltage to-time converter and time digitizer, and method for using same |
US20020034191A1 (en) | 1998-02-12 | 2002-03-21 | Shattil Steve J. | Method and apparatus for transmitting and receiving signals having a carrier interferometry architecture |
US20020044316A1 (en) | 2000-10-16 | 2002-04-18 | Myers Michael H. | Signal power allocation apparatus and method |
US6378073B1 (en) | 1997-12-22 | 2002-04-23 | Motorola, Inc. | Single account portable wireless financial messaging unit |
US20020057592A1 (en) | 2000-11-13 | 2002-05-16 | Robb David C. | Distributed storage in semiconductor memory systems |
US20020057292A1 (en) | 1998-08-31 | 2002-05-16 | Brian Holtz | Graphical action invocation method, and associated method, for a computer system |
US6398359B1 (en) | 1998-12-16 | 2002-06-04 | Silverbrook Research Pty Ltd | Printer transfer roller with internal drive motor |
US6404820B1 (en) | 1999-07-09 | 2002-06-11 | The United States Of America As Represented By The Director Of The National Security Agency | Method for storage and reconstruction of the extended hamming code for an 8-dimensional lattice quantizer |
US6417737B1 (en) | 1999-10-21 | 2002-07-09 | Broadcom Corporation | Adaptive radio transceiver with low noise amplification |
US6452420B1 (en) | 2001-05-24 | 2002-09-17 | National Semiconductor Corporation | Multi-dimensional differential signaling (MDDS) |
US20020154633A1 (en) | 2000-11-22 | 2002-10-24 | Yeshik Shin | Communications architecture for storage-based devices |
US6473877B1 (en) | 1999-11-10 | 2002-10-29 | Hewlett-Packard Company | ECC code mechanism to detect wire stuck-at faults |
US20020163881A1 (en) | 2001-05-03 | 2002-11-07 | Dhong Sang Hoo | Communications bus with redundant signal paths and method for compensating for signal path errors in a communications bus |
US6483828B1 (en) | 1999-02-10 | 2002-11-19 | Ericsson, Inc. | System and method for coding in a telecommunications environment using orthogonal and near-orthogonal codes |
US20020174373A1 (en) | 2001-05-15 | 2002-11-21 | Chi Chang | Data transmission system using a pair of complementary signals as an edge-aligned strobe signal and input/output buffers therein |
US6509773B2 (en) | 2000-04-28 | 2003-01-21 | Broadcom Corporation | Phase interpolator device and method |
US20030048210A1 (en) | 2001-07-16 | 2003-03-13 | Oliver Kiehl | Transmission and reception interface and method of data transmission |
US20030071745A1 (en) | 2001-10-11 | 2003-04-17 | Greenstreet Mark R. | Method and apparatus for implementing a doubly balanced code |
US6556628B1 (en) | 1999-04-29 | 2003-04-29 | The University Of North Carolina At Chapel Hill | Methods and systems for transmitting and receiving differential signals over a plurality of conductors |
US20030086366A1 (en) | 2001-03-06 | 2003-05-08 | Branlund Dale A. | Adaptive communications methods for multiple user packet radio wireless networks |
US6563382B1 (en) | 2000-10-10 | 2003-05-13 | International Business Machines Corporation | Linear variable gain amplifiers |
US20030105908A1 (en) | 1999-09-17 | 2003-06-05 | Perino Donald V. | Integrated circuit device having a capacitive coupling element |
JP2003163612A (en) | 2001-11-26 | 2003-06-06 | Advanced Telecommunication Research Institute International | Digital signal encoding method and decoding method |
US20030146783A1 (en) | 2001-02-12 | 2003-08-07 | Matrics, Inc. | Efficient charge pump apparatus |
US6624699B2 (en) * | 2001-10-25 | 2003-09-23 | Broadcom Corporation | Current-controlled CMOS wideband data amplifier circuits |
US6650638B1 (en) | 2000-03-06 | 2003-11-18 | Agilent Technologies, Inc. | Decoding method and decoder for 64b/66b coded packetized serial data |
US6661355B2 (en) | 2000-12-27 | 2003-12-09 | Apple Computer, Inc. | Methods and apparatus for constant-weight encoding & decoding |
US20030227841A1 (en) | 2002-06-06 | 2003-12-11 | Kiyoshi Tateishi | Information recording apparatus |
US6664355B2 (en) | 2001-08-31 | 2003-12-16 | Hanyang Hak Won Co., Ltd. | Process for synthesizing conductive polymers by gas-phase polymerization and product thereof |
US20040003336A1 (en) | 2002-06-28 | 2004-01-01 | Cypher Robert E. | Error detection/correction code which detects and corrects memory module/transmitter circuit failure |
US20040003337A1 (en) | 2002-06-28 | 2004-01-01 | Cypher Robert E. | Error detection/correction code which detects and corrects component failure and which provides single bit error correction subsequent to component failure |
US20040057525A1 (en) | 2002-09-23 | 2004-03-25 | Suresh Rajan | Method and apparatus for communicating information using different signaling types |
US20040086059A1 (en) | 2002-07-03 | 2004-05-06 | Hughes Electronics | Bit labeling for amplitude phase shift constellation used with low density parity check (LDPC) codes |
US6766342B2 (en) | 2001-02-15 | 2004-07-20 | Sun Microsystems, Inc. | System and method for computing and unordered Hadamard transform |
US20040156432A1 (en) | 2003-02-07 | 2004-08-12 | Fujitsu Limited | Processing a received signal at a detection circuit |
US20040174373A1 (en) | 2003-03-07 | 2004-09-09 | Stevens Randall S. | Preparing digital images for display utilizing view-dependent texturing |
US6839429B1 (en) | 1997-12-19 | 2005-01-04 | Wm. Marsh Rice University | Spectral optimization for communication under a peak frequency-domain power constraint |
US6839587B2 (en) | 2000-08-15 | 2005-01-04 | Cardiac Pacemakers, Inc. | Electrocardiograph leads-off indicator |
US6865234B1 (en) | 1999-01-20 | 2005-03-08 | Broadcom Corporation | Pair-swap independent trellis decoder for a multi-pair gigabit transceiver |
US6865236B1 (en) | 2000-06-01 | 2005-03-08 | Nokia Corporation | Apparatus, and associated method, for coding and decoding multi-dimensional biorthogonal codes |
US20050152385A1 (en) | 2003-12-07 | 2005-07-14 | Adaptive Spectrum And Signal Alignment, Inc. | High speed multiple loop DSL system |
US20050174841A1 (en) | 2004-02-05 | 2005-08-11 | Iota Technology, Inc. | Electronic memory with tri-level cell pair |
US20050213686A1 (en) | 2004-03-26 | 2005-09-29 | Texas Instruments Incorporated | Reduced complexity transmit spatial waterpouring technique for multiple-input, multiple-output communication systems |
US6954492B1 (en) | 2000-04-19 | 2005-10-11 | 3Com Corporation | Method of differential encoding a precoded multiple modulus encoder |
US6972701B2 (en) | 2002-03-25 | 2005-12-06 | Infineon Technologies Ag | A/D converter calibration |
US20050286643A1 (en) | 2004-04-16 | 2005-12-29 | Thine Electronics, Inc. | Transmitter circuit, receiver circuit, clock data recovery phase locked loop circuit, data transfer method and data transfer system |
US6990138B2 (en) | 2000-10-27 | 2006-01-24 | Alcatel | Correlated spreading sequences for high rate non-coherent communication systems |
US20060018344A1 (en) | 2004-07-21 | 2006-01-26 | Sudhakar Pamarti | Approximate bit-loading for data transmission over frequency-selective channels |
US6999516B1 (en) | 2001-10-24 | 2006-02-14 | Rambus Inc. | Technique for emulating differential signaling |
US20060067413A1 (en) | 2004-09-30 | 2006-03-30 | Telefonaktiebolaget L M Ericsson (Publ) | Multicode transmission using Walsh Hadamard transform |
US7023817B2 (en) | 2003-03-11 | 2006-04-04 | Motorola, Inc. | Method and apparatus for source device synchronization in a communication system |
US7039136B2 (en) | 2001-11-19 | 2006-05-02 | Tensorcomm, Inc. | Interference cancellation in a signal |
US7053802B2 (en) | 2003-05-21 | 2006-05-30 | Apple Computer, Inc. | Single-ended balance-coded interface with embedded-timing |
US20060115027A1 (en) | 2004-11-30 | 2006-06-01 | Srebranig Steven F | Communication system with statistical control of gain |
US20060133538A1 (en) | 2004-12-22 | 2006-06-22 | Stojanovic Vladimir M | Adjustable dual-band link |
US20060159005A1 (en) | 2004-10-22 | 2006-07-20 | Rawlins Gregory S | Orthogonal signal generation using vector spreading and combining |
US7085153B2 (en) | 2003-05-13 | 2006-08-01 | Innovative Silicon S.A. | Semiconductor memory cell, array, architecture and device, and method of operating same |
US7142865B2 (en) | 2002-05-31 | 2006-11-28 | Telefonaktie Bolaget Lm Ericsson (Publ) | Transmit power control based on virtual decoding |
US7142612B2 (en) | 2001-11-16 | 2006-11-28 | Rambus, Inc. | Method and apparatus for multi-level signaling |
US20060269005A1 (en) | 2005-03-08 | 2006-11-30 | Rajiv Laroia | Methods and apparatus for combining and/or transmitting multiple symbol streams |
US7167019B2 (en) | 2003-01-06 | 2007-01-23 | Rambus Inc. | Method and device for transmission with reduced crosstalk |
US20070030796A1 (en) | 2005-08-08 | 2007-02-08 | Nokia Corporation | Multicarrier modulation with enhanced frequency coding |
US7180949B2 (en) | 2002-06-04 | 2007-02-20 | Lucent Technologies Inc. | High-speed chip-to-chip communication interface |
US20070194848A1 (en) | 2004-04-03 | 2007-08-23 | Bardsley Thomas J | Variable Gain Amplifier |
US7269212B1 (en) | 2000-09-05 | 2007-09-11 | Rambus Inc. | Low-latency equalization in multi-level, multi-line communication systems |
US20070260965A1 (en) | 2006-03-09 | 2007-11-08 | Schmidt Brian K | Error detection in physical interfaces for point-to-point communications between integrated circuits |
US20070265533A1 (en) | 2006-05-12 | 2007-11-15 | Bao Tran | Cuffless blood pressure monitoring appliance |
US20070263711A1 (en) | 2006-04-26 | 2007-11-15 | Theodor Kramer Gerhard G | Operating DSL subscriber lines |
US20070283210A1 (en) | 2006-06-02 | 2007-12-06 | Nec Laboratories America, Inc. | Design of Spherical Lattice Codes for Lattice and Lattice-Reduction-Aided Decoders |
US20080013622A1 (en) | 2006-07-13 | 2008-01-17 | Yiliang Bao | Video coding with fine granularity scalability using cycle-aligned fragments |
US7335976B2 (en) | 2005-05-25 | 2008-02-26 | International Business Machines Corporation | Crosstalk reduction in electrical interconnects using differential signaling |
US7356213B1 (en) | 2006-03-28 | 2008-04-08 | Sun Microsystems, Inc. | Transparent switch using optical and electrical proximity communication |
US7358869B1 (en) | 2003-08-20 | 2008-04-15 | University Of Pittsburgh | Power efficient, high bandwidth communication using multi-signal-differential channels |
US20080104374A1 (en) | 2006-10-31 | 2008-05-01 | Motorola, Inc. | Hardware sorter |
US7370264B2 (en) | 2003-12-19 | 2008-05-06 | Stmicroelectronics, Inc. | H-matrix for error correcting circuitry |
US7372390B2 (en) | 2006-02-10 | 2008-05-13 | Oki Electric Industry Co., Ltd | Analog-digital converter circuit |
US7389333B2 (en) | 2003-07-02 | 2008-06-17 | Fujitsu Limited | Provisioning a network element using custom defaults |
US20080159448A1 (en) | 2006-12-29 | 2008-07-03 | Texas Instruments, Incorporated | System and method for crosstalk cancellation |
US7400276B1 (en) | 2002-01-28 | 2008-07-15 | Massachusetts Institute Of Technology | Method and apparatus for reducing delay in a bus provided from parallel, capacitively coupled transmission lines |
US20080169846A1 (en) | 2007-01-11 | 2008-07-17 | Northrop Grumman Corporation | High efficiency NLTL comb generator using time domain waveform synthesis technique |
