US5241003A - Ashless dispersants formed from substituted acylating agents and their production and use - Google Patents
Ashless dispersants formed from substituted acylating agents and their production and use Download PDFInfo
- Publication number
- US5241003A US5241003A US07/895,001 US89500192A US5241003A US 5241003 A US5241003 A US 5241003A US 89500192 A US89500192 A US 89500192A US 5241003 A US5241003 A US 5241003A
- Authority
- US
- United States
- Prior art keywords
- acid
- reaction
- composition
- succinic
- acylating agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000003795 chemical substances by application Substances 0.000 title claims abstract description 147
- 239000002270 dispersing agent Substances 0.000 title description 39
- 238000004519 manufacturing process Methods 0.000 title description 10
- 239000000203 mixture Substances 0.000 claims abstract description 246
- 238000006243 chemical reaction Methods 0.000 claims abstract description 144
- 238000000034 method Methods 0.000 claims abstract description 112
- 239000000376 reactant Substances 0.000 claims abstract description 105
- 229920000642 polymer Polymers 0.000 claims abstract description 84
- 229920002367 Polyisobutene Polymers 0.000 claims abstract description 80
- 150000001412 amines Chemical class 0.000 claims abstract description 76
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 52
- 230000002378 acidificating effect Effects 0.000 claims abstract description 52
- 229920000768 polyamine Polymers 0.000 claims abstract description 51
- 125000001931 aliphatic group Chemical group 0.000 claims abstract description 38
- 230000008569 process Effects 0.000 claims abstract description 38
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 36
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims abstract description 32
- 239000011541 reaction mixture Substances 0.000 claims abstract description 28
- 150000001336 alkenes Chemical class 0.000 claims abstract description 22
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims abstract description 15
- 125000004430 oxygen atom Chemical group O* 0.000 claims abstract description 15
- 150000005846 sugar alcohols Polymers 0.000 claims abstract description 14
- 125000005843 halogen group Chemical group 0.000 claims abstract description 12
- -1 alkenyl cyanide Chemical compound 0.000 claims description 176
- 239000002253 acid Substances 0.000 claims description 152
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 claims description 58
- 150000001875 compounds Chemical class 0.000 claims description 57
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 47
- 229910052717 sulfur Inorganic materials 0.000 claims description 45
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 40
- 239000011593 sulfur Substances 0.000 claims description 37
- 150000008064 anhydrides Chemical class 0.000 claims description 35
- 229910052698 phosphorus Inorganic materials 0.000 claims description 32
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical compound NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 claims description 31
- 239000011574 phosphorus Substances 0.000 claims description 25
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 claims description 24
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 24
- 125000004122 cyclic group Chemical group 0.000 claims description 21
- 239000000446 fuel Substances 0.000 claims description 20
- 150000001299 aldehydes Chemical class 0.000 claims description 19
- 230000001050 lubricating effect Effects 0.000 claims description 19
- QGJOPFRUJISHPQ-UHFFFAOYSA-N Carbon disulfide Chemical compound S=C=S QGJOPFRUJISHPQ-UHFFFAOYSA-N 0.000 claims description 18
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims description 18
- NAGJZTKCGNOGPW-UHFFFAOYSA-N dithiophosphoric acid Chemical compound OP(O)(S)=S NAGJZTKCGNOGPW-UHFFFAOYSA-N 0.000 claims description 17
- 239000007788 liquid Substances 0.000 claims description 17
- 150000001639 boron compounds Chemical class 0.000 claims description 16
- 125000002947 alkylene group Chemical group 0.000 claims description 14
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 claims description 14
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 claims description 12
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 claims description 11
- LSHROXHEILXKHM-UHFFFAOYSA-N n'-[2-[2-[2-(2-aminoethylamino)ethylamino]ethylamino]ethyl]ethane-1,2-diamine Chemical compound NCCNCCNCCNCCNCCN LSHROXHEILXKHM-UHFFFAOYSA-N 0.000 claims description 11
- 229960001124 trientine Drugs 0.000 claims description 11
- 229920001281 polyalkylene Polymers 0.000 claims description 10
- 229920005862 polyol Polymers 0.000 claims description 10
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims description 9
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 9
- CYQAYERJWZKYML-UHFFFAOYSA-N phosphorus pentasulfide Chemical compound S1P(S2)(=S)SP3(=S)SP1(=S)SP2(=S)S3 CYQAYERJWZKYML-UHFFFAOYSA-N 0.000 claims description 9
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 claims description 8
- 150000004820 halides Chemical class 0.000 claims description 8
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 claims description 7
- 239000004327 boric acid Substances 0.000 claims description 7
- 230000036961 partial effect Effects 0.000 claims description 7
- 150000003852 triazoles Chemical class 0.000 claims description 7
- ZRALSGWEFCBTJO-UHFFFAOYSA-N Guanidine Chemical compound NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 claims description 6
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 claims description 6
- 125000005442 diisocyanate group Chemical group 0.000 claims description 6
- 150000002576 ketones Chemical class 0.000 claims description 6
- 150000003077 polyols Chemical class 0.000 claims description 6
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 claims description 6
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 claims description 5
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 5
- 239000005977 Ethylene Substances 0.000 claims description 5
- 239000004698 Polyethylene Substances 0.000 claims description 5
- PXJJSXABGXMUSU-UHFFFAOYSA-N disulfur dichloride Chemical compound ClSSCl PXJJSXABGXMUSU-UHFFFAOYSA-N 0.000 claims description 5
- 150000002903 organophosphorus compounds Chemical class 0.000 claims description 5
- 229920000573 polyethylene Polymers 0.000 claims description 5
- 150000003463 sulfur Chemical class 0.000 claims description 5
- OROGUZVNAFJPHA-UHFFFAOYSA-N 3-hydroxy-2,4-dimethyl-2H-thiophen-5-one Chemical compound CC1SC(=O)C(C)=C1O OROGUZVNAFJPHA-UHFFFAOYSA-N 0.000 claims description 3
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 claims description 3
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 claims description 3
- CTKINSOISVBQLD-UHFFFAOYSA-N Glycidol Chemical compound OCC1CO1 CTKINSOISVBQLD-UHFFFAOYSA-N 0.000 claims description 3
- CHJJGSNFBQVOTG-UHFFFAOYSA-N N-methyl-guanidine Natural products CNC(N)=N CHJJGSNFBQVOTG-UHFFFAOYSA-N 0.000 claims description 3
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 3
- GNVMUORYQLCPJZ-UHFFFAOYSA-M Thiocarbamate Chemical compound NC([S-])=O GNVMUORYQLCPJZ-UHFFFAOYSA-M 0.000 claims description 3
- 239000004202 carbamide Substances 0.000 claims description 3
- DKVNPHBNOWQYFE-UHFFFAOYSA-N carbamodithioic acid Chemical compound NC(S)=S DKVNPHBNOWQYFE-UHFFFAOYSA-N 0.000 claims description 3
- 150000005676 cyclic carbonates Chemical class 0.000 claims description 3
- WASQWSOJHCZDFK-UHFFFAOYSA-N diketene Chemical compound C=C1CC(=O)O1 WASQWSOJHCZDFK-UHFFFAOYSA-N 0.000 claims description 3
- SWSQBOPZIKWTGO-UHFFFAOYSA-N dimethylaminoamidine Natural products CN(C)C(N)=N SWSQBOPZIKWTGO-UHFFFAOYSA-N 0.000 claims description 3
- 239000012990 dithiocarbamate Substances 0.000 claims description 3
- 150000003951 lactams Chemical class 0.000 claims description 3
- 150000007522 mineralic acids Chemical class 0.000 claims description 3
- 235000006408 oxalic acid Nutrition 0.000 claims description 3
- 239000007800 oxidant agent Substances 0.000 claims description 3
- 229920000515 polycarbonate Polymers 0.000 claims description 3
- 239000004417 polycarbonate Substances 0.000 claims description 3
- 229920000647 polyepoxide Polymers 0.000 claims description 3
- 150000003571 thiolactams Chemical class 0.000 claims description 3
- 235000021122 unsaturated fatty acids Nutrition 0.000 claims description 3
- 150000004670 unsaturated fatty acids Chemical class 0.000 claims description 3
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 claims description 2
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical class O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 abstract description 53
- 150000002148 esters Chemical class 0.000 abstract description 49
- 101100386054 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) CYS3 gene Proteins 0.000 abstract 1
- 101150035983 str1 gene Proteins 0.000 abstract 1
- IOQPZZOEVPZRBK-UHFFFAOYSA-N octan-1-amine Chemical class CCCCCCCCN IOQPZZOEVPZRBK-UHFFFAOYSA-N 0.000 description 185
- 239000003921 oil Substances 0.000 description 75
- 235000019198 oils Nutrition 0.000 description 75
- 239000000047 product Substances 0.000 description 63
- 239000011269 tar Substances 0.000 description 55
- 239000000654 additive Substances 0.000 description 46
- 125000004432 carbon atom Chemical group C* 0.000 description 46
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 39
- 239000000463 material Substances 0.000 description 38
- 150000007513 acids Chemical class 0.000 description 36
- 150000001735 carboxylic acids Chemical class 0.000 description 33
- 150000001298 alcohols Chemical class 0.000 description 30
- 239000002199 base oil Substances 0.000 description 30
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 28
- 239000012530 fluid Substances 0.000 description 28
- 230000000996 additive effect Effects 0.000 description 27
- 150000003870 salicylic acids Chemical class 0.000 description 24
- 150000003839 salts Chemical class 0.000 description 24
- 239000007795 chemical reaction product Substances 0.000 description 22
- 229920000098 polyolefin Polymers 0.000 description 22
- 239000000126 substance Substances 0.000 description 22
- 230000015572 biosynthetic process Effects 0.000 description 21
- 125000001183 hydrocarbyl group Chemical group 0.000 description 21
- 150000002989 phenols Chemical class 0.000 description 20
- 239000012141 concentrate Substances 0.000 description 19
- 229920001083 polybutene Polymers 0.000 description 19
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 19
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical class OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 19
- 229960002317 succinimide Drugs 0.000 description 19
- 125000003342 alkenyl group Chemical group 0.000 description 18
- 229910052751 metal Inorganic materials 0.000 description 18
- 239000002184 metal Substances 0.000 description 18
- 229940014800 succinic anhydride Drugs 0.000 description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 18
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 17
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 17
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 17
- 230000007797 corrosion Effects 0.000 description 17
- 238000005260 corrosion Methods 0.000 description 17
- 239000000314 lubricant Substances 0.000 description 17
- 238000002156 mixing Methods 0.000 description 17
- 229910052725 zinc Inorganic materials 0.000 description 17
- 239000011701 zinc Substances 0.000 description 17
- 235000011044 succinic acid Nutrition 0.000 description 16
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 15
- 229930195733 hydrocarbon Natural products 0.000 description 15
- 239000003112 inhibitor Substances 0.000 description 15
- 229910052757 nitrogen Inorganic materials 0.000 description 15
- 239000002904 solvent Substances 0.000 description 15
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 14
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 14
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 14
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 14
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 13
- 239000003085 diluting agent Substances 0.000 description 13
- 238000005227 gel permeation chromatography Methods 0.000 description 13
- 125000004434 sulfur atom Chemical group 0.000 description 13
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 13
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 12
- 150000002430 hydrocarbons Chemical class 0.000 description 12
- 239000002480 mineral oil Substances 0.000 description 12
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 11
- 125000005907 alkyl ester group Chemical group 0.000 description 11
- 239000010949 copper Substances 0.000 description 11
- 239000003599 detergent Substances 0.000 description 11
- 125000001424 substituent group Chemical group 0.000 description 11
- 238000011282 treatment Methods 0.000 description 11
- 239000004215 Carbon black (E152) Substances 0.000 description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 10
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 10
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 10
- 239000003963 antioxidant agent Substances 0.000 description 10
- 125000003118 aryl group Chemical group 0.000 description 10
- 229910052802 copper Inorganic materials 0.000 description 10
- 239000010687 lubricating oil Substances 0.000 description 10
- TYFQFVWCELRYAO-UHFFFAOYSA-N suberic acid Chemical compound OC(=O)CCCCCCC(O)=O TYFQFVWCELRYAO-UHFFFAOYSA-N 0.000 description 10
- 239000001384 succinic acid Substances 0.000 description 10
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 9
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 9
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical compound OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 9
- 239000002585 base Substances 0.000 description 9
- 239000003054 catalyst Substances 0.000 description 9
- 235000010446 mineral oil Nutrition 0.000 description 9
- 239000005077 polysulfide Substances 0.000 description 9
- 229920001021 polysulfide Polymers 0.000 description 9
- 150000008117 polysulfides Polymers 0.000 description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 8
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 8
- 239000011575 calcium Substances 0.000 description 8
- 229910052791 calcium Inorganic materials 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 8
- MIHINWMALJZIBX-UHFFFAOYSA-N cyclohexa-2,4-dien-1-ol Chemical class OC1CC=CC=C1 MIHINWMALJZIBX-UHFFFAOYSA-N 0.000 description 8
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 8
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical compound CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 description 7
- 229910019142 PO4 Inorganic materials 0.000 description 7
- YUWBVKYVJWNVLE-UHFFFAOYSA-N [N].[P] Chemical compound [N].[P] YUWBVKYVJWNVLE-UHFFFAOYSA-N 0.000 description 7
- 150000001342 alkaline earth metals Chemical class 0.000 description 7
- 125000003277 amino group Chemical group 0.000 description 7
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 7
- 235000014113 dietary fatty acids Nutrition 0.000 description 7
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 7
- JRBPAEWTRLWTQC-UHFFFAOYSA-N dodecylamine Chemical compound CCCCCCCCCCCCN JRBPAEWTRLWTQC-UHFFFAOYSA-N 0.000 description 7
- 239000000194 fatty acid Substances 0.000 description 7
- 229930195729 fatty acid Natural products 0.000 description 7
- 239000001530 fumaric acid Substances 0.000 description 7
- 235000011087 fumaric acid Nutrition 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 7
- 235000021317 phosphate Nutrition 0.000 description 7
- 235000011007 phosphoric acid Nutrition 0.000 description 7
- 125000004437 phosphorous atom Chemical group 0.000 description 7
- 150000003141 primary amines Chemical group 0.000 description 7
- 150000003751 zinc Chemical class 0.000 description 7
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 6
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical class OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 6
- 239000003513 alkali Substances 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- SNCZNSNPXMPCGN-UHFFFAOYSA-N butanediamide Chemical class NC(=O)CCC(N)=O SNCZNSNPXMPCGN-UHFFFAOYSA-N 0.000 description 6
- 229920001577 copolymer Polymers 0.000 description 6
- 150000005690 diesters Chemical class 0.000 description 6
- 235000011187 glycerol Nutrition 0.000 description 6
- 229940035429 isobutyl alcohol Drugs 0.000 description 6
- 229910052744 lithium Inorganic materials 0.000 description 6
- 150000002763 monocarboxylic acids Chemical class 0.000 description 6
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 6
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 6
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical class CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 6
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 6
- AQSJGOWTSHOLKH-UHFFFAOYSA-N phosphite(3-) Chemical class [O-]P([O-])[O-] AQSJGOWTSHOLKH-UHFFFAOYSA-N 0.000 description 6
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 6
- 238000006116 polymerization reaction Methods 0.000 description 6
- 229910052700 potassium Inorganic materials 0.000 description 6
- 239000011591 potassium Substances 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- 239000010802 sludge Substances 0.000 description 6
- 229910052708 sodium Inorganic materials 0.000 description 6
- 239000011734 sodium Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- NMRPBPVERJPACX-UHFFFAOYSA-N (3S)-octan-3-ol Natural products CCCCCC(O)CC NMRPBPVERJPACX-UHFFFAOYSA-N 0.000 description 5
- WOFPPJOZXUTRAU-UHFFFAOYSA-N 2-Ethyl-1-hexanol Natural products CCCCC(O)CCC WOFPPJOZXUTRAU-UHFFFAOYSA-N 0.000 description 5
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 5
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 5
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 5
- 150000001447 alkali salts Chemical class 0.000 description 5
- 150000001414 amino alcohols Chemical class 0.000 description 5
- 239000002518 antifoaming agent Substances 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 5
- 230000008021 deposition Effects 0.000 description 5
- 150000001991 dicarboxylic acids Chemical class 0.000 description 5
- 150000002009 diols Chemical class 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000004615 ingredient Substances 0.000 description 5
- 239000011777 magnesium Substances 0.000 description 5
- 229910052749 magnesium Inorganic materials 0.000 description 5
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 5
- 239000011976 maleic acid Substances 0.000 description 5
- 239000003208 petroleum Substances 0.000 description 5
- 229920001296 polysiloxane Polymers 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- 150000003138 primary alcohols Chemical class 0.000 description 5
- 229920006395 saturated elastomer Polymers 0.000 description 5
- 238000005979 thermal decomposition reaction Methods 0.000 description 5
- 239000003017 thermal stabilizer Substances 0.000 description 5
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 4
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 description 4
- 229910015900 BF3 Inorganic materials 0.000 description 4
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 4
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 4
- 239000005639 Lauric acid Substances 0.000 description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 4
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 4
- REYJJPSVUYRZGE-UHFFFAOYSA-N Octadecylamine Chemical compound CCCCCCCCCCCCCCCCCCN REYJJPSVUYRZGE-UHFFFAOYSA-N 0.000 description 4
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical class OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 4
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 4
- UWHCKJMYHZGTIT-UHFFFAOYSA-N Tetraethylene glycol, Natural products OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- OBETXYAYXDNJHR-UHFFFAOYSA-N alpha-ethylcaproic acid Natural products CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 4
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 4
- 150000001408 amides Chemical class 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- 229910052801 chlorine Inorganic materials 0.000 description 4
- 238000006731 degradation reaction Methods 0.000 description 4
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical compound CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 description 4
- 229910052736 halogen Inorganic materials 0.000 description 4
- 150000002367 halogens Chemical class 0.000 description 4
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 4
- 238000010348 incorporation Methods 0.000 description 4
- 239000003607 modifier Substances 0.000 description 4
- 230000007935 neutral effect Effects 0.000 description 4
- 150000003016 phosphoric acids Chemical class 0.000 description 4
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 4
- 235000013824 polyphenols Nutrition 0.000 description 4
- 230000002028 premature Effects 0.000 description 4
- 239000010734 process oil Substances 0.000 description 4
- 239000011369 resultant mixture Substances 0.000 description 4
- 241000894007 species Species 0.000 description 4
- RINCXYDBBGOEEQ-UHFFFAOYSA-N succinic anhydride Chemical class O=C1CCC(=O)O1 RINCXYDBBGOEEQ-UHFFFAOYSA-N 0.000 description 4
- 230000000153 supplemental effect Effects 0.000 description 4
- HVLLSGMXQDNUAL-UHFFFAOYSA-N triphenyl phosphite Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)OC1=CC=CC=C1 HVLLSGMXQDNUAL-UHFFFAOYSA-N 0.000 description 4
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 4
- 238000000214 vapour pressure osmometry Methods 0.000 description 4
- 239000002966 varnish Substances 0.000 description 4
- 239000011787 zinc oxide Substances 0.000 description 4
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 3
- NYLJHRUQFXQNPN-UHFFFAOYSA-N 2-(tert-butyltrisulfanyl)-2-methylpropane Chemical compound CC(C)(C)SSSC(C)(C)C NYLJHRUQFXQNPN-UHFFFAOYSA-N 0.000 description 3
- CDAWCLOXVUBKRW-UHFFFAOYSA-N 2-aminophenol Chemical class NC1=CC=CC=C1O CDAWCLOXVUBKRW-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 3
- CKLJMWTZIZZHCS-UHFFFAOYSA-N Aspartic acid Chemical class OC(=O)C(N)CC(O)=O CKLJMWTZIZZHCS-UHFFFAOYSA-N 0.000 description 3
- MHZGKXUYDGKKIU-UHFFFAOYSA-N Decylamine Chemical compound CCCCCCCCCCN MHZGKXUYDGKKIU-UHFFFAOYSA-N 0.000 description 3
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 3
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 3
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 3
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 3
- KEQFTVQCIQJIQW-UHFFFAOYSA-N N-Phenyl-2-naphthylamine Chemical compound C=1C=C2C=CC=CC2=CC=1NC1=CC=CC=C1 KEQFTVQCIQJIQW-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000004480 active ingredient Substances 0.000 description 3
- 125000002015 acyclic group Chemical group 0.000 description 3
- 238000013019 agitation Methods 0.000 description 3
- 150000001335 aliphatic alkanes Chemical class 0.000 description 3
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 230000003078 antioxidant effect Effects 0.000 description 3
- 125000003710 aryl alkyl group Chemical group 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- 235000013877 carbamide Nutrition 0.000 description 3
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 3
- 239000007859 condensation product Substances 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 150000004985 diamines Chemical class 0.000 description 3
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 3
- 239000000539 dimer Substances 0.000 description 3
- VJHINFRRDQUWOJ-UHFFFAOYSA-N dioctyl sebacate Chemical compound CCCCC(CC)COC(=O)CCCCCCCCC(=O)OCC(CC)CCCC VJHINFRRDQUWOJ-UHFFFAOYSA-N 0.000 description 3
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical compound C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 description 3
- 238000010828 elution Methods 0.000 description 3
- 229910001651 emery Inorganic materials 0.000 description 3
- 239000002360 explosive Substances 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 239000012208 gear oil Substances 0.000 description 3
- 150000002334 glycols Chemical class 0.000 description 3
- 238000005984 hydrogenation reaction Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 3
- VDTIMXCBOXBHER-UHFFFAOYSA-N hydroxy-bis(sulfanyl)-sulfanylidene-$l^{5}-phosphane Chemical compound OP(S)(S)=S VDTIMXCBOXBHER-UHFFFAOYSA-N 0.000 description 3
- 150000003949 imides Chemical class 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 3
- 239000001630 malic acid Substances 0.000 description 3