US7428273B2 (en) | 2003-09-18 | 2008-09-23 | Promptu Systems Corporation | Method and apparatus for efficient preamble detection in digital data receivers |
US20080273623A1 (en) | 2007-05-03 | 2008-11-06 | Samsung Electronics Co., Ltd. | System and method for selectively performing single-ended and differential signaling |
US20080284524A1 (en) | 2007-03-05 | 2008-11-20 | Toshiba America Electronic Components, Inc. | Phase Locked Loop Circuit Having Regulator |
US7456778B2 (en) | 1999-10-19 | 2008-11-25 | Rambus Inc. | Method and apparatus for calibrating a multi-level current mode driver having a plurality of source calibration signals |
US20090059782A1 (en) | 2007-08-29 | 2009-03-05 | Rgb Systems, Inc. | Method and apparatus for extending the transmission capability of twisted pair communication systems |
EP2039221A1 (en) | 2006-07-08 | 2009-03-25 | Telefonaktiebolaget L M Ericsson (publ) | Crosstalk cancellation using load impedence measurements |
US20090092196A1 (en) | 2007-10-05 | 2009-04-09 | Innurvation, Inc. | Data Transmission Via Multi-Path Channels Using Orthogonal Multi-Frequency Signals With Differential Phase Shift Keying Modulation |
US20090132758A1 (en) | 2007-11-20 | 2009-05-21 | California Institute Of Technology | Rank modulation for flash memories |
US20090154500A1 (en) | 2007-12-17 | 2009-06-18 | Wael William Diab | Method And System For Energy Efficient Signaling For 100MBPS Ethernet Using A Subset Technique |
CN101478286A (en) | 2008-03-03 | 2009-07-08 | 锐迪科微电子(上海)有限公司 | Square wave-sine wave signal converting method and converting circuit |
WO2009084121A1 (en) | 2007-12-28 | 2009-07-09 | Nec Corporation | Signal processing for multi-sectored wireless communications system and method thereof |
US20090185636A1 (en) | 2008-01-23 | 2009-07-23 | Sparsense, Inc. | Parallel and adaptive signal processing |
US20090193159A1 (en) | 2008-01-29 | 2009-07-30 | Yu Li | Bus encoding/decoding method and bus encoder/decoder |
US7570704B2 (en) | 2005-11-30 | 2009-08-04 | Intel Corporation | Transmitter architecture for high-speed communications |
US20090212861A1 (en) | 2008-02-22 | 2009-08-27 | Samsung Electronics Co., Ltd. | Low noise amplifier |
US20090228767A1 (en) | 2004-06-24 | 2009-09-10 | Min Seok Oh | Method and apparatus of encoding and decoding data using low density parity check code in a wireless communication system |
US20090251222A1 (en) | 2002-07-23 | 2009-10-08 | Broadcom Corporation | Linear High Powered Integrated Circuit Amplifier |
US20090257542A1 (en) | 2004-07-08 | 2009-10-15 | Rambus, Inc. | Dual loop clock recovery circuit |
US7620116B2 (en) | 2003-02-28 | 2009-11-17 | Rambus Inc. | Technique for determining an optimal transition-limiting code for use in a multi-level signaling system |
US7633850B2 (en) | 2003-12-18 | 2009-12-15 | National Institute Of Information And Communications Technology | Transmitter, receiver, transmitting method, receiving method, and program |
US20090323864A1 (en) | 2008-06-30 | 2009-12-31 | Telefonaktiebolaget Lm Ericsson (Publ) | Single ended multiband feedback linearized rf amplifier and mixer with dc-offset and im2 suppression feedback loop |
US7643588B2 (en) | 2004-11-23 | 2010-01-05 | Stmicroelectronics S.R.L. | Method of estimating fading coefficients of channels and of receiving symbols and related single or multi-antenna receiver and transmitter |
US20100023838A1 (en) | 2008-07-28 | 2010-01-28 | Broadcom Corporation | Quasi-cyclic LDPC (Low Density Parity Check) code construction |
US7656321B2 (en) | 2005-06-02 | 2010-02-02 | Rambus Inc. | Signaling system |
US20100046644A1 (en) | 2008-08-19 | 2010-02-25 | Motorola, Inc. | Superposition coding |
WO2010031824A1 (en) | 2008-09-22 | 2010-03-25 | Stmicroelectronics (Grenoble) Sas | Device for exchanging data between components of an integrated circuit |
US7697915B2 (en) | 2004-09-10 | 2010-04-13 | Qualcomm Incorporated | Gain boosting RF gain stage with cross-coupled capacitors |
US7706524B2 (en) | 2001-11-16 | 2010-04-27 | Rambus Inc. | Signal line routing to reduce crosstalk effects |
US20100104047A1 (en) | 2007-04-12 | 2010-04-29 | Peng Chen | Multiple-antenna space multiplexing system using enhancement signal detection |
US20100122021A1 (en) | 2004-01-20 | 2010-05-13 | Super Talent Electronics Inc. | USB-Attached-SCSI Flash-Memory System with Additional Command, Status, and Control Pipes to a Smart-Storage Switch |
US20100180143A1 (en) | 2007-04-19 | 2010-07-15 | Rambus Inc. | Techniques for improved timing control of memory devices |
US20100177816A1 (en) | 2009-01-14 | 2010-07-15 | Amaresh Malipatil | Tx back channel adaptation algorithm |
US20100205506A1 (en) | 2009-02-10 | 2010-08-12 | Sony Corporation | Data modulating device and method thereof |
US7787572B2 (en) | 2005-04-07 | 2010-08-31 | Rambus Inc. | Advanced signal processors for interference cancellation in baseband receivers |
US7808456B2 (en) | 2005-09-02 | 2010-10-05 | Ricktek Technology Corp. | Driving system and method for an electroluminescent display |
US20100296556A1 (en) | 2007-12-14 | 2010-11-25 | Vodafone Holding Gmbh | Method and transceiver using blind channel estimation |
US20100296550A1 (en) | 2008-01-31 | 2010-11-25 | Commissar. A L'energ. Atom. Et Aux Energ. Altern. | Method of space time coding with low papr for multiple antenna communication system of the uwb pulse type |
US7841909B2 (en) | 2008-02-12 | 2010-11-30 | Adc Gmbh | Multistage capacitive far end crosstalk compensation arrangement |
US20100309964A1 (en) | 2007-12-19 | 2010-12-09 | Rambus Inc. | Asymmetric communication on shared links |
US7869497B2 (en) | 2002-08-30 | 2011-01-11 | Nxp B.V. | Frequency-domain decision feedback equalizing device and method |
US20110014865A1 (en) | 2008-03-11 | 2011-01-20 | Electronics And Telecommunications Research Institute | Cooperative reception diversity apparatus and method based on signal point rearrangement or superposition modulation in relay system |
US7882413B2 (en) | 2005-01-20 | 2011-02-01 | New Jersey Institute Of Technology | Method and/or system for space-time encoding and/or decoding |
US7899653B2 (en) | 2007-10-30 | 2011-03-01 | Micron Technology, Inc. | Matrix modeling of parallel data structures to facilitate data encoding and/or jittery signal generation |
US20110051854A1 (en) | 2008-03-06 | 2011-03-03 | Rambus Inc. | Error detection and offset cancellation during multi-wire communication |
US20110072330A1 (en) | 2008-11-26 | 2011-03-24 | Broadcom Corporation | Modified error distance decoding |
US20110084737A1 (en) | 2008-06-20 | 2011-04-14 | Rambus Inc. | Frequency responsive bus coding |
US7933770B2 (en) | 2006-07-14 | 2011-04-26 | Siemens Audiologische Technik Gmbh | Method and device for coding audio data based on vector quantisation |
US20110150495A1 (en) | 2008-08-18 | 2011-06-23 | Hideyuki Nosaka | Vector sum phase shifter, optical transceiver, and control circuit |
WO2011119359A2 (en) | 2010-03-24 | 2011-09-29 | Rambus Inc. | Coded differential intersymbol interference reduction |
US8030999B2 (en) | 2004-09-20 | 2011-10-04 | The Trustees Of Columbia University In The City Of New York | Low voltage operational transconductance amplifier circuits |
US20110268225A1 (en) | 2010-04-30 | 2011-11-03 | Ecole Polytechnique Federale De Lausanne (Epfl) | Orthogonal differential vector signaling |
US8064535B2 (en) | 2007-03-02 | 2011-11-22 | Qualcomm Incorporated | Three phase and polarity encoded serial interface |
US20110291758A1 (en) | 2010-05-28 | 2011-12-01 | Xilinx, Inc. | Differential comparator circuit having a wide common mode input range |
US20110302478A1 (en) | 2010-06-04 | 2011-12-08 | Ecole Polytechnique F+e,acu e+ee d+e,acu e+ee rale De Lausanne (EPFL) | Power and pin efficient chip-to-chip communications with common-mode rejection and sso resilience |
US20110299555A1 (en) | 2010-06-04 | 2011-12-08 | Ecole Polytechnique Federale De Lausanne | Error control coding for orthogonal differential vector signaling |
US20110317587A1 (en) | 2010-06-27 | 2011-12-29 | Valens Semiconductor Ltd. | Methods and systems for time sensitive networks |
US20110317559A1 (en) | 2010-06-25 | 2011-12-29 | Kern Andras | Notifying a Controller of a Change to a Packet Forwarding Configuration of a Network Element Over a Communication Channel |
US20120008662A1 (en) | 2010-07-06 | 2012-01-12 | David Phillip Gardiner | Method and Apparatus for Measurement of Temperature and Rate of Change of Temperature |
US8106806B2 (en) | 2009-04-20 | 2012-01-31 | Sony Corporation | AD converter |
US20120063291A1 (en) | 2010-09-09 | 2012-03-15 | The Regents Of The University Of California | Cdma-based crosstalk cancellation for on-chip global high-speed links |
US8149906B2 (en) | 2007-11-30 | 2012-04-03 | Nec Corporation | Data transfer between chips in a multi-chip semiconductor device with an increased data transfer speed |
US8159375B2 (en) | 2007-10-01 | 2012-04-17 | Rambus Inc. | Simplified receiver for use in multi-wire communication |
US8159376B2 (en) | 2007-12-07 | 2012-04-17 | Rambus Inc. | Encoding and decoding techniques for bandwidth-efficient communication |
US8199849B2 (en) | 2008-11-28 | 2012-06-12 | Electronics And Telecommunications Research Institute | Data transmitting device, data receiving device, data transmitting system, and data transmitting method |
US20120152901A1 (en) | 2010-12-17 | 2012-06-21 | Mattson Technology, Inc. | Inductively coupled plasma source for plasma processing |
US20120161945A1 (en) | 2009-07-20 | 2012-06-28 | National Ict Australia Limited | Neuro-stimulation |
US20120213299A1 (en) | 2011-02-17 | 2012-08-23 | ECOLE POLYTECHNIQUE FéDéRALE DE LAUSANNE | Methods and systems for noise resilient, pin-efficient and low power communications with sparse signaling codes |
US8253454B2 (en) | 2007-12-21 | 2012-08-28 | Realtek Semiconductor Corp. | Phase lock loop with phase interpolation by reference clock and method for the same |
US8279094B2 (en) | 2007-10-24 | 2012-10-02 | Rambus Inc. | Encoding and decoding techniques with improved timing margin |
US20120257683A1 (en) | 2009-12-30 | 2012-10-11 | Sony Corporation | Communications system using beamforming |
US8289914B2 (en) | 2007-09-27 | 2012-10-16 | Beijing Xinwei Telecom Technology Inc. | Signal transmission method and apparatus used in OFDMA wireless communication system |
US8295250B2 (en) | 2006-07-24 | 2012-10-23 | Qualcomm Incorporated | Code interleaving for a structured code |
US8310389B1 (en) | 2006-04-07 | 2012-11-13 | Marvell International Ltd. | Hysteretic inductive switching regulator with power supply compensation |
US20130010892A1 (en) | 2010-05-20 | 2013-01-10 | Kandou Technologies SA | Methods and Systems for Low-power and Pin-efficient Communications with Superposition Signaling Codes |
US20130049863A1 (en) | 2011-08-29 | 2013-02-28 | Mao-Cheng Chiu | Multi-Input Differential Amplifier With Dynamic Transconductance Compensation |
US8406315B2 (en) | 2009-02-23 | 2013-03-26 | Institute For Information Industry | Signal transmission apparatus, transmission method and computer storage medium thereof |
US8406316B2 (en) | 2009-06-16 | 2013-03-26 | Sony Corporation | Information processing apparatus and mode switching method |
US8429495B2 (en) | 2010-10-19 | 2013-04-23 | Mosaid Technologies Incorporated | Error detection and correction codes for channels and memories with incomplete error characteristics |
US8437440B1 (en) | 2009-05-28 | 2013-05-07 | Marvell International Ltd. | PHY frame formats in a system with more than four space-time streams |
US8442099B1 (en) | 2008-09-25 | 2013-05-14 | Aquantia Corporation | Crosstalk cancellation for a common-mode channel |
US8443223B2 (en) | 2008-07-27 | 2013-05-14 | Rambus Inc. | Method and system for balancing receive-side supply load |
US20130163126A1 (en) | 2011-12-22 | 2013-06-27 | Lsi Corporation | High-swing differential driver using low-voltage transistors |
US8498368B1 (en) | 2001-04-11 | 2013-07-30 | Qualcomm Incorporated | Method and system for optimizing gain changes by identifying modulation type and rate |
US20130229294A1 (en) | 2012-03-05 | 2013-09-05 | Kabushiki Kaisha Toshiba | Analog-to-digital converter |
US8547272B2 (en) | 2010-08-18 | 2013-10-01 | Analog Devices, Inc. | Charge sharing analog computation circuitry and applications |
US20130259113A1 (en) | 2012-03-29 | 2013-10-03 | Rajendra Kumar | Systems and methods for adaptive blind mode equalization |
US8578246B2 (en) | 2010-05-31 | 2013-11-05 | International Business Machines Corporation | Data encoding in solid-state storage devices |
US8593305B1 (en) | 2011-07-05 | 2013-11-26 | Kandou Labs, S.A. | Efficient processing and detection of balanced codes |
US8604879B2 (en) * | 2012-03-30 | 2013-12-10 | Integrated Device Technology Inc. | Matched feedback amplifier with improved linearity |
US8620166B2 (en) | 2011-01-07 | 2013-12-31 | Raytheon Bbn Technologies Corp. | Holevo capacity achieving joint detection receiver |
US8638241B2 (en) | 2012-04-09 | 2014-01-28 | Nvidia Corporation | 8b/9b decoding for reducing crosstalk on a high speed parallel bus |
US8649460B2 (en) | 2007-06-05 | 2014-02-11 | Rambus Inc. | Techniques for multi-wire encoding with an embedded clock |
US8649556B2 (en) | 2008-12-30 | 2014-02-11 | Canon Kabushiki Kaisha | Multi-modal object signature |
US8649840B2 (en) | 2007-06-07 | 2014-02-11 | Microchips, Inc. | Electrochemical biosensors and arrays |
US8718184B1 (en) | 2012-05-03 | 2014-05-06 | Kandou Labs S.A. | Finite state encoders and decoders for vector signaling codes |
US20140132331A1 (en) | 2012-11-15 | 2014-05-15 | Texas Instruments Incorporated | Wide Common Mode Range Transmission Gate |
US8755426B1 (en) | 2012-03-15 | 2014-06-17 | Kandou Labs, S.A. | Rank-order equalization |
US8782578B2 (en) | 2005-04-15 | 2014-07-15 | Rambus Inc. | Generating interface adjustment signals in a device-to-device interconnection system |
US8780687B2 (en) | 2009-07-20 | 2014-07-15 | Lantiq Deutschland Gmbh | Method and apparatus for vectored data communication |
US20140198837A1 (en) | 2010-05-20 | 2014-07-17 | Kandou Labs, S.A. | Methods and Systems for Chip-to-Chip Communication with Reduced Simultaneous Switching Noise |
US20140198841A1 (en) | 2011-06-16 | 2014-07-17 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Context intialization in entropy coding |
US20140226455A1 (en) | 2011-09-07 | 2014-08-14 | Commscope, Inc. Of North Carolina | Communications Connectors Having Frequency Dependent Communications Paths and Related Methods |
US8831440B2 (en) | 2008-06-20 | 2014-09-09 | Huawei Technologies Co., Ltd. | Method and device for generating optical signals |
US20140254730A1 (en) | 2013-03-11 | 2014-09-11 | Andrew Joo Kim | Reducing electromagnetic radiation emitted from high-speed interconnects |
US8879660B1 (en) | 2013-09-10 | 2014-11-04 | Huazhong University Of Science And Technology | Antipodal demodulation method and antipodal demodulator for non-coherent unitary space-time modulation in MIMO wireless communication |
US20150010044A1 (en) | 2012-11-07 | 2015-01-08 | Broadcom Corporation | Transceiver including a high latency communication channel and a low latency communication channel |
US8949693B2 (en) | 2011-03-04 | 2015-02-03 | Hewlett-Packard Development Company, L.P. | Antipodal-mapping-based encoders and decoders |
US8951072B2 (en) | 2012-09-07 | 2015-02-10 | Commscope, Inc. Of North Carolina | Communication jacks having longitudinally staggered jackwire contacts |
US20150078479A1 (en) | 2010-12-22 | 2015-03-19 | Apple Inc. | Methods and apparatus for the intelligent association of control symbols |
US8989317B1 (en) | 2010-05-20 | 2015-03-24 | Kandou Labs, S.A. | Crossbar switch decoder for vector signaling codes |
US9036764B1 (en) | 2012-12-07 | 2015-05-19 | Rambus Inc. | Clock recovery circuit |
US20150146771A1 (en) | 2013-11-22 | 2015-05-28 | Kandou Labs SA | Multiwire Linear Equalizer for Vector Signaling Code Receiver |
US9069995B1 (en) | 2013-02-21 | 2015-06-30 | Kandou Labs, S.A. | Multiply accumulate operations in the analog domain |
US9077386B1 (en) | 2010-05-20 | 2015-07-07 | Kandou Labs, S.A. | Methods and systems for selection of unions of vector signaling codes for power and pin efficient chip-to-chip communication |
US20150199543A1 (en) | 2011-12-15 | 2015-07-16 | Marvell World Trade Ltd. | Method and apparatus for detecting an output power of a radio frequency transmitter |
US9093791B2 (en) | 2012-11-05 | 2015-07-28 | Commscope, Inc. Of North Carolina | Communications connectors having crosstalk stages that are implemented using a plurality of discrete, time-delayed capacitive and/or inductive components that may provide enhanced insertion loss and/or return loss performance |
US9100232B1 (en) | 2014-02-02 | 2015-08-04 | Kandou Labs, S.A. | Method for code evaluation using ISI ratio |
US9148087B1 (en) | 2014-05-16 | 2015-09-29 | Kandou Labs, S.A. | Symmetric is linear equalization circuit with increased gain |
US20150333940A1 (en) | 2014-05-13 | 2015-11-19 | Kandou Labs SA | Vector Signaling Code with Improved Noise Margin |
US20150381232A1 (en) | 2014-06-25 | 2015-12-31 | Kandou Labs SA | Multilevel Driver for High Speed Chip-to-Chip Communications |
US20160020824A1 (en) | 2014-07-17 | 2016-01-21 | Kandou Labs S.A. | Bus Reversable Orthogonal Differential Vector Signaling Codes |
US20160020796A1 (en) | 2014-07-21 | 2016-01-21 | Kandou Labs SA | Multidrop Data Transfer |
US20160036616A1 (en) | 2014-08-01 | 2016-02-04 | Kandou Labs SA | Orthogonal Differential Vector Signaling Codes with Embedded Clock |
US9281785B2 (en) | 2011-08-11 | 2016-03-08 | Telefonaktiebolaget L M Ericsson (Publ) | Low-noise amplifier, receiver, method and computer program |
US9288082B1 (en) | 2010-05-20 | 2016-03-15 | Kandou Labs, S.A. | Circuits for efficient detection of vector signaling codes for chip-to-chip communication using sums of differences |
US9362974B2 (en) | 2010-05-20 | 2016-06-07 | Kandou Labs, S.A. | Methods and systems for high bandwidth chip-to-chip communications interface |
US9374250B1 (en) | 2014-12-17 | 2016-06-21 | Intel Corporation | Wireline receiver circuitry having collaborative timing recovery |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5624699A (en) | 1991-07-22 | 1997-04-29 | Processing Technologies International Ltd. | Extraction method |
WO2000067815A1 (en) | 1999-05-07 | 2000-11-16 | Salviac Limited | A tissue engineering scaffold |
US6664853B1 (en) * | 2002-01-31 | 2003-12-16 | Applied Micro Circuits Corporation | Wide-bandwidth differential signal amplifier |
FR2839339B1 (en) | 2002-05-03 | 2004-06-04 | Inst Francais Du Petrole | METHOD FOR DIMENSIONING A RISER ELEMENT WITH INTEGRATED AUXILIARY DUCTS |
US6870404B1 (en) * | 2003-08-28 | 2005-03-22 | Altera Corporation | Programmable differential capacitors for equalization circuits |
EP1548932A1 (en) * | 2003-12-24 | 2005-06-29 | STMicroelectronics Belgium N.V. | Differential low noise amplifier with low power consumption |
GB0413112D0 (en) * | 2004-06-14 | 2004-07-14 | Texas Instruments Ltd | High bandwidth, high gain receiver equaliser |
US7598811B2 (en) * | 2005-07-29 | 2009-10-06 | Broadcom Corporation | Current-controlled CMOS (C3MOS) fully differential integrated wideband amplifier/equalizer with adjustable gain and frequency response without additional power or loading |
US7362174B2 (en) * | 2005-07-29 | 2008-04-22 | Broadcom Corporation | Current-controlled CMOS (C3MOS) wideband input data amplifier for reduced differential and common-mode reflection |
US7598788B2 (en) * | 2005-09-06 | 2009-10-06 | Broadcom Corporation | Current-controlled CMOS (C3MOS) fully differential integrated delay cell with variable delay and high bandwidth |
US7683720B1 (en) * | 2007-06-08 | 2010-03-23 | Integrated Device Technology, Inc. | Folded-cascode amplifier with adjustable continuous time equalizer |
TW201106663A (en) * | 2009-08-05 | 2011-02-16 | Novatek Microelectronics Corp | Dual-port input equalizer |
US7961050B1 (en) * | 2010-02-17 | 2011-06-14 | Taiwan Semiconductor Manufacturing Company, Ltd. | Integrated circuits including an equalizer and operating methods thereof |
US9071476B2 (en) | 2010-05-20 | 2015-06-30 | Kandou Labs, S.A. | Methods and systems for high bandwidth chip-to-chip communications interface |
-
2014
- 2014-05-16 US US14/280,305 patent/US9148087B1/en active Active
-
2015
- 2015-09-29 US US14/869,346 patent/US9419564B2/en active Active
-
2016
- 2016-08-15 US US15/237,171 patent/US9692381B2/en active Active
Patent Citations (340)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US668687A (en) | 1900-12-06 | 1901-02-26 | Louis G Mayer | Thill-coupling. |
US780883A (en) | 1903-11-18 | 1905-01-24 | Mortimer Livingston Hinchman | Advertising device. |
US3196351A (en) | 1962-06-26 | 1965-07-20 | Bell Telephone Labor Inc | Permutation code signaling |
US3636463A (en) | 1969-12-12 | 1972-01-18 | Shell Oil Co | Method of and means for gainranging amplification |
US3939468A (en) | 1974-01-08 | 1976-02-17 | Whitehall Corporation | Differential charge amplifier for marine seismic applications |
US4163258A (en) | 1975-12-26 | 1979-07-31 | Sony Corporation | Noise reduction system |
US4206316A (en) | 1976-05-24 | 1980-06-03 | Hughes Aircraft Company | Transmitter-receiver system utilizing pulse position modulation and pulse compression |
US4181967A (en) | 1978-07-18 | 1980-01-01 | Motorola, Inc. | Digital apparatus approximating multiplication of analog signal by sine wave signal and method |
US4276543A (en) | 1979-03-19 | 1981-06-30 | Trw Inc. | Monolithic triple diffusion analog to digital converter |
US4486739A (en) | 1982-06-30 | 1984-12-04 | International Business Machines Corporation | Byte oriented DC balanced (0,4) 8B/10B partitioned block transmission code |
US4499550A (en) | 1982-09-30 | 1985-02-12 | General Electric Company | Walsh function mixer and tone detector |
US4722084A (en) | 1985-10-02 | 1988-01-26 | Itt Corporation | Array reconfiguration apparatus and methods particularly adapted for use with very large scale integrated circuits |
US4772845A (en) | 1987-01-15 | 1988-09-20 | Raytheon Company | Cable continuity testor including a sequential state machine |
US4864303A (en) | 1987-02-13 | 1989-09-05 | Board Of Trustees Of The University Of Illinois | Encoder/decoder system and methodology utilizing conservative coding with block delimiters, for serial communication |
US4774498A (en) | 1987-03-09 | 1988-09-27 | Tektronix, Inc. | Analog-to-digital converter with error checking and correction circuits |