- 235000011090 malic acid Nutrition 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 230000003472 neutralizing effect Effects 0.000 description 3
- 229960002446 octanoic acid Drugs 0.000 description 3
- 238000010525 oxidative degradation reaction Methods 0.000 description 3
- 239000002530 phenolic antioxidant Substances 0.000 description 3
- 229920000058 polyacrylate Polymers 0.000 description 3
- 229920013639 polyalphaolefin Polymers 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 229920000151 polyglycol Polymers 0.000 description 3
- 239000010695 polyglycol Substances 0.000 description 3
- 229920001451 polypropylene glycol Polymers 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 229930195734 saturated hydrocarbon Natural products 0.000 description 3
- 150000003335 secondary amines Chemical class 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 150000003443 succinic acid derivatives Chemical class 0.000 description 3
- 150000003460 sulfonic acids Chemical class 0.000 description 3
- 229920001897 terpolymer Polymers 0.000 description 3
- ISIJQEHRDSCQIU-UHFFFAOYSA-N tert-butyl 2,7-diazaspiro[4.5]decane-7-carboxylate Chemical compound C1N(C(=O)OC(C)(C)C)CCCC11CNCC1 ISIJQEHRDSCQIU-UHFFFAOYSA-N 0.000 description 3
- RMVRSNDYEFQCLF-UHFFFAOYSA-N thiophenol Chemical compound SC1=CC=CC=C1 RMVRSNDYEFQCLF-UHFFFAOYSA-N 0.000 description 3
- QXJQHYBHAIHNGG-UHFFFAOYSA-N trimethylolethane Chemical compound OCC(C)(CO)CO QXJQHYBHAIHNGG-UHFFFAOYSA-N 0.000 description 3
- 239000003039 volatile agent Substances 0.000 description 3
- 229940007718 zinc hydroxide Drugs 0.000 description 3
- 229910021511 zinc hydroxide Inorganic materials 0.000 description 3
- PGEVHIZNKIOMSR-UHFFFAOYSA-N (2,3-dimethylphenoxy)-dihydroxy-sulfanylidene-$l^{5}-phosphane Chemical compound CC1=CC=CC(OP(O)(O)=S)=C1C PGEVHIZNKIOMSR-UHFFFAOYSA-N 0.000 description 2
- OBETXYAYXDNJHR-SSDOTTSWSA-M (2r)-2-ethylhexanoate Chemical compound CCCC[C@@H](CC)C([O-])=O OBETXYAYXDNJHR-SSDOTTSWSA-M 0.000 description 2
- OYHQOLUKZRVURQ-NTGFUMLPSA-N (9Z,12Z)-9,10,12,13-tetratritiooctadeca-9,12-dienoic acid Chemical compound C(CCCCCCC\C(=C(/C\C(=C(/CCCCC)\[3H])\[3H])\[3H])\[3H])(=O)O OYHQOLUKZRVURQ-NTGFUMLPSA-N 0.000 description 2
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 2
- CIRMGZKUSBCWRL-LHLOQNFPSA-N (e)-10-[2-(7-carboxyheptyl)-5,6-dihexylcyclohex-3-en-1-yl]dec-9-enoic acid Chemical compound CCCCCCC1C=CC(CCCCCCCC(O)=O)C(\C=C\CCCCCCCC(O)=O)C1CCCCCC CIRMGZKUSBCWRL-LHLOQNFPSA-N 0.000 description 2
- QGLWBTPVKHMVHM-KTKRTIGZSA-N (z)-octadec-9-en-1-amine Chemical compound CCCCCCCC\C=C/CCCCCCCCN QGLWBTPVKHMVHM-KTKRTIGZSA-N 0.000 description 2
- ARXKVVRQIIOZGF-UHFFFAOYSA-N 1,2,4-butanetriol Chemical compound OCCC(O)CO ARXKVVRQIIOZGF-UHFFFAOYSA-N 0.000 description 2
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 2
- QWUWMCYKGHVNAV-UHFFFAOYSA-N 1,2-dihydrostilbene Chemical group C=1C=CC=CC=1CCC1=CC=CC=C1 QWUWMCYKGHVNAV-UHFFFAOYSA-N 0.000 description 2
- YXIWHUQXZSMYRE-UHFFFAOYSA-N 1,3-benzothiazole-2-thiol Chemical compound C1=CC=C2SC(S)=NC2=C1 YXIWHUQXZSMYRE-UHFFFAOYSA-N 0.000 description 2
- FJLUATLTXUNBOT-UHFFFAOYSA-N 1-Hexadecylamine Chemical compound CCCCCCCCCCCCCCCCN FJLUATLTXUNBOT-UHFFFAOYSA-N 0.000 description 2
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 2
- XFRVVPUIAFSTFO-UHFFFAOYSA-N 1-Tridecanol Chemical compound CCCCCCCCCCCCCO XFRVVPUIAFSTFO-UHFFFAOYSA-N 0.000 description 2
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 2
- DRHABPMHZRIRAH-UHFFFAOYSA-N 2,4,4,6,6-pentamethylhept-2-ene Chemical group CC(C)=CC(C)(C)CC(C)(C)C DRHABPMHZRIRAH-UHFFFAOYSA-N 0.000 description 2
- FXNDIJDIPNCZQJ-UHFFFAOYSA-N 2,4,4-trimethylpent-1-ene Chemical group CC(=C)CC(C)(C)C FXNDIJDIPNCZQJ-UHFFFAOYSA-N 0.000 description 2
- PFEFOYRSMXVNEL-UHFFFAOYSA-N 2,4,6-tritert-butylphenol Chemical compound CC(C)(C)C1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 PFEFOYRSMXVNEL-UHFFFAOYSA-N 0.000 description 2
- ICKWICRCANNIBI-UHFFFAOYSA-N 2,4-di-tert-butylphenol Chemical compound CC(C)(C)C1=CC=C(O)C(C(C)(C)C)=C1 ICKWICRCANNIBI-UHFFFAOYSA-N 0.000 description 2
- DKCPKDPYUFEZCP-UHFFFAOYSA-N 2,6-di-tert-butylphenol Chemical compound CC(C)(C)C1=CC=CC(C(C)(C)C)=C1O DKCPKDPYUFEZCP-UHFFFAOYSA-N 0.000 description 2
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 2
- SZSSMFVYZRQGIM-UHFFFAOYSA-N 2-(hydroxymethyl)-2-propylpropane-1,3-diol Chemical compound CCCC(CO)(CO)CO SZSSMFVYZRQGIM-UHFFFAOYSA-N 0.000 description 2
- LCZVSXRMYJUNFX-UHFFFAOYSA-N 2-[2-(2-hydroxypropoxy)propoxy]propan-1-ol Chemical compound CC(O)COC(C)COC(C)CO LCZVSXRMYJUNFX-UHFFFAOYSA-N 0.000 description 2
- WJQOZHYUIDYNHM-UHFFFAOYSA-N 2-tert-Butylphenol Chemical compound CC(C)(C)C1=CC=CC=C1O WJQOZHYUIDYNHM-UHFFFAOYSA-N 0.000 description 2
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 2
- YAXXOCZAXKLLCV-UHFFFAOYSA-N 3-dodecyloxolane-2,5-dione Chemical class CCCCCCCCCCCCC1CC(=O)OC1=O YAXXOCZAXKLLCV-UHFFFAOYSA-N 0.000 description 2
- OFNISBHGPNMTMS-UHFFFAOYSA-N 3-methylideneoxolane-2,5-dione Chemical compound C=C1CC(=O)OC1=O OFNISBHGPNMTMS-UHFFFAOYSA-N 0.000 description 2
- MDWVSAYEQPLWMX-UHFFFAOYSA-N 4,4'-Methylenebis(2,6-di-tert-butylphenol) Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 MDWVSAYEQPLWMX-UHFFFAOYSA-N 0.000 description 2
- PLIKAWJENQZMHA-UHFFFAOYSA-N 4-aminophenol Chemical compound NC1=CC=C(O)C=C1 PLIKAWJENQZMHA-UHFFFAOYSA-N 0.000 description 2
- HXDOZKJGKXYMEW-UHFFFAOYSA-N 4-ethylphenol Chemical compound CCC1=CC=C(O)C=C1 HXDOZKJGKXYMEW-UHFFFAOYSA-N 0.000 description 2
- FCQAFXHLHBGGSK-UHFFFAOYSA-N 4-nonyl-n-(4-nonylphenyl)aniline Chemical compound C1=CC(CCCCCCCCC)=CC=C1NC1=CC=C(CCCCCCCCC)C=C1 FCQAFXHLHBGGSK-UHFFFAOYSA-N 0.000 description 2
- RREANTFLPGEWEN-MBLPBCRHSA-N 7-[4-[[(3z)-3-[4-amino-5-[(3,4,5-trimethoxyphenyl)methyl]pyrimidin-2-yl]imino-5-fluoro-2-oxoindol-1-yl]methyl]piperazin-1-yl]-1-cyclopropyl-6-fluoro-4-oxoquinoline-3-carboxylic acid Chemical compound COC1=C(OC)C(OC)=CC(CC=2C(=NC(\N=C/3C4=CC(F)=CC=C4N(CN4CCN(CC4)C=4C(=CC=5C(=O)C(C(O)=O)=CN(C=5C=4)C4CC4)F)C\3=O)=NC=2)N)=C1 RREANTFLPGEWEN-MBLPBCRHSA-N 0.000 description 2
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 2
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 2
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 2
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 2
- XBPCUCUWBYBCDP-UHFFFAOYSA-N Dicyclohexylamine Chemical class C1CCCCC1NC1CCCCC1 XBPCUCUWBYBCDP-UHFFFAOYSA-N 0.000 description 2
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 2
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 2
- 239000004386 Erythritol Substances 0.000 description 2
- UNXHWFMMPAWVPI-UHFFFAOYSA-N Erythritol Natural products OCC(O)C(O)CO UNXHWFMMPAWVPI-UHFFFAOYSA-N 0.000 description 2
- 239000005069 Extreme pressure additive Substances 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- XQVWYOYUZDUNRW-UHFFFAOYSA-N N-Phenyl-1-naphthylamine Chemical compound C=1C=CC2=CC=CC=C2C=1NC1=CC=CC=C1 XQVWYOYUZDUNRW-UHFFFAOYSA-N 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 239000005642 Oleic acid Substances 0.000 description 2
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- 235000019484 Rapeseed oil Nutrition 0.000 description 2
- 235000021355 Stearic acid Nutrition 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- YSMRWXYRXBRSND-UHFFFAOYSA-N TOTP Chemical compound CC1=CC=CC=C1OP(=O)(OC=1C(=CC=CC=1)C)OC1=CC=CC=C1C YSMRWXYRXBRSND-UHFFFAOYSA-N 0.000 description 2
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical compound [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 description 2
- 125000002252 acyl group Chemical group 0.000 description 2
- 238000007259 addition reaction Methods 0.000 description 2
- 239000001361 adipic acid Substances 0.000 description 2
- 235000011037 adipic acid Nutrition 0.000 description 2
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 2
- 150000004996 alkyl benzenes Chemical class 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 150000001409 amidines Chemical class 0.000 description 2
- LHIJANUOQQMGNT-UHFFFAOYSA-N aminoethylethanolamine Chemical compound NCCNCCO LHIJANUOQQMGNT-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000007866 anti-wear additive Substances 0.000 description 2
- BTFJIXJJCSYFAL-UHFFFAOYSA-N arachidyl alcohol Natural products CCCCCCCCCCCCCCCCCCCCO BTFJIXJJCSYFAL-UHFFFAOYSA-N 0.000 description 2
- 150000004982 aromatic amines Chemical class 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 2
- 159000000009 barium salts Chemical class 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 235000010290 biphenyl Nutrition 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 2
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 2
- LMZSPXZNYGLPAV-UHFFFAOYSA-N butoxy-dihydroxy-sulfanylidene-$l^{5}-phosphane Chemical compound CCCCOP(O)(O)=S LMZSPXZNYGLPAV-UHFFFAOYSA-N 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 150000001733 carboxylic acid esters Chemical class 0.000 description 2
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 2
- FZFAMSAMCHXGEF-UHFFFAOYSA-N chloro formate Chemical compound ClOC=O FZFAMSAMCHXGEF-UHFFFAOYSA-N 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 125000000753 cycloalkyl group Chemical group 0.000 description 2
- PFURGBBHAOXLIO-UHFFFAOYSA-N cyclohexane-1,2-diol Chemical compound OC1CCCCC1O PFURGBBHAOXLIO-UHFFFAOYSA-N 0.000 description 2
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 2
- PAFZNILMFXTMIY-UHFFFAOYSA-N cyclohexylamine Chemical compound NC1CCCCC1 PAFZNILMFXTMIY-UHFFFAOYSA-N 0.000 description 2
- ZMJUYWJINBSMOL-UHFFFAOYSA-N cyclohexyloxy-dihydroxy-sulfanylidene-$l^{5}-phosphane Chemical compound OP(O)(=S)OC1CCCCC1 ZMJUYWJINBSMOL-UHFFFAOYSA-N 0.000 description 2
- MWKFXSUHUHTGQN-UHFFFAOYSA-N decan-1-ol Chemical compound CCCCCCCCCCO MWKFXSUHUHTGQN-UHFFFAOYSA-N 0.000 description 2
- ISIPUCJUDOMIDU-UHFFFAOYSA-N decoxy-dihydroxy-sulfanylidene-$l^{5}-phosphane Chemical compound CCCCCCCCCCOP(O)(O)=S ISIPUCJUDOMIDU-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- DZQISOJKASMITI-UHFFFAOYSA-N decyl-dioxido-oxo-$l^{5}-phosphane;hydron Chemical compound CCCCCCCCCCP(O)(O)=O DZQISOJKASMITI-UHFFFAOYSA-N 0.000 description 2
- UZEFVQBWJSFOFE-UHFFFAOYSA-N dibutyl hydrogen phosphite Chemical compound CCCCOP(O)OCCCC UZEFVQBWJSFOFE-UHFFFAOYSA-N 0.000 description 2
- 239000002283 diesel fuel Substances 0.000 description 2
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 2
- 229940075557 diethylene glycol monoethyl ether Drugs 0.000 description 2
- LMPILSLHAQVENA-UHFFFAOYSA-N dihydroxy-(2-methylpropoxy)-sulfanylidene-$l^{5}-phosphane Chemical compound CC(C)COP(O)(O)=S LMPILSLHAQVENA-UHFFFAOYSA-N 0.000 description 2
- HEAJRLDVJJCWDJ-UHFFFAOYSA-N dihydroxy-(4-methylphenoxy)-sulfanylidene-$l^{5}-phosphane Chemical compound CC1=CC=C(OP(O)(O)=S)C=C1 HEAJRLDVJJCWDJ-UHFFFAOYSA-N 0.000 description 2
- DSGBMMNDXFQXBM-KTKRTIGZSA-N dihydroxy-[(z)-octadec-9-enoxy]-sulfanylidene-$l^{5}-phosphane Chemical compound CCCCCCCC\C=C/CCCCCCCCOP(O)(O)=S DSGBMMNDXFQXBM-KTKRTIGZSA-N 0.000 description 2
- LCNFWZLAKWIVKS-UHFFFAOYSA-N dihydroxy-nonoxy-sulfanylidene-$l^{5}-phosphane Chemical compound CCCCCCCCCOP(O)(O)=S LCNFWZLAKWIVKS-UHFFFAOYSA-N 0.000 description 2
- OEWWJPWOUKYMKK-UHFFFAOYSA-N dihydroxy-octadecoxy-sulfanylidene-$l^{5}-phosphane Chemical compound CCCCCCCCCCCCCCCCCCOP(O)(O)=S OEWWJPWOUKYMKK-UHFFFAOYSA-N 0.000 description 2
- CAVXVJGHUYVTRI-UHFFFAOYSA-N dihydroxy-octoxy-sulfanylidene-$l^{5}-phosphane Chemical compound CCCCCCCCOP(O)(O)=S CAVXVJGHUYVTRI-UHFFFAOYSA-N 0.000 description 2
- ULXXFBXCKHIEPZ-UHFFFAOYSA-N dihydroxy-pentoxy-sulfanylidene-$l^{5}-phosphane Chemical compound CCCCCOP(O)(O)=S ULXXFBXCKHIEPZ-UHFFFAOYSA-N 0.000 description 2
- CXEKMALAIYIMMR-UHFFFAOYSA-N dihydroxy-phenylmethoxy-sulfanylidene-$l^{5}-phosphane Chemical compound OP(O)(=S)OCC1=CC=CC=C1 CXEKMALAIYIMMR-UHFFFAOYSA-N 0.000 description 2
- BKCMZDGTQVOTOE-UHFFFAOYSA-N dihydroxy-sulfanylidene-tetradecoxy-$l^{5}-phosphane Chemical compound CCCCCCCCCCCCCCOP(O)(O)=S BKCMZDGTQVOTOE-UHFFFAOYSA-N 0.000 description 2
- RQVRZVUDFIUTPL-UHFFFAOYSA-N dihydroxy-sulfanylidene-tridecoxy-$l^{5}-phosphane Chemical compound CCCCCCCCCCCCCOP(O)(O)=S RQVRZVUDFIUTPL-UHFFFAOYSA-N 0.000 description 2
- WJZUIWBZDGBLKK-UHFFFAOYSA-N dipentyl hydrogen phosphate Chemical compound CCCCCOP(O)(=O)OCCCCC WJZUIWBZDGBLKK-UHFFFAOYSA-N 0.000 description 2
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- UKMSUNONTOPOIO-UHFFFAOYSA-N docosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCC(O)=O UKMSUNONTOPOIO-UHFFFAOYSA-N 0.000 description 2
- ISWBBUXCFWZBKC-UHFFFAOYSA-N dodecoxy-dihydroxy-sulfanylidene-$l^{5}-phosphane Chemical compound CCCCCCCCCCCCOP(O)(O)=S ISWBBUXCFWZBKC-UHFFFAOYSA-N 0.000 description 2
- TVACALAUIQMRDF-UHFFFAOYSA-N dodecyl dihydrogen phosphate Chemical compound CCCCCCCCCCCCOP(O)(O)=O TVACALAUIQMRDF-UHFFFAOYSA-N 0.000 description 2
- UNXHWFMMPAWVPI-ZXZARUISSA-N erythritol Chemical compound OC[C@H](O)[C@H](O)CO UNXHWFMMPAWVPI-ZXZARUISSA-N 0.000 description 2
- 235000019414 erythritol Nutrition 0.000 description 2
- 229940009714 erythritol Drugs 0.000 description 2
- 125000004185 ester group Chemical group 0.000 description 2
- VUGAUGDAKZKTJN-UHFFFAOYSA-N ethoxy-hexoxy-hydroxy-sulfanylidene-$l^{5}-phosphane Chemical compound CCCCCCOP(O)(=S)OCC VUGAUGDAKZKTJN-UHFFFAOYSA-N 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- KAJZYANLDWUIES-UHFFFAOYSA-N heptadecan-1-amine Chemical compound CCCCCCCCCCCCCCCCCN KAJZYANLDWUIES-UHFFFAOYSA-N 0.000 description 2
- CUBHAUBJTDZGPT-UHFFFAOYSA-N heptoxy-dihydroxy-sulfanylidene-$l^{5}-phosphane Chemical compound CCCCCCCOP(O)(O)=S CUBHAUBJTDZGPT-UHFFFAOYSA-N 0.000 description 2
- XMHIUKTWLZUKEX-UHFFFAOYSA-N hexacosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCC(O)=O XMHIUKTWLZUKEX-UHFFFAOYSA-N 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- LDSYHPBFKHGMPH-UHFFFAOYSA-N hexadecoxy-dihydroxy-sulfanylidene-$l^{5}-phosphane Chemical compound CCCCCCCCCCCCCCCCOP(O)(O)=S LDSYHPBFKHGMPH-UHFFFAOYSA-N 0.000 description 2
- QNVRIHYSUZMSGM-UHFFFAOYSA-N hexan-2-ol Chemical compound CCCCC(C)O QNVRIHYSUZMSGM-UHFFFAOYSA-N 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- DRTDKFHHVIHWMT-UHFFFAOYSA-N hexoxy-dihydroxy-sulfanylidene-$l^{5}-phosphane Chemical compound CCCCCCOP(O)(O)=S DRTDKFHHVIHWMT-UHFFFAOYSA-N 0.000 description 2
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 2
- GBHRVZIGDIUCJB-UHFFFAOYSA-N hydrogenphosphite Chemical compound OP([O-])[O-] GBHRVZIGDIUCJB-UHFFFAOYSA-N 0.000 description 2
- 150000002462 imidazolines Chemical class 0.000 description 2
- 150000007529 inorganic bases Chemical class 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 2
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 2
- 239000003350 kerosene Substances 0.000 description 2
- 239000012263 liquid product Substances 0.000 description 2
- 239000003879 lubricant additive Substances 0.000 description 2
- RLSSMJSEOOYNOY-UHFFFAOYSA-N m-cresol Chemical compound CC1=CC=CC(O)=C1 RLSSMJSEOOYNOY-UHFFFAOYSA-N 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 159000000003 magnesium salts Chemical class 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 2
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 235000010755 mineral Nutrition 0.000 description 2
- AVDWNNLLWHAQHF-UHFFFAOYSA-N n-ethylethanamine;octadecanoic acid Chemical compound CC[NH2+]CC.CCCCCCCCCCCCCCCCCC([O-])=O AVDWNNLLWHAQHF-UHFFFAOYSA-N 0.000 description 2
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 2
- ZWRUINPWMLAQRD-UHFFFAOYSA-N nonan-1-ol Chemical compound CCCCCCCCCO ZWRUINPWMLAQRD-UHFFFAOYSA-N 0.000 description 2
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- QWVGKYWNOKOFNN-UHFFFAOYSA-N o-cresol Chemical compound CC1=CC=CC=C1O QWVGKYWNOKOFNN-UHFFFAOYSA-N 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical class CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 2
- WRKCIHRWQZQBOL-UHFFFAOYSA-N octyl dihydrogen phosphate Chemical compound CCCCCCCCOP(O)(O)=O WRKCIHRWQZQBOL-UHFFFAOYSA-N 0.000 description 2
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 2
- 235000021313 oleic acid Nutrition 0.000 description 2
- 125000000962 organic group Chemical group 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 125000000466 oxiranyl group Chemical group 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- IWDCLRJOBJJRNH-UHFFFAOYSA-N p-cresol Chemical compound CC1=CC=C(O)C=C1 IWDCLRJOBJJRNH-UHFFFAOYSA-N 0.000 description 2
- BVJSUAQZOZWCKN-UHFFFAOYSA-N p-hydroxybenzyl alcohol Chemical compound OCC1=CC=C(O)C=C1 BVJSUAQZOZWCKN-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- JYVLIDXNZAXMDK-UHFFFAOYSA-N pentan-2-ol Chemical compound CCCC(C)O JYVLIDXNZAXMDK-UHFFFAOYSA-N 0.000 description 2
- AQIXEPGDORPWBJ-UHFFFAOYSA-N pentan-3-ol Chemical compound CCC(O)CC AQIXEPGDORPWBJ-UHFFFAOYSA-N 0.000 description 2
- GTCCGKPBSJZVRZ-UHFFFAOYSA-N pentane-2,4-diol Chemical compound CC(O)CC(C)O GTCCGKPBSJZVRZ-UHFFFAOYSA-N 0.000 description 2
- XRBCRPZXSCBRTK-UHFFFAOYSA-N phosphonous acid Chemical class OPO XRBCRPZXSCBRTK-UHFFFAOYSA-N 0.000 description 2
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical class OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 description 2
- 150000003017 phosphorus Chemical class 0.000 description 2
- FAIAAWCVCHQXDN-UHFFFAOYSA-N phosphorus trichloride Chemical compound ClP(Cl)Cl FAIAAWCVCHQXDN-UHFFFAOYSA-N 0.000 description 2
- IVDFJHOHABJVEH-UHFFFAOYSA-N pinacol Chemical compound CC(C)(O)C(C)(C)O IVDFJHOHABJVEH-UHFFFAOYSA-N 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- KIDHWZJUCRJVML-UHFFFAOYSA-N putrescine Chemical compound NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 2
- 150000003333 secondary alcohols Chemical class 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000600 sorbitol Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000008117 stearic acid Substances 0.000 description 2
- 150000003900 succinic acid esters Chemical class 0.000 description 2
- 150000003444 succinic acids Chemical class 0.000 description 2
- 238000005987 sulfurization reaction Methods 0.000 description 2
- 239000003784 tall oil Substances 0.000 description 2
- HLZKNKRTKFSKGZ-UHFFFAOYSA-N tetradecan-1-ol Chemical compound CCCCCCCCCCCCCCO HLZKNKRTKFSKGZ-UHFFFAOYSA-N 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 150000003568 thioethers Chemical class 0.000 description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 description 2
- 150000003582 thiophosphoric acids Chemical class 0.000 description 2
- 238000004448 titration Methods 0.000 description 2
- 239000013638 trimer Substances 0.000 description 2
- ITRFOBBKTCNNFN-UHFFFAOYSA-N tris(sulfanyl)-sulfanylidene-$l^{5}-phosphane Chemical compound SP(S)(S)=S ITRFOBBKTCNNFN-UHFFFAOYSA-N 0.000 description 2
- QFKMMXYLAPZKIB-UHFFFAOYSA-N undecan-1-amine Chemical compound CCCCCCCCCCCN QFKMMXYLAPZKIB-UHFFFAOYSA-N 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- 239000004246 zinc acetate Substances 0.000 description 2
- 150000003752 zinc compounds Chemical class 0.000 description 2
- 239000004711 α-olefin Substances 0.000 description 2
- DTGKSKDOIYIVQL-WEDXCCLWSA-N (+)-borneol Chemical compound C1C[C@@]2(C)[C@@H](O)C[C@@H]1C2(C)C DTGKSKDOIYIVQL-WEDXCCLWSA-N 0.000 description 1
- VACHUYIREGFMSP-UHFFFAOYSA-N (+)-threo-9,10-Dihydroxy-octadecansaeure Natural products CCCCCCCCC(O)C(O)CCCCCCCC(O)=O VACHUYIREGFMSP-UHFFFAOYSA-N 0.000 description 1
- REPVLJRCJUVQFA-UHFFFAOYSA-N (-)-isopinocampheol Natural products C1C(O)C(C)C2C(C)(C)C1C2 REPVLJRCJUVQFA-UHFFFAOYSA-N 0.000 description 1
- CFZAEHZKTCVBOQ-UHFFFAOYSA-N (2,3-dimethylphenyl) dihydrogen phosphate Chemical compound CC1=CC=CC(OP(O)(O)=O)=C1C CFZAEHZKTCVBOQ-UHFFFAOYSA-N 0.000 description 1
- BBWXWMVHPJLUOE-UHFFFAOYSA-N (2-pentadecylcyclohexen-1-yl) dihydrogen phosphate Chemical compound CCCCCCCCCCCCCCCC1=C(OP(O)(O)=O)CCCC1 BBWXWMVHPJLUOE-UHFFFAOYSA-N 0.000 description 1
- AAWZDTNXLSGCEK-LNVDRNJUSA-N (3r,5r)-1,3,4,5-tetrahydroxycyclohexane-1-carboxylic acid Chemical compound O[C@@H]1CC(O)(C(O)=O)C[C@@H](O)C1O AAWZDTNXLSGCEK-LNVDRNJUSA-N 0.000 description 1
- JNUCNIFVQZYOCP-UHFFFAOYSA-N (4-methylphenyl) dihydrogen phosphate Chemical compound CC1=CC=C(OP(O)(O)=O)C=C1 JNUCNIFVQZYOCP-UHFFFAOYSA-N 0.000 description 1
- XGNYDFBDLDWJTI-UHFFFAOYSA-N (7,7-dimethyl-8-phenyloctyl) dihydrogen phosphate Chemical compound C(C1=CC=CC=C1)C(CCCCCCOP(O)(O)=O)(C)C XGNYDFBDLDWJTI-UHFFFAOYSA-N 0.000 description 1
- RZPYWCGKGNVNOW-UHFFFAOYSA-N (8-ethyl-6,6-dimethyldodecyl) dihydrogen phosphate Chemical compound C(C)C(CC(CCCCCOP(O)(O)=O)(C)C)CCCC RZPYWCGKGNVNOW-UHFFFAOYSA-N 0.000 description 1
- GOLAKLHPPDDLST-HZJYTTRNSA-N (9z,12z)-octadeca-9,12-dien-1-amine Chemical compound CCCCC\C=C/C\C=C/CCCCCCCCN GOLAKLHPPDDLST-HZJYTTRNSA-N 0.000 description 1
- UATFHWVUSDADRL-FPLPWBNLSA-N (z)-hexadec-9-en-1-amine Chemical compound CCCCCC\C=C/CCCCCCCCN UATFHWVUSDADRL-FPLPWBNLSA-N 0.000 description 1
- YAXKTBLXMTYWDQ-UHFFFAOYSA-N 1,2,3-butanetriol Chemical compound CC(O)C(O)CO YAXKTBLXMTYWDQ-UHFFFAOYSA-N 0.000 description 1
- RDAGYWUMBWNXIC-UHFFFAOYSA-N 1,2-bis(2-ethylhexyl)benzene Chemical class CCCCC(CC)CC1=CC=CC=C1CC(CC)CCCC RDAGYWUMBWNXIC-UHFFFAOYSA-N 0.000 description 1
- CHRJZRDFSQHIFI-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;styrene Chemical compound C=CC1=CC=CC=C1.C=CC1=CC=CC=C1C=C CHRJZRDFSQHIFI-UHFFFAOYSA-N 0.000 description 1
- YEYQUBZGSWAPGE-UHFFFAOYSA-N 1,2-di(nonyl)benzene Chemical class CCCCCCCCCC1=CC=CC=C1CCCCCCCCC YEYQUBZGSWAPGE-UHFFFAOYSA-N 0.000 description 1
- WJECKFZULSWXPN-UHFFFAOYSA-N 1,2-didodecylbenzene Chemical class CCCCCCCCCCCCC1=CC=CC=C1CCCCCCCCCCCC WJECKFZULSWXPN-UHFFFAOYSA-N 0.000 description 1
- GEYOCULIXLDCMW-UHFFFAOYSA-N 1,2-phenylenediamine Chemical compound NC1=CC=CC=C1N GEYOCULIXLDCMW-UHFFFAOYSA-N 0.000 description 1
- 150000004869 1,3,4-thiadiazoles Chemical class 0.000 description 1
- BIGYLAKFCGVRAN-UHFFFAOYSA-N 1,3,4-thiadiazolidine-2,5-dithione Chemical compound S=C1NNC(=S)S1 BIGYLAKFCGVRAN-UHFFFAOYSA-N 0.000 description 1
- CBCKQZAAMUWICA-UHFFFAOYSA-N 1,4-phenylenediamine Chemical compound NC1=CC=C(N)C=C1 CBCKQZAAMUWICA-UHFFFAOYSA-N 0.000 description 1
- PWGJDPKCLMLPJW-UHFFFAOYSA-N 1,8-diaminooctane Chemical compound NCCCCCCCCN PWGJDPKCLMLPJW-UHFFFAOYSA-N 0.000 description 1
- RLPSARLYTKXVSE-UHFFFAOYSA-N 1-(1,3-thiazol-5-yl)ethanamine Chemical compound CC(N)C1=CN=CS1 RLPSARLYTKXVSE-UHFFFAOYSA-N 0.000 description 1
- PODSUMUEKRUDEI-UHFFFAOYSA-N 1-(2-aminoethyl)imidazolidin-2-one Chemical compound NCCN1CCNC1=O PODSUMUEKRUDEI-UHFFFAOYSA-N 0.000 description 1
- JPFGKGZYCXLEGQ-UHFFFAOYSA-N 1-(4-methoxyphenyl)-5-methylpyrazole-4-carboxylic acid Chemical compound C1=CC(OC)=CC=C1N1C(C)=C(C(O)=O)C=N1 JPFGKGZYCXLEGQ-UHFFFAOYSA-N 0.000 description 1
- FNRUPAPVAOLCEM-UHFFFAOYSA-N 1-(nonyltrisulfanyl)nonane Chemical compound CCCCCCCCCSSSCCCCCCCCC FNRUPAPVAOLCEM-UHFFFAOYSA-N 0.000 description 1
- RIJVOTKRVIPNIZ-UHFFFAOYSA-N 1-[4-(2-aminoethyl)piperazin-1-yl]propan-2-ol Chemical compound CC(O)CN1CCN(CCN)CC1 RIJVOTKRVIPNIZ-UHFFFAOYSA-N 0.000 description 1
- JPZYXGPCHFZBHO-UHFFFAOYSA-N 1-aminopentadecane Chemical compound CCCCCCCCCCCCCCCN JPZYXGPCHFZBHO-UHFFFAOYSA-N 0.000 description 1
- HXKKHQJGJAFBHI-UHFFFAOYSA-N 1-aminopropan-2-ol Chemical compound CC(O)CN HXKKHQJGJAFBHI-UHFFFAOYSA-N 0.000 description 1
- QHDHNVFIKWGRJR-UHFFFAOYSA-N 1-cyclohexenol Chemical compound OC1=CCCCC1 QHDHNVFIKWGRJR-UHFFFAOYSA-N 0.000 description 1
- NSOAQRMLVFRWIT-UHFFFAOYSA-N 1-ethenoxydecane Chemical compound CCCCCCCCCCOC=C NSOAQRMLVFRWIT-UHFFFAOYSA-N 0.000 description 1
- WAKUKXKZEXFXJP-UHFFFAOYSA-N 1-ethylpiperidin-3-amine Chemical compound CCN1CCCC(N)C1 WAKUKXKZEXFXJP-UHFFFAOYSA-N 0.000 description 1
- BMVXCPBXGZKUPN-UHFFFAOYSA-N 1-hexanamine Chemical class CCCCCCN BMVXCPBXGZKUPN-UHFFFAOYSA-N 0.000 description 1
- GRVXARQSZSWIHZ-UHFFFAOYSA-N 1-hydroxysulfanylphosphetane Chemical class OSP1CCC1 GRVXARQSZSWIHZ-UHFFFAOYSA-N 0.000 description 1
- KJCVRFUGPWSIIH-UHFFFAOYSA-N 1-naphthol Chemical compound C1=CC=C2C(O)=CC=CC2=C1 KJCVRFUGPWSIIH-UHFFFAOYSA-N 0.000 description 1
- RVTOZKZOFAQCCZ-UHFFFAOYSA-N 10-cyclohexyldecyl dihydrogen phosphate Chemical compound OP(O)(=O)OCCCCCCCCCCC1CCCCC1 RVTOZKZOFAQCCZ-UHFFFAOYSA-N 0.000 description 1
- WJFKNYWRSNBZNX-UHFFFAOYSA-N 10H-phenothiazine Chemical compound C1=CC=C2NC3=CC=CC=C3SC2=C1 WJFKNYWRSNBZNX-UHFFFAOYSA-N 0.000 description 1
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 1
- VYXMLEUDISTZNS-UHFFFAOYSA-N 14-phenyltetradecyl dihydrogen phosphate Chemical compound OP(O)(=O)OCCCCCCCCCCCCCCC1=CC=CC=C1 VYXMLEUDISTZNS-UHFFFAOYSA-N 0.000 description 1
- REFWTMTVZDANBC-UHFFFAOYSA-N 17-cyclopentylheptadecyl dihydrogen phosphate Chemical compound OP(O)(=O)OCCCCCCCCCCCCCCCCCC1CCCC1 REFWTMTVZDANBC-UHFFFAOYSA-N 0.000 description 1