US5053974A (en) | 1987-03-31 | 1991-10-01 | Texas Instruments Incorporated | Closeness code and method |
US4897657A (en) | 1988-06-13 | 1990-01-30 | Integrated Device Technology, Inc. | Analog-to-digital converter having error detection and correction |
US4974211A (en) | 1989-03-17 | 1990-11-27 | Hewlett-Packard Company | Digital ultrasound system with dynamic focus |
US5168509A (en) | 1989-04-12 | 1992-12-01 | Kabushiki Kaisha Toshiba | Quadrature amplitude modulation communication system with transparent error correction |
US5599550A (en) | 1989-11-18 | 1997-02-04 | Kohlruss; Gregor | Disposable, biodegradable, wax-impregnated dust-cloth |
US5166956A (en) | 1990-05-21 | 1992-11-24 | North American Philips Corporation | Data transmission system and apparatus providing multi-level differential signal transmission |
US5287305A (en) | 1991-06-28 | 1994-02-15 | Sharp Kabushiki Kaisha | Memory device including two-valued/n-valued conversion unit |
US5331320A (en) | 1991-11-21 | 1994-07-19 | International Business Machines Corporation | Coding method and apparatus using quaternary codes |
US5311516A (en) | 1992-05-29 | 1994-05-10 | Motorola, Inc. | Paging system using message fragmentation to redistribute traffic |
US5283761A (en) | 1992-07-22 | 1994-02-01 | Mosaid Technologies Incorporated | Method of multi-level storage in DRAM |
US5412689A (en) | 1992-12-23 | 1995-05-02 | International Business Machines Corporation | Modal propagation of information through a defined transmission medium |
US5511119A (en) | 1993-02-10 | 1996-04-23 | Bell Communications Research, Inc. | Method and system for compensating for coupling between circuits of quaded cable in a telecommunication transmission system |
US5459465A (en) | 1993-10-21 | 1995-10-17 | Comlinear Corporation | Sub-ranging analog-to-digital converter |
US5461379A (en) | 1993-12-14 | 1995-10-24 | At&T Ipm Corp. | Digital coding technique which avoids loss of synchronization |
US5449895A (en) | 1993-12-22 | 1995-09-12 | Xerox Corporation | Explicit synchronization for self-clocking glyph codes |
US5553097A (en) | 1994-06-01 | 1996-09-03 | International Business Machines Corporation | System and method for transporting high-bandwidth signals over electrically conducting transmission lines |
US5566193A (en) | 1994-12-30 | 1996-10-15 | Lucent Technologies Inc. | Method and apparatus for detecting and preventing the communication of bit errors on a high performance serial data link |
US5659353A (en) | 1995-03-17 | 1997-08-19 | Bell Atlantic Network Services, Inc. | Television distribution system and method |
US5875202A (en) | 1996-03-29 | 1999-02-23 | Adtran, Inc. | Transmission of encoded data over reliable digital communication link using enhanced error recovery mechanism |
US5825808A (en) | 1996-04-04 | 1998-10-20 | General Electric Company | Random parity coding system |
US5856935A (en) | 1996-05-08 | 1999-01-05 | Motorola, Inc. | Fast hadamard transform within a code division, multiple access communication system |
US5727006A (en) | 1996-08-15 | 1998-03-10 | Seeo Technology, Incorporated | Apparatus and method for detecting and correcting reverse polarity, in a packet-based data communications system |
US5999016A (en) | 1996-10-10 | 1999-12-07 | Altera Corporation | Architectures for programmable logic devices |
US5982954A (en) | 1996-10-21 | 1999-11-09 | University Technology Corporation | Optical field propagation between tilted or offset planes |
US5949060A (en) | 1996-11-01 | 1999-09-07 | Coincard International, Inc. | High security capacitive card system |
US5802356A (en) | 1996-11-13 | 1998-09-01 | Integrated Device Technology, Inc. | Configurable drive clock |
US5945935A (en) | 1996-11-21 | 1999-08-31 | Matsushita Electric Industrial Co., Ltd. | A/D converter and A/D conversion method |
US5995016A (en) | 1996-12-17 | 1999-11-30 | Rambus Inc. | Method and apparatus for N choose M device selection |
US6005895A (en) | 1996-12-20 | 1999-12-21 | Rambus Inc. | Apparatus and method for multilevel signaling |
US6504875B2 (en) | 1996-12-20 | 2003-01-07 | Rambus Inc. | Apparatus for multilevel signaling |
US6359931B1 (en) | 1996-12-20 | 2002-03-19 | Rambus Inc. | Apparatus and method for multilevel signaling |
US6119263A (en) | 1997-04-30 | 2000-09-12 | Hewlett-Packard Company | System and method for transmitting data |
US6084883A (en) | 1997-07-07 | 2000-07-04 | 3Com Corporation | Efficient data transmission over digital telephone networks using multiple modulus conversion |
US6232908B1 (en) | 1997-09-29 | 2001-05-15 | Nec Corporation | A/D converter having a dynamic encoder |
US6839429B1 (en) | 1997-12-19 | 2005-01-04 | Wm. Marsh Rice University | Spectral optimization for communication under a peak frequency-domain power constraint |
US6378073B1 (en) | 1997-12-22 | 2002-04-23 | Motorola, Inc. | Single account portable wireless financial messaging unit |
US6686879B2 (en) | 1998-02-12 | 2004-02-03 | Genghiscomm, Llc | Method and apparatus for transmitting and receiving signals having a carrier interferometry architecture |
US20020034191A1 (en) | 1998-02-12 | 2002-03-21 | Shattil Steve J. | Method and apparatus for transmitting and receiving signals having a carrier interferometry architecture |
US6172634B1 (en) | 1998-02-25 | 2001-01-09 | Lucent Technologies Inc. | Methods and apparatus for providing analog-fir-based line-driver with pre-equalization |
US6346907B1 (en) | 1998-08-07 | 2002-02-12 | Agere Systems Guardian Corp. | Analog-to-digital converter having voltage to-time converter and time digitizer, and method for using same |
US20020057292A1 (en) | 1998-08-31 | 2002-05-16 | Brian Holtz | Graphical action invocation method, and associated method, for a computer system |
US6433800B1 (en) | 1998-08-31 | 2002-08-13 | Sun Microsystems, Inc. | Graphical action invocation method, and associated method, for a computer system |
US6278740B1 (en) | 1998-11-19 | 2001-08-21 | Gates Technology | Multi-bit (2i+2)-wire differential coding of digital signals using differential comparators and majority logic |
US6398359B1 (en) | 1998-12-16 | 2002-06-04 | Silverbrook Research Pty Ltd | Printer transfer roller with internal drive motor |
US6175230B1 (en) | 1999-01-14 | 2001-01-16 | Genrad, Inc. | Circuit-board tester with backdrive-based burst timing |
US6865234B1 (en) | 1999-01-20 | 2005-03-08 | Broadcom Corporation | Pair-swap independent trellis decoder for a multi-pair gigabit transceiver |
US6483828B1 (en) | 1999-02-10 | 2002-11-19 | Ericsson, Inc. | System and method for coding in a telecommunications environment using orthogonal and near-orthogonal codes |
US6556628B1 (en) | 1999-04-29 | 2003-04-29 | The University Of North Carolina At Chapel Hill | Methods and systems for transmitting and receiving differential signals over a plurality of conductors |
US20010006538A1 (en) | 1999-05-25 | 2001-07-05 | Simon Thomas D. | Symbol-based signaling device for an elctromagnetically-coupled bus system |
US7075996B2 (en) | 1999-05-25 | 2006-07-11 | Intel Corporation | Symbol-based signaling device for an electromagnetically-coupled bus system |
US6404820B1 (en) | 1999-07-09 | 2002-06-11 | The United States Of America As Represented By The Director Of The National Security Agency | Method for storage and reconstruction of the extended hamming code for an 8-dimensional lattice quantizer |
US20030105908A1 (en) | 1999-09-17 | 2003-06-05 | Perino Donald V. | Integrated circuit device having a capacitive coupling element |
US20050135182A1 (en) | 1999-09-17 | 2005-06-23 | Perino Donald V. | Chip-to-chip communication system using an ac-coupled bus and devices employed in same |
US6854030B2 (en) | 1999-09-17 | 2005-02-08 | Rambus Inc. | Integrated circuit device having a capacitive coupling element |
US7130944B2 (en) | 1999-09-17 | 2006-10-31 | Rambus Inc. | Chip-to-chip communication system using an ac-coupled bus and devices employed in same |
US7456778B2 (en) | 1999-10-19 | 2008-11-25 | Rambus Inc. | Method and apparatus for calibrating a multi-level current mode driver having a plurality of source calibration signals |
US6417737B1 (en) | 1999-10-21 | 2002-07-09 | Broadcom Corporation | Adaptive radio transceiver with low noise amplification |
US6473877B1 (en) | 1999-11-10 | 2002-10-29 | Hewlett-Packard Company | ECC code mechanism to detect wire stuck-at faults |
US6650638B1 (en) | 2000-03-06 | 2003-11-18 | Agilent Technologies, Inc. | Decoding method and decoder for 64b/66b coded packetized serial data |
US6954492B1 (en) | 2000-04-19 | 2005-10-11 | 3Com Corporation | Method of differential encoding a precoded multiple modulus encoder |
US6509773B2 (en) | 2000-04-28 | 2003-01-21 | Broadcom Corporation | Phase interpolator device and method |
US6865236B1 (en) | 2000-06-01 | 2005-03-08 | Nokia Corporation | Apparatus, and associated method, for coding and decoding multi-dimensional biorthogonal codes |
US7085336B2 (en) | 2000-06-26 | 2006-08-01 | Samsung Electronics Co., Ltd. | Signal transmission circuit and method for equalizing disparate delay times dynamically, and data latch circuit of semiconductor device implementing the same |
US20010055344A1 (en) | 2000-06-26 | 2001-12-27 | Samsung Electronics Co., Ltd. | Signal transmission circuit and method for equalizing disparate delay times dynamically, and data latch circuit of semiconductor device implementing the same |
US6839587B2 (en) | 2000-08-15 | 2005-01-04 | Cardiac Pacemakers, Inc. | Electrocardiograph leads-off indicator |
US7269212B1 (en) | 2000-09-05 | 2007-09-11 | Rambus Inc. | Low-latency equalization in multi-level, multi-line communication systems |
US6563382B1 (en) | 2000-10-10 | 2003-05-13 | International Business Machines Corporation | Linear variable gain amplifiers |
US20020044316A1 (en) | 2000-10-16 | 2002-04-18 | Myers Michael H. | Signal power allocation apparatus and method |
US6990138B2 (en) | 2000-10-27 | 2006-01-24 | Alcatel | Correlated spreading sequences for high rate non-coherent communication systems |
US20020057592A1 (en) | 2000-11-13 | 2002-05-16 | Robb David C. | Distributed storage in semiconductor memory systems |
US20020154633A1 (en) | 2000-11-22 | 2002-10-24 | Yeshik Shin | Communications architecture for storage-based devices |
US6661355B2 (en) | 2000-12-27 | 2003-12-09 | Apple Computer, Inc. | Methods and apparatus for constant-weight encoding & decoding |
US20030146783A1 (en) | 2001-02-12 | 2003-08-07 | Matrics, Inc. | Efficient charge pump apparatus |
US6766342B2 (en) | 2001-02-15 | 2004-07-20 | Sun Microsystems, Inc. | System and method for computing and unordered Hadamard transform |
US20030086366A1 (en) | 2001-03-06 | 2003-05-08 | Branlund Dale A. | Adaptive communications methods for multiple user packet radio wireless networks |
US8498368B1 (en) | 2001-04-11 | 2013-07-30 | Qualcomm Incorporated | Method and system for optimizing gain changes by identifying modulation type and rate |
US6982954B2 (en) | 2001-05-03 | 2006-01-03 | International Business Machines Corporation | Communications bus with redundant signal paths and method for compensating for signal path errors in a communications bus |