- ZCBIFHNDZBSCEP-UHFFFAOYSA-N 1H-indol-5-amine Chemical compound NC1=CC=C2NC=CC2=C1 ZCBIFHNDZBSCEP-UHFFFAOYSA-N 0.000 description 1
- KGRVJHAUYBGFFP-UHFFFAOYSA-N 2,2'-Methylenebis(4-methyl-6-tert-butylphenol) Chemical compound CC(C)(C)C1=CC(C)=CC(CC=2C(=C(C=C(C)C=2)C(C)(C)C)O)=C1O KGRVJHAUYBGFFP-UHFFFAOYSA-N 0.000 description 1
- GGQRKYMKYMRZTF-UHFFFAOYSA-N 2,2,3,3-tetrakis(prop-1-enyl)butanedioic acid Chemical compound CC=CC(C=CC)(C(O)=O)C(C=CC)(C=CC)C(O)=O GGQRKYMKYMRZTF-UHFFFAOYSA-N 0.000 description 1
- GZZLQUBMUXEOBE-UHFFFAOYSA-N 2,2,4-trimethylhexane-1,6-diol Chemical compound OCCC(C)CC(C)(C)CO GZZLQUBMUXEOBE-UHFFFAOYSA-N 0.000 description 1
- ICVIFRMLTBUBGF-UHFFFAOYSA-N 2,2,6,6-tetrakis(hydroxymethyl)cyclohexan-1-ol Chemical compound OCC1(CO)CCCC(CO)(CO)C1O ICVIFRMLTBUBGF-UHFFFAOYSA-N 0.000 description 1
- KDMAJIXYCNOVJB-UHFFFAOYSA-N 2,2-bis(nonanoyloxymethyl)butyl nonanoate Chemical compound CCCCCCCCC(=O)OCC(CC)(COC(=O)CCCCCCCC)COC(=O)CCCCCCCC KDMAJIXYCNOVJB-UHFFFAOYSA-N 0.000 description 1
- QIJIUJYANDSEKG-UHFFFAOYSA-N 2,4,4-trimethylpentan-2-amine Chemical compound CC(C)(C)CC(C)(C)N QIJIUJYANDSEKG-UHFFFAOYSA-N 0.000 description 1
- KWVPRPSXBZNOHS-UHFFFAOYSA-N 2,4,6-Trimethylaniline Chemical compound CC1=CC(C)=C(N)C(C)=C1 KWVPRPSXBZNOHS-UHFFFAOYSA-N 0.000 description 1
- OPLCSTZDXXUYDU-UHFFFAOYSA-N 2,4-dimethyl-6-tert-butylphenol Chemical compound CC1=CC(C)=C(O)C(C(C)(C)C)=C1 OPLCSTZDXXUYDU-UHFFFAOYSA-N 0.000 description 1
- KUFFULVDNCHOFZ-UHFFFAOYSA-N 2,4-xylenol Chemical compound CC1=CC=C(O)C(C)=C1 KUFFULVDNCHOFZ-UHFFFAOYSA-N 0.000 description 1
- BVUXDWXKPROUDO-UHFFFAOYSA-N 2,6-di-tert-butyl-4-ethylphenol Chemical compound CCC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 BVUXDWXKPROUDO-UHFFFAOYSA-N 0.000 description 1
- VMZVBRIIHDRYGK-UHFFFAOYSA-N 2,6-ditert-butyl-4-[(dimethylamino)methyl]phenol Chemical compound CN(C)CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 VMZVBRIIHDRYGK-UHFFFAOYSA-N 0.000 description 1
- GHKSKVKCKMGRDU-UHFFFAOYSA-N 2-(3-aminopropylamino)ethanol Chemical compound NCCCNCCO GHKSKVKCKMGRDU-UHFFFAOYSA-N 0.000 description 1
- QXHDYMUPPXAMPQ-UHFFFAOYSA-N 2-(4-aminophenyl)ethanol Chemical compound NC1=CC=C(CCO)C=C1 QXHDYMUPPXAMPQ-UHFFFAOYSA-N 0.000 description 1
- YEVQZPWSVWZAOB-UHFFFAOYSA-N 2-(bromomethyl)-1-iodo-4-(trifluoromethyl)benzene Chemical compound FC(F)(F)C1=CC=C(I)C(CBr)=C1 YEVQZPWSVWZAOB-UHFFFAOYSA-N 0.000 description 1
- CZVOXOJHCICATK-UHFFFAOYSA-N 2-(tert-butylpentasulfanyl)-2-methylpropane Chemical compound CC(C)(C)SSSSSC(C)(C)C CZVOXOJHCICATK-UHFFFAOYSA-N 0.000 description 1
- NHHSUCWHDQEHTJ-UHFFFAOYSA-N 2-(tert-butyltetrasulfanyl)-2-methylpropane Chemical compound CC(C)(C)SSSSC(C)(C)C NHHSUCWHDQEHTJ-UHFFFAOYSA-N 0.000 description 1
- QNVRIHYSUZMSGM-LURJTMIESA-N 2-Hexanol Natural products CCCC[C@H](C)O QNVRIHYSUZMSGM-LURJTMIESA-N 0.000 description 1
- PFBBCIYIKJWDIN-BUHFOSPRSA-N 2-[(e)-tetradec-1-enyl]butanedioic acid Chemical compound CCCCCCCCCCCC\C=C\C(C(O)=O)CC(O)=O PFBBCIYIKJWDIN-BUHFOSPRSA-N 0.000 description 1
- HVOBSBRYQIYZNY-UHFFFAOYSA-N 2-[2-(2-aminoethylamino)ethylamino]ethanol Chemical compound NCCNCCNCCO HVOBSBRYQIYZNY-UHFFFAOYSA-N 0.000 description 1
- PAOXFRSJRCGJLV-UHFFFAOYSA-N 2-[4-(2-aminoethyl)piperazin-1-yl]ethanamine Chemical compound NCCN1CCN(CCN)CC1 PAOXFRSJRCGJLV-UHFFFAOYSA-N 0.000 description 1
- PTJWCLYPVFJWMP-UHFFFAOYSA-N 2-[[3-hydroxy-2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)COCC(CO)(CO)CO PTJWCLYPVFJWMP-UHFFFAOYSA-N 0.000 description 1
- IOAOAKDONABGPZ-UHFFFAOYSA-N 2-amino-2-ethylpropane-1,3-diol Chemical compound CCC(N)(CO)CO IOAOAKDONABGPZ-UHFFFAOYSA-N 0.000 description 1
- 229940058020 2-amino-2-methyl-1-propanol Drugs 0.000 description 1
- UXFQFBNBSPQBJW-UHFFFAOYSA-N 2-amino-2-methylpropane-1,3-diol Chemical compound OCC(N)(C)CO UXFQFBNBSPQBJW-UHFFFAOYSA-N 0.000 description 1
- JCBPETKZIGVZRE-UHFFFAOYSA-N 2-aminobutan-1-ol Chemical compound CCC(N)CO JCBPETKZIGVZRE-UHFFFAOYSA-N 0.000 description 1
- BKMMTJMQCTUHRP-UHFFFAOYSA-N 2-aminopropan-1-ol Chemical compound CC(N)CO BKMMTJMQCTUHRP-UHFFFAOYSA-N 0.000 description 1
- SIMYRXPCIUXDGR-UHFFFAOYSA-N 2-butylpropane-1,3-diol Chemical compound CCCCC(CO)CO SIMYRXPCIUXDGR-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- LIAWCKFOFPPVGF-UHFFFAOYSA-N 2-ethyladamantane Chemical compound C1C(C2)CC3CC1C(CC)C2C3 LIAWCKFOFPPVGF-UHFFFAOYSA-N 0.000 description 1
- LTHNHFOGQMKPOV-UHFFFAOYSA-N 2-ethylhexan-1-amine Chemical compound CCCCC(CC)CN LTHNHFOGQMKPOV-UHFFFAOYSA-N 0.000 description 1
- LJKDOMVGKKPJBH-UHFFFAOYSA-N 2-ethylhexyl dihydrogen phosphate Chemical compound CCCCC(CC)COP(O)(O)=O LJKDOMVGKKPJBH-UHFFFAOYSA-N 0.000 description 1
- CMAOLVNGLTWICC-UHFFFAOYSA-N 2-fluoro-5-methylbenzonitrile Chemical compound CC1=CC=C(F)C(C#N)=C1 CMAOLVNGLTWICC-UHFFFAOYSA-N 0.000 description 1
- BXXRINAXUZZBNJ-UHFFFAOYSA-N 2-methyl-6-(2-phenylethenyl)phenol Chemical compound CC1=CC=CC(C=CC=2C=CC=CC=2)=C1O BXXRINAXUZZBNJ-UHFFFAOYSA-N 0.000 description 1
- FNULDAAFCZLGIM-UHFFFAOYSA-N 2-methylicosan-3-yl dihydrogen phosphate Chemical compound C(C)(C)C(CCCCCCCCCCCCCCCCC)OP(O)(O)=O FNULDAAFCZLGIM-UHFFFAOYSA-N 0.000 description 1
- SVBLDLLXNRGMBG-UHFFFAOYSA-N 2-methylpropyl dihydrogen phosphate Chemical compound CC(C)COP(O)(O)=O SVBLDLLXNRGMBG-UHFFFAOYSA-N 0.000 description 1
- XPQIPUZPSLAZDV-UHFFFAOYSA-N 2-pyridylethylamine Chemical compound NCCC1=CC=CC=N1 XPQIPUZPSLAZDV-UHFFFAOYSA-N 0.000 description 1
- RKLRVTKRKFEVQG-UHFFFAOYSA-N 2-tert-butyl-4-[(3-tert-butyl-4-hydroxy-5-methylphenyl)methyl]-6-methylphenol Chemical compound CC(C)(C)C1=C(O)C(C)=CC(CC=2C=C(C(O)=C(C)C=2)C(C)(C)C)=C1 RKLRVTKRKFEVQG-UHFFFAOYSA-N 0.000 description 1
- BKZXZGWHTRCFPX-UHFFFAOYSA-N 2-tert-butyl-6-methylphenol Chemical compound CC1=CC=CC(C(C)(C)C)=C1O BKZXZGWHTRCFPX-UHFFFAOYSA-N 0.000 description 1
- WGTASENVNYJZBK-UHFFFAOYSA-N 3,4,5-trimethoxyamphetamine Chemical group COC1=CC(CC(C)N)=CC(OC)=C1OC WGTASENVNYJZBK-UHFFFAOYSA-N 0.000 description 1
- PYSRRFNXTXNWCD-UHFFFAOYSA-N 3-(2-phenylethenyl)furan-2,5-dione Chemical class O=C1OC(=O)C(C=CC=2C=CC=CC=2)=C1 PYSRRFNXTXNWCD-UHFFFAOYSA-N 0.000 description 1
- NUCFNMOPTGEHQA-UHFFFAOYSA-N 3-bromo-2h-pyrazolo[4,3-c]pyridine Chemical compound C1=NC=C2C(Br)=NNC2=C1 NUCFNMOPTGEHQA-UHFFFAOYSA-N 0.000 description 1
- SSZWWUDQMAHNAQ-UHFFFAOYSA-N 3-chloropropane-1,2-diol Chemical compound OCC(O)CCl SSZWWUDQMAHNAQ-UHFFFAOYSA-N 0.000 description 1
- YHQXBTXEYZIYOV-UHFFFAOYSA-N 3-methylbut-1-ene Chemical compound CC(C)C=C YHQXBTXEYZIYOV-UHFFFAOYSA-N 0.000 description 1
- AYKYXWQEBUNJCN-UHFFFAOYSA-N 3-methylfuran-2,5-dione Chemical compound CC1=CC(=O)OC1=O AYKYXWQEBUNJCN-UHFFFAOYSA-N 0.000 description 1
- BOTKTAZUSYVSFF-UHFFFAOYSA-N 4-(2,4,4-trimethylpentan-2-yl)benzene-1,2-diol Chemical compound CC(C)(C)CC(C)(C)C1=CC=C(O)C(O)=C1 BOTKTAZUSYVSFF-UHFFFAOYSA-N 0.000 description 1
- MZEFNGQKJROKHS-UHFFFAOYSA-N 4-(3,4-dihydroxyphenyl)benzene-1,2-diol Chemical group C1=C(O)C(O)=CC=C1C1=CC=C(O)C(O)=C1 MZEFNGQKJROKHS-UHFFFAOYSA-N 0.000 description 1
- CLPFFLWZZBQMAO-UHFFFAOYSA-N 4-(5,6,7,8-tetrahydroimidazo[1,5-a]pyridin-5-yl)benzonitrile Chemical compound C1=CC(C#N)=CC=C1C1N2C=NC=C2CCC1 CLPFFLWZZBQMAO-UHFFFAOYSA-N 0.000 description 1
- MAFHOFLRHFJFSE-UHFFFAOYSA-N 4-(diethylaminomethyl)phenol Chemical compound CCN(CC)CC1=CC=C(O)C=C1 MAFHOFLRHFJFSE-UHFFFAOYSA-N 0.000 description 1
- PZBLBWWMZJGCTF-UHFFFAOYSA-N 4-[2-(2-hydroxyethoxy)ethoxy]phenol Chemical compound OCCOCCOC1=CC=C(O)C=C1 PZBLBWWMZJGCTF-UHFFFAOYSA-N 0.000 description 1
- WCAUEWAWOGJKDZ-UHFFFAOYSA-N 4-[[4-hydroxy-5-methyl-5-(2-methylbutan-2-yl)cyclohexa-1,3-dien-1-yl]methyl]-6-methyl-6-(2-methylbutan-2-yl)cyclohexa-1,3-dien-1-ol Chemical compound C1=C(O)C(C(C)(C)CC)(C)CC(CC=2CC(C)(C(O)=CC=2)C(C)(C)CC)=C1 WCAUEWAWOGJKDZ-UHFFFAOYSA-N 0.000 description 1
- OUNGEYCHISFUEC-UHFFFAOYSA-N 4-decyl-2h-triazole Chemical compound CCCCCCCCCCC=1C=NNN=1 OUNGEYCHISFUEC-UHFFFAOYSA-N 0.000 description 1
- JVVRCYWZTJLJSG-UHFFFAOYSA-N 4-dimethylaminophenol Chemical compound CN(C)C1=CC=C(O)C=C1 JVVRCYWZTJLJSG-UHFFFAOYSA-N 0.000 description 1
- JATLSJIWVNJRMN-UHFFFAOYSA-N 4-dodecyl-2h-triazole Chemical compound CCCCCCCCCCCCC1=CNN=N1 JATLSJIWVNJRMN-UHFFFAOYSA-N 0.000 description 1
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 1
- CMGDVUCDZOBDNL-UHFFFAOYSA-N 4-methyl-2h-benzotriazole Chemical compound CC1=CC=CC2=NNN=C12 CMGDVUCDZOBDNL-UHFFFAOYSA-N 0.000 description 1
- MQWCXKGKQLNYQG-UHFFFAOYSA-N 4-methylcyclohexan-1-ol Chemical compound CC1CCC(O)CC1 MQWCXKGKQLNYQG-UHFFFAOYSA-N 0.000 description 1
- ZNPMHTCZDUTQGG-UHFFFAOYSA-N 4-nonyl-2,6-bis(2-phenylethenyl)phenol Chemical compound OC=1C(C=CC=2C=CC=CC=2)=CC(CCCCCCCCC)=CC=1C=CC1=CC=CC=C1 ZNPMHTCZDUTQGG-UHFFFAOYSA-N 0.000 description 1
- WZUUZPAYWFIBDF-UHFFFAOYSA-N 5-amino-1,2-dihydro-1,2,4-triazole-3-thione Chemical compound NC1=NNC(S)=N1 WZUUZPAYWFIBDF-UHFFFAOYSA-N 0.000 description 1
- LRUDIIUSNGCQKF-UHFFFAOYSA-N 5-methyl-1H-benzotriazole Chemical compound C1=C(C)C=CC2=NNN=C21 LRUDIIUSNGCQKF-UHFFFAOYSA-N 0.000 description 1
- ZDVJGWXFXGJSIU-UHFFFAOYSA-N 5-methylhexan-2-ol Chemical compound CC(C)CCC(C)O ZDVJGWXFXGJSIU-UHFFFAOYSA-N 0.000 description 1
- BWDBEAQIHAEVLV-UHFFFAOYSA-N 6-methylheptan-1-ol Chemical compound CC(C)CCCCCO BWDBEAQIHAEVLV-UHFFFAOYSA-N 0.000 description 1
- FVVQZZUMQHECQG-UHFFFAOYSA-N 7-methyloctane-2,4-diol Chemical compound CC(C)CCC(O)CC(C)O FVVQZZUMQHECQG-UHFFFAOYSA-N 0.000 description 1
- ISJKXVUODLFGIU-UHFFFAOYSA-N 8-bromo-1,6-naphthyridine-2-carboxylic acid Chemical compound C1=NC=C(Br)C2=NC(C(=O)O)=CC=C21 ISJKXVUODLFGIU-UHFFFAOYSA-N 0.000 description 1
- VACHUYIREGFMSP-SJORKVTESA-N 9,10-Dihydroxystearic acid Natural products CCCCCCCC[C@@H](O)[C@@H](O)CCCCCCCC(O)=O VACHUYIREGFMSP-SJORKVTESA-N 0.000 description 1
- AMOKUAKXKXBFIW-WJDWOHSUSA-N 9-[(z)-non-3-enyl]-10-octylnonadecanedioic acid Chemical compound OC(=O)CCCCCCCCC(CCCCCCCC)C(CCCCCCCC(O)=O)CC\C=C/CCCCC AMOKUAKXKXBFIW-WJDWOHSUSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N Acrylic acid Chemical compound OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 235000021357 Behenic acid Nutrition 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- GTNSYOIVQPILEN-UHFFFAOYSA-N CC(C)CCCCCC[S+]=P(O)(O)OCC1=CC=CC=C1 Chemical compound CC(C)CCCCCC[S+]=P(O)(O)OCC1=CC=CC=C1 GTNSYOIVQPILEN-UHFFFAOYSA-N 0.000 description 1
- INGKWGZZINMJFL-UHFFFAOYSA-N CC(C)C[S+]=P(O)(O)O Chemical compound CC(C)C[S+]=P(O)(O)O INGKWGZZINMJFL-UHFFFAOYSA-N 0.000 description 1
- FGVOMMHCKKUJRA-UHFFFAOYSA-N CC(C=C1)=CC=C1[S+]=P(O)(O)O Chemical compound CC(C=C1)=CC=C1[S+]=P(O)(O)O FGVOMMHCKKUJRA-UHFFFAOYSA-N 0.000 description 1
- AJZWMOHDFZSKBP-UHFFFAOYSA-N CC1=CC=CC([S+]=P(O)(O)O)=C1C Chemical compound CC1=CC=CC([S+]=P(O)(O)O)=C1C AJZWMOHDFZSKBP-UHFFFAOYSA-N 0.000 description 1
- RBEWBRQVIBFRTG-SEYXRHQNSA-N CCCCCCCC/C=C\CCCCCCCCOP(O)(O)=[S+]CCCC Chemical compound CCCCCCCC/C=C\CCCCCCCCOP(O)(O)=[S+]CCCC RBEWBRQVIBFRTG-SEYXRHQNSA-N 0.000 description 1
- DDGPOAJYJPDENU-KTKRTIGZSA-N CCCCCCCC/C=C\CCCCCCCC[S+]=P(O)(O)O Chemical compound CCCCCCCC/C=C\CCCCCCCC[S+]=P(O)(O)O DDGPOAJYJPDENU-KTKRTIGZSA-N 0.000 description 1
- TWLNNODWVGTOFL-UHFFFAOYSA-N CCCCCCCCCCCCCCCCCC[S+]=P(O)(O)O Chemical compound CCCCCCCCCCCCCCCCCC[S+]=P(O)(O)O TWLNNODWVGTOFL-UHFFFAOYSA-N 0.000 description 1
- NDPUKEIEFUZKJU-UHFFFAOYSA-N CCCCCCCCCCCCCCCC[S+]=P(O)(O)O Chemical compound CCCCCCCCCCCCCCCC[S+]=P(O)(O)O NDPUKEIEFUZKJU-UHFFFAOYSA-N 0.000 description 1
- JYYNDFLTEAMJQA-UHFFFAOYSA-N CCCCCCCCCCCCCC[S+]=P(O)(O)O Chemical compound CCCCCCCCCCCCCC[S+]=P(O)(O)O JYYNDFLTEAMJQA-UHFFFAOYSA-N 0.000 description 1
- RWBRVIZPQYTBCR-UHFFFAOYSA-N CCCCCCCCCCCCCC[S+]=P(O)(O)OC1=CC=CC=C1 Chemical compound CCCCCCCCCCCCCC[S+]=P(O)(O)OC1=CC=CC=C1 RWBRVIZPQYTBCR-UHFFFAOYSA-N 0.000 description 1
- GQYACIHEJMNXAZ-UHFFFAOYSA-N CCCCCCCCCCCCC[S+]=P(O)(O)O Chemical compound CCCCCCCCCCCCC[S+]=P(O)(O)O GQYACIHEJMNXAZ-UHFFFAOYSA-N 0.000 description 1
- OZQIAFAGANDINY-UHFFFAOYSA-N CCCCCCCCCCCC[S+]=P(O)(O)O Chemical compound CCCCCCCCCCCC[S+]=P(O)(O)O OZQIAFAGANDINY-UHFFFAOYSA-N 0.000 description 1
- ZXJRHNMSSNQVKF-UHFFFAOYSA-N CCCCCCCCCC[S+]=P(O)(O)O Chemical compound CCCCCCCCCC[S+]=P(O)(O)O ZXJRHNMSSNQVKF-UHFFFAOYSA-N 0.000 description 1
- QHGYIMNBXRCZMR-UHFFFAOYSA-N CCCCCCCCCC[S+]=P(O)(O)OC1CCCCC1 Chemical compound CCCCCCCCCC[S+]=P(O)(O)OC1CCCCC1 QHGYIMNBXRCZMR-UHFFFAOYSA-N 0.000 description 1
- SCHOCAOLADPNEK-UHFFFAOYSA-N CCCCCCCCCOP(O)(O)=[S+]CCCC Chemical compound CCCCCCCCCOP(O)(O)=[S+]CCCC SCHOCAOLADPNEK-UHFFFAOYSA-N 0.000 description 1
- QJKZVRTTXPCVQE-UHFFFAOYSA-N CCCCCCCCC[S+]=P(O)(O)O Chemical compound CCCCCCCCC[S+]=P(O)(O)O QJKZVRTTXPCVQE-UHFFFAOYSA-N 0.000 description 1
- OUPCSBCGPHFHIP-UHFFFAOYSA-N CCCCCCCC[S+]=P(O)(O)O Chemical compound CCCCCCCC[S+]=P(O)(O)O OUPCSBCGPHFHIP-UHFFFAOYSA-N 0.000 description 1
- LDBAOKAIVGDQPF-UHFFFAOYSA-N CCCCCCC[S+]=P(O)(O)O Chemical compound CCCCCCC[S+]=P(O)(O)O LDBAOKAIVGDQPF-UHFFFAOYSA-N 0.000 description 1
- IGMUCFGALMRFIK-UHFFFAOYSA-N CCCCCC[S+]=P(O)(O)O Chemical compound CCCCCC[S+]=P(O)(O)O IGMUCFGALMRFIK-UHFFFAOYSA-N 0.000 description 1
- NQTTYPOATKAZGO-UHFFFAOYSA-N CCCCC[S+]=P(O)(O)O Chemical compound CCCCC[S+]=P(O)(O)O NQTTYPOATKAZGO-UHFFFAOYSA-N 0.000 description 1
- AISWYOYZPSMOHE-UHFFFAOYSA-N CCCC[S+]=P(O)(O)O Chemical compound CCCC[S+]=P(O)(O)O AISWYOYZPSMOHE-UHFFFAOYSA-N 0.000 description 1
- 239000005635 Caprylic acid (CAS 124-07-2) Substances 0.000 description 1
- OKTJSMMVPCPJKN-OUBTZVSYSA-N Carbon-13 Chemical compound [13C] OKTJSMMVPCPJKN-OUBTZVSYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 239000005749 Copper compound Substances 0.000 description 1
- AAWZDTNXLSGCEK-UHFFFAOYSA-N Cordycepinsaeure Natural products OC1CC(O)(C(O)=O)CC(O)C1O AAWZDTNXLSGCEK-UHFFFAOYSA-N 0.000 description 1
- 239000009261 D 400 Substances 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 1
- MNQZXJOMYWMBOU-VKHMYHEASA-N D-glyceraldehyde Chemical compound OC[C@@H](O)C=O MNQZXJOMYWMBOU-VKHMYHEASA-N 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 1
- HDFFVHSMHLDSLO-UHFFFAOYSA-N Dibenzyl phosphate Chemical compound C=1C=CC=CC=1COP(=O)(O)OCC1=CC=CC=C1 HDFFVHSMHLDSLO-UHFFFAOYSA-N 0.000 description 1
- XTJFFFGAUHQWII-UHFFFAOYSA-N Dibutyl adipate Chemical compound CCCCOC(=O)CCCCC(=O)OCCCC XTJFFFGAUHQWII-UHFFFAOYSA-N 0.000 description 1
- 238000005698 Diels-Alder reaction Methods 0.000 description 1
- OEKPKBBXXDGXNB-IBISWUOJSA-N Digitalose Natural products CO[C@H]1[C@@H](O)[C@@H](C)O[C@@H](O)[C@@H]1O OEKPKBBXXDGXNB-IBISWUOJSA-N 0.000 description 1
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 1
- 229920005682 EO-PO block copolymer Polymers 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 238000005727 Friedel-Crafts reaction Methods 0.000 description 1
- GVGLGOZIDCSQPN-PVHGPHFFSA-N Heroin Chemical compound O([C@H]1[C@H](C=C[C@H]23)OC(C)=O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4OC(C)=O GVGLGOZIDCSQPN-PVHGPHFFSA-N 0.000 description 1
- AAHZZGHPCKJNNZ-UHFFFAOYSA-N Hexadecenylsuccinicacid Chemical compound CCCCCCCCCCCCCCC=CC(C(O)=O)CC(O)=O AAHZZGHPCKJNNZ-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000004169 Hydrogenated Poly-1-Decene Substances 0.000 description 1
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical class ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- 241001072282 Limnanthes Species 0.000 description 1
- OYHQOLUKZRVURQ-HZJYTTRNSA-N Linoleic acid Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(O)=O OYHQOLUKZRVURQ-HZJYTTRNSA-N 0.000 description 1
- MQHWFIOJQSCFNM-UHFFFAOYSA-L Magnesium salicylate Chemical class [Mg+2].OC1=CC=CC=C1C([O-])=O.OC1=CC=CC=C1C([O-])=O MQHWFIOJQSCFNM-UHFFFAOYSA-L 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- VPQAVFARKAQWLA-UHFFFAOYSA-N OP(O)(O)=[S+]C1CCCCC1 Chemical compound OP(O)(O)=[S+]C1CCCCC1 VPQAVFARKAQWLA-UHFFFAOYSA-N 0.000 description 1
- VXRRIYKDFNOWTC-UHFFFAOYSA-N OP(O)(O)=[S+]CC1=CC=CC=C1 Chemical compound OP(O)(O)=[S+]CC1=CC=CC=C1 VXRRIYKDFNOWTC-UHFFFAOYSA-N 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- WUGQZFFCHPXWKQ-UHFFFAOYSA-N Propanolamine Chemical compound NCCCO WUGQZFFCHPXWKQ-UHFFFAOYSA-N 0.000 description 1
- AAWZDTNXLSGCEK-ZHQZDSKASA-N Quinic acid Natural products O[C@H]1CC(O)(C(O)=O)C[C@H](O)C1O AAWZDTNXLSGCEK-ZHQZDSKASA-N 0.000 description 1
- 101150108015 STR6 gene Proteins 0.000 description 1
- 235000019485 Safflower oil Nutrition 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- ABBQHOQBGMUPJH-UHFFFAOYSA-M Sodium salicylate Chemical class [Na+].OC1=CC=CC=C1C([O-])=O ABBQHOQBGMUPJH-UHFFFAOYSA-M 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229920000147 Styrene maleic anhydride Polymers 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 235000019486 Sunflower oil Nutrition 0.000 description 1
- BGNXCDMCOKJUMV-UHFFFAOYSA-N Tert-Butylhydroquinone Chemical compound CC(C)(C)C1=CC(O)=CC=C1O BGNXCDMCOKJUMV-UHFFFAOYSA-N 0.000 description 1
- PLZVEHJLHYMBBY-UHFFFAOYSA-N Tetradecylamine Chemical compound CCCCCCCCCCCCCCN PLZVEHJLHYMBBY-UHFFFAOYSA-N 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- 229920002359 Tetronic® Polymers 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- GTVWRXDRKAHEAD-UHFFFAOYSA-N Tris(2-ethylhexyl) phosphate Chemical compound CCCCC(CC)COP(=O)(OCC(CC)CCCC)OCC(CC)CCCC GTVWRXDRKAHEAD-UHFFFAOYSA-N 0.000 description 1
- FMRLDPWIRHBCCC-UHFFFAOYSA-L Zinc carbonate Chemical compound [Zn+2].[O-]C([O-])=O FMRLDPWIRHBCCC-UHFFFAOYSA-L 0.000 description 1
- HLAZSMAGWSARDR-KTKRTIGZSA-N [(z)-docos-13-enyl] dihydrogen phosphate Chemical compound CCCCCCCC\C=C/CCCCCCCCCCCCOP(O)(O)=O HLAZSMAGWSARDR-KTKRTIGZSA-N 0.000 description 1
- MEESPVWIOBCLJW-KTKRTIGZSA-N [(z)-octadec-9-enyl] dihydrogen phosphate Chemical compound CCCCCCCC\C=C/CCCCCCCCOP(O)(O)=O MEESPVWIOBCLJW-KTKRTIGZSA-N 0.000 description 1
- ORLQHILJRHBSAY-UHFFFAOYSA-N [1-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1(CO)CCCCC1 ORLQHILJRHBSAY-UHFFFAOYSA-N 0.000 description 1
- AOZDHFFNBZAHJF-UHFFFAOYSA-N [3-hexanoyloxy-2,2-bis(hexanoyloxymethyl)propyl] hexanoate Chemical compound CCCCCC(=O)OCC(COC(=O)CCCCC)(COC(=O)CCCCC)COC(=O)CCCCC AOZDHFFNBZAHJF-UHFFFAOYSA-N 0.000 description 1
- FPPLJCZKEHFKIR-UHFFFAOYSA-N [ethyl(hexyl)-$l^{4}-sulfanylidene]-trihydroxy-$l^{5}-phosphane Chemical compound CCCCCCS(CC)=P(O)(O)O FPPLJCZKEHFKIR-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000010933 acylation Effects 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 125000005250 alkyl acrylate group Chemical group 0.000 description 1
- 125000005600 alkyl phosphonate group Chemical group 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- 125000005263 alkylenediamine group Chemical group 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- DTOSIQBPPRVQHS-PDBXOOCHSA-N alpha-linolenic acid Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCC(O)=O DTOSIQBPPRVQHS-PDBXOOCHSA-N 0.000 description 1
- 235000020661 alpha-linolenic acid Nutrition 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- IMUDHTPIFIBORV-UHFFFAOYSA-N aminoethylpiperazine Chemical compound NCCN1CCNCC1 IMUDHTPIFIBORV-UHFFFAOYSA-N 0.000 description 1
- CBTVGIZVANVGBH-UHFFFAOYSA-N aminomethyl propanol Chemical compound CC(C)(N)CO CBTVGIZVANVGBH-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229940056585 ammonium laurate Drugs 0.000 description 1
- LWPWXZMAAYPSTM-UHFFFAOYSA-N aniline octadecanoic acid Chemical compound [NH3+]c1ccccc1.CCCCCCCCCCCCCCCCCC([O-])=O LWPWXZMAAYPSTM-UHFFFAOYSA-N 0.000 description 1
- 229940053198 antiepileptics succinimide derivative Drugs 0.000 description 1
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 1
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 239000003849 aromatic solvent Substances 0.000 description 1
- 150000008378 aryl ethers Chemical class 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 229940116226 behenic acid Drugs 0.000 description 1
- 150000001555 benzenes Chemical class 0.000 description 1
- MNNDDJIKWGFEJB-UHFFFAOYSA-N benzoic acid;n,n-diethylethanamine Chemical compound CCN(CC)CC.OC(=O)C1=CC=CC=C1 MNNDDJIKWGFEJB-UHFFFAOYSA-N 0.000 description 1
- SQIXVFSRCKMXLD-UHFFFAOYSA-N benzoic acid;n,n-dioctyloctan-1-amine Chemical compound [O-]C(=O)C1=CC=CC=C1.CCCCCCCC[NH+](CCCCCCCC)CCCCCCCC SQIXVFSRCKMXLD-UHFFFAOYSA-N 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- YTFJQDNGSQJFNA-UHFFFAOYSA-N benzyl dihydrogen phosphate Chemical compound OP(O)(=O)OCC1=CC=CC=C1 YTFJQDNGSQJFNA-UHFFFAOYSA-N 0.000 description 1
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 125000006267 biphenyl group Chemical group 0.000 description 1
- VCCBEIPGXKNHFW-UHFFFAOYSA-N biphenyl-4,4'-diol Chemical compound C1=CC(O)=CC=C1C1=CC=C(O)C=C1 VCCBEIPGXKNHFW-UHFFFAOYSA-N 0.000 description 1
- 150000004074 biphenyls Chemical class 0.000 description 1
- SAOKZLXYCUGLFA-UHFFFAOYSA-N bis(2-ethylhexyl) adipate Chemical compound CCCCC(CC)COC(=O)CCCCC(=O)OCC(CC)CCCC SAOKZLXYCUGLFA-UHFFFAOYSA-N 0.000 description 1
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 1
- PVQVJLCMPNEFPM-UHFFFAOYSA-N bis(2-methylpropyl) hydrogen phosphate Chemical compound CC(C)COP(O)(=O)OCC(C)C PVQVJLCMPNEFPM-UHFFFAOYSA-N 0.000 description 1
- PLUDEAUQZKPAIN-UHFFFAOYSA-N bis(4-methylphenyl) hydrogen phosphate Chemical compound C1=CC(C)=CC=C1OP(O)(=O)OC1=CC=C(C)C=C1 PLUDEAUQZKPAIN-UHFFFAOYSA-N 0.000 description 1
- WLLCYXDFVBWGBU-UHFFFAOYSA-N bis(8-methylnonyl) nonanedioate Chemical compound CC(C)CCCCCCCOC(=O)CCCCCCCC(=O)OCCCCCCCC(C)C WLLCYXDFVBWGBU-UHFFFAOYSA-N 0.000 description 1
- WFFZELZOEWLYNK-XPWSMXQVSA-N bis[(e)-octadec-9-enyl] hydrogen phosphate Chemical compound CCCCCCCC\C=C\CCCCCCCCOP(O)(=O)OCCCCCCCC\C=C\CCCCCCCC WFFZELZOEWLYNK-XPWSMXQVSA-N 0.000 description 1
- 229940106691 bisphenol a Drugs 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229940116229 borneol Drugs 0.000 description 1
- CKDOCTFBFTVPSN-UHFFFAOYSA-N borneol Natural products C1CC2(C)C(C)CC1C2(C)C CKDOCTFBFTVPSN-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- BMRWNKZVCUKKSR-UHFFFAOYSA-N butane-1,2-diol Chemical compound CCC(O)CO BMRWNKZVCUKKSR-UHFFFAOYSA-N 0.000 description 1
- BNMJSBUIDQYHIN-UHFFFAOYSA-N butyl dihydrogen phosphate Chemical compound CCCCOP(O)(O)=O BNMJSBUIDQYHIN-UHFFFAOYSA-N 0.000 description 1
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 1
- UOKRBSXOBUKDGE-UHFFFAOYSA-N butylphosphonic acid Chemical compound CCCCP(O)(O)=O UOKRBSXOBUKDGE-UHFFFAOYSA-N 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- VBIGULIJWJPALH-UHFFFAOYSA-L calcium;2-carboxyphenolate Chemical class [Ca+2].OC1=CC=CC=C1C([O-])=O.OC1=CC=CC=C1C([O-])=O VBIGULIJWJPALH-UHFFFAOYSA-L 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 150000004653 carbonic acids Chemical class 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 238000009903 catalytic hydrogenation reaction Methods 0.000 description 1
- 210000004534 cecum Anatomy 0.000 description 1
- 239000007810 chemical reaction solvent Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- HYZXMVILOKSUKA-UHFFFAOYSA-K chloro(dimethyl)alumane;dichloro(methyl)alumane Chemical compound C[Al](C)Cl.C[Al](Cl)Cl HYZXMVILOKSUKA-UHFFFAOYSA-K 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- PMMYEEVYMWASQN-IMJSIDKUSA-N cis-4-Hydroxy-L-proline Chemical compound O[C@@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-IMJSIDKUSA-N 0.000 description 1
- HNEGQIOMVPPMNR-IHWYPQMZSA-N citraconic acid Chemical compound OC(=O)C(/C)=C\C(O)=O HNEGQIOMVPPMNR-IHWYPQMZSA-N 0.000 description 1
- 229940018557 citraconic acid Drugs 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010961 commercial manufacture process Methods 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 150000001880 copper compounds Chemical class 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 235000019383 crystalline wax Nutrition 0.000 description 1
- 239000004148 curcumin Substances 0.000 description 1
- 239000010730 cutting oil Substances 0.000 description 1
- 125000000392 cycloalkenyl group Chemical group 0.000 description 1
- 125000001316 cycloalkyl alkyl group Chemical group 0.000 description 1
- BHYTYRNNCQSTCG-UHFFFAOYSA-N cyclohexanamine;dodecanoic acid Chemical compound NC1CCCCC1.CCCCCCCCCCCC(O)=O BHYTYRNNCQSTCG-UHFFFAOYSA-N 0.000 description 1
- VWMPTWSXBMHWGR-UHFFFAOYSA-N cyclohexen-1-yloxy-hydroxy-pentadecylperoxy-sulfanylidene-lambda5-phosphane Chemical compound C(CCCCCCCCCCCCCC)OOP(OC1=CCCCC1)(O)=S VWMPTWSXBMHWGR-UHFFFAOYSA-N 0.000 description 1
- PQANGXXSEABURG-UHFFFAOYSA-N cyclohexenol Natural products OC1CCCC=C1 PQANGXXSEABURG-UHFFFAOYSA-N 0.000 description 1
- AKAUCGJQKLOHHK-UHFFFAOYSA-N cyclohexyl dihydrogen phosphate Chemical compound OP(O)(=O)OC1CCCCC1 AKAUCGJQKLOHHK-UHFFFAOYSA-N 0.000 description 1
- RMKQQFBKPYDTFT-UHFFFAOYSA-N cyclohexyl(dimethyl)azanium;benzoate Chemical compound C[NH+](C)C1CCCCC1.[O-]C(=O)C1=CC=CC=C1 RMKQQFBKPYDTFT-UHFFFAOYSA-N 0.000 description 1