US20020163881A1 (en) | 2001-05-03 | 2002-11-07 | Dhong Sang Hoo | Communications bus with redundant signal paths and method for compensating for signal path errors in a communications bus |
US20020174373A1 (en) | 2001-05-15 | 2002-11-21 | Chi Chang | Data transmission system using a pair of complementary signals as an edge-aligned strobe signal and input/output buffers therein |
US6898724B2 (en) | 2001-05-15 | 2005-05-24 | Via Technologies, Inc. | System for latching an output signal generated by comparing complimentary strobe signals and a data signal in response to a comparison of the complimentary strobe signals |
US6452420B1 (en) | 2001-05-24 | 2002-09-17 | National Semiconductor Corporation | Multi-dimensional differential signaling (MDDS) |
US20030048210A1 (en) | 2001-07-16 | 2003-03-13 | Oliver Kiehl | Transmission and reception interface and method of data transmission |
US6927709B2 (en) | 2001-07-16 | 2005-08-09 | Infineon Technologies Ag | Transmission and reception interface and method of data transmission |
US6664355B2 (en) | 2001-08-31 | 2003-12-16 | Hanyang Hak Won Co., Ltd. | Process for synthesizing conductive polymers by gas-phase polymerization and product thereof |
US6621427B2 (en) | 2001-10-11 | 2003-09-16 | Sun Microsystems, Inc. | Method and apparatus for implementing a doubly balanced code |
US20030071745A1 (en) | 2001-10-11 | 2003-04-17 | Greenstreet Mark R. | Method and apparatus for implementing a doubly balanced code |
US6999516B1 (en) | 2001-10-24 | 2006-02-14 | Rambus Inc. | Technique for emulating differential signaling |
US7184483B2 (en) | 2001-10-24 | 2007-02-27 | Rambus Inc. | Technique for emulating differential signaling |
US6624699B2 (en) * | 2001-10-25 | 2003-09-23 | Broadcom Corporation | Current-controlled CMOS wideband data amplifier circuits |
US8442210B2 (en) | 2001-11-16 | 2013-05-14 | Rambus Inc. | Signal line routing to reduce crosstalk effects |
US7706524B2 (en) | 2001-11-16 | 2010-04-27 | Rambus Inc. | Signal line routing to reduce crosstalk effects |
US7142612B2 (en) | 2001-11-16 | 2006-11-28 | Rambus, Inc. | Method and apparatus for multi-level signaling |
US7039136B2 (en) | 2001-11-19 | 2006-05-02 | Tensorcomm, Inc. | Interference cancellation in a signal |
JP2003163612A (en) | 2001-11-26 | 2003-06-06 | Advanced Telecommunication Research Institute International | Digital signal encoding method and decoding method |
US7400276B1 (en) | 2002-01-28 | 2008-07-15 | Massachusetts Institute Of Technology | Method and apparatus for reducing delay in a bus provided from parallel, capacitively coupled transmission lines |
US6972701B2 (en) | 2002-03-25 | 2005-12-06 | Infineon Technologies Ag | A/D converter calibration |
US7142865B2 (en) | 2002-05-31 | 2006-11-28 | Telefonaktie Bolaget Lm Ericsson (Publ) | Transmit power control based on virtual decoding |
US7180949B2 (en) | 2002-06-04 | 2007-02-20 | Lucent Technologies Inc. | High-speed chip-to-chip communication interface |
US20030227841A1 (en) | 2002-06-06 | 2003-12-11 | Kiyoshi Tateishi | Information recording apparatus |
US7164631B2 (en) | 2002-06-06 | 2007-01-16 | Pioneer Coorperation | Information recording apparatus |
US20040003337A1 (en) | 2002-06-28 | 2004-01-01 | Cypher Robert E. | Error detection/correction code which detects and corrects component failure and which provides single bit error correction subsequent to component failure |
US6976194B2 (en) | 2002-06-28 | 2005-12-13 | Sun Microsystems, Inc. | Memory/Transmission medium failure handling controller and method |
US6973613B2 (en) | 2002-06-28 | 2005-12-06 | Sun Microsystems, Inc. | Error detection/correction code which detects and corrects component failure and which provides single bit error correction subsequent to component failure |
US20040003336A1 (en) | 2002-06-28 | 2004-01-01 | Cypher Robert E. | Error detection/correction code which detects and corrects memory module/transmitter circuit failure |
US20040086059A1 (en) | 2002-07-03 | 2004-05-06 | Hughes Electronics | Bit labeling for amplitude phase shift constellation used with low density parity check (LDPC) codes |
US6963622B2 (en) | 2002-07-03 | 2005-11-08 | The Directv Group, Inc. | Bit labeling for amplitude phase shift constellation used with low density parity check (LDPC) codes |
US20090251222A1 (en) | 2002-07-23 | 2009-10-08 | Broadcom Corporation | Linear High Powered Integrated Circuit Amplifier |
US7869497B2 (en) | 2002-08-30 | 2011-01-11 | Nxp B.V. | Frequency-domain decision feedback equalizing device and method |
US20040057525A1 (en) | 2002-09-23 | 2004-03-25 | Suresh Rajan | Method and apparatus for communicating information using different signaling types |
US7127003B2 (en) | 2002-09-23 | 2006-10-24 | Rambus Inc. | Method and apparatus for communicating information using different signaling types |
US7167019B2 (en) | 2003-01-06 | 2007-01-23 | Rambus Inc. | Method and device for transmission with reduced crosstalk |
US7362130B2 (en) | 2003-01-06 | 2008-04-22 | Rambus Inc. | Method and device for transmission with reduced crosstalk |
US7339990B2 (en) | 2003-02-07 | 2008-03-04 | Fujitsu Limited | Processing a received signal at a detection circuit |
US20040156432A1 (en) | 2003-02-07 | 2004-08-12 | Fujitsu Limited | Processing a received signal at a detection circuit |
US7620116B2 (en) | 2003-02-28 | 2009-11-17 | Rambus Inc. | Technique for determining an optimal transition-limiting code for use in a multi-level signaling system |
US20040174373A1 (en) | 2003-03-07 | 2004-09-09 | Stevens Randall S. | Preparing digital images for display utilizing view-dependent texturing |
US7348989B2 (en) | 2003-03-07 | 2008-03-25 | Arch Vision, Inc. | Preparing digital images for display utilizing view-dependent texturing |
US7023817B2 (en) | 2003-03-11 | 2006-04-04 | Motorola, Inc. | Method and apparatus for source device synchronization in a communication system |
US7085153B2 (en) | 2003-05-13 | 2006-08-01 | Innovative Silicon S.A. | Semiconductor memory cell, array, architecture and device, and method of operating same |
US7053802B2 (en) | 2003-05-21 | 2006-05-30 | Apple Computer, Inc. | Single-ended balance-coded interface with embedded-timing |
US7389333B2 (en) | 2003-07-02 | 2008-06-17 | Fujitsu Limited | Provisioning a network element using custom defaults |
US7358869B1 (en) | 2003-08-20 | 2008-04-15 | University Of Pittsburgh | Power efficient, high bandwidth communication using multi-signal-differential channels |
US7428273B2 (en) | 2003-09-18 | 2008-09-23 | Promptu Systems Corporation | Method and apparatus for efficient preamble detection in digital data receivers |
US20050152385A1 (en) | 2003-12-07 | 2005-07-14 | Adaptive Spectrum And Signal Alignment, Inc. | High speed multiple loop DSL system |
US7639596B2 (en) | 2003-12-07 | 2009-12-29 | Adaptive Spectrum And Signal Alignment, Inc. | High speed multiple loop DSL system |
US7633850B2 (en) | 2003-12-18 | 2009-12-15 | National Institute Of Information And Communications Technology | Transmitter, receiver, transmitting method, receiving method, and program |
US7370264B2 (en) | 2003-12-19 | 2008-05-06 | Stmicroelectronics, Inc. | H-matrix for error correcting circuitry |
US8180931B2 (en) | 2004-01-20 | 2012-05-15 | Super Talent Electronics, Inc. | USB-attached-SCSI flash-memory system with additional command, status, and control pipes to a smart-storage switch |
US20100122021A1 (en) | 2004-01-20 | 2010-05-13 | Super Talent Electronics Inc. | USB-Attached-SCSI Flash-Memory System with Additional Command, Status, and Control Pipes to a Smart-Storage Switch |
US20050174841A1 (en) | 2004-02-05 | 2005-08-11 | Iota Technology, Inc. | Electronic memory with tri-level cell pair |
US20050213686A1 (en) | 2004-03-26 | 2005-09-29 | Texas Instruments Incorporated | Reduced complexity transmit spatial waterpouring technique for multiple-input, multiple-output communication systems |
US20070194848A1 (en) | 2004-04-03 | 2007-08-23 | Bardsley Thomas J | Variable Gain Amplifier |
US7535957B2 (en) | 2004-04-16 | 2009-05-19 | Thine Electronics, Inc. | Transmitter circuit, receiver circuit, clock data recovery phase locked loop circuit, data transfer method and data transfer system |
US20050286643A1 (en) | 2004-04-16 | 2005-12-29 | Thine Electronics, Inc. | Transmitter circuit, receiver circuit, clock data recovery phase locked loop circuit, data transfer method and data transfer system |
US20090228767A1 (en) | 2004-06-24 | 2009-09-10 | Min Seok Oh | Method and apparatus of encoding and decoding data using low density parity check code in a wireless communication system |
US8185807B2 (en) | 2004-06-24 | 2012-05-22 | Lg Electronics Inc. | Method and apparatus of encoding and decoding data using low density parity check code in a wireless communication system |
US20090257542A1 (en) | 2004-07-08 | 2009-10-15 | Rambus, Inc. | Dual loop clock recovery circuit |
US8036300B2 (en) | 2004-07-08 | 2011-10-11 | Rambus, Inc. | Dual loop clock recovery circuit |
US7599390B2 (en) | 2004-07-21 | 2009-10-06 | Rambus Inc. | Approximate bit-loading for data transmission over frequency-selective channels |
US20060018344A1 (en) | 2004-07-21 | 2006-01-26 | Sudhakar Pamarti | Approximate bit-loading for data transmission over frequency-selective channels |
US7697915B2 (en) | 2004-09-10 | 2010-04-13 | Qualcomm Incorporated | Gain boosting RF gain stage with cross-coupled capacitors |
US8030999B2 (en) | 2004-09-20 | 2011-10-04 | The Trustees Of Columbia University In The City Of New York | Low voltage operational transconductance amplifier circuits |
US7869546B2 (en) | 2004-09-30 | 2011-01-11 | Telefonaktiebolaget Lm Ericsson (Publ) | Multicode transmission using Walsh Hadamard transform |
US20060067413A1 (en) | 2004-09-30 | 2006-03-30 | Telefonaktiebolaget L M Ericsson (Publ) | Multicode transmission using Walsh Hadamard transform |
US7746764B2 (en) | 2004-10-22 | 2010-06-29 | Parkervision, Inc. | Orthogonal signal generation using vector spreading and combining |
US20060159005A1 (en) | 2004-10-22 | 2006-07-20 | Rawlins Gregory S | Orthogonal signal generation using vector spreading and combining |
US7643588B2 (en) | 2004-11-23 | 2010-01-05 | Stmicroelectronics S.R.L. | Method of estimating fading coefficients of channels and of receiving symbols and related single or multi-antenna receiver and transmitter |
US7496162B2 (en) | 2004-11-30 | 2009-02-24 | Stmicroelectronics, Inc. | Communication system with statistical control of gain |
US20060115027A1 (en) | 2004-11-30 | 2006-06-01 | Srebranig Steven F | Communication system with statistical control of gain |
US20060133538A1 (en) | 2004-12-22 | 2006-06-22 | Stojanovic Vladimir M | Adjustable dual-band link |
US7907676B2 (en) | 2004-12-22 | 2011-03-15 | Rambus Inc. | Adjustable dual-band link |
US20100020898A1 (en) | 2004-12-22 | 2010-01-28 | Stojanovic Vladimir M | Adjustable Dual-Band Link |
US7349484B2 (en) | 2004-12-22 | 2008-03-25 | Rambus Inc. | Adjustable dual-band link |
US7882413B2 (en) | 2005-01-20 | 2011-02-01 | New Jersey Institute Of Technology | Method and/or system for space-time encoding and/or decoding |
US7706456B2 (en) | 2005-03-08 | 2010-04-27 | Qualcomm Incorporated | Methods and apparatus for combining and/or transmitting multiple symbol streams |