- LRXWNSYESLMZDI-UHFFFAOYSA-N cyclohexylazanium;decanoate Chemical compound NC1CCCCC1.CCCCCCCCCC(O)=O LRXWNSYESLMZDI-UHFFFAOYSA-N 0.000 description 1
- DQHLMFOUIDPVGP-UHFFFAOYSA-N cyclohexylazanium;nonanoate Chemical compound [NH3+]C1CCCCC1.CCCCCCCCC([O-])=O DQHLMFOUIDPVGP-UHFFFAOYSA-N 0.000 description 1
- DBKKYJPKNUNYFA-UHFFFAOYSA-N cyclohexylazanium;octadecanoate Chemical compound NC1CCCCC1.CCCCCCCCCCCCCCCCCC(O)=O DBKKYJPKNUNYFA-UHFFFAOYSA-N 0.000 description 1
- JGHUVSBRTUITHC-UHFFFAOYSA-N cyclohexylazanium;octanoate Chemical compound NC1CCCCC1.CCCCCCCC(O)=O JGHUVSBRTUITHC-UHFFFAOYSA-N 0.000 description 1
- FHADSMKORVFYOS-UHFFFAOYSA-N cyclooctanol Chemical compound OC1CCCCCCC1 FHADSMKORVFYOS-UHFFFAOYSA-N 0.000 description 1
- XCIXKGXIYUWCLL-UHFFFAOYSA-N cyclopentanol Chemical compound OC1CCCC1 XCIXKGXIYUWCLL-UHFFFAOYSA-N 0.000 description 1
- SIXQLTPUUKSQAS-UHFFFAOYSA-N cyclopentylperoxy-heptadecoxy-hydroxy-sulfanylidene-lambda5-phosphane Chemical compound C1(CCCC1)OOP(OCCCCCCCCCCCCCCCCC)(O)=S SIXQLTPUUKSQAS-UHFFFAOYSA-N 0.000 description 1
- FOTKYAAJKYLFFN-UHFFFAOYSA-N decane-1,10-diol Chemical compound OCCCCCCCCCCO FOTKYAAJKYLFFN-UHFFFAOYSA-N 0.000 description 1
- YQAWKVQNBPURLY-UHFFFAOYSA-N decanoate phenylazanium Chemical compound Nc1ccccc1.CCCCCCCCCC(O)=O YQAWKVQNBPURLY-UHFFFAOYSA-N 0.000 description 1
- PZBQKYMKJRPBDB-UHFFFAOYSA-N decanoate;decylazanium Chemical compound CCCCCCCCCC[NH3+].CCCCCCCCCC([O-])=O PZBQKYMKJRPBDB-UHFFFAOYSA-N 0.000 description 1
- JEUJFHBBMSBRDN-UHFFFAOYSA-N decanoate;dodecylazanium Chemical compound CCCCCCCCCC(O)=O.CCCCCCCCCCCCN JEUJFHBBMSBRDN-UHFFFAOYSA-N 0.000 description 1
- QZUOMKCOBKSPNY-UHFFFAOYSA-N decanoate;octylazanium Chemical compound CCCCCCCCN.CCCCCCCCCC(O)=O QZUOMKCOBKSPNY-UHFFFAOYSA-N 0.000 description 1
- SUSKYSUZZHLOIY-UHFFFAOYSA-N decanoic acid;octadecan-1-amine Chemical compound CCCCCCCCCC(O)=O.CCCCCCCCCCCCCCCCCCN SUSKYSUZZHLOIY-UHFFFAOYSA-N 0.000 description 1
- QGSNLESQPKAWLT-UHFFFAOYSA-N decanoic acid;pyridine Chemical compound C1=CC=[NH+]C=C1.CCCCCCCCCC([O-])=O QGSNLESQPKAWLT-UHFFFAOYSA-N 0.000 description 1
- GTBGXKPAKVYEKJ-UHFFFAOYSA-N decyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCOC(=O)C(C)=C GTBGXKPAKVYEKJ-UHFFFAOYSA-N 0.000 description 1
- SCIGVHCNNXTQDB-UHFFFAOYSA-N decyl dihydrogen phosphate Chemical compound CCCCCCCCCCOP(O)(O)=O SCIGVHCNNXTQDB-UHFFFAOYSA-N 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- SLLJXTNCXSFGFZ-UHFFFAOYSA-N decylazanium;dodecanoate Chemical compound CCCCCCCCCC[NH3+].CCCCCCCCCCCC([O-])=O SLLJXTNCXSFGFZ-UHFFFAOYSA-N 0.000 description 1
- MXNIUYIMGALKBG-UHFFFAOYSA-N decylazanium;nonanoate Chemical compound CCCCCCCCCC[NH3+].CCCCCCCCC([O-])=O MXNIUYIMGALKBG-UHFFFAOYSA-N 0.000 description 1
- ZVHINFYXDXKLLA-UHFFFAOYSA-N decylazanium;octadecanoate Chemical compound CCCCCCCCCC[NH3+].CCCCCCCCCCCCCCCCCC([O-])=O ZVHINFYXDXKLLA-UHFFFAOYSA-N 0.000 description 1
- GUELPJDWDLGCAX-UHFFFAOYSA-N decylazanium;octanoate Chemical compound CCCCCCCC([O-])=O.CCCCCCCCCC[NH3+] GUELPJDWDLGCAX-UHFFFAOYSA-N 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 229940100539 dibutyl adipate Drugs 0.000 description 1
- WDALIVVQVDQVDE-UHFFFAOYSA-N dibutylazanium;octadecanoate Chemical compound CCCCNCCCC.CCCCCCCCCCCCCCCCCC(O)=O WDALIVVQVDQVDE-UHFFFAOYSA-N 0.000 description 1
- RNPXCFINMKSQPQ-UHFFFAOYSA-N dicetyl hydrogen phosphate Chemical compound CCCCCCCCCCCCCCCCOP(O)(=O)OCCCCCCCCCCCCCCCC RNPXCFINMKSQPQ-UHFFFAOYSA-N 0.000 description 1
- YQHVEGTZGGQQMV-UHFFFAOYSA-N dicyclohexyl hydrogen phosphate Chemical compound C1CCCCC1OP(=O)(O)OC1CCCCC1 YQHVEGTZGGQQMV-UHFFFAOYSA-N 0.000 description 1
- QJZRATCRFMLBGX-UHFFFAOYSA-N dicyclopentylazanium;octadecanoate Chemical compound C1CCCC1[NH2+]C1CCCC1.CCCCCCCCCCCCCCCCCC([O-])=O QJZRATCRFMLBGX-UHFFFAOYSA-N 0.000 description 1
- FMMHIDFCPHMNRI-UHFFFAOYSA-N didecylazanium;benzoate Chemical compound [O-]C(=O)C1=CC=CC=C1.CCCCCCCCCC[NH2+]CCCCCCCCCC FMMHIDFCPHMNRI-UHFFFAOYSA-N 0.000 description 1
- HIKZOIYUQFYFBB-UHFFFAOYSA-N didodecyl decanedioate Chemical compound CCCCCCCCCCCCOC(=O)CCCCCCCCC(=O)OCCCCCCCCCCCC HIKZOIYUQFYFBB-UHFFFAOYSA-N 0.000 description 1
- GHKVUVOPHDYRJC-UHFFFAOYSA-N didodecyl hexanedioate Chemical compound CCCCCCCCCCCCOC(=O)CCCCC(=O)OCCCCCCCCCCCC GHKVUVOPHDYRJC-UHFFFAOYSA-N 0.000 description 1
- JTXUVYOABGUBMX-UHFFFAOYSA-N didodecyl hydrogen phosphate Chemical compound CCCCCCCCCCCCOP(O)(=O)OCCCCCCCCCCCC JTXUVYOABGUBMX-UHFFFAOYSA-N 0.000 description 1
- YNLAOSYQHBDIKW-UHFFFAOYSA-M diethylaluminium chloride Chemical compound CC[Al](Cl)CC YNLAOSYQHBDIKW-UHFFFAOYSA-M 0.000 description 1
- MPQBLCRFUYGBHE-JRTVQGFMSA-N digitalose Chemical compound O=C[C@H](O)[C@@H](OC)[C@@H](O)[C@@H](C)O MPQBLCRFUYGBHE-JRTVQGFMSA-N 0.000 description 1
- DVZIQPGIAQDYQH-UHFFFAOYSA-N diheptyl hydrogen phosphate Chemical compound CCCCCCCOP(O)(=O)OCCCCCCC DVZIQPGIAQDYQH-UHFFFAOYSA-N 0.000 description 1
- DHIUZQSMXIEPNS-UHFFFAOYSA-N diicosyl decanedioate Chemical compound CCCCCCCCCCCCCCCCCCCCOC(=O)CCCCCCCCC(=O)OCCCCCCCCCCCCCCCCCCCC DHIUZQSMXIEPNS-UHFFFAOYSA-N 0.000 description 1
- 238000006471 dimerization reaction Methods 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- IUNMPGNGSSIWFP-UHFFFAOYSA-N dimethylaminopropylamine Chemical compound CN(C)CCCN IUNMPGNGSSIWFP-UHFFFAOYSA-N 0.000 description 1
- QAXKHFJPTMUUOV-UHFFFAOYSA-N dinonyl hydrogen phosphate Chemical compound CCCCCCCCCOP(O)(=O)OCCCCCCCCC QAXKHFJPTMUUOV-UHFFFAOYSA-N 0.000 description 1
- FRXGWNKDEMTFPL-UHFFFAOYSA-N dioctadecyl hydrogen phosphate Chemical compound CCCCCCCCCCCCCCCCCCOP(O)(=O)OCCCCCCCCCCCCCCCCCC FRXGWNKDEMTFPL-UHFFFAOYSA-N 0.000 description 1
- HTDKEJXHILZNPP-UHFFFAOYSA-N dioctyl hydrogen phosphate Chemical compound CCCCCCCCOP(O)(=O)OCCCCCCCC HTDKEJXHILZNPP-UHFFFAOYSA-N 0.000 description 1
- JVJWYRWPYVPIRO-UHFFFAOYSA-N dioctylazanium;dodecanoate Chemical compound CCCCCCCCCCCC([O-])=O.CCCCCCCC[NH2+]CCCCCCCC JVJWYRWPYVPIRO-UHFFFAOYSA-N 0.000 description 1
- FKIGNEUYNOCCPT-UHFFFAOYSA-N dioctylazanium;octadecanoate Chemical compound CCCCCCCC[NH2+]CCCCCCCC.CCCCCCCCCCCCCCCCCC([O-])=O FKIGNEUYNOCCPT-UHFFFAOYSA-N 0.000 description 1
- KWHQTFCCZKPZRM-UHFFFAOYSA-N dipropylazanium;benzoate Chemical compound CCCNCCC.OC(=O)C1=CC=CC=C1 KWHQTFCCZKPZRM-UHFFFAOYSA-N 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- CYFHLEMYBPQRGN-UHFFFAOYSA-N ditetradecyl hydrogen phosphate Chemical compound CCCCCCCCCCCCCCOP(O)(=O)OCCCCCCCCCCCCCC CYFHLEMYBPQRGN-UHFFFAOYSA-N 0.000 description 1
- LZJUZSYHFSVIGJ-UHFFFAOYSA-N ditridecyl hexanedioate Chemical compound CCCCCCCCCCCCCOC(=O)CCCCC(=O)OCCCCCCCCCCCCC LZJUZSYHFSVIGJ-UHFFFAOYSA-N 0.000 description 1
- XEJNLUBEFCNORG-UHFFFAOYSA-N ditridecyl hydrogen phosphate Chemical compound CCCCCCCCCCCCCOP(O)(=O)OCCCCCCCCCCCCC XEJNLUBEFCNORG-UHFFFAOYSA-N 0.000 description 1
- DTGKSKDOIYIVQL-UHFFFAOYSA-N dl-isoborneol Natural products C1CC2(C)C(O)CC1C2(C)C DTGKSKDOIYIVQL-UHFFFAOYSA-N 0.000 description 1
- HWGUOODPQIXVKG-UHFFFAOYSA-N dodecan-1-amine;octadecanoic acid Chemical compound CCCCCCCCCCCC[NH3+].CCCCCCCCCCCCCCCCCC([O-])=O HWGUOODPQIXVKG-UHFFFAOYSA-N 0.000 description 1
- UTQRXLMYDCYEDF-UHFFFAOYSA-N dodecanoate phenylazanium Chemical compound Nc1ccccc1.CCCCCCCCCCCC(O)=O UTQRXLMYDCYEDF-UHFFFAOYSA-N 0.000 description 1
- RQFOFXXUOBMDGS-UHFFFAOYSA-N dodecanoate;nonylazanium Chemical compound CCCCCCCCC[NH3+].CCCCCCCCCCCC([O-])=O RQFOFXXUOBMDGS-UHFFFAOYSA-N 0.000 description 1
- ODAZTBLTCXOAGO-UHFFFAOYSA-N dodecanoate;octylazanium Chemical compound CCCCCCCCN.CCCCCCCCCCCC(O)=O ODAZTBLTCXOAGO-UHFFFAOYSA-N 0.000 description 1
- BKAYWXOBNPAGQD-UHFFFAOYSA-N dodecanoate;trioctylazanium Chemical compound CCCCCCCCCCCC([O-])=O.CCCCCCCC[NH+](CCCCCCCC)CCCCCCCC BKAYWXOBNPAGQD-UHFFFAOYSA-N 0.000 description 1
- DXOLVFJLHGXXGK-UHFFFAOYSA-N dodecanoic acid;n-ethylethanamine Chemical compound CCNCC.CCCCCCCCCCCC(O)=O DXOLVFJLHGXXGK-UHFFFAOYSA-N 0.000 description 1
- IZMHUHSJORJOGQ-UHFFFAOYSA-N dodecanoic acid;octadecan-1-amine Chemical compound CCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC[NH3+] IZMHUHSJORJOGQ-UHFFFAOYSA-N 0.000 description 1
- XIBIXAMUFHZPDR-UHFFFAOYSA-N dodecanoic acid;pyridine Chemical compound C1=CC=NC=C1.CCCCCCCCCCCC(O)=O XIBIXAMUFHZPDR-UHFFFAOYSA-N 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- MNNXNTNGQCILMK-UHFFFAOYSA-N dodecylazanium;nonanoate Chemical compound CCCCCCCCC([O-])=O.CCCCCCCCCCCC[NH3+] MNNXNTNGQCILMK-UHFFFAOYSA-N 0.000 description 1
- FCKWGJJEDLNPGO-UHFFFAOYSA-N dodecylazanium;octanoate Chemical compound CCCCCCCC(O)=O.CCCCCCCCCCCCN FCKWGJJEDLNPGO-UHFFFAOYSA-N 0.000 description 1
- KWKXNDCHNDYVRT-UHFFFAOYSA-N dodecylbenzene Chemical class CCCCCCCCCCCCC1=CC=CC=C1 KWKXNDCHNDYVRT-UHFFFAOYSA-N 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 239000012156 elution solvent Substances 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 150000002168 ethanoic acid esters Chemical class 0.000 description 1
- PSIQSMXODVNUAM-UHFFFAOYSA-N ethene;2-methylprop-1-ene Chemical group C=C.CC(C)=C PSIQSMXODVNUAM-UHFFFAOYSA-N 0.000 description 1
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 1
- 125000005670 ethenylalkyl group Chemical group 0.000 description 1
- 238000006266 etherification reaction Methods 0.000 description 1
- LPNOSOSFZNHQKH-UHFFFAOYSA-N ethoxy-(1-hexoxy-6-methylheptoxy)-hydroxy-sulfanylidene-lambda5-phosphane Chemical compound CCOP(OC(CCCCC(C)C)OCCCCCC)(O)=S LPNOSOSFZNHQKH-UHFFFAOYSA-N 0.000 description 1
- XLLIXQDKJQPXEM-UHFFFAOYSA-N ethyl [4-(2-methylbutan-2-yl)phenyl] hydrogen phosphate Chemical compound CCOP(O)(=O)OC1=CC=C(C(C)(C)CC)C=C1 XLLIXQDKJQPXEM-UHFFFAOYSA-N 0.000 description 1
- UPCIBFUJJLCOQG-UHFFFAOYSA-L ethyl-[2-[2-[ethyl(dimethyl)azaniumyl]ethyl-methylamino]ethyl]-dimethylazanium;dibromide Chemical compound [Br-].[Br-].CC[N+](C)(C)CCN(C)CC[N+](C)(C)CC UPCIBFUJJLCOQG-UHFFFAOYSA-L 0.000 description 1
- 229920001038 ethylene copolymer Polymers 0.000 description 1
- ASEZOCRBOPBEFV-UHFFFAOYSA-N ethylperoxy-hydroxy-[4-(2-methylbutan-2-yl)phenoxy]-sulfanylidene-lambda5-phosphane Chemical compound C(C)OOP(OC1=CC=C(C=C1)C(C)(C)CC)(O)=S ASEZOCRBOPBEFV-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- ZZEKMMMOHDLVRX-UHFFFAOYSA-N formaldehyde;2-nonylphenol Chemical class O=C.CCCCCCCCCC1=CC=CC=C1O ZZEKMMMOHDLVRX-UHFFFAOYSA-N 0.000 description 1
- WOLATMHLPFJRGC-UHFFFAOYSA-N furan-2,5-dione;styrene Chemical compound O=C1OC(=O)C=C1.C=CC1=CC=CC=C1 WOLATMHLPFJRGC-UHFFFAOYSA-N 0.000 description 1
- LNTHITQWFMADLM-UHFFFAOYSA-N gallic acid Chemical class OC(=O)C1=CC(O)=C(O)C(O)=C1 LNTHITQWFMADLM-UHFFFAOYSA-N 0.000 description 1
- 229940083124 ganglion-blocking antiadrenergic secondary and tertiary amines Drugs 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 239000000174 gluconic acid Substances 0.000 description 1
- 235000012208 gluconic acid Nutrition 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 239000010460 hemp oil Substances 0.000 description 1
- SXCBDZAEHILGLM-UHFFFAOYSA-N heptane-1,7-diol Chemical compound OCCCCCCCO SXCBDZAEHILGLM-UHFFFAOYSA-N 0.000 description 1
- XVEOUOTUJBYHNL-UHFFFAOYSA-N heptane-2,4-diol Chemical compound CCCC(O)CC(C)O XVEOUOTUJBYHNL-UHFFFAOYSA-N 0.000 description 1
- BQWORYKVVNTRAW-UHFFFAOYSA-N heptane-3,5-diol Chemical compound CCC(O)CC(O)CC BQWORYKVVNTRAW-UHFFFAOYSA-N 0.000 description 1
- GGKJPMAIXBETTD-UHFFFAOYSA-N heptyl dihydrogen phosphate Chemical compound CCCCCCCOP(O)(O)=O GGKJPMAIXBETTD-UHFFFAOYSA-N 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000002391 heterocyclic compounds Chemical class 0.000 description 1
- ZUVCYFMOHFTGDM-UHFFFAOYSA-N hexadecyl dihydrogen phosphate Chemical compound CCCCCCCCCCCCCCCCOP(O)(O)=O ZUVCYFMOHFTGDM-UHFFFAOYSA-N 0.000 description 1
- XYXCXCJKZRDVPU-UHFFFAOYSA-N hexane-1,2,3-triol Chemical compound CCCC(O)C(O)CO XYXCXCJKZRDVPU-UHFFFAOYSA-N 0.000 description 1
- DZZRNEZNZCRBOT-UHFFFAOYSA-N hexane-1,2,4-triol Chemical compound CCC(O)CC(O)CO DZZRNEZNZCRBOT-UHFFFAOYSA-N 0.000 description 1
- UFAPLAOEQMMKJA-UHFFFAOYSA-N hexane-1,2,5-triol Chemical compound CC(O)CCC(O)CO UFAPLAOEQMMKJA-UHFFFAOYSA-N 0.000 description 1
- QPNQLFAXFXPMSV-UHFFFAOYSA-N hexane-2,3,4-triol Chemical compound CCC(O)C(O)C(C)O QPNQLFAXFXPMSV-UHFFFAOYSA-N 0.000 description 1
- QCIYAEYRVFUFAP-UHFFFAOYSA-N hexane-2,3-diol Chemical compound CCCC(O)C(C)O QCIYAEYRVFUFAP-UHFFFAOYSA-N 0.000 description 1
- TXGJTWACJNYNOJ-UHFFFAOYSA-N hexane-2,4-diol Chemical compound CCC(O)CC(C)O TXGJTWACJNYNOJ-UHFFFAOYSA-N 0.000 description 1
- PCLSXWTUNCCKEY-UHFFFAOYSA-N hexoxy(hexylsulfanyl)phosphinous acid Chemical compound CCCCCCOP(O)SCCCCCC PCLSXWTUNCCKEY-UHFFFAOYSA-N 0.000 description 1
- PHNWGDTYCJFUGZ-UHFFFAOYSA-N hexyl dihydrogen phosphate Chemical compound CCCCCCOP(O)(O)=O PHNWGDTYCJFUGZ-UHFFFAOYSA-N 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000012456 homogeneous solution Substances 0.000 description 1
- 239000010720 hydraulic oil Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- YOCVDMJMVOLBHZ-UHFFFAOYSA-N hydroxy-methoxy-sulfanylidene-undecylperoxy-lambda5-phosphane Chemical compound C(CCCCCCCCCC)OOP(OC)(O)=S YOCVDMJMVOLBHZ-UHFFFAOYSA-N 0.000 description 1
- TYALGIOJTSMPFO-UHFFFAOYSA-N hydroxy-octadecoxy-propan-2-ylperoxy-sulfanylidene-lambda5-phosphane Chemical compound C(C)(C)OOP(OCCCCCCCCCCCCCCCCCC)(O)=S TYALGIOJTSMPFO-UHFFFAOYSA-N 0.000 description 1
- BXYFLGJRMCIGLW-UHFFFAOYSA-N hydroxy-propan-2-yloxy-propan-2-ylsulfanyl-sulfanylidene-$l^{5}-phosphane Chemical compound CC(C)OP(O)(=S)SC(C)C BXYFLGJRMCIGLW-UHFFFAOYSA-N 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 125000005462 imide group Chemical group 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000010722 industrial gear oil Substances 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000010813 internal standard method Methods 0.000 description 1
- 238000006317 isomerization reaction Methods 0.000 description 1
- 229940102253 isopropanolamine Drugs 0.000 description 1
- 229940119170 jojoba wax Drugs 0.000 description 1
- 125000000468 ketone group Chemical group 0.000 description 1
- 229940059904 light mineral oil Drugs 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 235000020778 linoleic acid Nutrition 0.000 description 1
- OYHQOLUKZRVURQ-IXWMQOLASA-N linoleic acid Natural products CCCCC\C=C/C\C=C\CCCCCCCC(O)=O OYHQOLUKZRVURQ-IXWMQOLASA-N 0.000 description 1
- 229960004488 linolenic acid Drugs 0.000 description 1
- KQQKGWQCNNTQJW-UHFFFAOYSA-N linolenic acid Natural products CC=CCCC=CCC=CCCCCCCCC(O)=O KQQKGWQCNNTQJW-UHFFFAOYSA-N 0.000 description 1
- 239000000944 linseed oil Substances 0.000 description 1
- 235000021388 linseed oil Nutrition 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- PSBOOKLOXQFNPZ-UHFFFAOYSA-M lithium;2-hydroxybenzoate Chemical class [Li+].OC1=CC=CC=C1C([O-])=O PSBOOKLOXQFNPZ-UHFFFAOYSA-M 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- HNEGQIOMVPPMNR-NSCUHMNNSA-N mesaconic acid Chemical compound OC(=O)C(/C)=C/C(O)=O HNEGQIOMVPPMNR-NSCUHMNNSA-N 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- HNEGQIOMVPPMNR-UHFFFAOYSA-N methylfumaric acid Natural products OC(=O)C(C)=CC(O)=O HNEGQIOMVPPMNR-UHFFFAOYSA-N 0.000 description 1
- 150000005673 monoalkenes Chemical class 0.000 description 1
- 150000002762 monocarboxylic acid derivatives Chemical class 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 239000010705 motor oil Substances 0.000 description 1
- DTSDBGVDESRKKD-UHFFFAOYSA-N n'-(2-aminoethyl)propane-1,3-diamine Chemical compound NCCCNCCN DTSDBGVDESRKKD-UHFFFAOYSA-N 0.000 description 1
- ODHSPTHLPCXPTL-UHFFFAOYSA-N n'-(5-nitropyridin-2-yl)ethane-1,2-diamine Chemical compound NCCNC1=CC=C([N+]([O-])=O)C=N1 ODHSPTHLPCXPTL-UHFFFAOYSA-N 0.000 description 1
- UGBSRTACPDOKSJ-UHFFFAOYSA-N n,n-diethylethanamine;dodecanoic acid Chemical compound CC[NH+](CC)CC.CCCCCCCCCCCC([O-])=O UGBSRTACPDOKSJ-UHFFFAOYSA-N 0.000 description 1
- ZDTMSMWYJXKBEB-UHFFFAOYSA-N n,n-diethylethanamine;octadecanoic acid Chemical compound CC[NH+](CC)CC.CCCCCCCCCCCCCCCCCC([O-])=O ZDTMSMWYJXKBEB-UHFFFAOYSA-N 0.000 description 1
- YWFWDNVOPHGWMX-UHFFFAOYSA-N n,n-dimethyldodecan-1-amine Chemical class CCCCCCCCCCCCN(C)C YWFWDNVOPHGWMX-UHFFFAOYSA-N 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- QQZOPKMRPOGIEB-UHFFFAOYSA-N n-butyl methyl ketone Natural products CCCCC(C)=O QQZOPKMRPOGIEB-UHFFFAOYSA-N 0.000 description 1
- BKKDHQVGCHRJIV-UHFFFAOYSA-N n-cyclohexylcyclohexanamine;dodecanoic acid Chemical compound C1CCCCC1NC1CCCCC1.CCCCCCCCCCCC(O)=O BKKDHQVGCHRJIV-UHFFFAOYSA-N 0.000 description 1
- HFNYKMJSBDPKSF-UHFFFAOYSA-N n-cyclohexylcyclohexanamine;octanoic acid Chemical compound CCCCCCCC(O)=O.C1CCCCC1NC1CCCCC1 HFNYKMJSBDPKSF-UHFFFAOYSA-N 0.000 description 1
- NAVUWPHDMDZAIK-UHFFFAOYSA-N n-ethylethanamine;octanoic acid Chemical compound CC[NH2+]CC.CCCCCCCC([O-])=O NAVUWPHDMDZAIK-UHFFFAOYSA-N 0.000 description 1
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 1
- 150000002790 naphthalenes Chemical class 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- FJDUDHYHRVPMJZ-UHFFFAOYSA-N nonan-1-amine Chemical compound CCCCCCCCCN FJDUDHYHRVPMJZ-UHFFFAOYSA-N 0.000 description 1
- LBZONELDMUDINO-UHFFFAOYSA-N nonane-1,5,9-triamine Chemical compound NCCCCC(N)CCCCN LBZONELDMUDINO-UHFFFAOYSA-N 0.000 description 1
- UQFRYERUXPDUFM-UHFFFAOYSA-N nonanoate phenylazanium Chemical compound Nc1ccccc1.CCCCCCCCC(O)=O UQFRYERUXPDUFM-UHFFFAOYSA-N 0.000 description 1
- ZNNNVJNTNWZLRI-UHFFFAOYSA-N nonanoate;nonylazanium Chemical compound CCCCCCCCC[NH3+].CCCCCCCCC([O-])=O ZNNNVJNTNWZLRI-UHFFFAOYSA-N 0.000 description 1
- BSCYVYQRDJKZTQ-UHFFFAOYSA-N nonanoate;octadecylazanium Chemical compound CCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC[NH3+] BSCYVYQRDJKZTQ-UHFFFAOYSA-N 0.000 description 1
- PQWOWQFMTLBIDG-UHFFFAOYSA-N nonanoate;octylazanium Chemical compound CCCCCCCC[NH3+].CCCCCCCCC([O-])=O PQWOWQFMTLBIDG-UHFFFAOYSA-N 0.000 description 1
- VRWXFIGLXUGSIS-UHFFFAOYSA-N nonanoic acid;pyridine Chemical compound C1=CC=[NH+]C=C1.CCCCCCCCC([O-])=O VRWXFIGLXUGSIS-UHFFFAOYSA-N 0.000 description 1
- WYAKJXQRALMWPB-UHFFFAOYSA-N nonyl dihydrogen phosphate Chemical compound CCCCCCCCCOP(O)(O)=O WYAKJXQRALMWPB-UHFFFAOYSA-N 0.000 description 1
- IBADNNMEXPPSRK-UHFFFAOYSA-N nonylazanium;octadecanoate Chemical compound CCCCCCCCC[NH3+].CCCCCCCCCCCCCCCCCC([O-])=O IBADNNMEXPPSRK-UHFFFAOYSA-N 0.000 description 1
- LZVMFNHENSNEHV-UHFFFAOYSA-N nonylazanium;octanoate Chemical compound CCCCCCCCC[NH3+].CCCCCCCC([O-])=O LZVMFNHENSNEHV-UHFFFAOYSA-N 0.000 description 1
- GLPXGXQOVMEKIJ-UHFFFAOYSA-N octadecan-1-amine;octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC[NH3+].CCCCCCCCCCCCCCCCCC([O-])=O GLPXGXQOVMEKIJ-UHFFFAOYSA-N 0.000 description 1
- GKPRDEDBUSFKBH-UHFFFAOYSA-N octadecan-1-amine;octanoic acid Chemical compound CCCCCCCC(O)=O.CCCCCCCCCCCCCCCCCCN GKPRDEDBUSFKBH-UHFFFAOYSA-N 0.000 description 1
- VXLKHXORYMBCPZ-UHFFFAOYSA-N octadecanoate;octylazanium Chemical compound CCCCCCCC[NH3+].CCCCCCCCCCCCCCCCCC([O-])=O VXLKHXORYMBCPZ-UHFFFAOYSA-N 0.000 description 1
- UIBWTAYWWDEMMM-UHFFFAOYSA-N octadecanoate;trioctylazanium Chemical compound CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCC[NH+](CCCCCCCC)CCCCCCCC UIBWTAYWWDEMMM-UHFFFAOYSA-N 0.000 description 1
- FLIAPXFDJADWSF-UHFFFAOYSA-N octadecanoic acid;pyridine Chemical compound C1=CC=[NH+]C=C1.CCCCCCCCCCCCCCCCCC([O-])=O FLIAPXFDJADWSF-UHFFFAOYSA-N 0.000 description 1
- 125000005064 octadecenyl group Chemical group C(=CCCCCCCCCCCCCCCCC)* 0.000 description 1
- UHGIMQLJWRAPLT-UHFFFAOYSA-N octadecyl dihydrogen phosphate Chemical compound CCCCCCCCCCCCCCCCCCOP(O)(O)=O UHGIMQLJWRAPLT-UHFFFAOYSA-N 0.000 description 1
- QAHWBDBQIHMPRN-UHFFFAOYSA-N octane-1,6-diamine Chemical compound CCC(N)CCCCCN QAHWBDBQIHMPRN-UHFFFAOYSA-N 0.000 description 1
- ROVIKCUGYCSTEZ-UHFFFAOYSA-N octanoate phenylazanium Chemical compound Nc1ccccc1.CCCCCCCC(O)=O ROVIKCUGYCSTEZ-UHFFFAOYSA-N 0.000 description 1
- LQNPIBHEOATAEO-UHFFFAOYSA-N octanoate;octylazanium Chemical compound CCCCCCCCN.CCCCCCCC(O)=O LQNPIBHEOATAEO-UHFFFAOYSA-N 0.000 description 1
- BKTYINKAJAUDOL-UHFFFAOYSA-N octanoate;triethylazanium Chemical compound CC[NH+](CC)CC.CCCCCCCC([O-])=O BKTYINKAJAUDOL-UHFFFAOYSA-N 0.000 description 1
- VYARABLTZSZSRZ-UHFFFAOYSA-N octanoate;trioctylazanium Chemical compound CCCCCCCC([O-])=O.CCCCCCCC[NH+](CCCCCCCC)CCCCCCCC VYARABLTZSZSRZ-UHFFFAOYSA-N 0.000 description 1
- JKROAZBIHMOTBS-UHFFFAOYSA-N octanoic acid;n-octyloctan-1-amine Chemical compound CCCCCCCC(O)=O.CCCCCCCCNCCCCCCCC JKROAZBIHMOTBS-UHFFFAOYSA-N 0.000 description 1
- BWCBBUTYNHNXTR-UHFFFAOYSA-N octanoic acid;pyridine Chemical compound C1=CC=[NH+]C=C1.CCCCCCCC([O-])=O BWCBBUTYNHNXTR-UHFFFAOYSA-N 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- FATBGEAMYMYZAF-KTKRTIGZSA-N oleamide Chemical compound CCCCCCCC\C=C/CCCCCCCC(N)=O FATBGEAMYMYZAF-KTKRTIGZSA-N 0.000 description 1
- FATBGEAMYMYZAF-UHFFFAOYSA-N oleicacidamide-heptaglycolether Natural products CCCCCCCCC=CCCCCCCCC(N)=O FATBGEAMYMYZAF-UHFFFAOYSA-N 0.000 description 1
- 238000006384 oligomerization reaction Methods 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 125000005702 oxyalkylene group Chemical group 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- NVTPMUHPCAUGCB-UHFFFAOYSA-N pentyl dihydrogen phosphate Chemical compound CCCCCOP(O)(O)=O NVTPMUHPCAUGCB-UHFFFAOYSA-N 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 229950000688 phenothiazine Drugs 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 1
- QCDYQQDYXPDABM-UHFFFAOYSA-N phloroglucinol Chemical compound OC1=CC(O)=CC(O)=C1 QCDYQQDYXPDABM-UHFFFAOYSA-N 0.000 description 1
- 229910001392 phosphorus oxide Inorganic materials 0.000 description 1
- 125000005498 phthalate group Chemical class 0.000 description 1
- 150000003021 phthalic acid derivatives Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- LTEKQAPRXFBRNN-UHFFFAOYSA-N piperidin-4-ylmethanamine Chemical compound NCC1CCNCC1 LTEKQAPRXFBRNN-UHFFFAOYSA-N 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920001921 poly-methyl-phenyl-siloxane Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 150000008442 polyphenolic compounds Chemical class 0.000 description 1
- 229920006389 polyphenyl polymer Polymers 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- FRMWBRPWYBNAFB-UHFFFAOYSA-M potassium salicylate Chemical class [K+].OC1=CC=CC=C1C([O-])=O FRMWBRPWYBNAFB-UHFFFAOYSA-M 0.000 description 1
- PDEDQSAFHNADLV-UHFFFAOYSA-M potassium;disodium;dinitrate;nitrite Chemical compound [Na+].[Na+].[K+].[O-]N=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O PDEDQSAFHNADLV-UHFFFAOYSA-M 0.000 description 1
- XOFYZVNMUHMLCC-ZPOLXVRWSA-N prednisone Chemical compound O=C1C=C[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 XOFYZVNMUHMLCC-ZPOLXVRWSA-N 0.000 description 1
- XRVCFZPJAHWYTB-UHFFFAOYSA-N prenderol Chemical compound CCC(CC)(CO)CO XRVCFZPJAHWYTB-UHFFFAOYSA-N 0.000 description 1
- 229950006800 prenderol Drugs 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 235000013849 propane Nutrition 0.000 description 1
- OLBCVFGFOZPWHH-UHFFFAOYSA-N propofol Chemical compound CC(C)C1=CC=CC(C(C)C)=C1O OLBCVFGFOZPWHH-UHFFFAOYSA-N 0.000 description 1
- AOHJOMMDDJHIJH-UHFFFAOYSA-N propylenediamine Chemical compound CC(N)CN AOHJOMMDDJHIJH-UHFFFAOYSA-N 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- 235000005713 safflower oil Nutrition 0.000 description 1
- 239000003813 safflower oil Substances 0.000 description 1
- 150000003336 secondary aromatic amines Chemical class 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229920005573 silicon-containing polymer Polymers 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- WBQTXTBONIWRGK-UHFFFAOYSA-N sodium;propan-2-olate Chemical compound [Na+].CC(C)[O-] WBQTXTBONIWRGK-UHFFFAOYSA-N 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 235000015096 spirit Nutrition 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 159000000008 strontium salts Chemical class 0.000 description 1
- 125000000446 sulfanediyl group Chemical group *S* 0.000 description 1
- RULBIMANUJRGND-UHFFFAOYSA-N sulfanylidene-tris(tridecylsulfanyl)-$l^{5}-phosphane Chemical compound CCCCCCCCCCCCCSP(=S)(SCCCCCCCCCCCCC)SCCCCCCCCCCCCC RULBIMANUJRGND-UHFFFAOYSA-N 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 239000002600 sunflower oil Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000010689 synthetic lubricating oil Substances 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- 235000007586 terpenes Nutrition 0.000 description 1
- 150000001911 terphenyls Chemical class 0.000 description 1
- 239000004250 tert-Butylhydroquinone Substances 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 235000019281 tert-butylhydroquinone Nutrition 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- TUNFSRHWOTWDNC-HKGQFRNVSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCC[14C](O)=O TUNFSRHWOTWDNC-HKGQFRNVSA-N 0.000 description 1