US20060269005A1 (en) | 2005-03-08 | 2006-11-30 | Rajiv Laroia | Methods and apparatus for combining and/or transmitting multiple symbol streams |
US7787572B2 (en) | 2005-04-07 | 2010-08-31 | Rambus Inc. | Advanced signal processors for interference cancellation in baseband receivers |
US8782578B2 (en) | 2005-04-15 | 2014-07-15 | Rambus Inc. | Generating interface adjustment signals in a device-to-device interconnection system |
US7335976B2 (en) | 2005-05-25 | 2008-02-26 | International Business Machines Corporation | Crosstalk reduction in electrical interconnects using differential signaling |
US7656321B2 (en) | 2005-06-02 | 2010-02-02 | Rambus Inc. | Signaling system |
US20070030796A1 (en) | 2005-08-08 | 2007-02-08 | Nokia Corporation | Multicarrier modulation with enhanced frequency coding |
US7808883B2 (en) | 2005-08-08 | 2010-10-05 | Nokia Corporation | Multicarrier modulation with enhanced frequency coding |
US7808456B2 (en) | 2005-09-02 | 2010-10-05 | Ricktek Technology Corp. | Driving system and method for an electroluminescent display |
US7570704B2 (en) | 2005-11-30 | 2009-08-04 | Intel Corporation | Transmitter architecture for high-speed communications |
US7372390B2 (en) | 2006-02-10 | 2008-05-13 | Oki Electric Industry Co., Ltd | Analog-digital converter circuit |
US20070260965A1 (en) | 2006-03-09 | 2007-11-08 | Schmidt Brian K | Error detection in physical interfaces for point-to-point communications between integrated circuits |
US7694204B2 (en) | 2006-03-09 | 2010-04-06 | Silicon Image, Inc. | Error detection in physical interfaces for point-to-point communications between integrated circuits |
US7356213B1 (en) | 2006-03-28 | 2008-04-08 | Sun Microsystems, Inc. | Transparent switch using optical and electrical proximity communication |
US8310389B1 (en) | 2006-04-07 | 2012-11-13 | Marvell International Ltd. | Hysteretic inductive switching regulator with power supply compensation |
US20070263711A1 (en) | 2006-04-26 | 2007-11-15 | Theodor Kramer Gerhard G | Operating DSL subscriber lines |
US20070265533A1 (en) | 2006-05-12 | 2007-11-15 | Bao Tran | Cuffless blood pressure monitoring appliance |
US20070283210A1 (en) | 2006-06-02 | 2007-12-06 | Nec Laboratories America, Inc. | Design of Spherical Lattice Codes for Lattice and Lattice-Reduction-Aided Decoders |
US8091006B2 (en) | 2006-06-02 | 2012-01-03 | Nec Laboratories America, Inc. | Spherical lattice codes for lattice and lattice-reduction-aided decoders |
EP2039221A1 (en) | 2006-07-08 | 2009-03-25 | Telefonaktiebolaget L M Ericsson (publ) | Crosstalk cancellation using load impedence measurements |
US20080013622A1 (en) | 2006-07-13 | 2008-01-17 | Yiliang Bao | Video coding with fine granularity scalability using cycle-aligned fragments |
US7933770B2 (en) | 2006-07-14 | 2011-04-26 | Siemens Audiologische Technik Gmbh | Method and device for coding audio data based on vector quantisation |
US8295250B2 (en) | 2006-07-24 | 2012-10-23 | Qualcomm Incorporated | Code interleaving for a structured code |
US20080104374A1 (en) | 2006-10-31 | 2008-05-01 | Motorola, Inc. | Hardware sorter |
US20080159448A1 (en) | 2006-12-29 | 2008-07-03 | Texas Instruments, Incorporated | System and method for crosstalk cancellation |
US20080169846A1 (en) | 2007-01-11 | 2008-07-17 | Northrop Grumman Corporation | High efficiency NLTL comb generator using time domain waveform synthesis technique |
US7462956B2 (en) | 2007-01-11 | 2008-12-09 | Northrop Grumman Space & Mission Systems Corp. | High efficiency NLTL comb generator using time domain waveform synthesis technique |
US8064535B2 (en) | 2007-03-02 | 2011-11-22 | Qualcomm Incorporated | Three phase and polarity encoded serial interface |
US20080284524A1 (en) | 2007-03-05 | 2008-11-20 | Toshiba America Electronic Components, Inc. | Phase Locked Loop Circuit Having Regulator |
US7616075B2 (en) | 2007-03-05 | 2009-11-10 | Kabushiki Kaisha Toshiba | Phase locked loop circuit having regulator |
US20100104047A1 (en) | 2007-04-12 | 2010-04-29 | Peng Chen | Multiple-antenna space multiplexing system using enhancement signal detection |
US8199863B2 (en) | 2007-04-12 | 2012-06-12 | Samsung Electronics Co., Ltd | Multiple-antenna space multiplexing system using enhancement signal detection and method thereof |
US20100180143A1 (en) | 2007-04-19 | 2010-07-15 | Rambus Inc. | Techniques for improved timing control of memory devices |
US20080273623A1 (en) | 2007-05-03 | 2008-11-06 | Samsung Electronics Co., Ltd. | System and method for selectively performing single-ended and differential signaling |
US8050332B2 (en) | 2007-05-03 | 2011-11-01 | Samsung Electronics Co., Ltd. | System and method for selectively performing single-ended and differential signaling |
US8649460B2 (en) | 2007-06-05 | 2014-02-11 | Rambus Inc. | Techniques for multi-wire encoding with an embedded clock |
US8649840B2 (en) | 2007-06-07 | 2014-02-11 | Microchips, Inc. | Electrochemical biosensors and arrays |
US20090059782A1 (en) | 2007-08-29 | 2009-03-05 | Rgb Systems, Inc. | Method and apparatus for extending the transmission capability of twisted pair communication systems |
US8289914B2 (en) | 2007-09-27 | 2012-10-16 | Beijing Xinwei Telecom Technology Inc. | Signal transmission method and apparatus used in OFDMA wireless communication system |
US8159375B2 (en) | 2007-10-01 | 2012-04-17 | Rambus Inc. | Simplified receiver for use in multi-wire communication |
US9197470B2 (en) | 2007-10-05 | 2015-11-24 | Innurvation, Inc. | Data transmission via multi-path channels using orthogonal multi-frequency signals with differential phase shift keying modulation |
US20090092196A1 (en) | 2007-10-05 | 2009-04-09 | Innurvation, Inc. | Data Transmission Via Multi-Path Channels Using Orthogonal Multi-Frequency Signals With Differential Phase Shift Keying Modulation |
US8279094B2 (en) | 2007-10-24 | 2012-10-02 | Rambus Inc. | Encoding and decoding techniques with improved timing margin |
US7899653B2 (en) | 2007-10-30 | 2011-03-01 | Micron Technology, Inc. | Matrix modeling of parallel data structures to facilitate data encoding and/or jittery signal generation |
US8245094B2 (en) | 2007-11-20 | 2012-08-14 | California Institute of Technology Texas A & M | Rank modulation for flash memories |
US20090132758A1 (en) | 2007-11-20 | 2009-05-21 | California Institute Of Technology | Rank modulation for flash memories |
US8149906B2 (en) | 2007-11-30 | 2012-04-03 | Nec Corporation | Data transfer between chips in a multi-chip semiconductor device with an increased data transfer speed |
US8159376B2 (en) | 2007-12-07 | 2012-04-17 | Rambus Inc. | Encoding and decoding techniques for bandwidth-efficient communication |
US20100296556A1 (en) | 2007-12-14 | 2010-11-25 | Vodafone Holding Gmbh | Method and transceiver using blind channel estimation |
US20090154500A1 (en) | 2007-12-17 | 2009-06-18 | Wael William Diab | Method And System For Energy Efficient Signaling For 100MBPS Ethernet Using A Subset Technique |
US8588254B2 (en) | 2007-12-17 | 2013-11-19 | Broadcom Corporation | Method and system for energy efficient signaling for 100mbps Ethernet using a subset technique |
US20100309964A1 (en) | 2007-12-19 | 2010-12-09 | Rambus Inc. | Asymmetric communication on shared links |
US8588280B2 (en) | 2007-12-19 | 2013-11-19 | Rambus Inc. | Asymmetric communication on shared links |
US8253454B2 (en) | 2007-12-21 | 2012-08-28 | Realtek Semiconductor Corp. | Phase lock loop with phase interpolation by reference clock and method for the same |
WO2009084121A1 (en) | 2007-12-28 | 2009-07-09 | Nec Corporation | Signal processing for multi-sectored wireless communications system and method thereof |
US20090185636A1 (en) | 2008-01-23 | 2009-07-23 | Sparsense, Inc. | Parallel and adaptive signal processing |
US8055095B2 (en) | 2008-01-23 | 2011-11-08 | Sparsense, Inc. | Parallel and adaptive signal processing |
US20090193159A1 (en) | 2008-01-29 | 2009-07-30 | Yu Li | Bus encoding/decoding method and bus encoder/decoder |
US8085172B2 (en) | 2008-01-29 | 2011-12-27 | International Business Machines Corporation | Bus encoding/decoding method and bus encoder/decoder |
US20100296550A1 (en) | 2008-01-31 | 2010-11-25 | Commissar. A L'energ. Atom. Et Aux Energ. Altern. | Method of space time coding with low papr for multiple antenna communication system of the uwb pulse type |
US8218670B2 (en) | 2008-01-31 | 2012-07-10 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Method of space time coding with low papr for multiple antenna communication system of the UWB pulse type |
US7841909B2 (en) | 2008-02-12 | 2010-11-30 | Adc Gmbh | Multistage capacitive far end crosstalk compensation arrangement |
US7804361B2 (en) | 2008-02-22 | 2010-09-28 | Samsung Electronics, Co., Ltd. | Low noise amplifier |
US20090212861A1 (en) | 2008-02-22 | 2009-08-27 | Samsung Electronics Co., Ltd. | Low noise amplifier |
CN101478286A (en) | 2008-03-03 | 2009-07-08 | 锐迪科微电子(上海)有限公司 | Square wave-sine wave signal converting method and converting circuit |
US8462891B2 (en) | 2008-03-06 | 2013-06-11 | Rambus Inc. | Error detection and offset cancellation during multi-wire communication |
US20110051854A1 (en) | 2008-03-06 | 2011-03-03 | Rambus Inc. | Error detection and offset cancellation during multi-wire communication |
US8577284B2 (en) | 2008-03-11 | 2013-11-05 | Electronics And Telecommunications Research Institute | Cooperative reception diversity apparatus and method based on signal point rearrangement or superposition modulation in relay system |
US20110014865A1 (en) | 2008-03-11 | 2011-01-20 | Electronics And Telecommunications Research Institute | Cooperative reception diversity apparatus and method based on signal point rearrangement or superposition modulation in relay system |
US8831440B2 (en) | 2008-06-20 | 2014-09-09 | Huawei Technologies Co., Ltd. | Method and device for generating optical signals |
US20110127990A1 (en) | 2008-06-20 | 2011-06-02 | Rambus Inc. | Frequency responsive bus coding |
US20110084737A1 (en) | 2008-06-20 | 2011-04-14 | Rambus Inc. | Frequency responsive bus coding |
US8451913B2 (en) | 2008-06-20 | 2013-05-28 | Rambus Inc. | Frequency responsive bus coding |
US8498344B2 (en) | 2008-06-20 | 2013-07-30 | Rambus Inc. | Frequency responsive bus coding |
US20090323864A1 (en) | 2008-06-30 | 2009-12-31 | Telefonaktiebolaget Lm Ericsson (Publ) | Single ended multiband feedback linearized rf amplifier and mixer with dc-offset and im2 suppression feedback loop |
US8443223B2 (en) | 2008-07-27 | 2013-05-14 | Rambus Inc. | Method and system for balancing receive-side supply load |
US20100023838A1 (en) | 2008-07-28 | 2010-01-28 | Broadcom Corporation | Quasi-cyclic LDPC (Low Density Parity Check) code construction |
US8687968B2 (en) | 2008-08-18 | 2014-04-01 | Nippon Telegraph And Telephone Corporation | Vector sum phase shifter, optical transceiver, and control circuit |
US20110150495A1 (en) | 2008-08-18 | 2011-06-23 | Hideyuki Nosaka | Vector sum phase shifter, optical transceiver, and control circuit |
US20100046644A1 (en) | 2008-08-19 | 2010-02-25 | Motorola, Inc. | Superposition coding |
US8520493B2 (en) | 2008-09-22 | 2013-08-27 | Stmicroelectronics (Grenoble) Sas | Device for exchanging data between components of an integrated circuit |
US20110235501A1 (en) | 2008-09-22 | 2011-09-29 | Stmicroelectronics (Grenoble) Sas | Device for exchanging data between components of an integrated circuit |
WO2010031824A1 (en) | 2008-09-22 | 2010-03-25 | Stmicroelectronics (Grenoble) Sas | Device for exchanging data between components of an integrated circuit |
US8442099B1 (en) | 2008-09-25 | 2013-05-14 | Aquantia Corporation | Crosstalk cancellation for a common-mode channel |
US20110072330A1 (en) | 2008-11-26 | 2011-03-24 | Broadcom Corporation | Modified error distance decoding |
US8199849B2 (en) | 2008-11-28 | 2012-06-12 | Electronics And Telecommunications Research Institute | Data transmitting device, data receiving device, data transmitting system, and data transmitting method |
US8649556B2 (en) | 2008-12-30 | 2014-02-11 | Canon Kabushiki Kaisha | Multi-modal object signature |
US8472513B2 (en) | 2009-01-14 | 2013-06-25 | Lsi Corporation | TX back channel adaptation algorithm |
US20100177816A1 (en) | 2009-01-14 | 2010-07-15 | Amaresh Malipatil | Tx back channel adaptation algorithm |
US20100205506A1 (en) | 2009-02-10 | 2010-08-12 | Sony Corporation | Data modulating device and method thereof |
US8365035B2 (en) | 2009-02-10 | 2013-01-29 | Sony Corporation | Data modulating device and method thereof |
US8406315B2 (en) | 2009-02-23 | 2013-03-26 | Institute For Information Industry | Signal transmission apparatus, transmission method and computer storage medium thereof |
US8106806B2 (en) | 2009-04-20 | 2012-01-31 | Sony Corporation | AD converter |
US8437440B1 (en) | 2009-05-28 | 2013-05-07 | Marvell International Ltd. | PHY frame formats in a system with more than four space-time streams |
US8406316B2 (en) | 2009-06-16 | 2013-03-26 | Sony Corporation | Information processing apparatus and mode switching method |
US20120161945A1 (en) | 2009-07-20 | 2012-06-28 | National Ict Australia Limited | Neuro-stimulation |
US8780687B2 (en) | 2009-07-20 | 2014-07-15 | Lantiq Deutschland Gmbh | Method and apparatus for vectored data communication |
US9020049B2 (en) | 2009-12-30 | 2015-04-28 | Sony Corporation | Communications system using beamforming |
US20120257683A1 (en) | 2009-12-30 | 2012-10-11 | Sony Corporation | Communications system using beamforming |
US20130051162A1 (en) | 2010-03-24 | 2013-02-28 | Rambus Inc. | Coded differential intersymbol interference reduction |
WO2011119359A2 (en) | 2010-03-24 | 2011-09-29 | Rambus Inc. | Coded differential intersymbol interference reduction |
US9165615B2 (en) | 2010-03-24 | 2015-10-20 | Rambus Inc. | Coded differential intersymbol interference reduction |
US20110268225A1 (en) | 2010-04-30 | 2011-11-03 | Ecole Polytechnique Federale De Lausanne (Epfl) | Orthogonal differential vector signaling |
US9288089B2 (en) | 2010-04-30 | 2016-03-15 | Ecole Polytechnique Federale De Lausanne (Epfl) | Orthogonal differential vector signaling |
US9362974B2 (en) | 2010-05-20 | 2016-06-07 | Kandou Labs, S.A. | Methods and systems for high bandwidth chip-to-chip communications interface |
US20140016724A1 (en) | 2010-05-20 | 2014-01-16 | École Polytechnique Fédérale De Lausanne (Epfl) | Power and Pin Efficient Chip-to-Chip Communications with Common-Mode Rejection and SSO Resilience |
US20140198837A1 (en) | 2010-05-20 | 2014-07-17 | Kandou Labs, S.A. | Methods and Systems for Chip-to-Chip Communication with Reduced Simultaneous Switching Noise |
US20130010892A1 (en) | 2010-05-20 | 2013-01-10 | Kandou Technologies SA | Methods and Systems for Low-power and Pin-efficient Communications with Superposition Signaling Codes |
US8989317B1 (en) | 2010-05-20 | 2015-03-24 | Kandou Labs, S.A. | Crossbar switch decoder for vector signaling codes |
US9015566B2 (en) | 2010-05-20 | 2015-04-21 | École Polytechnique Fédérale de Lausanne | Power and pin efficient chip-to-chip communications with common-mode rejection and SSO resilience |
US9288082B1 (en) | 2010-05-20 | 2016-03-15 | Kandou Labs, S.A. | Circuits for efficient detection of vector signaling codes for chip-to-chip communication using sums of differences |
US9077386B1 (en) | 2010-05-20 | 2015-07-07 | Kandou Labs, S.A. | Methods and systems for selection of unions of vector signaling codes for power and pin efficient chip-to-chip communication |
US9124557B2 (en) | 2010-05-20 | 2015-09-01 | Kandou Labs, S.A. | Methods and systems for chip-to-chip communication with reduced simultaneous switching noise |
US20110291758A1 (en) | 2010-05-28 | 2011-12-01 | Xilinx, Inc. | Differential comparator circuit having a wide common mode input range |
US8578246B2 (en) | 2010-05-31 | 2013-11-05 | International Business Machines Corporation | Data encoding in solid-state storage devices |
US20110299555A1 (en) | 2010-06-04 | 2011-12-08 | Ecole Polytechnique Federale De Lausanne | Error control coding for orthogonal differential vector signaling |
US8539318B2 (en) | 2010-06-04 | 2013-09-17 | École Polytechnique Fédérale De Lausanne (Epfl) | Power and pin efficient chip-to-chip communications with common-mode rejection and SSO resilience |
US20110302478A1 (en) | 2010-06-04 | 2011-12-08 | Ecole Polytechnique F+e,acu e+ee d+e,acu e+ee rale De Lausanne (EPFL) | Power and pin efficient chip-to-chip communications with common-mode rejection and sso resilience |
US20110317559A1 (en) | 2010-06-25 | 2011-12-29 | Kern Andras | Notifying a Controller of a Change to a Packet Forwarding Configuration of a Network Element Over a Communication Channel |
US8897134B2 (en) | 2010-06-25 | 2014-11-25 | Telefonaktiebolaget L M Ericsson (Publ) | Notifying a controller of a change to a packet forwarding configuration of a network element over a communication channel |
US20110317587A1 (en) | 2010-06-27 | 2011-12-29 | Valens Semiconductor Ltd. | Methods and systems for time sensitive networks |
US9331962B2 (en) | 2010-06-27 | 2016-05-03 | Valens Semiconductor Ltd. | Methods and systems for time sensitive networks |
US20120008662A1 (en) | 2010-07-06 | 2012-01-12 | David Phillip Gardiner | Method and Apparatus for Measurement of Temperature and Rate of Change of Temperature |
US8547272B2 (en) | 2010-08-18 | 2013-10-01 | Analog Devices, Inc. | Charge sharing analog computation circuitry and applications |
US20120063291A1 (en) | 2010-09-09 | 2012-03-15 | The Regents Of The University Of California | Cdma-based crosstalk cancellation for on-chip global high-speed links |
US8773964B2 (en) | 2010-09-09 | 2014-07-08 | The Regents Of The University Of California | CDMA-based crosstalk cancellation for on-chip global high-speed links |
US8429495B2 (en) | 2010-10-19 | 2013-04-23 | Mosaid Technologies Incorporated | Error detection and correction codes for channels and memories with incomplete error characteristics |
US20120152901A1 (en) | 2010-12-17 | 2012-06-21 | Mattson Technology, Inc. | Inductively coupled plasma source for plasma processing |
US20150078479A1 (en) | 2010-12-22 | 2015-03-19 | Apple Inc. | Methods and apparatus for the intelligent association of control symbols |
US8620166B2 (en) | 2011-01-07 | 2013-12-31 | Raytheon Bbn Technologies Corp. | Holevo capacity achieving joint detection receiver |
US20120213299A1 (en) | 2011-02-17 | 2012-08-23 | ECOLE POLYTECHNIQUE FéDéRALE DE LAUSANNE | Methods and systems for noise resilient, pin-efficient and low power communications with sparse signaling codes |
US8649445B2 (en) | 2011-02-17 | 2014-02-11 | École Polytechnique Fédérale De Lausanne (Epfl) | Methods and systems for noise resilient, pin-efficient and low power communications with sparse signaling codes |
US8949693B2 (en) | 2011-03-04 | 2015-02-03 | Hewlett-Packard Development Company, L.P. | Antipodal-mapping-based encoders and decoders |
US20140198841A1 (en) | 2011-06-16 | 2014-07-17 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Context intialization in entropy coding |
US8593305B1 (en) | 2011-07-05 | 2013-11-26 | Kandou Labs, S.A. | Efficient processing and detection of balanced codes |
US9281785B2 (en) | 2011-08-11 | 2016-03-08 | Telefonaktiebolaget L M Ericsson (Publ) | Low-noise amplifier, receiver, method and computer program |
US20130049863A1 (en) | 2011-08-29 | 2013-02-28 | Mao-Cheng Chiu | Multi-Input Differential Amplifier With Dynamic Transconductance Compensation |
US20140226455A1 (en) | 2011-09-07 | 2014-08-14 | Commscope, Inc. Of North Carolina | Communications Connectors Having Frequency Dependent Communications Paths and Related Methods |
US20150199543A1 (en) | 2011-12-15 | 2015-07-16 | Marvell World Trade Ltd. | Method and apparatus for detecting an output power of a radio frequency transmitter |
US9292716B2 (en) | 2011-12-15 | 2016-03-22 | Marvell World Trade Ltd. | Method and apparatus for detecting an output power of a radio frequency transmitter using a multiplier circuit |
US8520348B2 (en) | 2011-12-22 | 2013-08-27 | Lsi Corporation | High-swing differential driver using low-voltage transistors |
US20130163126A1 (en) | 2011-12-22 | 2013-06-27 | Lsi Corporation | High-swing differential driver using low-voltage transistors |
US20130229294A1 (en) | 2012-03-05 | 2013-09-05 | Kabushiki Kaisha Toshiba | Analog-to-digital converter |
US8755426B1 (en) | 2012-03-15 | 2014-06-17 | Kandou Labs, S.A. | Rank-order equalization |
US20130259113A1 (en) | 2012-03-29 | 2013-10-03 | Rajendra Kumar | Systems and methods for adaptive blind mode equalization |
US8711919B2 (en) | 2012-03-29 | 2014-04-29 | Rajendra Kumar | Systems and methods for adaptive blind mode equalization |
US8604879B2 (en) * | 2012-03-30 | 2013-12-10 | Integrated Device Technology Inc. | Matched feedback amplifier with improved linearity |
US8638241B2 (en) | 2012-04-09 | 2014-01-28 | Nvidia Corporation | 8b/9b decoding for reducing crosstalk on a high speed parallel bus |
US8718184B1 (en) | 2012-05-03 | 2014-05-06 | Kandou Labs S.A. | Finite state encoders and decoders for vector signaling codes |
US8951072B2 (en) | 2012-09-07 | 2015-02-10 | Commscope, Inc. Of North Carolina | Communication jacks having longitudinally staggered jackwire contacts |
US9093791B2 (en) | 2012-11-05 | 2015-07-28 | Commscope, Inc. Of North Carolina | Communications connectors having crosstalk stages that are implemented using a plurality of discrete, time-delayed capacitive and/or inductive components that may provide enhanced insertion loss and/or return loss performance |
US20150010044A1 (en) | 2012-11-07 | 2015-01-08 | Broadcom Corporation | Transceiver including a high latency communication channel and a low latency communication channel |
US9306621B2 (en) | 2012-11-07 | 2016-04-05 | Broadcom Corporation | Transceiver including a high latency communication channel and a low latency communication channel |
US8975948B2 (en) | 2012-11-15 | 2015-03-10 | Texas Instruments Incorporated | Wide common mode range transmission gate |
US20140132331A1 (en) | 2012-11-15 | 2014-05-15 | Texas Instruments Incorporated | Wide Common Mode Range Transmission Gate |
US9036764B1 (en) | 2012-12-07 | 2015-05-19 | Rambus Inc. | Clock recovery circuit |
US9069995B1 (en) | 2013-02-21 | 2015-06-30 | Kandou Labs, S.A. | Multiply accumulate operations in the analog domain |
US9172412B2 (en) | 2013-03-11 | 2015-10-27 | Andrew Joo Kim | Reducing electromagnetic radiation emitted from high-speed interconnects |