- KRIXEEBVZRZHOS-UHFFFAOYSA-N tetradecyl dihydrogen phosphate Chemical compound CCCCCCCCCCCCCCOP(O)(O)=O KRIXEEBVZRZHOS-UHFFFAOYSA-N 0.000 description 1
- JZALLXAUNPOCEU-UHFFFAOYSA-N tetradecylbenzene Chemical class CCCCCCCCCCCCCCC1=CC=CC=C1 JZALLXAUNPOCEU-UHFFFAOYSA-N 0.000 description 1
- MQHSFMJHURNQIE-UHFFFAOYSA-N tetrakis(2-ethylhexyl) silicate Chemical compound CCCCC(CC)CO[Si](OCC(CC)CCCC)(OCC(CC)CCCC)OCC(CC)CCCC MQHSFMJHURNQIE-UHFFFAOYSA-N 0.000 description 1
- VSAISIQCTGDGPU-UHFFFAOYSA-N tetraphosphorus hexaoxide Chemical compound O1P(O2)OP3OP1OP2O3 VSAISIQCTGDGPU-UHFFFAOYSA-N 0.000 description 1
- ZUEKXCXHTXJYAR-UHFFFAOYSA-N tetrapropan-2-yl silicate Chemical compound CC(C)O[Si](OC(C)C)(OC(C)C)OC(C)C ZUEKXCXHTXJYAR-UHFFFAOYSA-N 0.000 description 1
- 238000012719 thermal polymerization Methods 0.000 description 1
- 150000004867 thiadiazoles Chemical class 0.000 description 1
- 150000003557 thiazoles Chemical class 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 125000005323 thioketone group Chemical group 0.000 description 1
- NJRXVEJTAYWCQJ-UHFFFAOYSA-N thiomalic acid Chemical compound OC(=O)CC(S)C(O)=O NJRXVEJTAYWCQJ-UHFFFAOYSA-N 0.000 description 1
- WQYSXVGEZYESBR-UHFFFAOYSA-N thiophosphoryl chloride Chemical compound ClP(Cl)(Cl)=S WQYSXVGEZYESBR-UHFFFAOYSA-N 0.000 description 1
- 150000003585 thioureas Chemical class 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000002110 toxicologic effect Effects 0.000 description 1
- 231100000027 toxicology Toxicity 0.000 description 1
- MAZWDMBCPDUFDJ-UHFFFAOYSA-N trans-Traumatinsaeure Natural products OC(=O)CCCCCCCCC=CC(O)=O MAZWDMBCPDUFDJ-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- MAZWDMBCPDUFDJ-VQHVLOKHSA-N traumatic acid Chemical compound OC(=O)CCCCCCCC\C=C\C(O)=O MAZWDMBCPDUFDJ-VQHVLOKHSA-N 0.000 description 1
- STCOOQWBFONSKY-UHFFFAOYSA-N tributyl phosphate Chemical compound CCCCOP(=O)(OCCCC)OCCCC STCOOQWBFONSKY-UHFFFAOYSA-N 0.000 description 1
- XTTGYFREQJCEML-UHFFFAOYSA-N tributyl phosphite Chemical compound CCCCOP(OCCCC)OCCCC XTTGYFREQJCEML-UHFFFAOYSA-N 0.000 description 1
- IELLVVGAXDLVSW-UHFFFAOYSA-N tricyclohexyl phosphate Chemical compound C1CCCCC1OP(OC1CCCCC1)(=O)OC1CCCCC1 IELLVVGAXDLVSW-UHFFFAOYSA-N 0.000 description 1
- ABVVEAHYODGCLZ-UHFFFAOYSA-N tridecan-1-amine Chemical compound CCCCCCCCCCCCCN ABVVEAHYODGCLZ-UHFFFAOYSA-N 0.000 description 1
- SOLAMYSKAYPLPK-UHFFFAOYSA-N tridecan-4-yl dihydrogen phosphate Chemical compound CCCCCCCCCC(CCC)OP(O)(O)=O SOLAMYSKAYPLPK-UHFFFAOYSA-N 0.000 description 1
- GAJQCIFYLSXSEZ-UHFFFAOYSA-N tridecyl dihydrogen phosphate Chemical compound CCCCCCCCCCCCCOP(O)(O)=O GAJQCIFYLSXSEZ-UHFFFAOYSA-N 0.000 description 1
- IVIIAEVMQHEPAY-UHFFFAOYSA-N tridodecyl phosphite Chemical compound CCCCCCCCCCCCOP(OCCCCCCCCCCCC)OCCCCCCCCCCCC IVIIAEVMQHEPAY-UHFFFAOYSA-N 0.000 description 1
- 150000005691 triesters Chemical class 0.000 description 1
- BDZBKCUKTQZUTL-UHFFFAOYSA-N triethyl phosphite Chemical compound CCOP(OCC)OCC BDZBKCUKTQZUTL-UHFFFAOYSA-N 0.000 description 1
- VOITXYVAKOUIBA-UHFFFAOYSA-N triethylaluminium Chemical compound CC[Al](CC)CC VOITXYVAKOUIBA-UHFFFAOYSA-N 0.000 description 1
- 125000003258 trimethylene group Chemical class [H]C([H])([*:2])C([H])([H])C([H])([H])[*:1] 0.000 description 1
- QOQNJVLFFRMJTQ-UHFFFAOYSA-N trioctyl phosphite Chemical compound CCCCCCCCOP(OCCCCCCCC)OCCCCCCCC QOQNJVLFFRMJTQ-UHFFFAOYSA-N 0.000 description 1
- 150000004072 triols Chemical class 0.000 description 1
- XZZNDPSIHUTMOC-UHFFFAOYSA-N triphenyl phosphate Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)(=O)OC1=CC=CC=C1 XZZNDPSIHUTMOC-UHFFFAOYSA-N 0.000 description 1
- URRFGQHFJDWCFM-UHFFFAOYSA-N tris(2-butoxyethyl) phosphite Chemical compound CCCCOCCOP(OCCOCCCC)OCCOCCCC URRFGQHFJDWCFM-UHFFFAOYSA-N 0.000 description 1
- HQUQLFOMPYWACS-UHFFFAOYSA-N tris(2-chloroethyl) phosphate Chemical compound ClCCOP(=O)(OCCCl)OCCCl HQUQLFOMPYWACS-UHFFFAOYSA-N 0.000 description 1
- SVETUDAIEHYIKZ-IUPFWZBJSA-N tris[(z)-octadec-9-enyl] phosphate Chemical compound CCCCCCCC\C=C/CCCCCCCCOP(=O)(OCCCCCCCC\C=C/CCCCCCCC)OCCCCCCCC\C=C/CCCCCCCC SVETUDAIEHYIKZ-IUPFWZBJSA-N 0.000 description 1
- PEXOFOFLXOCMDX-UHFFFAOYSA-N tritridecyl phosphite Chemical compound CCCCCCCCCCCCCOP(OCCCCCCCCCCCCC)OCCCCCCCCCCCCC PEXOFOFLXOCMDX-UHFFFAOYSA-N 0.000 description 1
- 239000002383 tung oil Substances 0.000 description 1
- KJIOQYGWTQBHNH-UHFFFAOYSA-N undecanol Chemical compound CCCCCCCCCCCO KJIOQYGWTQBHNH-UHFFFAOYSA-N 0.000 description 1
- 125000002948 undecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
- 239000011667 zinc carbonate Substances 0.000 description 1
- 229910000010 zinc carbonate Inorganic materials 0.000 description 1
- 235000004416 zinc carbonate Nutrition 0.000 description 1
- UGZADUVQMDAIAO-UHFFFAOYSA-L zinc hydroxide Chemical compound [OH-].[OH-].[Zn+2] UGZADUVQMDAIAO-UHFFFAOYSA-L 0.000 description 1
- WNBGUYXVNNDNEH-UHFFFAOYSA-L zinc;2-methylpropoxy-(2-methylpropylsulfanyl)-oxido-sulfanylidene-$l^{5}-phosphane Chemical compound [Zn+2].CC(C)COP([O-])(=S)SCC(C)C.CC(C)COP([O-])(=S)SCC(C)C WNBGUYXVNNDNEH-UHFFFAOYSA-L 0.000 description 1
- DCHRWDODMXBBQG-UHFFFAOYSA-L zinc;butan-2-yloxy-butan-2-ylsulfanyl-oxido-sulfanylidene-$l^{5}-phosphane Chemical compound [Zn+2].CCC(C)OP([O-])(=S)SC(C)CC.CCC(C)OP([O-])(=S)SC(C)CC DCHRWDODMXBBQG-UHFFFAOYSA-L 0.000 description 1
- ZNCAMSISVWKWHL-UHFFFAOYSA-L zinc;butoxy-butylsulfanyl-oxido-sulfanylidene-$l^{5}-phosphane Chemical compound [Zn+2].CCCCOP([O-])(=S)SCCCC.CCCCOP([O-])(=S)SCCCC ZNCAMSISVWKWHL-UHFFFAOYSA-L 0.000 description 1
- BCLLIVNRSGTXBX-UHFFFAOYSA-L zinc;decoxy-decylsulfanyl-oxido-sulfanylidene-$l^{5}-phosphane Chemical class [Zn+2].CCCCCCCCCCOP([O-])(=S)SCCCCCCCCCC.CCCCCCCCCCOP([O-])(=S)SCCCCCCCCCC BCLLIVNRSGTXBX-UHFFFAOYSA-L 0.000 description 1
- CWARVPYFLMQZPG-UHFFFAOYSA-L zinc;heptoxy-heptylsulfanyl-oxido-sulfanylidene-$l^{5}-phosphane Chemical class [Zn+2].CCCCCCCOP([O-])(=S)SCCCCCCC.CCCCCCCOP([O-])(=S)SCCCCCCC CWARVPYFLMQZPG-UHFFFAOYSA-L 0.000 description 1
- GUCOOWBDFCCDIY-UHFFFAOYSA-L zinc;hexoxy-hexylsulfanyl-oxido-sulfanylidene-$l^{5}-phosphane Chemical class [Zn+2].CCCCCCOP([O-])(=S)SCCCCCC.CCCCCCOP([O-])(=S)SCCCCCC GUCOOWBDFCCDIY-UHFFFAOYSA-L 0.000 description 1
- SMHSUQSYYIPZSI-UHFFFAOYSA-L zinc;nonoxy-nonylsulfanyl-oxido-sulfanylidene-$l^{5}-phosphane Chemical class [Zn+2].CCCCCCCCCOP([O-])(=S)SCCCCCCCCC.CCCCCCCCCOP([O-])(=S)SCCCCCCCCC SMHSUQSYYIPZSI-UHFFFAOYSA-L 0.000 description 1
- GBEDXBRGRSPHRI-UHFFFAOYSA-L zinc;octoxy-octylsulfanyl-oxido-sulfanylidene-$l^{5}-phosphane Chemical class [Zn+2].CCCCCCCCOP([O-])(=S)SCCCCCCCC.CCCCCCCCOP([O-])(=S)SCCCCCCCC GBEDXBRGRSPHRI-UHFFFAOYSA-L 0.000 description 1
- HHMFJIHYTYQNJP-UHFFFAOYSA-L zinc;oxido-pentoxy-pentylsulfanyl-sulfanylidene-$l^{5}-phosphane Chemical class [Zn+2].CCCCCOP([O-])(=S)SCCCCC.CCCCCOP([O-])(=S)SCCCCC HHMFJIHYTYQNJP-UHFFFAOYSA-L 0.000 description 1
- YZKRIHZCXGPZGB-UHFFFAOYSA-L zinc;oxido-propan-2-yloxy-propan-2-ylsulfanyl-sulfanylidene-$l^{5}-phosphane Chemical compound [Zn+2].CC(C)OP([O-])(=S)SC(C)C.CC(C)OP([O-])(=S)SC(C)C YZKRIHZCXGPZGB-UHFFFAOYSA-L 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M163/00—Lubricating compositions characterised by the additive being a mixture of a compound of unknown or incompletely defined constitution and a non-macromolecular compound, each of these compounds being essential
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/54—Preparation of carboxylic acid anhydrides
- C07C51/567—Preparation of carboxylic acid anhydrides by reactions not involving carboxylic acid anhydride groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F255/00—Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
- C08F255/08—Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having four or more carbon atoms
- C08F255/10—Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having four or more carbon atoms on to butene polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/30—Introducing nitrogen atoms or nitrogen-containing groups
- C08F8/32—Introducing nitrogen atoms or nitrogen-containing groups by reaction with amines
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/46—Reaction with unsaturated dicarboxylic acids or anhydrides thereof, e.g. maleinisation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/48—Isomerisation; Cyclisation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/221—Organic compounds containing nitrogen compounds of uncertain formula; reaction products where mixtures of compounds are obtained
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/234—Macromolecular compounds
- C10L1/238—Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M133/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
- C10M133/52—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of 30 or more atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M141/00—Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
- C10M141/08—Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic sulfur-, selenium- or tellurium-containing compound
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M141/00—Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
- C10M141/10—Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic phosphorus-containing compound
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/02—Hydroxy compounds
- C10M2207/023—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
- C10M2207/028—Overbased salts thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/26—Overbased carboxylic acid salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/26—Overbased carboxylic acid salts
- C10M2207/262—Overbased carboxylic acid salts derived from hydroxy substituted aromatic acids, e.g. salicylates
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/02—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M2215/04—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/02—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M2215/04—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2215/042—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Alkoxylated derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/08—Amides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/08—Amides
- C10M2215/082—Amides containing hydroxyl groups; Alkoxylated derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/12—Partial amides of polycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/22—Heterocyclic nitrogen compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/22—Heterocyclic nitrogen compounds
- C10M2215/221—Six-membered rings containing nitrogen and carbon only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/22—Heterocyclic nitrogen compounds
- C10M2215/225—Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/22—Heterocyclic nitrogen compounds
- C10M2215/225—Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
- C10M2215/226—Morpholines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/24—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions having hydrocarbon substituents containing thirty or more carbon atoms, e.g. nitrogen derivatives of substituted succinic acid
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/26—Amines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/28—Amides; Imides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/30—Heterocyclic compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2217/00—Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2217/04—Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2217/046—Polyamines, i.e. macromoleculars obtained by condensation of more than eleven amine monomers
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2217/00—Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2217/06—Macromolecular compounds obtained by functionalisation op polymers with a nitrogen containing compound
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/02—Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/02—Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
- C10M2219/022—Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds of hydrocarbons, e.g. olefines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/02—Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
- C10M2219/024—Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds of esters, e.g. fats
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/04—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
- C10M2219/046—Overbased sulfonic acid salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/08—Thiols; Sulfides; Polysulfides; Mercaptals
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/08—Thiols; Sulfides; Polysulfides; Mercaptals
- C10M2219/082—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/08—Thiols; Sulfides; Polysulfides; Mercaptals
- C10M2219/082—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
- C10M2219/083—Dibenzyl sulfide
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/08—Thiols; Sulfides; Polysulfides; Mercaptals
- C10M2219/082—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
- C10M2219/086—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing sulfur atoms bound to carbon atoms of six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/08—Thiols; Sulfides; Polysulfides; Mercaptals
- C10M2219/082—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
- C10M2219/087—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/08—Thiols; Sulfides; Polysulfides; Mercaptals
- C10M2219/082—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
- C10M2219/087—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
- C10M2219/089—Overbased salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/041—Triaryl phosphates
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/042—Metal salts thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/043—Ammonium or amine salts thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/045—Metal containing thio derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/047—Thioderivatives not containing metallic elements
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/06—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/06—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds
- C10M2223/061—Metal salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/06—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds
- C10M2223/063—Ammonium or amine salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/06—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds
- C10M2223/065—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds containing sulfur
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2227/00—Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
- C10M2227/06—Organic compounds derived from inorganic acids or metal salts
- C10M2227/061—Esters derived from boron
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/04—Groups 2 or 12
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/02—Bearings
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/04—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/04—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
- C10N2040/042—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for automatic transmissions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/04—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
- C10N2040/044—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for manual transmissions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/04—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
- C10N2040/046—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for traction drives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/06—Instruments or other precision apparatus, e.g. damping fluids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/08—Hydraulic fluids, e.g. brake-fluids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/14—Electric or magnetic purposes
- C10N2040/16—Dielectric; Insulating oil or insulators
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/14—Electric or magnetic purposes
- C10N2040/17—Electric or magnetic purposes for electric contacts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/20—Metal working
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/20—Metal working
- C10N2040/22—Metal working with essential removal of material, e.g. cutting, grinding or drilling
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/20—Metal working
- C10N2040/24—Metal working without essential removal of material, e.g. forming, gorging, drawing, pressing, stamping, rolling or extruding; Punching metal
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/20—Metal working
- C10N2040/241—Manufacturing joint-less pipes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/20—Metal working
- C10N2040/242—Hot working
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/20—Metal working
- C10N2040/243—Cold working
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/20—Metal working
- C10N2040/244—Metal working of specific metals
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/20—Metal working
- C10N2040/244—Metal working of specific metals
- C10N2040/245—Soft metals, e.g. aluminum
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/20—Metal working
- C10N2040/244—Metal working of specific metals
- C10N2040/246—Iron or steel
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/20—Metal working
- C10N2040/244—Metal working of specific metals
- C10N2040/247—Stainless steel
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/251—Alcohol-fuelled engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/252—Diesel engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/252—Diesel engines
- C10N2040/253—Small diesel engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/255—Gasoline engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/255—Gasoline engines
- C10N2040/28—Rotary engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/30—Refrigerators lubricants or compressors lubricants
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/32—Wires, ropes or cables lubricants
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/34—Lubricating-sealants
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/36—Release agents or mold release agents
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/38—Conveyors or chain belts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/40—Generators or electric motors in oil or gas winning field
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/42—Flashing oils or marking oils
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/44—Super vacuum or supercritical use
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/50—Medical uses
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2070/00—Specific manufacturing methods for lubricant compositions
- C10N2070/02—Concentrating of additives
Definitions
- This invention relates to novel and eminently useful ashless dispersants formed from substituted acylating agents of the polybutenylsuccinic acid type, to novel and eminently useful methods for their production, and to novel and eminently useful compositions in which they are used.
- the thermal decomposition can be so rapid as to be explosive.
- a carbon-containing tarry residue is also formed in addition to water vapor and oxides of carbon.
- Such thermal decomposition and attendant isomerization or polymerization of the unsaturated anhydride reactant has been observed as occurring during its addition reaction with polymeric olefins, e.g., polybutenes and others, in a closed reaction vessel.
- the carbon-containing residue varies in nature from somewhat granular when the decomposition is only slight to a tarry material mainly adhering to internal surfaces of the reaction vessel when the decomposition is more extensive but well below explosive magnitude.
- the granular type residue amounts to about from 0.1 to about 0.3 weight percent of the total charge and is generally dispersed in the alkenyl-substituted saturated anhydride addition compound product diluted with unreacted components of the olefin polymer, and is readily separated therefrom by filtration.
- the tarry residue product which for the most part fouls the internals of the reaction vessel can be as high as 2-3 weight percent of the total charge.
- the tarry material not adhering to the internal surfaces of the reactor fouls the filter and interferes with filtration of the desired reaction product. Both types of residue are undesirable because of the above noted fouling characteristics and because their formation results in yield reduction of the desired alkenyl-substituted anhydride addition product.”
- the patentee refers to a number of other patents describing catalysts or agents which decrease such unwanted by-product formation, and utilizes such materials in a particular process in order to suppress the formation of tars and undesired side products.
- U.S. Pat. No. 4,152,499 discloses that polybutenes having a higher proportion of terminal double bonds than conventional polybutenes can be produced by polymerizing isobutene with boron trifluoride as the initiator, if (a) the polymerization is carried out at -50° C. to +30° C., (b) from 1 to 20 mmoles of boron trifluoride are used per mole of isobutene, and (c) the mean polymerization time is confined to from 1 to 10 minutes.
- the patent further discloses that such polybutenes can be reacted with the stoichiometric amount of maleic anhydride, or a slight excess thereof, "in the conventional manner" at from 170° C.
- the polymer consists essentially of polyisobutene (i.e., it contains at least 50 mole % and more preferably at least 60 mole % of polymerized isobutene) and at least 50% (more desirably at least 75%) of the total polymer(s) is polyisobutene having such end group.
- This invention provides in one of its embodiments novel and eminently useful ashless dispersants prepared by use of the substituted acylating agents formed as described in our aforesaid prior application Ser. No. 524,422. More particularly, the so-formed polybutenyl succinic acids or acid derivatives thereof (polybutenyl succinic anhydrides, polybutenyl succinic acid halides, polybutenyl succinic acid lower alkyl esters) are especially useful in the manufacture of polybutenyl succinic acid esters, polybutenyl succinimides or succinamides, and polybutenyl succinic ester-amides by reaction with alcohols or amines, or combinations thereof.
- the amines are preferably alkylene polyamines such as ethylene or propylene diamines, diethylene triamine, triethylene tetramine, tetraethylene pentamine, pentaethylene hexamine, etc.
- the alcohols are preferably polyhydric alcohols.
- Such polybutenyl succinic acid esters, polybutenyl succinimides, polybutenyl succinamides, and polybutenyl succinic ester-amides are especially useful as ashless dispersants in lubricating oils and functional fluids.
- one embodiment of this invention provides a carboxylic derivative composition produced by reacting at least one substituted succinic acylating agent with a reactant selected from the group consisting of (1) at least one amine having at least one primary or secondary amino group, (2) at least one alcohol, and (3) a combination of at least one amine having at least one primary or secondary amino group and at least one alcohol, the components of (3) being reacted with said at least one substituted succinic acylating agent concurrently or sequentially in any order, said at least one succinic acylating agent being prepared by reacting (i) at least one substantially aliphatic polymer of at least one lower olefin, and (ii) an acidic reactant or a mixture of two or more acidic reactants represented by the general formula
- R and R' are independently --OH, --O-lower alkyl, a halogen atom, or taken together are a single oxygen atom; the process of preparing said at least one succinic acylating agent being characterized in that:
- the substantially aliphatic polymer is comprised predominantly or entirely of polyisobutene, at least 50% of the polyisobutene content of such polymer having an end group represented by the formula ##STR3## b) the mole ratio of said acidic reactant(s):said polymer(s) is at least 1:1; and
- reaction mixture is maintained under superatmospheric pressure during at least a substantial portion of the reaction period.
- the carboxylic derivative compositions of this invention are formed from acylating agents having an average total tar rating as determined by the method described in the specification hereof that is at least 25% lower than the average total tar rating of a corresponding acylating agent made in the same way under the same reaction conditions using a polyisobutene containing up to 10% of the above-depicted end group.