US20140254730A1 (en) | 2013-03-11 | 2014-09-11 | Andrew Joo Kim | Reducing electromagnetic radiation emitted from high-speed interconnects |
US8879660B1 (en) | 2013-09-10 | 2014-11-04 | Huazhong University Of Science And Technology | Antipodal demodulation method and antipodal demodulator for non-coherent unitary space-time modulation in MIMO wireless communication |
US9106465B2 (en) | 2013-11-22 | 2015-08-11 | Kandou Labs, S.A. | Multiwire linear equalizer for vector signaling code receiver |
US20150146771A1 (en) | 2013-11-22 | 2015-05-28 | Kandou Labs SA | Multiwire Linear Equalizer for Vector Signaling Code Receiver |
US9100232B1 (en) | 2014-02-02 | 2015-08-04 | Kandou Labs, S.A. | Method for code evaluation using ISI ratio |
US20150333940A1 (en) | 2014-05-13 | 2015-11-19 | Kandou Labs SA | Vector Signaling Code with Improved Noise Margin |
US9148087B1 (en) | 2014-05-16 | 2015-09-29 | Kandou Labs, S.A. | Symmetric is linear equalization circuit with increased gain |
US20150381232A1 (en) | 2014-06-25 | 2015-12-31 | Kandou Labs SA | Multilevel Driver for High Speed Chip-to-Chip Communications |
US20160020824A1 (en) | 2014-07-17 | 2016-01-21 | Kandou Labs S.A. | Bus Reversable Orthogonal Differential Vector Signaling Codes |
US20160020796A1 (en) | 2014-07-21 | 2016-01-21 | Kandou Labs SA | Multidrop Data Transfer |
US20160036616A1 (en) | 2014-08-01 | 2016-02-04 | Kandou Labs SA | Orthogonal Differential Vector Signaling Codes with Embedded Clock |
US9374250B1 (en) | 2014-12-17 | 2016-06-21 | Intel Corporation | Wireline receiver circuitry having collaborative timing recovery |
US20160182259A1 (en) | 2014-12-17 | 2016-06-23 | Intel Corporation | Wireline receiver circuitry having collaborative timing recovery |
Non-Patent Citations (49)
Title |
---|
"Introduction to: Analog Computers and the DSPACE System," Course Material ECE 5230 Spring 2008, Utah State University, www.coursehero.com, 12 pages. |
Abbasfar, A., "Generalized Differential Vector Signaling", IEEE International Conference on Communications, ICC 09, (Jun. 14, 2009), pp. 1-5. |
BROWN L., EYUBOGLU M.V., FORNEY G.D., HUMBLET P.A., KIM D.-Y., MEHRABANZAD S.: "V.92: The Last Dial-Up Modem?", IEEE TRANSACTIONS ON COMMUNICATIONS., IEEE SERVICE CENTER, PISCATAWAY, NJ. USA., vol. 52, no. 1, 1 January 2004 (2004-01-01), PISCATAWAY, NJ. USA., pages 54 - 61, XP011106836, ISSN: 0090-6778, DOI: 10.1109/TCOMM.2003.822168 |
Brown, L., et al., "V.92: The Last Dial-Up Modem?", IEEE Transactions on Communications, IEEE Service Center, Piscataway, NJ., USA, vol. 52, No. 1, Jan. 1, 2004, pp. 54-61. XP011106836, ISSN: 0090-6779, DOI: 10.1109/tcomm.2003.822168, pp. 55-59. |
Burr, "Spherical Codes for M-ARY Code Shift Keying", University of York, Apr. 2, 1989, pp. 67-72, United Kingdom. |
Cheng, W., "Memory Bus Encoding for Low Power: A Tutorial", Quality Electronic Design, IEEE, International Symposium on Mar. 26-28, 2001, pp. 199-204, Piscataway, NJ. |
Clayton, P., "Introduction to Electromagnetic Compatibility", Wiley-Interscience, 2006. |
Counts, L., et al., "One-Chip Slide Rule Works with Logs, Antilogs for Real-Time Processing," Analog Devices Computational Products 6, Reprinted from Electronic Design, May 2, 1985, 7 pages. |
Dasilva et al., "Multicarrier Orthogonal CDMA Signals for Quasi-Synchronous Communication Systems", IEEE Journal on Selected Areas in Communications, vol. 12, No. 5 (Jun. 1, 1994), pp. 842-852. |
Design Brief 208 Using the Anadigm Multiplier CAM, Copyright 2002 Anadigm, 6 pages. |
Ericson, T., et al., "Spherical Codes Generated by Binary Partitions of Symmetric Pointsets", IEEE Transactions on Information Theory, vol. 41, No. 1, Jan. 1995, pp. 107-129. |
Farzan, K, et al., "Coding Schemes for Chip-to-Chip Interconnect Applications", IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 14, No. 4, Apr. 2006, pp. 393-406. |
Grahame, J., "Vintage Analog Computer Kits," posted on Aug. 25, 2006 in Classic Computing, 2 pages, http.//www.retrothing.com/2006/08/classic—analog—.html. |
Healey A. et al., "A Comparison of 25 Gbps NRZ & PAM-4 Modulation used in Legacy & Premium Backplane Channels", DesignCon 2012, 16 pages. |
Hlolden, B., "Simulation results for NRZ, ENRZ & PAM-4 on 16-wire full-sized 400GE backplanes", IEEE 802.3 400GE Study Group, Sep. 2, 2013, 19 pages, www.ieee802.0rg/3/400GSG/publiv/13—09/holden—400—01—0913.pdf. |
Holden, B., "An exploration of the technical feasibility of the major technology options for 400GE backplanes", IEEE 802.3 400GE Study Group, Jul. 16, 2013, 18 pages, http://ieee802.org/3/400GSG/public/13—07/holden—400—01—0713.pdf. |
Holden, B., "Using Ensemble NRZ Coding for 400GE Electrical Interfaces", IEEE 802.3 400GE Study Group, May 17, 2013, 24 pages, http://www.ieee802.org/3/400GSG/public/13—05/holden—400—01—0513—pdf. |
International Search Report and Written Opinion for PCT/EP2011/059279 mailed Sep. 22, 2011. |
International Search Report and Written Opinion for PCT/EP2011/074219 mailed Jul. 4, 2012. |
International Search Report and Written Opinion for PCT/EP2012/052767 mailed May 11, 2012. |
International Search Report and Written Opinion for PCT/US14/052986 mailed Nov. 24, 2014. |
International Search Report and Written Opinion from PCT/US2014/034220 mailed Aug. 21, 2014. |
International Search Report and Written Opinion of the International Searching Authority, mailed Jul. 14, 2011 in International Patent Application S.N. PCT/EP2011/002170, 10 pages. |
International Search Report and Written Opinion of the International Searching Authority, mailed Nov. 5, 2012, in International Patent Application S.N. PCT/EP2012/052767, 7 pages. |
International Search Report for PCT/US2014/053563, dated Nov. 11, 2014, 2 pages. |
Jiang, A., et al., "Rank Modulation for Flash Memories", IEEE Transactions of Information Theory, Jun. 2006, vol. 55, No. 6, pp. 2659-2673. |
Loh, M., et al., "A 3x9 Gb/s Shared, All-Digital CDR for High-Speed, High-Density I/O", Matthew Loh, IEEE Journal of Solid-State Circuits, Vo. 47, No. 3, Mar. 2012. |
Notification of Transmittal of International Search Report and the Written Opinion of the International Searching Authority, for PCT/US2015/018363, mailed Jun. 18, 2015, 13 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for PCT/EP2013/002681, dated Feb. 25, 2014, 15 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, dated Mar. 3, 2015, for PCT/US2014/066893, 9 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, for PCT/US2014/015840, dated May 20, 2014. 11 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, for PCT/US2014/043965, dated Oct. 22, 2014, 10 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, for PCT/US2015/037466, dated Nov. 19, 2015. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, for PCT/US2015/039952, dated Sep. 23, 2015, 8 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, for PCT/US2015/041161, dated Oct. 7, 2015, 8 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, for PCT/US2015/043463, dated Oct. 16, 2015, 8 pages. |
Oh, et al., Pseudo-Differential Vector Signaling for Noise Reduction in Single-Ended Signaling, DesignCon 2009. |
Poulton, et al., "Multiwire Differential Signaling", UNC-CH Department of Computer Science Version 1.1, Aug. 6, 2003. |
Schneider, J., et al., "ELEC301 Project: Building an Analog Computer," Dec. 19, 1999, 8 pages, http://www.clear.rice.edu/elec301/Projects99/anlgcomp/. |
She et al., "A Framework of Cross-Layer Superposition Coded Multicast for Robust IPTV Services over WiMAX," IEEE Communications Society subject matter experts for publication in the WCNC 2008 proceedings, Mar. 31, 2008-Apr. 3, 2008, pp. 3139-3144. |
Skliar et al., A Method for the Analysis of Signals: the Square-Wave Method, Mar. 2008, Revista de Matematica: Teoria y Aplicationes, pp. 109-129. |
Slepian, D., "Premutation Modulation", IEEE, vol. 52, No. 3, Mar. 1965, pp. 228-236. |
Stan, M., et al., "Bus-Invert Coding for Low-Power I/O, IEEE Transactions on Very Large Scale Integration (VLSI) Systems", vol. 3, No. 1, Mar. 1995, pp. 49-58. |
Tallini, L., et al., "Transmission Time Analysis for the Parallel Asynchronous Communication Scheme", IEEE Transactions on Computers, vol. 52, No. 5, May 2003, pp. 558-571. |
Tierney, J., et al., "A digital frequency synthesizer," Audio and Electroacoustics, IEEE Transactions, Mar. 1971, pp. 48-57, vol. 19, Issue 1, 1 page Abstract from http://ieeexplore. |
Wang et al., "Applying CDMA Technique to Network-on-Chip", IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 15, No. 10 (Oct. 1, 2007), pp. 1091-1100. |
Zouhair Ben-Neticha et al, "The streTched-Golay and other codes for high-SNR finite-delay quantization of the Gaussian source at 1/2 Bit per sample", IEEE Transactions on Communications, vol. 38, No. 12 Dec. 1, 1990, pp. 2089-2093, XP000203339, ISSN: 0090-6678, DOI: 10.1109/26.64647. |
Zouhair Ben-Neticha et al, "The streTched-Golay and other codes for high-SNR fnite-delay quantization of the Gaussian source at 1/2 Bit per sample", IEEE Transactions on Communications, vol. 38, No. 12 Dec. 1, 1990, pp. 2089-2093, XP000203339, ISSN: 0090-6678, DOI: 10.1109/26.64647. |
ZOUHAIR BEN-NETICHA, MABILLEAU P., ADOUL J. P.: "THE "STRETCHED"-GOLAY AND OTHER CODES FOR HIGH-SNR FINITE-DELAY QUANTIZATION OF THE GAUSSIAN SOURCE AT 1/2 BIT PER SAMPLE.", IEEE TRANSACTIONS ON COMMUNICATIONS., IEEE SERVICE CENTER, PISCATAWAY, NJ. USA., vol. 38., no. 12., 1 December 1990 (1990-12-01), PISCATAWAY, NJ. USA., pages 2089 - 2093., XP000203339, ISSN: 0090-6778, DOI: 10.1109/26.64647 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9939467B1 (en) * | 2016-10-14 | 2018-04-10 | Analog Devices, Inc. | Wide-range precision RF peak detector |
US20180106840A1 (en) * | 2016-10-14 | 2018-04-19 | Analog Devices, Inc. | Wide-range precision rf peak detector |
Also Published As
Publication number | Publication date |
---|---|
US20160072449A1 (en) | 2016-03-10 |
US20170040965A1 (en) | 2017-02-09 |
US9148087B1 (en) | 2015-09-29 |
US9419564B2 (en) | 2016-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9692381B2 (en) | Symmetric linear equalization circuit with increased gain | |
US10560293B2 (en) | Circuits for efficient detection of vector signaling codes for chip-to-chip communication | |
US9419828B2 (en) | Multiwire linear equalizer for vector signaling code receiver | |
US11183982B2 (en) | Voltage sampler driver with enhanced high-frequency gain | |
US8588280B2 (en) | Asymmetric communication on shared links | |
US10333741B2 (en) | Vector signaling codes for densely-routed wire groups | |
US9071476B2 (en) | Methods and systems for high bandwidth chip-to-chip communications interface | |
CN106797352B (en) | High signal-to-noise characteristic vector signaling code | |
US9577664B2 (en) | Efficient processing and detection of balanced codes | |
Abbasfar | Generalized differential vector signaling | |
KR102306505B1 (en) | Methods and systems for high bandwidth communications interface | |
US8963641B1 (en) | Source-series terminated differential line driver circuit | |
EP1445902A1 (en) | Low voltage differential signaling (LVDS) receiver | |
KR20160011751A (en) | On-chip inductor sharing technique for bandwidth extension of optical receiver and optical receiving apparatus thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 8 |