- Preferred acylating agents used in forming the carboxylic derivative compositions of this invention are characterized by having an average total tar rating as determined by the method described in the specification hereof that is at least about 40% lower (for example about 43% lower) and most preferably at least 50% lower than the average total tar rating of a corresponding product made in the same way under the same reaction conditions using a polyisobutene containing less than 10% of the above-depicted end group.
- total tars value “average total tars”, “total tar content” and “total tars” are alternative ways of referring to the average total tar rating, since all such terms or expressions refer to the numerical result obtained by use of the method described in the specification hereof.
- acylating agents of the types described above have a succination ratio of less than 1.3 --i.e., the acylating agents have within their structure an average of less than 1.3 succinic groups per each substituent group derived from the aforesaid substantially aliphatic polymer.
- Another embodiment of this invention involves the process of forming a carboxylic derivative composition which comprises reacting at least one substituted succinic acylating agent with a reactant selected from the group consisting of (1) at least one amine having at least one primary or secondary amino group, (2) at least one alcohol, and (3) a combination of at least one amine having at least one primary or secondary amino group and at least one alcohol, the components of (3) being reacted with said at least one substituted succinic acylating agent concurrently or sequentially in any order, said at least one succinic acylating agent having been prepared by reacting (i) at least one substantially aliphatic polymer of at least one lower olefin, and (ii) an acidic reactant or a mixture of two or more acidic reactants represented by the general formula
- R and R' are independently --OH, --O-lower alkyl, a halogen atom, or taken together are a single oxygen atom; the process of preparing said acylating agent being characterized in that:
- the substantially aliphatic polymer is comprised predominantly or entirely of polyisobutene, at least 50% of the polyisobutene content of such polymer having an end group represented by the formula ##STR4## b) the mole ratio of said acidic reactant(s):said polymer(s) is at least 1:1; and
- reaction mixture is maintained under superatmospheric pressure during at least a substantial portion of the reaction period.
- the preferred acylating agents of this type for use in the process are characterized by having an average total tar rating as determined by the method described in the specification hereof that is at least about 40% lower (for example about 43% lower) and most preferably at least 50% lower than the average total tar rating of a corresponding product made in the same way under the same reaction conditions using a polyisobutene containing less than 10% of the above-depicted end group.
- Particularly preferred acylating agents of this type have a succination ratio of less than 1.3.
- a further embodiment of this invention relates to a two-stage process for the production of a carboxylic derivative composition and to the novel products formed thereby.
- a carboxylic derivative composition is produced by a process which comprises:
- A reacting (i) at least one substantially aliphatic polymer of at least one lower olefin, and (ii) an acidic reactant or a mixture of two or more acidic reactants represented by the general formula
- R and R' are independently --OH, --O-lower alkyl, a halogen atom, or taken together are a single oxygen atom; the process of preparing said acylating agent being characterized in that a) the substantially aliphatic polymer is comprised predominantly or entirely of polyisobutene, at least 50% of the polyisobutene content of such polymer having an end group represented by the formula ##STR5## b) the mole ratio of said acidic reactant(s):said polymer(s) is at least 1:1; and c) the reaction mixture is maintained under superatmospheric pressure during at least a substantial portion of the reaction period, whereby a substituted succinic derivative composition is formed; and
- the substituted succinic derivative composition formed in Stage A and used in Stage B has an average total tar rating as determined by the method described in the specification hereof that is at least about 40% lower (for example about 43% lower) and most preferably at least 50% lower than the average total tar rating of a corresponding product made in the same way under the same reaction conditions using a polyisobutene containing less than 10% of the above-depicted end group.
- Particularly preferred acylating agents of this type have a succination ratio of less than 1.3.
- the carboxylic derivative compositions of this invention formed as described above have a good balance of oxidative and thermal stability, and thus can be subjected to more stringent thermooxidative conditions than corresponding products made in the same way under the same reaction conditions using a polyisobutene containing less than 10% of the above-depicted end group.
- carboxylic derivative compositions produced as above which are further reacted with one or more post-treating reactants such as the following: an inorganic phosphorus acid or anhydride; a water-hydrolyzable organic phosphorus compound and water; an organic phosphorus compound; phosphorus pentasulfide; a boron compound; a mono- or polycarboxylic acid, anhydride or acid halide; a mono- or polyepoxide or thioepoxide; an aldehyde or ketone; carbon disulfide; glycidol; urea, thiourea or guanidine; an organic sulfonic acid; an alkenyl cyanide; diketene; a diisocyanate; an alkane sultone; a 1,3-dicarbonyl compound; a sulfate of an alkoxylated alcohol or alkoxylated phenol; a cyclic lactone;
- post-treating agents improve the antiwear properties of the succinimide, succinic ester, and/or succinic ester-amide with which they are reacted.
- examples are the inorganic phosphoric acids or anhydrides, and the water-hydrolyzable organic phosphorus compounds and water, when used in combination (concurrently or sequentially) with a boron compound.
- post-treating agents have no appreciable effect on antiwear performance but are effective in improving other properties such as passivity toward polymeric materials used in fabricating seals, diaphragms, and other components with which oils of lubricating viscosity frequently come in contact during actual service conditions.
- Still further embodiments of this invention relate to the provision of novel and eminently useful compositions wherein the carboxylic derivative compositions of this invention whether or not post-treated as above, are utilized in combination with one or more other components, especially zinc hydrocarbyl dithiophosphates, Group I or II metal detergent compositions, active sulfur-containing antiwear and/or extreme pressure agents, and/or metal-free phosphorus-containing antiwear and/or extreme pressure agents.
- the succinic acylating agents utilized in forming the carboxylic acid derivative compositions of this invention are formed by reacting (i) at least one substantially aliphatic polymer of at least one lower olefin, and (ii) an acidic reactant or a mixture of two or more acidic reactants represented by the general formula
- R and R' are independently --OH, --O-lower alkyl, a halogen atom, or taken together are a single oxygen atom.
- This process is characterized in that a) the substantially aliphatic polymer is comprised predominantly or entirely of polyisobutene, at least 50% of the polyisobutene content of such polymer having an end group represented by the formula ##STR6## b) the mole ratio of said acidic reactant(s):said polymer(s) is at least 1:1; and c) the reaction mixture is maintained under superatmospheric pressure during at least a substantial portion of the reaction period.
- Preferred acidic reactants represented by Formula (I) above include such compounds as maleic acid, fumaric acid, the lower alkyl (C 1-7 ) esters of such acids, the acid halides (preferably the acid fluorides or chlorides) of such acids, maleic anhydride, or mixtures of any two or more of any such compounds.
- Other similar compounds which can be used are itaconic acid, itaconic anhydride, citraconic acid, citraconic anhydride, mesaconic acid, the lower alkyl esters and the acid halides of such acids, and the like.
- Maleic anhydride is the most preferred reactant for use in the process.
- the entire reaction or substantially the entire reaction is conducted under superatmospheric pressure, such as by conducting the entire reaction or substantially the entire reaction in a closed reaction system at superatmospheric pressure.
- the process is conducted such that the superatmospheric pressure on the reaction mixture decreases after passing through an initial peak pressure, and then increases to another elevated pressure, especially where the latter elevated pressure is higher than the initial peak pressure.
- reaction be conducted under reaction conditions, including super-atmospheric pressure, that enable the reaction to proceed without encountering excessive decomposition or excessive by-product formation (e.g., excessive tar or polymer formation).
- the reactants in mole ratios of acidic reactant to polyisobutene such that the product contains an average molar ratio of succinic groups to polyisobutene chains below 1.3:1.
- the succination ratio of the acylating agent is less than 1.3.
- reaction rate in this process is high, the yields of desired product are high, and despite the fact that superatmospheric pressures and substantially elevated temperatures are used, the process forms only small amounts of tars or resinous co-products, even when employing as much as a 20% or more molar excess of maleic anhydride.
- any unreacted acidic reactant such as maleic anhydride, maleic acid, fumaric acid, or the like can be, and preferably is, recovered from the reaction mixture, and thus is available for use either as recycle to the process or for other uses.
- chlorine is not used in the process, the expense and difficulties associated with handling chlorine on a plant scale are eliminated, and the product is less corrosive than corresponding products formed by use of chlorine.
- thermal stabilizers or other additive materials to reduce tar formation are not required.
- many of the known materials to reduce tar formation are halogen-containing substances (see for example U.S. Pat. Nos. 3,927,041; 3,935,249; 3,953,475; 3,954,812; 3,960,900; 3,985,672; 4,008,168; 4,086,251; 4,414,397; 4,434,071; and 4,496,746).
- Halogen-containing components are generally undesirable because they tend to leave halogen-containing residues in the product.
- the polybutenes or like polymers utilized in this process may have number average molecular weights in the range of 500 to 100,000 or more.
- the preferred polymers are those having number average molecular weights in the range of 700 to 5,000, and the most preferred polymers are those having number average molecular weights in the range of 800 to 1,300.
- the reaction can be conducted in an inert liquid reaction medium or diluent such as one or more saturated aliphatic, saturated cycloaliphatic, or aromatic hydrocarbons, e.g. mineral oil, etc.
- an ancillary reaction solvent or diluent such as one or more saturated aliphatic, saturated cycloaliphatic, or aromatic hydrocarbons, e.g. mineral oil, etc.
- the reaction is conducted in the absence of an ancillary reaction solvent or diluent.
- a small amount of catalyst such as aluminum trichloroide, triethylaluminum, methylaluminum sesquichloride, diethylaluminum chloride, or the like, may be employed in the process.
- the following examples illustrate the production of the succinic acylating agents used in the practice of this invention.
- all parts and percentages are by weight unless otherwise specified.
- the "cook period" referred to in the examples is designated as the point where the reaction mass reaches its specified reaction temperature, and thus at this point the cook time is equal to 0.
- the polybutene used in Examples 1-6 was a substantially pure polyisobutylene with a number average molecular weight of about 995. Approximately 78% of the polymer had an end group as depicted in Formula I above.
- the polybutene employed was a substantially pure polyisobutylene with a number average molecular weight of about 1,300. This polybutene also contained about 78% of polymer having the above-depicted end group. Conventional commercially-available polyisobutene contains less than about 10% of polymer containing such end group.
- the resultant reaction product was subjected to vacuum stripping to remove volatiles (primarily unreacted maleic anhydride).
- the polybutenyl succinic anhydride reaction product had an acid number before stripping of 0.92, and an acid number after stripping of 0.76.
- Example 2 The general procedure of Example 1 was repeated, the chief difference being that the reactants were kept at 240° C. during the major portion of the reaction period.
- the pressure profile on the reaction mass during the reaction was as follows:
- the resultant reaction product was subjected to vacuum stripping to remove volatiles (primarily unreacted maleic anhydride).
- the polybutenyl succinic anhydride reaction product had an acid number before stripping of 0.92, and an acid number after stripping of 0.82.
- This polybutenyl succinic anhydride reaction product had an acid number before vacuum stripping of 1.04, and an acid number after stripping of 0.81.
- the acid number of the polybutenyl succinic anhydride reaction product before vacuum stripping was 1.02. After stripping the product had an acid number of 0.91.
- the acid numbers of the polybutenyl succinic anhydride reaction product were 1.09 before stripping, and 0.95 after stripping.
- the reaction product was subjected to vacuum stripping to remove volatiles (primarily unreacted maleic anhydride).
- the acid numbers of the polybutenyl succinic anhydride reaction product were 0.84 before stripping, and 0.78 after stripping.
- the acid numbers of the polybutenyl succinic anhydride reaction product were 0.91 before stripping, and 0.83 after stripping.
- Table 1 summarizes the total tar content and the stripped acid number (i.e., the acid number of the residual product after stripping) of the respective products of Examples 1-5, and provides a comparison of the corresponding values on a product made under the same general reaction conditions (including superatmospheric pressure) using a PIB that contained less than 10% of the above-depicted end group, and wherein the mole ratio (MA:PIB) was 1:1.
- the procedure for determination of total tar content used herein is as follows: After completion of the reaction run, the reactor head and attached agitator are removed, and the reactor contents are transferred from the autoclave to storage and analysis bottles. The appearance of the reactor and its component parts is immediately rated by at least two, and preferably three, trained technical personnel. The rating takes place in a specific manner, namely:
- the rating is based upon the visual appearance of the component and the amount of tar present.
- the rating scale ranges from 1 to 10, with "1" representing a perfectly clean component showing no evidence of tar formation.
- the rating of "10” represents a heavily tarred component which is completely covered with tar.
- an intermediate rating corresponds to the area of the surface covered by the black tar. For example, a rating of "7" means that approximately 70% of the surface is covered with tar.
- the acid number of the polybutenyl succinic anhydride reaction product before stripping was 0.84, and after stripping, 0.77. Average total tars was 4.
- Run 2--Fresh MA 107.6 parts, recycled MA, 11.7 parts; PIB, 1211.8 parts; AlCl 3 , 0.12 part.
- Table 2 includes a summary of the results of this series of runs.
- the reaction mixture before stripping had a total tar content of 3.
- the acid number of the polybutenyl succinic anhydride product after vacuum stripping was 0.91.
- the reaction product mixtures formed in the above process are of particular advantage in that they contain little or no tars; the materials used in Examples 1-10 usually gave a rating by the above procedure of 3 or 4.
- the interior surfaces of the reactor were free or essentially free of tars or other resinous coatings, and moreover the effective utilization of the raw materials used in the process was high.
- the remainder of the product after removal of residual unreacted acidic reactant (i.e., the maleic anhydride or like carboxylic reactant) charged to the reactor (if any remains unreacted) such as by distillation or stripping at reduced pressure, the remainder of the product generally will have an acid number of at least 0.7, preferably at least 0.8, and in the most preferred cases, at least 0.9.
- Such product can be used without further treatment or purification either as an additive or as a raw material for use in the production of the dispersant additives of this invention.
- the average total tar rating of the PIBSA made in Example 1 was 43% lower than the average total tar rating of the PIBSA made in the same way under essentially the same reaction conditions using a polyisobutene containing less than 10% of the end group depicted hereinabove.
- Example 11 and 12 were conducted generally as in Example 4 using a polyisobutene from a different supplier that had a number average molecular weight (by GPC) of 1323 and that contained approximately 73% of polymer having the end group depicted hereinabove (as indicated by the supplier).
- a control run was conducted in the same manner using a polyisobutene having a number average molecular weight of 1314 (by GPC) but which contained at most only 15% of polymer with such end group.
- the reaction was conducted for 5 hours at 240° C. utilizing a 1.10 molar ratio of maleic anhydride to polyisobutene.
- Table 3 summarizes the results obtained, including the average total tar ratings on the products.
- the difference in acid number of the reaction product before and after removal of residual acidic reactant(s) therefrom is no greater than 0.23, preferably no greater than 0.16, and most preferably is 0.10 or less.
- the polyolefin, most preferably polyisobutene, of the succinic acylating agent has a number average molecular weight of at least 500, and preferably has a number average molecular weight in the range of 700 to 5,000, and more preferably in the range of 800 to 2,500, and especially 800 to 1,300.
- the reputable commercial manufacturers of such polyolefins identify their products, inter alia, by means of number average molecular weights, and the designations provided by such suppliers: can be relied upon. In any instance where it is desired to make an independent determination of number average molecular weight of the polybutene being used, recourse may be had to the procedures described hereinafter.
- polybutenyl succinic acids or acid derivatives thereof (polybutenyl succinic anhydrides, polybutenyl succinic acid halides, polybutenyl succinic acid lower alkyl esters) prepared as above are useful as corrosion inhibitors for liquid fuels such as gasoline and middle distillate fuels (diesel fuel, burner fuel, turbine fuel, jet fuel, kerosene, etc.).
- Suitable procedures which can be used in order to make an independent determination of the number average molecular weight (Mn) of the polyalkene from which the alkenyl substituent of the acylating agent is derived involve use of either of two methods, namely, vapor pressure osmometry (VPO) or gel permeation chromatography (GPC).
- VPO vapor pressure osmometry
- GPC gel permeation chromatography
- the sample of polyalkene to be subjected to GPC analysis is injected into a high purity tetrahydrofuran mobile phase flowing at 1.00 mL/min.
- a high purity tetrahydrofuran mobile phase flowing at 1.00 mL/min.
- Such sample is separated by elution through a set of GPC columns arranged in series and containing seriatim 1000, 500, 100, and 50 Angstrom pore sized styrene-divinyl benzene beads of 5 micron gel size.
- An internal standard, flowers of sulfur, is used with the sample to insure proper elution flow rate.
- the polyalkene eluate is detected by a differential refractive index detector.
- the signal from this detector as a function of time is digitized and stored by a data system. After the chromatograph is completed the stored data is processed to generate the Mn of the polyalkene.
- the Mn determined by the VPO and GPC methods should agree within the precision of the respective methods.
- the number average molecular weight of the aliphatic polymer comprised predominantly or entirely of polyisobutene is determined by the above procedure. Then the total weight of the substituent groups present in the substituted succinic acylating agent is determined by conventional methods for determination of the number of carbonyl functions.
- the preferred procedure for use involves nonaqueous titration of the substituted acylating agent with standardized sodium isopropoxide. In this procedure the titration is conducted in a 1:1 mineral spirits:1-butanol solvent system.
- An alternative, albeit less preferred, procedure is the ASTM D-94 procedure.
- the determination is to be based on the active portion of the sample. That is to say, alkenyl succinic acylating agents can be and are often produced as a mixture with an inactive component or diluent such as unreacted polyisobutene and/or process oil. Thus for the purpose of succination ratio determination, such inactive component or diluent should not be considered a part of the succinic acylating agent. Accordingly, a separation as between the inactive component or diluent and the alkenyl succinic acylating agent should be accomplished.
- Such separation can be effected before determination of total weight of the substituent groups present in the substituted succinic acylating agent. However, it is preferable to effect such separation after such determination using a mathematical correction of the result.
- the separation itself can be achieved using a silica gel column separation technique.
- a low molecular weight non-polar hydrocarbon solvent such as hexane and more preferably pentane, is used as the solvent whereby the unreactive component or diluent is readily eluted from the column.
- the substituted succinic acylating agent entrained in the column can then be recovered by use of a more polar elution solvent, preferably methanol/methylene dichloride.
- the alkenyl succinimides of this invention are formed by heating an alkenyl succinic anhydride, acid, acid-ester, acid halide, or lower alkyl ester prepared as above, with one or more compounds having at least one primary or secondary amino group capable of forming an imide or amide group in the course of the reaction with such alkenyl succinic anhydride, acid, acid-ester, acid halide, or lower alkyl ester. Residual unsaturation in the alkenyl group of the resultant compounds may be used as a reaction site, if desired.
- the alkenyl substituent may be hydrogenated to form an alkyl substituent.
- the olefinic bond(s) in the alkenyl substituent may be sulfurized, halogenated, hydrohalogenated or the like.
- alkenyl succinimide derivatives of this invention can be formed by first reacting the alkenyl-substituted acylating agent formed as described above (e.g., in Examples 1-10) with a suitable reagent such as elemental sulfur and thereafter reacting the resultant sulfur-containing acylating agent with an amine reactant. Suitable procedures for effecting the reaction between sulfur and an alkenyl-substituted acylating agent are described in U.S. Pat. No. 3,309,316.
- amine reactants comprise various types of compounds such as amines, ureas, thioureas, aminoalcohols, aminophenols, and other primary and/or secondary amino-substituted compounds.
- the preferred amine reactants are polyamines containing at least one primary amino group.
- the amine reactants can be widely diverse in chemical structure, and include straight, branched chain, and cyclic amines which can be unsubstituted or substituted with other functional groups, such as one or more ester groups, ether linkages, carbonyl groups, oxirane groups, carboxyl groups, thioether linkages, sulfhydryl groups, hydroxyl groups, and many others.
- amines include polyoxyalkylene polyamines such as those depicted by the formulas
- alkylene groups can be the same or different straight or branched chain groups containing 2 to 8 and preferably 2 to 4 carbon atoms each, and m is from 3 to 70 and preferably 10 to 35;
- alkylene groups can be the same or different straight or branched chain groups containing 2 to 8 and preferably 2 to 4 carbon atoms each
- R is a substituted hydrocarbon group, usually a saturated hydrocarbon group, of up to 10 carbon atoms
- q represents the number of the depicted substituents on R and is from 3 to 6
- n is from 1 to 40 with the proviso that the sum of the n's is from 3 to about 70 and preferably from about 6 to about 35.
- polyoxyalkylene amines such as are depicted in Formula II or III, for example the polyoxyalkylene diamines and polyoxyalkylene triamines, may have various number average molecular weights, typically in the range of about 200 to about 4,000 and preferably in the range of about 200 to about 2,000.
- Polyoxyalkylene polyamines are available as articles of commerce, and may be obtained for example from the Jefferson Chemical Company, Inc. under the trade designations Jeffamine D,230, Jeffamine D-400, Jeffamine D-1000, Jeffamine D2000, Jeffamine T-403, etc.
- polyoxyalkylene polyamines are those represented by the formula
- R is -NH-(alkylene-O) n -alkylene-NH 2 and n is 2 or 3.
- the alkylene groups can be the same or different, straight or branched chain groups containing 2 to 8 and preferably 2 to 4 carbon atoms each. These compounds are formed by reacting 3 to about 3.5 moles of a dicarboxylic acid reactant such as maleic acid, fumaric acid, or their anhydrides or C 1-4 dialkyl esters with a polyoxyalkylene diamine of the formula H 2 N-(alkylene-O) n -alkylene-NH 2 wherein alkylene and n are as just defined.
- Methods suitable for preparing such polyoxyalkylene polyamines are set forth for example in European Patent Publication No. EP 435,497.
- amido-amine adducts such as are described in U.S. Pat. No. 5,034,018.
- the most preferred amines are the ethylene polyamines which can be depicted by the formula
- n is an integer from one to about ten.
- ethylene diamine diethylene triamine, triethylene tetramine, tetraethylene pentamine, pentaethylene hexamine, and the like, including mixtures thereof in which case n is the average value of the mixture.
- ethylene polyamines have a primary amine group at each end so can form mono-alkenylsuccinimides and bis-alkenylsuccinimides.
- ethylene polyamine mixtures usually contain minor amounts of branched species and cyclic species such as N-aminoethyl piperazine, N,N'-bis(aminoethyl)piperazine, N,N'-bis(piperazinyl)ethane, and like compounds.
- the preferred commercial mixtures have approximate overall compositions falling in the range corresponding to diethylene triamine to pentaethylene hexamine, mixtures generally corresponding in overall makeup to tetraethylene pentamine being most preferred.
- Various suitable low cost polyethylene polyamine mixtures are available under various trade designations such as "Polyamine H", “Polyamine 400”, “Dow Polyamine E-100", “Dow S-1107", etc.
- Particularly preferred ashless dispersants of the present invention are the products of reaction of polyethylene polyamine mixtures such as are available as articles of commerce, e.g., a mixture of linear, branched and cyclic species approximating (i) triethylene tetramine, (ii) tetraethylene pentamine, (iii) pentaethylene hexamine, or (iv) a mixture of any two or all three of (i), (ii), and (iii).
- uccinimide is meant to encompass the completed reaction product from reaction between the amine reactant(s) and the hydrocarbon-substituted carboxylic acid or anhydride (or like acid derivative) reactant(s), and is intended to encompass compounds wherein the product may have amide, amidine, and/or salt linkages in addition to the imide linkage of the type that results from the reaction of a primary amino group and an anhydride moiety.
- Another group of carboxylic ashless dispersants of this invention includes the alkenyl succinic acid esters, diesters and esteramides of alcohols such as alcohols containing 1-100 carbon atoms and 1-10 hydroxyl groups and alkenyl succinic acid esters, diesters and ester-amides of phenols such as phenolic compounds containing 6-100 carbon atoms and 1-10 hydroxyl groups.
- the alkenyl succinic portion of these esters and ester-amides corresponds to the alkenyl succinic portion of the succinimides described above.
- the alkenyl group can be hydrogenated or subjected to other reactions involving olefinic double bonds.
- the alkenyl group of the alkenyl-substituted acylating agent formed as described above can be reacted with a suitable reagent such as elemental sulfur and thereafter used to form the succinic ester or ester-amide.
- a suitable reagent such as elemental sulfur
- the alcohol and phenol reactants can be be used singly or in combinations, including combinations of monohydric alcohols, combinations of polyhydric alcohols, combinations of monohydric phenols, combinations of polyhydric phenols, combinations of at least one monohydric alcohol and at least one polyhydric alcohol, combinations of at least one monohydric phenol and at least one polyhydric phenol, combinations of at least one monohydric alcohol and at least one polyhydric phenol, combinations of at least one polyhydric alcohol and at least one monohydric phenol, combinations of at least one monohydric alcohol, at least one polyhydric alcohol and at least one monohydric phenol, combinations of at least one monohydric alcohol, at least one polyhydric alcohol and at least one polyhydric phenol, combinations of at least one monohydric phenol, at least one polyhydric phenol and at least one monohydric alcohol, combinations of at least one monohydric phenol, at least one polyhydric phenol and at least one monohydric alcohol, combinations of at least one monohydric phenol, at least one polyhydr
- the alcohols can be widely diverse in chemical structure, and include straight and branched chain alcohols which can be unsubstituted or substituted with other functional groups, such as one or more ester groups, ether linkages, carbonyl groups, oxirane groups, carboxyl groups, thioether linkages, sulfhydryl groups, and many others.
- Typical alcohols which can be used in preparing the esters include ethylene glycol, diethylene glycol, tetraethylene glycol, diethylene glycol monoethylether, propylene glycol, tripropylene glycol, glycerol, sorbitol, monomethyl ether of glycerol, 1,1,1-trimethylol ethane, 1,1,1-trimethylol propane, 1,1,1-trimethylol butane, pentaerythritol, dipentaerythritol, tripentaerythritol, 9,10-dihydroxystearic acid, 3-chloro-1,2-propanediol, 1,2-butanediol, 2,3-hexanediol, pinacol, mannitol, 1,2-cyclohexanediol, 1,4-cyclohexanediol, cyclohexanedimethanol, glucose, mannose, triethanolamine, trioctan
- Typical phenols which can be used include such compounds as catechol, resorcinol, hydroquinone, tert-butylhydroquinone, 4-hydroxymethylphenol, 1,4-dihydroxnaphthalene, 4,4'-biphenol, 4,4'-methylenebisphenol,bisphenol-A,sym-trihydroxybenzene, 4-(1,1,3,3-tetramethylbutyl)catechol, 3,3',4,4'-tetrahydroxydiphenyl, 4-(dimethylamino)phenol, 4-(diethylaminomethyl)phenol, 4-(2-hydroxyethoxyethoxy)phenol, and many other similar compounds.
- succinic esters and ester amides of this invention are the heterocyclic polyols of the type described in European Patent Publication No. EP 288,324.
- Preferred succinic esters of this invention are made using as a polyhydric alcohol having 3 to 20 carbon atoms such as one or a mixture of such compounds as glycerol, erythritol, pentaerythritol, dipentaerythritol, triipentaerythritol, gluconic acid, glyceraldehyde, glucose, arabinose, 1,7-heptanediol, 2,4-heptanediol, 1,2,3-hexanetriol, 1,2,4-hexanetriol, 1,2,5-hexanetriol, 2,3,4-hexanetriol, 1,2,3-butanetriol, 1,2,4-butane triol, quinic acid, 2,2,6,6-tetrakis(hydroxymethyl)cyclohexanol, 1,10-decanediol, digitalose, and the like.
- the succinic esters are readily made by merely heating a mixture of a succinic acylating agent prepared as described above (e.g., alkenyl succinic acid, anhydride or lower alkyl ester such as a C 1 -C 4 ester) with the alcohol while distilling out water or lower alkanol.
- a succinic acylating agent e.g., alkenyl succinic acid, anhydride or lower alkyl ester such as a C 1 -C 4 ester
- acid-esters made from alkenyl succinic anhydrides do not evolve water.
- the alkenyl succinic acid or anhydrides can be merely reacted with an appropriate alkylene oxide such as ethylene oxide, propylene oxide, and the like, including mixtures thereof.
- alkenyl succinic ester-amides of this invention the above-described alkenyl succinic acids, anhydrides or lower alkyl esters or etc. are heated with an alcohol and an amine either sequentially or in a mixture.
- the alcohols and amine reactants described above are also useful in this embodiment.
- amino alcohols and/or aminophenols can be used alone or with the alcohol and/or amine reactant to form ester-amide mixtures.
- the amino alcohol can contain up to 100 carbon atoms, 1-10 hydroxy groups and 1-6 amine nitrogen atoms.
- Examples are ethanolamine, 2-amino-2-methyl-1-propanol, 4-(2-hydroxyethyl)aniline, 2-aminopropanol, diethanolamine, 3-amino-1-propanol, 2-amino-2-methyl-1,3-propanediol, 2-amino-2-ethyl-1,3-propanediol, N-(2-hydroxypropyl)-N'-(2-aminoethyl)piperazine, tris(hydroxymethyl)aminomethane (also known as tris(methylol)aminomethane), 2-amino-1-butanol, N-ethanol-diethylene triamine, and the like, including mixtures of two or more such substances.
- alkenyl group of the succinic ester-amide can be hydrogenated or subjected to other reactions involving olefinic double bonds.
- a sub-category of carboxylic ashless dispersants of this invention comprises the Mannich-based derivatives of hydroxyaryl succinimides.
- Such compounds can be made by reacting a succinic acylating agent prepared as described above with an aminophenol to produce an N-(hydroxyaryl) hydrocarbyl succinimide which is then reacted with an alkylene diamine or polyalkylene polyamine and an aldehyde (e.g., formaldehyde), in a Mannich-base reaction.
- reaction conditions such as are set forth in U.S. Pat. No. 4,354,950, can be used. Accordingly, in the interest of brevity, the disclosure of U.S. Pat. No.
- the succinic acylating agent is formed as described above using a polyolefin, preferably a polyisobutene, having a number average molecular weight of 500 to 5,000, preferably 700 to 2,500, more preferably 700 to 1,400, and especially 800 to 1,200.
- a polyolefin preferably a polyisobutene
- residual unsaturation in the polyalkenyl substituent group can be used as a reaction site as for example, by hydrogenation, sulfurization, or the like.
- the reaction between the succinic acylating agent and the amine reactant(s) and/or the alcohol reactant(s) is carried out under conventional reaction conditions.
- at least 0.5 equivalent (i.e., 1 mole) of the acylating agent reacts per equivalent of reactive primary and/or secondary amino groups present in the amine reactant(s).
- from 1 to 2 moles of the acylating agent can react with one mole of a diamine having two reactive primary amino groups (and thus two equivalents of reactive amino groups).
- from 1 to 4 moles of the acylating agent can react with one mole of an amine having four reactive primary amino groups (and thus four equivalents of reactive amino groups).
- At least one mole of the acylating agent reacts per equivalent of reactive hydroxyl groups present in the alcohol reactant(s).
- the acylating agent can react with one mole of a diol having two reactive hydroxyl groups per molecule.
- Ester-amides of this invention are formed by suitably proportioning the amine reactant(s) and alcohol reactant(s) so as to form an acylated product in which at least some of the hydroxyl groups and at least some of the primary amino groups are acylated.
- the reactants are proportioned to achieve the desired extent of acylation in the product according to well known principles.
- the amount of succinic acylating agent used is generally such as to cause at least 1.6 succinic groups to react per molecule of the polyamine.
- the amount of succinic acylating agent used is generally such as to cause at least 1.6 succinic groups to react per molecule of the polyol.
- Reaction temperatures used in forming the succinic derivatives of this invention are those sufficient to cause the desired reactions to occur.
- the reactions are usually carried out at temperatures falling within the range of about 100° to about 250° C., and preferably in the range of about 140° to about 180° C. Water formed in the reaction is generally stripped from the reaction mixture during or after the reaction.
- the succinic derivative compositions of this invention are either oil-soluble, or dissolvable in oil with the aid of a suitable solvent, or are oil-dispersible in the sense that they form stable dispersions in oil.
- Oil-soluble, dissolvable or oil-dispersible does not necessarily indicate that the materials are soluble, dissolvable, miscible, or capable of being suspended in oil in all proportions. It does mean however that the additives are, for example, soluble or oil-dispersible to an extent sufficient to exert their intended effect in the environment in which the oil is employed.
- the additional incorporation of other additives may also permit the incorporation of higher levels of a particular succinic derivative composition hereof, if desired.
- Polyisobutenylsuccinic anhydride formed as in Example 1 and tetraethylene pentamine (Dow S1107) in a mole ratio of 1.8:1 are reacted at 165°-170° C. for 4 hours.
- Example A-1 The procedure of Example A-1 is repeated substituting triethylene tetramine (Union Carbide) for the tetraethylene pentamine.
- Polyisobutenylsuccinic anhydride formed as in Example 2 and tetraethylene pentamine (Dow S1107) in a mole ratio of 1.8:1 are reacted at 165°-170° C. for 2 hours.
- Example A-3 The procedure of Example A-3 is repeated substituting pentaethylene hexamine for the tetraethylene pentamine.
- Polyisobutenylsuccinic anhydride formed as in Example 3 and tetraethylene pentamine (Dow S1107) in a mole ratio of 1.8:1 are reacted at 165°-170° C. for 3 hours.
- Example A-5 The procedure of Example A-5 is repeated substituting pentaethylene hexamine for the tetraethylene pentamine.
- Polyisobutenylsuccinic anhydride formed as in Example 4 and tetraethylene pentamine (Dow S1107) in a mole ratio of 2:1 are reacted at 165° C. for 2.5 hours.
- Example A-7 The procedure of Example A-7 is repeated substituting triethylene tetramine for the tetraethylene pentamine.
- Polyisobutenylsuccinic anhydride formed as in Example 5 and tetraethylene pentamine (Dow S1107) in a mole ratio of 1.6:1 are reacted at 165° C. for 3 hours.
- Example A-9 The procedure of Example A-9 is repeated substituting triethylene tetramine for the tetraethylene pentamine.
- Polyisobutenylsuccinic anhydride formed as in Example 10 and tetraethylene pentamine (Dow S1107) in a mole ratio of 1.8:1 are reacted at 165° C. for 2 hours.
- Example A-11 The procedure of Example A-11 is repeated substituting triethylene tetramine (Dow) for the tetraethylene pentamine.
- Example A-11 The procedure of Example A-11 is repeated substituting pentaethylene hexamine for the tetraethylene pentamine.
- Polyisobutenylsuccinic anhydride (170 parts ) formed as in Example 10 and pentaerythritol (68 parts) are reacted at 200 to 225° C. for 4 hours in 200 parts of process oil.
- the reaction mixture is cooled to 160° C. and 10 parts of tetraethylene pentamine (Dow S1107) is added and the reaction mixture maintained at 165° C. for 1 hour.
- Example A-14 The procedure of Example A-14 is repeated substituting 60 parts of tris(hydroxymethyl)aminomethane for the tetraethylene pentamine.
- polyisobutenylsuccinic anhydride (PIBSA) formed as in Example 10 and tetraethylene pentamine (TEPA) in a mole ratio of 1.8:1 are reacted at 165°-170° C. for 4 hours.
- TEPA tetraethylene pentamine
- MA maleic anhydride
- the succinimide is thus formed using a total mole ratio of anhydrides to TEPA of 2.1:1.
- the reaction product is suitably diluted with 100 solvent neutral mineral oil such that the nitrogen content of the blend is about 1.8%.
- PIBSA formed as in Example 10 and TEPA in a mole ratio of 2.05:1 are reacted at 165°-170° C. for 4 hours.
- maleic acid is added to the first stage reaction product in amount equivalent to one mole per mole of TEPA used in the first stage and the resultant mixture is heated at 165°-170° C. for 1.5 hours.
- the reaction product is suitably diluted with mineral oil base stock to provide a handleable concentrate.
- Example A-17 The procedure of Example A-17 is repeated except that fumaric acid is used in the second stage in amount equivalent to a mole ratio of 1:1 relative to the TEPA used in the first stage.
- Example A-18 The procedure of Example A-18 is repeated using an equivalent amount of malic acid in lieu of fumaric acid in the second stage.
- Example A-19 The procedure of Example A-19 is repeated using in the second stage an equivalent amount of succinic acid in lieu of malic acid.
- a mixture is formed from 260 parts of a succinimide ashless dispersant formed as in Example A-1, 100 parts of a 100 Solvent Neutral refined mineral oil diluent, 8 parts of phosphorous acid (H 3 PO 3 ) in the form of solid flakes, 3.5 parts of tolutriazole, 8 parts of boric acid, and 3.0 parts of water.
- the mixture is heated at 100° C. for two hours until all of the solid materials are dissolved.
- a vacuum of 40 mm Hg is gradually drawn on the product to remove the water while the temperature is slowly raised to 110° C.
- a clear solution or composition is obtained which is soluble in oil.
- Example A-21 The procedure of Example A-21 is repeated except that dibutyl hydrogen phosphite (26 parts) and water (10 parts) are used in lieu of the phosphorous acid, and the amount of boric acid used is 10 parts.
- Example A-21 The procedure of Example A-21 is repeated except that the boric acid and water are omitted.
- Example A-21 The procedure of Example A-21 is repeated except that the phosphorous acid is omitted.
- polyisobutenylsuccinic anhydride formed as in Example 10 and TEPA in a mole ratio of 1.8:1 are reacted at 165°-170° C. for 4 hours.
- maleic anhydride (MA) is added to the first stage reaction product in amount equivalent to 0.3 mole per mole of TEPA used in the first stage and the resultant mixture is heated at 165° to 170° C. for 1.5 hours after which oil is added.
- boric acid is added to the second stage reaction mixture at a temperature of 150°-155° C. in an amount corresponding to 4.0 moles per mole of TEPA initially employed. The mixture is heated at 150° C. for one hour and then water formed in the third stage reaction is removed by applying a vacuum of 40 mm for one hour.
- the resulting succinimide is both acylated and boronated.
- Example A-25 The procedure of Example A-25 is repeated using a chemically equivalent amount of the succinic ester-amide of Example A-14 in place of the succinimide.
- the resultant succinic ester-amide is both acylated and boronated.
- Stage A A mixture of 2,100 parts of PIBSA produced as in Example 7, 290 parts of pentaerythritol, and 4,000 parts of process oil is heated at 225° to 235° C. for 5 hours.
- Stage B To 1,200 parts of the product mixture of Stage A maintained at 80° C. is added 60 parts of process oil and 10 parts of pyridine. The mixture is then heated at 100 to 120° C. for 2.5 hours and then stripped to 170° C. under vacuum. The residue is an oil solution of a post-treated product of this invention.
- Stage C To another 1,200 parts of the product mixture of Stage A is added 36 parts of maleic anhydride and the resulting mixture is heated to 200° C. over a 1.5 hour period. During the last 1/2 hour the mixture is blown with nitrogen. The product is then stripped under vacuum to yield an oil solution of a post-treated product of this invention.
- the ashless dispersants of this invention i.e., the succinimides, succinic esters, and succinic ester-amides, formed from the acylating agents described hereinabove (for instance in Examples 1-10 hereinabove) can be subjected to a wide variety of subsequent reactions with post-treating agents.
- Typical post-treating agents, the conditions under which post-treatments are effected therewith, and typical improvements realized by such post-treatments are summarized below in Table 4 with reference to prior disclosures dealing with post-treatment of succinimides, succinic esters, and/or succinic ester-amides formed from conventional acylating agents.
- the post-treating agents of the prior disclosures are used in the manner described therein with the exception that in lieu of a conventional succinimide, succinic ester, and/or succinic ester-amide, a succinimide, succinic ester, and/or succinic ester-amide of this invention is used as the starting material for the post-treatment.
- a succinimide, succinic ester, and/or succinic ester-amide of this invention is used as the starting material for the post-treatment.
- the improvements realized by application of such post-treatments to the carboxylic derivative compositions of this invention will result, at least in some cases, in improvements not achieved in post-treating prior art succinimides, succinic esters and/or succinic ester-amides and/or in improvements of greater magnitude than achievable with the prior art dispersants.
- Table 4 all references to patent numbers are to U.S. patents except as other specified.
- compositions which comprise either at least one oil of lubricating viscosity or at least one liquid hydrocarbonaceous fuel and at least one succinic derivative composition (succinimide, succinic ester, succinic esteramide) of this invention.
- Such compositions include both additive concentrates or additive solutions and finished oleaginous compositions such as lubricants and functional fluids.
- the proportions of the succinic derivative composition and the oil or fuel can very widely depending upon the nature of the composition being formed.
- this invention provides a carboxylic derivative composition in admixture with at least one oil of lubricating viscostiy or at least one hydrocarbonaceous liquid fuel in weight proportions falling in the range of about 0.1:99.9 to about 99.9:0.1, and preferably in the range of about 0.5:99.5 to about 90:10, said carboxylic derivative composition being produced by reacting at least one substituted succinic acylating agent with a reactant selected from the group consisting of (1) at least one amine having at least one primary or secondary amino group, (2) at least one alcohol, and (3) a combination of at least one amine having at least one primary or secondary amino group and at least one alcohol, the components of (3) being reacted with said at least one substituted succinic acylating agent concurrently or sequentially in any order, said at least one succinic acylating agent being prepared by reacting (i) at least one substantially aliphatic polymer of at least one lower olefin, and (ii) an acidic react
- R and R' are independently --OH, --O-lower alkyl, a halogen atom, or taken together are a single oxygen atom; the process of preparing said at least one succinic acylating agent being characterized in that:
- the substantially aliphatic polymer is comprised predominantly or entirely of polyisobutene, at least 50% of the polyisobutene content of such polymer having an end group represented by the formula ##STR7## b) the mole ratio of said acidic reactant(s):said polymer(s) is at least 1:1; and
- reaction mixture is maintained under superatmospheric pressure during at least a substantial portion of the reaction period.
- Preferred succinic derivative compositions for this use are formed from acylating agents of the type described above further characterized by having an average total tar rating as determined by the method described in the specification hereof that is at least about 40% lower, and most preferably at least 50% lower, than the average total tar rating of a corresponding product made in the same way under essentially the same reaction conditions using a polyisobutene containing less than 10% of the above-depicted end group.
- Particularly preferred succinic derivative compositions are those formed using acylating agents having a succination ratio of less than 1.3--i.e., the acylating agents have within their structure an average of less than 1.3 succinic groups per each substituent group derived from the aforesaid substantially aliphatic polymer.
- the foregoing finished oleaginous compositions of this invention possess enhanced dispersant properties and thus are capable of being stored and used for long periods of time without excessive formation and deposition of sludge and/or other similar deposits. Accordingly, the finished lubricant and functional fluid compositions can be used in a wide variety of applications such as engine oils, manual and automatic transmission fluids, gear oils, tractor oils, cutting and machining oils, quenching oils, transformer oils, hydraulic fluids, general purpose lubricants, and the like.
- the finished fuel compositions of this invention can be gasolines, diesel fuels, kerosene, home and/or industrial heating oils, burner fuels, gas oils, jet fuels, aviation fuels, gas turbine fuels, bunker fuels, etc., depending upon the volatility and viscosity characteristics of the hydrocarbonaceous fuel itself.
- Compositions in which the hydrocarbonaceous fuel is a distillate fuel in the boiling range of about 150° to about 800° F. are preferred.
- the finished lubricants and functional fluids of this invention will contain up to about 20% by weight of the succinic derivative composition, and in most cases the additive concentrates adapted for use in oils will contain up to about 80% by weight of one or more diluent oils of lubricating viscosity.
- the finished hydrocarbonaceous fuels of this invention will contain up to about 10% by weight of the succinic derivative composition, and in most cases the additive concentrates adapted for use in oils will contain up to about 90% by weight of one or more inert diluents or carriers, such as a light petroleum fraction, a light oil, a poly- ⁇ -olefin oligomer, a polyoxyalkylene glycol, a polyoxyalkylene monool, or the like.
- inert diluents or carriers such as a light petroleum fraction, a light oil, a poly- ⁇ -olefin oligomer, a polyoxyalkylene glycol, a polyoxyalkylene monool, or the like.
- FIG. 1 For convenience, these embodiments are referred to hereinbelow as Embodiments A, B, C, and D.
- a carboxylic derivative composition produced by reacting at least one substituted succinic acylating agent with a reactant selected from the group consisting of (1) at least one amine having at least one primary amino group, (2) at least one alcohol, and (3) a combination of at least one amine having at least one primary amino group and at least one alcohol, the components of (3) being reacted with said at least one substituted succinic acylating agent concurrently or sequentially in any order, said at least one succinic acylating agent being prepared by reacting (i) at least one substantially aliphatic polymer of at least one lower olefin, and (ii) an acidic reactant or a mixture of two or more acidic reactants represented by the general formula
- R and R' are independently --OH, --O-lower alkyl, a halogen atom, or taken together are a single oxygen atom; the process of preparing said at least one succinic acylating agent being characterized in that:
- the substantially aliphatic polymer is comprised predominantly or entirely of polyisobutene, at least 50% of the polyisobutene content of such polymer having an end group represented by the formula ##STR8## b) the mole ratio of said acidic reactant(s):said polymer(s) is at least 1:1; and
- reaction mixture is maintained under superatmospheric pressure during at least a substantial portion of the reaction period.
- Preferred carboxylic derivative compositions are formed using acylating agents as described above that are further characterized by having (i) an average total tar rating as determined by the method described in the specification hereof that is at least about 40% lower, and most preferably at least 50% lower, than the average total tar rating of a corresponding product made in the same way under essentially the same reaction conditions using a polyisobutene containing less than 10% of the above-depicted end group; and/or (ii) a succination ratio below 1.3.
- the relative proportions of these components is preferably such that the weight ratio of phosphorus in 1) to nitrogen in 2) is in the range of from about 0.001:1 to about 100:1, and preferably in the range of about 0.01:1 to about 70:1.
- These combinations serve to inhibit wear; to inhibit deposit, varnish and/or sludge formation and/or deposition; and to protect the lubricant or functional fluid composition from premature oxidative degradation, especially at elevated temperatures.
- the quantity of these components 1) and 2) added to the base oil of lubricating viscosity is a minor dispersing amount, and is usually such that the amount of component 2) is in the range of about 0.01 to about 20% by weight of the total lubricating oil composition.
- zinc hydrocarbyl dithiophosphates are usually prepared by reacting phosphorus pentasulfide with one or more alcohols or phenolic compounds or diols to produce a hydrocarbyl dithiophosphoric acid which is then neutralized with one or more zinc-containing bases.
- a monohydric alcohol or phenol is used in this reaction, the final product is a zinc dihydrocarbyl dithiophosphate.
- a suitable diol e.g., 2,4-pentanediol
- the final product is a zinc salt of a cyclic hydrocarbyl dithiophosphoric acid. See, for example, U.S. Pat. No. 3,089,850.
- typical oil-soluble zinc hydrocarbyl dithiophosphates used as component 1) may be represented by the formula ##STR9## where R 1 and R 2 are, independently, hydrocarbyl groups or taken together are a single hydrocarbyl group forming a cyclic structure with the phosphorus and two oxygen atoms, preferably a hydrocarbyl-substituted trimethylene group of sufficient carbon content to render the compound oil soluble, M is zinc, and x is an integer corresponding to the valence of M.
- the preferred compounds are those in which R 1 and R 2 are separate hydrocarbyl groups (i.e., the zinc dihydrocarbyl dithiophosphates).
- hydrocarbyl groups of the zinc dihydrocarbyl dithiophosphates will contain no more than about 50 carbon atoms each although even higher molecular weight hydrocarbyl groups can be present in the compound.
- the hydrocarbyl groups include cyclic and acyclic groups, both saturated and unsaturated, such as alkyl, cycloalkyl, alkenyl, cycloalkenyl, aryl, cycloalkylalkyl, aralkyl, and the like. It will be understood that the hydrocarbyl groups may contain elements other than carbon and hydrogen provided such other elements do not detract from the predominantly hydrocarbonaceous character of the hydrocarbyl group.
- hydrocarbyl groups may contain ether oxygen atoms, thioether sulfur atoms, secondary or tertiary amino nitrogen atoms, and/or inert functional groups such as esterified carboxylic groups, keto groups, thioketo groups, and the like.
- the phosphorodithioic acids from which the metal salts are formed can be prepared by the reaction of about 4 moles of one or more alcohols (cyclic or acyclic) or one or more phenols or mixture of one or more alcohols and one or more phenols (or about 2 moles of one or more diols) per mole of phosphorus pentasulfide, and the reaction may be carried out within a temperature range of from about 50° to about 200° C. The reaction generally is completed in about 1 to 10 hours. Hydrogen sulfide is liberated during the reaction.
- the alcohols used in forming the phosphorodithioic acids by the above method are preferably primary alcohols, or secondary alcohols. Mixtures thereof are also suitable.
- the primary alcohols include propanol, butanol, isobutyl alcohol, pentanol, 2-ethyl-1-hexanol, isooctyl alcohol, nonanol, decanol, undecanol, dodecanol, tridecanol, tetradecanol, octadecanol, eicosanol, and the like.
- the primary alcohols may contain various substituent groups such as halogen atoms, nitro groups, etc., which do not interfere with the desired reaction.
- suitable secondary alcohols are included 2-butanol, 2-pentanol, 3-pentanol, 2-hexanol, 5-methyl-2-hexanol, and the like.
- mixtures of various alcohols such as mixtures of 2-propanol with one or more higher molecular weight primary alcohols, especially primary alcohols having from 4 to about 13 carbon atoms in the molecule.
- Such mixtures preferably contain at least 10 mole percent of 2-propanol, and usually will contain from about 20 to about 90 mole percent of 2-propanol.
- the alcohol comprises about 30 to 50 mole percent of 2-propanol, about 30 to 50 mole percent isobutyl alcohol and about 10 to 30 mole percent of 2-ethyl-1-hexanol.
- alcohols include 2-propanol/butanol; 2-propanol/2-butanol; 2-propanol/2-ethyl-1-hexanol;butanol/2-ethyl-1-hexanol; isobutyl alcohol/2-ethyl-1-hexanol; and 2-propanol/tridecanol.
- Cycloaliphatic alcohols suitable for use in the production of the phosphorodithioic acids include cyclopentanol, cyclohexanol, methylcyclohexanol, cyclooctanol, borneol and the like.
- such alcohols are used in combination with one or more primary alkanols such as butanol, isobutyl alcohol, or the like.
- Illustrative phenols which can be employed in forming the phosphorodithioic acids include phenol, o-cresol, m-cresol, p-cresol, 4-ethylphenol, 2,4-xylenol, and the like. It is desirable to employ phenolic compounds in combination with primary alkanols such propanol, butanol, hexanol, or the like.
- alcohols which can be employed include benzyl alcohol, cyclohexenol, and their ring-alkylated analogs.
- the resultant product will normally comprise a mixture of three or more different dihydrocarbyl phosphorodithioic acids, usually in the form of a statistical distribution in relation to the number and proportions of alcohols and/or phenols used.
- Illustrative diols which can be used in forming the phosphorodithioic acids include 2,4-pentanediol, 2,4-hexanediol, 3,5-heptanediol, 7-methyl-2,4-octanediol, neopentyl glycol, 2-butyl-1,3-propanediol, 2,2-diethyl-1,3-propanediol, and the like.
- the preparation of the zinc salts of the dihydrocarbyl dithiophosphoric acids or the cyclic hydrocarbyl dithiophosphoric acids is usually effected by reacting the acid product with a suitable zinc compound such as zinc oxide, zinc carbonate, zinc hydroxide, zinc alkoxide, or other appropriate zinc salt. Simply mixing and heating such reactants is normally sufficient to cause the reaction to occur and the resulting product is usually of sufficient purity for use in the practice of this embodiment of the present invention.
- the salts are formed in the presence of a diluent such as an alcohol, water or a light mineral oil.
- Neutral salts are prepared by reacting one equivalent of the zinc oxide or hydroxide with one equivalent of the acid.
- Basic zinc salts are prepared by adding an excess (i.e., more than one equivalent) of the zinc oxide or hydroxide with one equivalent of the dihydrocarbyl phosphorodithioic acid or cyclic hydrocarbyl phosphorodithioic acid.
- incorporation of certain ingredients such as small amounts of zinc acetate or acetic acid in conjunction with the zinc reactant will facilitate the reaction and provide an improved product.
- certain ingredients such as small amounts of zinc acetate or acetic acid
- use of up to about 5% of zinc acetate in combination with the required amount of zinc oxide tends to facilitate the formation of zinc dihydrocarbyl dithiophosphates.
- the preferred types of zinc salts of dihydrocarbyl dithiophosphoric acids are the oil-soluble zinc salts of dialkyl dithiophosphoric acids.
- Such compounds generally contain alkyl groups having at least three carbon atoms, and preferably the alkyl groups contain up to 10 carbon atoms although as noted above, even higher molecular weight alkyl groups are entirely feasible.
- a few illustrative zinc dialkyl dithiophosphates include zinc diisopropyl dithiophosphate, zinc dibutyl dithiophosphate, zinc diisobutyl dithiophosphate, zinc di-sec-butyl dithiophosphate, the zinc dipentyl dithiophosphates, the zinc dihexyl dithiophosphates, the zinc diheptyl dithiophosphates, the zinc dioctyl dithiophosphates, the zinc dinonyl dithiophosphates, the zinc didecyl dithiophosphates, and the higher homologs thereof.
- zinc salts of dithiophosphoric acids formed from mixtures of isopropyl alcohol and secondary butyl alcohol; isopropyl alcohol, isobutyl alcohol, and 2-ethylhexyl alcohol; isopropyl alcohol, butyl alcohol, and pentyl alcohol; isobutyl alcohol and octyl alcohol; and the like.
- a carboxylic derivative composition produced by reacting at least one substituted succinic acylating agent with a reactant selected from the group consisting of (1) at least one amine having at least one primary amino group, (2) at least one alcohol, and (3) a combination of at least one amine having at least one primary amino group and at least one alcohol, the components of (3) being reacted with said at least one substituted succinic acylating agent concurrently or sequentially in any order, said at least one succinic acylating agent being prepared by reacting (i) at least one substantially aliphatic polymer of at least one lower olefin, and (ii) an acidic reactant or a mixture of two or more acidic reactants represented by the general formula
- R and R' are independently --OH, --O-lower alkyl, a halogen atom, or taken together are a single oxygen atom; the process of preparing said at least one succinic acylating agent being characterized in that:
- the substantially aliphatic polymer is comprised predominantly or entirely of polyisobutene, at least 50% of the polyisobutene content of such polymer having an end group represented by the formula ##STR10## b) the mole ratio of said acidic reactant(s):said polymer(s) is at least 1:1; and
- reaction mixture is maintained under superatmospheric pressure during at least a substantial portion of the reaction period;
- Preferred carboxylic derivative compositions are formed using acylating agents as described above that are further characterized by having (i) an average total tar rating as determined by the method described in the specification hereof that is at least about 40% lower, and most preferably at least 50% lower, than the average total tar rating of a corresponding product made in the same way under essentially the same reaction conditions using a polyisobutene containing less than 10% of the above-depicted end group; and/or (ii) a succination ratio of less than 1.3.
- compositions there are at least two required components, designated 1) and 2).
- This embodiment also includes a three-component mixture composed of the components designated as 1), 2) and 3).
- the relative proportions of these components is preferably such that the weight ratio of metal in 1) to nitrogen in 2) is in the range of from about 0.01:1 to about 1000:1, and preferalby is in the range of from about 0.1:1 to about 700:1, and such that when component 3) is employed, the weight ratio of phosphorus in component 3) to nitrogen in component 2) is in the range of from about 0.001:1 to about 100:1, and preferably in the range of about 0.01:1 to about 70:1.
- the quantity of these components 1) and 2), and optionally component 3) (proportioned as described in this paragraph) added to the base oil of lubricating viscosity is a minor dispersing amount, and is usually such that the amount of component 2) is in the range of about 0.01 to about 20% by weight of the total lubricating oil composition.
- the metal-containing detergents which are employed in this embodiment are exemplified by oil-soluble or oil-dispersible basic salts of alkali or alkaline earth metals with one or more of the following acidic substances (or mixtures thereof): (1) sulfonic acids, (2) carboxylic acids, (3) salicylic acids, (4) alkylphenols, (5) sulfurized alkylphenols, (6) organic phosphorus acids characterized by at least one direct carbon-to-phosphorus linkage.
- Such organic phosphorus acids include those prepared by the treatment of an olefin polymer (e.g., polyisobutene having a molecular weight of 1000) with a phosphorizing agent such as phosphorus trichloride, phosphorus heptasulfide, phosphorus pentasulfide, phosphorus trichloride and sulfur, white phosphorus and a sulfur halide, or phosphorothioic chloride.
- a phosphorizing agent such as phosphorus trichloride, phosphorus heptasulfide, phosphorus pentasulfide, phosphorus trichloride and sulfur, white phosphorus and a sulfur halide, or phosphorothioic chloride.
- the most commonly used salts of such acids are those of sodium, potassium, lithium, calcium, magnesium, strontium and barium.
- the salts for use in this embodiment are preferably basic salts having a TBN of at least 50,
- basic salt is used to designate metal salts wherein the metal is present in stoichiometrically larger amounts than the organic acid radical.
- the commonly employed methods for preparing the basic salts involve heating a mineral oil solution of an acid with a stoichiometric excess of a metal neutralizing agent such as the metal oxide, hydroxide, carbonate, bicarbonate, or sulfide at a temperature of about 50° C., and filtering the resulting mass.
- a “promoter” in the neutralization step to aid the incorporation of a large excess of metal likewise is known.
- Examples of compounds useful as the promoter include phenolic substances such as phenol, naphthol, alkylphenol, thiophenol, sulfurized alkylphenol, and condensation products of formaldehyde with a phenolic substance; alcohols such as methanol, 2-propanol, octyl alcohol, Cellosolve alcohol, Carbitol alcohol, ethylene glycol, stearyl alcohol, and cyclohexyl alcohol; and amines such as aniline, phenylenediamine, phenothiazine, phenyl-betanaphthylamine, and dodecylamine.
- a particularly effective method for preparing the basic salts comprises mixing an acid with an excess of a basic alkaline earth metal neutralizing agent and at least one alcohol promoter, and carbonating the mixture at an elevated temperature such as 60° to 200° C.
- suitable metal-containing detergents include, but are not limited to, the basic or overbased salts of such substances as lithium phenates, sodium phenates, potassium phenates, calcium phenates, magnesium phenates, sulfurized lithium phenates, sulfurized sodium phenates, sulfurized potassium phenates, sulfurized calcium phenates, and sulfurized magnesium phenates wherein each aromatic group has one or more aliphatic groups to impart hydrocarbon solubility; lithium sulfonates, sodium sulfonates, potassium sulfonates, calcium sulfonates, and magnesium sulfonates wherein each sulfonic acid moiety is attached to an aromatic nucleus which in turn usually contains one or more aliphatic substituents to impart hydrocarbon solubility; lithium salicylates, sodium salicylates, potassium salicylates, calcium salicylates, and magnesium salicylates wherein the aromatic moiety is usually substituted by one or more aliphatic substituents to impart hydrocarbon solubility; the lithium, sodium, potassium
- Basic or overbased salts of two or more different alkali and/or alkaline earth metals can be used.
- basic or overbased salts of mixtures of two or more different acids or two or more different types of acids e.g., one or more calcium phenates with one or more calcium sulfonates
- rubidium, cesium and strontium salts are feasible, their expense renders them impractical for most uses.
- barium salts are effective, the status of barium as a heavy metal under a toxicological cloud renders barium salts less preferred for present-day usage.
- overbased metal detergents are generally regarded as containing overbasing quantities of inorganic bases, probably in the form of micro dispersions or colloidal suspensions.
- oil-soluble and oil-dispersible are applied to these metal-containg detergents so as to include metal detergents wherein inorganic bases are present that are not necessarily completely or truly oil-soluble in the strict sense of the term, inasmuch as such detergents when mixed into base oils behave in much the same way as if they were fully and totally dissolved in the oil.
- a carboxylic derivative composition produced by reacting at least one substituted succinic acylating agent with a reactant selected from the group consisting of (1) at least one amine having at least one primary amino group, (2) at least one alcohol, and (3) a combination of at least one amine having at least one primary amino group and at least one alcohol, the components of (3) being reacted with said at least one substituted succinic acylating agent concurrently or sequentially in any order, said at least one succinic acylating agent being prepared by reacting (i) at least one substantially aliphatic polymer of at least one lower olefin, and (ii) an acidic reactant or a mixture of two or more acidic reactants represented by the general formula
- R and R' are independently --OH, --O-lower alkyl, a halogen atom, or taken together are a single oxygen atom; the process of preparing said at least one succinic acylating agent being characterized in that:
- the substantially aliphatic polymer is comprised predominantly or entirely of polyisobutene, at least 50% of the polyisobutene content of such polymer having an end group represented by the formula ##STR11## b) the mole ratio of said acidic reactant(s):said polymer(s) is at least 1:1; and
- reaction mixture is maintained under superatmospheric pressure during at least a substantial portion of the reaction period;
- Preferred carboxylic derivative compositions are formed using acylating agents as described above that are further characterized by having (i) an average total tar rating as determined by the method described in the specification hereof that is at least about 40% lower, and most preferably at least 50% lower, than the average total tar rating of a corresponding product made in the same way under essentially the same reaction conditions using a polyisobutene containing less than 10% of the above-depicted end group; and/or (ii) a succination ratio below 1.3.
- compositions there are at least two required components, designated 1) and 2).
- This embodiment also includes two three-component mixtures, the first composed of the components designated as 1), 2) and 3) and the second composed of the components designated as 1), 2) and 4). And additionally this embodiment comprises the four-component combinations composed of the components designated as 1), 2), 3) and 4).
- the relative proportions of these components is preferably such that the weight ratio of sulfur in 1) to nitrogen in 2) is in the range of from about 0.001:1 to about 100:1, and preferably in the range of about 0.01 to about 70:1; such that when component 3) is employed, the weight ratio of phosphorus as component 3) to nitrogen as component 2) is in the range of from about 0.001:1 to about 100:1, and preferably in the range of about 0.01:1 to about 70:1; and such that when component 4) is employed, the weight ratio of metal as component 4) to nitrogen as component 2) is in the range of from about 0.001:1 to about 1000:1, and preferably in the range of from about 0.1:1 to about 700:1.
- the quantity of these components 1) and 2), and optionally 3) and/or 4) (proportioned as described in this paragraph) added to the base oil of lubricating viscosity is a minor dispersing amount, and is usually such that the amount of component 2) is in the range of about 0.01 to about 20% by weight of the total lubricating oil composition.
- sulfur-containing antiwear and/or extreme pressure agents can be used in the practice of Embodiment C.
- Examples are included within the categories of dihydrocarbyl polysulfides; sulfurized olefins; sulfurized fatty acid esters of both natural and synthetic origins; trithiones; sulfurized thienyl derivatives; sulfurized terpenes; sulfurized oligomers of C 2 -C 8 monoolefins; and sulfurized Diels-Alder adducts such as those disclosed in U.S. reissue patent Re 27,331.
- sulfurized polyisobutene of Mn 1,100 sulfurized isobutylene, sulfurized diisobutylene, sulfurized triisobutylene, dicyclohexyl polysulfide, diphenyl polysulfide, dibenzyl polysulfide, dinonyl polysulfide, and mixtures of di-tert-butyl polysulfide such as mixtures of di-tert-butyl trisulfide, di-tert-butyl tetrasulfide and di-tert-butyl pentasulfide, among others.
- Combinations of such categories of sulfur-containing antiwear and/or extreme pressure agents can also be used, such as a combination of sulfurized isobutylene and di-tert-butyl trisulfide, a combination of sulfurized isobutylene and dinonyl trisulfide, a combination of sulfurized tall oil and dibenzyl polysulfide, and the like.
- sulfur-containing antiwear and/or extreme pressure agents is comprised of the oil-soluble active sulfur-containing antiwear and/or extreme pressure agents.
- these are substances which possess a linkage of two or more sulfur atoms (e.g., --S--S--, --S--S--S--, --S--S--S--S--, S--S--S--S--, etc.).
- a copper coupon approximately 70 ⁇ 15 mm and about 1.25 mm in thickness is cleaned by use of steel wool (0000 grade), washed with heptane, and then with acetone, dried, and weighed to the nearest 0.1 mg.
- the cleaned coupon is placed in a test tube and covered completely with the composition to be tested, and the system is heated to 125° C. by means of an oil bath. After holding the system at 125° C. for three hours, the copper coupon is removed from the test tube, rinsed with heptane, and then with acetone.
- the dried coupon is then rubbed with a paper towel moistened with acetone to remove any surface flakes formed by copper corrosion.
- the coupon is then air-dried and weighed to the nearest 0.1 mg.
- the difference in weight between the initial copper coupon and the coupon after the test represents the extent to which the copper was corroded under the test conditions. Therefore the larger the weight difference, the greater the copper corrosion, and thus the more active the sulfur compound. If the coupon weight loss is 30 milligrams or more, the sulfur-containing agent is considered "active".
- Non-active sulfur-containing additives are materials which when subjected to the above copper coupon corrosion test give a weight loss of less than 30 milligrams. Examples of materials falling in this category include Anglamol 33 additive (a sulfurized isobutylene product of The Lubrizol Corporation), distilled di-tert-butyl trisulfide, and the like.
- oil-soluble sulfur-containing antiwear and/or extreme pressure agents and more preferably oil-soluble active sulfur-containing antiwear and/or extreme pressure agents, that yield less than 25 ppm, and more preferably less than 10 ppm, of vapor space H 2 S when heated in the concentrated state for one week at 65° C.
- materials of this type which yield no detectable vapor space H 2 S when tested under these conditions.
- the most preferred oil-soluble metal-free sulfur-containing antiwear and/or extreme pressure agents from the cost-effectiveness standpoint are the sulfurized olefins containing at least 30% by weight of sulfur, the dihydrocarbyl polysulfides containing at least 25% by weight of sulfur, and mixtures of such sulfurized olefins and polysulfides.
- sulfurized isobutylene having a sulfur content of at least 40% by weight and a chlorine content of less than 0.2% by weight is the most especially preferred material.
- a carboxylic derivative composition produced by reacting at least one substituted succinic acylating agent with a reactant selected from the group consisting of (1) at least one amine having at least one primary amino group, (2) at least one alcohol, and (3) a combination of at least one amine having at least one primary amino group and at least one alcohol, the components of (3) being reacted with said at least one substituted succinic acylating agent concurrently or sequentially in any order, said at least one succinic acylating agent being prepared by reacting (i) at least one substantially aliphatic polymer of at least one lower olefin, and (ii) an acidic reactant or a mixture of two or more acidic reactants represented by the general formula
- R and R' are independently --OH, --O-lower alkyl, a halogen atom, or taken together are a single oxygen atom; the process of preparing said at least one succinic acylating agent being characterized in that:
- the substantially aliphatic polymer is comprised predominantly or entirely of polyisobutene, at least 50% of the polyisobutene content of such polymer having an end group represented by the formula ##STR12## b) the mole ratio of said acidic reactant(s):said polymer(s) is at least 1:1; and
- reaction mixture is maintained under superatmospheric pressure during at least a substantial portion of the reaction period;
- Preferred carboxylic derivative compositions of this embodiment are produced using acylating agents as described above that are further characterized by having (i) an average total tar rating as determined by the method described in the specification hereof that is at least about 40% lower, and most preferably at least 50% lower, than the average total tar rating of a corresponding product made in the same way under essentially the same reaction conditions using a polyisobutene containing less than 10% of the above-depicted end group; and/or (ii) a succination ratio below 1.3.
- compositions there are at least two required components, designated 1) and 2).
- This embodiment also includes three-component mixtures composed of the components designated as 1), 2) and 3).
- the relative proportions of these components is preferably such that the weight ratio of phosphorus in 1) to nitrogen in 2) is in the range of from about 0.001:1 to about 100:1, and preferably in the range of about 0.01:1 to about 70:1; and such that when component 3) is employed, the weight ratio of sulfur in component 3) to nitrogen in component 2) is in the range of from about is in the range of from about 0.001:1 to about 100:1, and preferably in the range of about 0.01 to about 70:1.
- the quantity of these components 1) and 2), and optionally 3) (proportioned as described in this paragraph) added to the base oil of lubricating viscosity is a minor dispersing amount, and is usually such that the amount of component 2) is in the range of about 0.01 to about 20% by weight of the total lubricating oil composition.
- a component which contains both phosphorus and sulfur in its chemical structure is deemed a phosphorus-containing antiwear and/or extreme pressure agent rather than a sulfur-containing antiwear and/or extreme pressure agent.
- the preferred phosphorus-containing antiwear and/or extreme pressure agents for use in this embodiment those which contain both phosphorus and nitrogen.
- phosphorus- and nitrogen-containing antiwear and/or extreme pressure additives which can be employed in the practice of this embodiment of the invention are the phosphorus- and nitrogen-containing compositions of the type described in G.B. 1,009,913; G.B. 1,009,914; U.S. Pat. No. 3,197,405 and/or U.S. Pat. No. 3,197,496.
- compositions are formed by forming an acidic intermediate by the reaction of a hydroxy-substituted triester of a phosphorothioic acid with an inorganic phosphorus acid, phosphorus oxide or phosphorus halide, and neutralizing a substantial portion of said acidic intermediate with an amine or hydroxy-substituted amine.
- Another type of phosphorus- and nitrogen-containing antiwear and/or extreme pressure additive which can be used in the compositions of this invention is the amine salts of hydroxy-substituted phosphetanes or the amine salts of hydroxy-substituted thiophosphetanes.
- such salts are derived from compounds of the formula ##STR13## wherein each of R 1 , R 2 , R 3 , R 4 , R 5 and R 6 is a hydrogen atom or a carbon-bonded organic group such as a hydrocarbyl group or a substituted hydrocarbyl group wherein the substituent(s) do(es) not materially detract from the predominantly hydrocarbonaceous character of the hydrocarbyl group;
- X is a sulfur or an oxygen atom and Z is a hydroxyl group or an organic group having one or more acidic hydroxyl groups.
- antiwear and/or extreme pressure agent examples include the amine salts hydroxyphosphetanes and the amine salts of hydroxy-thiophosphetanes typified by Irgalube 295 additive (Ciba-Geigy Corporation).
- Another useful category of phosphorus- and nitrogen-containing antiwear and/or extreme pressure agents is comprised of the amine salts of partial esters of phosphoric and thiophosphoric acids. Such compounds may be collectively represented by the formulas VIII, IX, and X as follows: ##STR14## or mixtures thereof.
- each of R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , and R 7 is, independently, a hydrocarbyl group and each of X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , X 7 , X 8 , X 9 , X 10 , X 11 , and X 12 is independently, an oxygen atom or a sulfur atom.
- the amine salts are formed with one or more partially esterified monothiophosphoric acids.
- These are compounds of Formulas VIII, IX, and X above wherein only one of X 1 , X 2 , X 3 , and X 4 , only one of X 5 , X 6 , X 7 , and X 8 , and only one of X 9 , X 10 , X 11 , and X 12 is a sulfur atom.
- the amine salts are formed with one or more partially esterified phosphoric acids.
- These are compounds of Formulas VIII, IX, and X above wherein all of X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , X 7 , X 8 , X 9 , X 10 , X 11 , and X 12 are oxygen atoms.
- Another preferred sub-category of amine salts are those formed with one or more partially esterified dithiophosphoric acids. These are compounds of Formulas VIII, IX, and X above wherein two of X 1 , X 2 , X 3 , and X 4 , two of X 5 , X 6 , X 7 , and X 8 , and two of X 9 , X 10 , X 11 , and X 12 are sulfur atoms.
- amine salts of Formulas VIII, IX, and X above wherein three or four of X 1 , X 2 , X 3 , and X.sup. 4, three or four of X 5 , X 6 , X 7 , and X 8 , and three or four of X 9 , X 10 , X 11 , and X 12 are sulfur atoms.
- oil-soluble amine salts are suitable for use as component 3
- at least one oil-soluble amine salt of a dihydrocarbyl monothiophosphoric acid one sulfur atom per molecule
- at least one oil-soluble amine salt of a dihydrocarbyl phosphoric acid no sulfur atom in the molecule
- Suitable salts or amine adducts of the partially esterified monothiophosphoric acids include such compounds as:
- the term "monothiophosphoric acid” is used generically herein to refer to phosphoric acid having only one sulfur atom, and that sulfur atom can be bonded to the phosphorus atom either by a single bond or by a double bond.
- the term “dithiophosphoric acid” refers to phosphoric acid having two sulfur atoms both of which can be bonded to the phosphorus atom by single bonds, or one of which is bonded to the phosphorus atom by a double bond and the other of which is bonded to the phosphorus atom by single bond.
- trimthiophosphoric acid wherein two of the three sulfur atoms can be bonded to the phosphorus atom by single bonds and the third by either a single or double bond.
- amine salts of partial esters of phosphoric acid include the following:
- Octylamine salts or adducts have been set forth in the above two listings merely for purposes of illustration.
- use can be made of nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine, pentadecylamine, hexadecylamine, heptadecylamine, octadecylamine, cyclohexylamine, phenylamine, mesitylamine, oleylamine, cocoamine, soyamine, C 8 tertiary alkyl primary amine, C 12-14 tertiary alkyl primary amine, C 22-24 tertiary alkyl primary amine, phenethylamine, etc., salts or adducts of partially esterified phosphoric, monothiophosphoric, dithiophosphoric, trithiophosphoric
- the preferred amine salts are salts of aliphatic amines, especially the saturated or olefinically unsaturated aliphatic primary amines, such as n-octylamine, 2-ethylhexylamine, tert-octylamine, n-decylamine, the C 10 , C 12 , C 14 and C 16 tertiary alkyl primary amines (either singly or in any combinations thereof, such as a mixture of the C 12 and C 14 tertiary alkyl primary amines), n-undecylamine, a mixture of C 14 to C 18 a tertiary alkyl primary amines, lauryl amine, hexadecylamine, heptadecylamine, octadecylamine, the C 22 and C 24 tertiary alkyl primary amines (either singly or in combination), decenylamine, do
- Secondary hydrocarbyl amines and tertiary hydrocarbyl amines can also be used either alone or in combination with each other or in combination with primary amines.
- any combination of primary, secondary and/or tertiary amines, whether monoamine or polyamine, can be used in forming the salts or adducts.
- the amines used can be in the form of polyalkylene polyamines; functionally-substituted polyamines such as a succinimide or succinamide of a polyalkylene polyamines such as a polyisobutenyl succinimide of diethylene triamine, a polyisobutenyl succinimide of triethylene tetramine, a polyisobutenyl succinimide of tetraethylene pentamine, a polyisobutenyl succinimide of pentaethylene hexamine (including succinimides made from commercially available polyethylene polyamine mixtures which contain linear, branched and cyclic species); and Mannich bases derived from polyalkylene polyamines of the types just described.
- functionally-substituted polyamines such as a succinimide or succinamide of a polyalkylene polyamines such as a polyisobutenyl succinimide of diethylene triamine, a polyisobuteny
- the polyalkylene polyamines whether in the free state or in the form of a succinimide, succinamide, or Mannich base, can be partially boronated, partially phosphorylated, or partially acylated with a reagent such as maleic anhydride, malic acid, itaconic acid, itaconic anhydride, thiomalic acid, fumaric acid, and the like, provided that such boronated or phosphorylated or acylated amine or amine moiety contains at least sufficient residual basicity to enable it to form a salt with the partially esterified phosphoric or thiophosphoric acid.
- Alkylene polyamines in the form of succinimides, succinamides or Mannich bases which have been boronated and phosphorylated are described for example in U.S. Pat. No. 4,857,214.
- Especially preferred amines are alkyl monoamines and alkenyl monoamines having from about 8 to about 24 carbon atoms in the molecule.
- Amines having less than 8 carbon atoms can be used, including methyl amine, etc., provided the resultant amine salt is oil-soluble.
- amines having more than 24 carbon atoms can be used, again with the proviso that the resultant amine salt is oil soluble.
- amine salts of partially esterified monothiophosphoric acids are usually made by reacting a mono- and/or dihydrocarbyl phosphite with sulfur or an active sulfur-containing compound such as are referred to above under the caption "Sulfur-Containing Antiwear and/or Extreme Pressure Agents" and one or more primary or secondary amines. Such reactions tend to be highly exothermic reactions which can become uncontrollable, if not conducted properly.
- One preferred method of forming these amine salts involves a process which comprises (i) introducing, at a rate such that the temperature does not exceed about 60° C., one or more dihydrocarbyl hydrogen phosphites, such as a dialkyl hydrogen phosphite, into an excess quantity of one or more active sulfur-containing materials, such as sulfurized branched-chain olefin (e.g., isobutylene, diisobutylene, triisobutylene, etc.), while agitating the mixture so formed, (ii) introducing into this mixture, at a rate such that the temperature does not exceed about 60° C., one or more aliphatic primary or secondary amines, preferably one or more aliphatic primary monoamines having in the range of about 8 to about 24 carbon atoms per molecule while agitating the mixture so formed, and (iii) maintaining the temperature of the resultant agitated reaction mixture at between about 55° and about 60° C.
- Another suitable way of producing these amine salts is to concurrently introduce all three of the reactants into the reaction zone at suitable rates and under temperature control such that the temperature does not exceed about 60° C.
- Another preferred way of forming amine salts of partially esterified monothiophosphoric acids is to pre-react elemental sulfur with the amine for a short period of time and then add thereto the appropriate dihydrocarbyl hydrogen phosphite at a rate such that the temperature does not become excessive and the reaction uncontrollable.
- the amine salts of dihydrocarbyl esters of thiophosphoric acids are comprised of the oil-soluble amine salts (preferably the aliphatic monoamine salts) of one or more dihydrocarbyl esters of a thiophosphoric acid, which esters can be derived from a tetrathiophosphoric acid, a trithiophosphoric acid, a dithiophosphoric acid, or a monothiophosphoric acid, or a mixture of any two or more of the foregoing.
- the amine salts of dihydrocarbyl esters of a dithiophosphoric acid are preferred, and the amine salts of dihydrocarbyl esters of a monothiophosphoric acid are particularly preferred.
- oil-soluble phosphorus- and nitrogen-containing compounds are the preferred antiwear and/or extreme pressure agents for use in the compositions of this invention.
- metal-free phosphorus-containing compounds which do not contain nitrogen can be used either in lieu of or in addition to the phosphorus- and nitrogen-containing antiwear and/or extreme pressure agents described above.
- nitrogen-free compounds are for the most part partially or fully esterified acids of phosphorus, and include for example oil-soluble phosphates, phosphites, phosphonates, phosphonites, and their various sulfur analogs.
- Examples include monohydrocarbyl phosphites; monohydrocarbyl phosphates; monohydrocarbyl mono-, di-, and trithiophosphites; monohydrocarbyl mono-, di-, tri-, and tetrathiophosphates; dihydrocarbyl phosphites; dihydrocarbyl phosphates; dihydrocarbyl mono-, di-, and trithiophosphites; dihydrocarbyl mono-, di-, tri-, and tetrathiophosphates; trihydrocarbyl phosphites; trihydrocarbylphosphates; trihydrocarbyl mono-, di-, and trithiophosphites; trihydrocarbyl mono-, di-, tri-, and tetrathiophosphates; the various hydrocarbyl phosphonates and thiophosphonates; the various hydrocarbyl phosphonites and thiophosphonites, and analogous oil-soluble derivative
- tributyl phosphate tri-(2-ethylhexyl) phosphate, trioleyl phosphate, tris(2-chloroethyl) phosphate, tricyclohexyl phosphate, triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, triethyl phosphite, tributyl phosphite, tris(2-butoxyethyl) phosphite, trioctyl phosphite, tris(tridecyl) phosphite, trilauryl phosphite, triphenyl phosphite, tricresyl phosphite, the mono- or diamyl hydrogen phosphates or mixtures thereof, the mono- or di-2-ethyl-1hexyl hydrogen phosphates or mixtures thereof, dibutyl hydrogen phos
- oil-soluble heterocyclic phosphorus compounds such as the phosphetanes and thiophosphetanes and their derivatives, such as are described for example in U.S. Pat. Nos. 3,891,726; 3,975,465; Journal of The Chemical Society, Dalton Transactions, 1973, pages 1576-1582; 2641-2646; 2701-2707; and Ibid, 1974, pages 633-638.
- Embodiment D When including component 3) in the practice of Embodiment D, use can be made of any of the oil-soluble and/or oil-dispersible sulfur-containing antiwear and/or extreme pressure agents referred to hereinabove with reference to Embodiment C.
- compositions of Embodiments A), B), C), and D can, and in most cases will, contain still additional components, such as one or more of the following:
- One or more amine salts of one or more long chain carboxylic acids can be used in such compositions. At suitably high concentrations such amine salts improve the performance of sulfur-containing antiwear and/or extreme pressure agents when operating under highly stressful servive conditions.
- the acids of the amine salts can be monocarboxylic acids or polycarboxylic acids. Generally speaking, these acids contain from about 8 to about 50 carbon atoms in the molecule and thus the salts are oil-soluble.
- a variety of amines can be used in forming such salts, including primary, secondary and tertiary amines, and the amines can be monoamines, or polyamines. Further, the amines may be cyclic or acyclic aliphatic amines, aromatic amines, heterocyclic amines, or amines containing various mixtures of acyclic and cyclic groups.
- Preferred amine salts include the alkyl and alkenyl amine salts of alkanoic acids and/or alkenoic acids, the alkyl and alkenyl amine salts of alkanedioic acids and/or alkenedioic acids and any combination of the foregoing.
- the amine salts are formed by classical chemical reactions, namely, the reaction of an amine or mixture of amines, with the appropriate acid or mixture of acids. Accordingly, further discussion concerning methods for the preparation of such materials would be redundant.
- amine salts of long-chain acids that may be used are the following: the octyl amine salt of C 36 dimer acid (made by dimerization of linoleic acid), lauryl ammonium lau-rate (i.e.
- lauryl amine salt of lauric acid stearyl ammonium laurate, cyclohexyl ammonium laurate, octyl ammonium laurate, pyridine laurate, aniline laurate, lauryl ammonium stearate, stearyl ammonium stearate, cyclohexyl ammonium stearate, octylammonium stearate, pyridine stearate, aniline stearate, lauryl ammonium octanoate, stearyl ammonium octanoate, cyclohexyl ammonium octanoate, octyl ammonium octanoate, pyridine octanoate, aniline octanoate, nonyl ammonium laurate, nonyl ammonium stearate, nonyl ammonium octanoate, lauryl ammoni
- R is an al
- Typical additives which may be employed as demulsifiers include alkyl benzene sulphonates, polyethylene oxides, polypropylene oxides, block copolymers of ethylene oxide and propylene oxide, salts and esters or oil soluble acids, and the like.
- oxyalkylated trimethylol alkanes with molecular weights in the range of 1,000 to 10,000, and preferably in the range of 3,000 to 8,000.
- the oxyalkylated trimethylol alkane is an oxyalkylated trimethylol ethane or propane, especially where the oxyalkylene groups are composed of a mixture of propyleneoxy and ethylenoxy groups and where these groups are so disposed as to form relatively hydrophobic blocks adjacent the trimethylol group and relatively hydrophilic blocks remote the trimethylol group.
- Typical oxyalkylated trimethylol propane demulsifiers are described in U.S. Pat. No. 3,101,374.
- Pluradot HA-510 has an average molecular weight of 4,600 and Pluradot HA-530 has an average molecular weight of about 5,300.
- Pluradot additives are propoxylated and ethoxylated trimethylol propanes.
- demulsifers are oxyalkylated alkyl phenol-formaldehyde condensation products. Typically, these products have molecular weights in the range of about 4,000 to about 6,000 and are comprised of lower alkyl substituted phenol moieties joined together by methylene groups and in which the hydroxyl groups of the phenolic moieties have been ethoxylated.
- One such commercial product is marketed by Ceca S. A. of Paris, France under the "Prochinor GR77" trade name.
- the product is supplied as a concentrate in an aromatic solvent and the active ingredient is believed to be an ethoxylated nonylphenol-formaldehyde condensate of molecular weight 4,200 (by gel permeation chromatography calibrated with polystyrene).
- demulsifier is comprised of the tetra-polyoxyalkylene derivatives of ethylene diamine, especially the tetra-poly(oxyethylene)-poly(oxypropylene) derivatives of ethylene diamine.
- Materials of this type are available commercially from BASF Corporation under the "Tetronics" trademark. Materials of this general type are described in U.S. Pat. No. 2,979,528.
- TOLAD 286K a proprietary product, identified as TOLAD 286K, is understood to be a mixture of these components dissolved in a solvent composed of alkyl benzenes.
- TOLAD 286 is believed to be a similar product wherein the solvent is composed of a mixture of heavy aromatic naphtha and isopropyl alcohol.
- demulsifiers are proprietary materials available from BASF Corporation under the Pluronic trademark. These are block copolymers of propylene oxide and ethylene oxide.
- One type of such additives is comprised of thiazoles, triazoles and thiadiazoles.
- examples of such compounds include benzotriazole, tolyltriazole, octyltriazole, decyltriazole, dodecyltriazole, 2-mercaptobenzothiazole, 2,5-dimercapto-1,3,4-thiadiazole, 2-mercapto-5-hydrocarbylthio-1,3,4-thiadiazoles, 2-mercapto-5-hydrocarbyldithio-1,3,4-thiadiazoles, 2,5-bis(hydrocarbylthio)-1,3,4-thiadiazoles, and 2,5-bis(hydrocarbyldithio)-1,3,4-thiadiazoles.
- the preferred compounds are the 1,3,4-thiadiazoles, especially the 2-hydrocarbyldi-thio-5-mercapto-1,3,4-dithiadiazoles and the 2,5-bis(hydrocarbyldithio)-1,3,4-thiadiazoles, a number of which are available as articles of commerce.
- Such compounds are generally synthesized from hydrazine and carbon disulfide by known procedures. See for example U.S. Pat. Nos. 2,749,311; 2,760,933; 2,765,289; 2,850,453; 2,910,439; 3,663,561; 3,862,798; 3,840,549; and 4,097,387.
- Suitable inhibitors of copper corrosion include ether amines; polyethoxylated compounds such as ethoxylated amines, ethoxylated phenols, and ethoxylated alcohols; imidazolines; and the like. Materials of these types are well known to those skilled in the art and a number of such materials are available as articles of commerce.
- ashless dispersants can be utilized in the compositions of this invention. These include carboxylic ashless dispersants, Mannich base dispersants, polymeric polyamine dispersants, and post-treated dispersants of these types.
- the carboxylic ashless dispersants are reaction products of an acylating agent (e.g., a monocarboxylic acid, dicarboxylic acid or other polycarboxylic acid, or derivatives thereof) with one or more polyamines and/or polyhydroxy compounds.
- an acylating agent e.g., a monocarboxylic acid, dicarboxylic acid or other polycarboxylic acid, or derivatives thereof
- polyamines and/or polyhydroxy compounds are described in many patents, including British Patent Specification 1,306,529 and the following U.S. patents: U.S. Pat. Nos.
- One such sub-category is composed of the polyamine succinamides and more preferably the polyamine succinimides in which the succinic group contains a hydrocarbyl substituent, usually an alkenyl substituent, containing at least 30 carbon atoms.
- These dispersants are usually formed by reacting a polyamine with an alkenyl succinic acid or anhydride such as a polyisobutenyl succinic acid and anhydride wherein the polyisobutenyl group has a number average molecular weight of 500 to 5,000, preferably 700 to 2,500, more preferably 700 to 1,400, and typically in the range of 800 to 1,300.
- the polyamine used in forming such compounds contains at least one primary amino group capable of forming an imide group on reaction with a hydrocarbon-substituted succinic acid or acid derivative thereof such an anhydride, lower alkyl ester, acid halide, or acid-ester.
- a hydrocarbon-substituted succinic acid or acid derivative thereof such an anhydride, lower alkyl ester, acid halide, or acid-ester.
- the literature is replete with descriptions of polyamines suitable for use in forming such carboxylic ashless dispersants. See for example U.S. Pat. No. 5,034,018 which describes not only simple polyamines but amido-amine adducts which are suitable for use in forming such carboxylic ashless dispersants. Representative examples of such dispersants are given in U.S. Pat. Nos.
- uccinimide is meant to encompass the completed reaction product from reaction between the amine reactant(s) and the hydrocarbon-substituted carboxylic acid or anhydride (or like acid derivative) reactant(s), and is intended to encompass compounds wherein the product may have amide, amidine, and/or salt linkages in addition to the imide linkage of the type that results from the reaction of a primary amino group and an anhydride moiety.
- the alkenyl succinic portion of these esters corresponds to the alkenyl succinic portion of the succinimides described above.
- Alcohols useful in preparing the esters include methanol, ethanol, 2-methylpropanol, octadecanol, eicosanol, ethylene glycol, diethylene glycol, tetraethylene glycol, diethylene glycol monoethylether, propylene glycol, tripropylene glycol, glycerol, sorbitol, 1,1,1-trimethylol ethane, 1,1,1-trimethylol propane, 1,1,1-trimethylol butane, pentaerythritol, dipentaerythritol, and the like.
- the succinic esters are readily made by merely heating a mixture of alkenyl succinic acid, anhydrides or lower alkyl (e.g., C 1 -C 4 ) ester with the alcohol while distilling out water or lower alkanol. In the case of acid-esters less alcohol is used. In fact, acid-esters made from alkenyl succinic anhydrides do not evolve water. In another method the alkenyl succinic acid or anhydrides can be merely reacted with an appropriate alkylene oxide such as ethylene oxide, propylene oxide, and the like, including mixtures thereof.
- an appropriate alkylene oxide such as ethylene oxide, propylene oxide, and the like, including mixtures thereof.
- Still another sub-category of carboxylic ashless dispersants useful in forming compositions of this invention comprises an alkenyl succinic ester-amide mixture. These may be made by heating the above-described alkenyl succinic acids, anhydrides or lower alkyl esters or etc. with an alcohol and an amine either sequentially or in a mixture.
- the alcohols and amines described above are also useful in this embodiment.
- amino alcohols can be used alone or with the alcohol and/or amine to form the ester-amide mixtures.
- the amino alcohol can contain 1-20 carbon atoms, 1-6 hydroxy groups and 1-4 amine nitrogen atoms. Examples are ethanolamine, diethanolamine, N-ethanol-diethylene triamine, and trimethylol aminomethane.
- ester-amide mixtures are referred to in U.S. Pat. Nos. 3,184,474; 3,576,743; 3,632,511; 3,804,763; 3,836,471; 3,862,981; 3,936,480; 3,948,800; 3,950,341; 3,957,854; 3,957,855; 3,991,098; 4,071,548; and 4,173,540.
- the alkenyl succinic anhydride or like acylating agent is derived from a polyolefin, preferably a polyisobutene, having a number average molecular weight of 500 to 5,000, preferably 700 to 2,500, more preferably 700 to 1,400, and especially 800 to 1,200.
- a polyolefin preferably a polyisobutene
- residual unsaturation in the polyalkenyl substituent group can be used as a reaction site as for example, by hydrogenation, sulfurization, or the like.
- the polymeric polyamine dispersants are polymers containing basic amine groups and oil solubilizing groups (for example, pendant alkyl groups having at least about 8 carbon atoms). Such materials include, but are not limited to, interpolymers of decyl methacrylate, vinyl decyl ether or a relatively high molecular weight olefin with aminoalkyl acrylates and aminoalkyl acrylamides. Examples of polymeric polyamine dispersants are set forth in the following patents: U.S. Pat. Nos. 3,329,658; 3,449,250; 3,493,520; 3,519,565; 3,666,730; 3,687,849; and 3,702,300.
- oleaginous compositions will contain a conventional quantity of one or more antioxidants in order to protect the composition from premature degradation in the presence of air, especially at elevated temperatures.
- Typical antioxidants include hindered phenolic antioxidants, secondary aromatic amine antioxidants, sulfurized phenolic antioxidants, oil-soluble copper compounds, phosphorus-containing antioxidants, and the like.
- Illustrative sterically hindered phenolic antioxidants include ortho-alkylated phenolic compounds such as 2,6-di-tert-butylphenol, 4-methyl-2,6-di-tert-butylphenol, 2,4,6-tri-tert-butylphenol, 2-tert-butylphenol, 2,6-diisopropylphenol, 2-methyl-6-tert-butylphenol, 2,4-dimethyl-6-tert-butylphenol, 4-(N,N-dimethylaminomethyl)-2,6-di-tert-butylphenol, 4-ethyl-2,6-di-tert-butylphenol, 2-methyl-6-styrylphenol, 2,6-di-styryl-4-nonylphenol, and their analogs and homologs. Mixtures of two or more such mononuclear phenolic compounds are also suitable.
- methylene-bridged alkylphenols are also useful.
- Illustrative methylene bridged compounds include 4,4'-methylenebis(6-tert-butyl-o-cresol), 4,4'-methylenebis(2-tert-amyl-o-cresol), 2,2'-methylenebis(4-methyl-6-tert- butylphenol), 4,4'-methylenebis(2,6-di-tert-butylphenol), and similar compounds.
- aromatic secondary monoamines are preferred, aromatic secondary polyamines are also suitable.
- Illustrative aromatic secondary monoamines include diphenylamine, alkyl diphenylamines containing 1 or 2 alkyl substituents each having up to about 16 carbon atoms, phenyl- ⁇ -naphthylamine, phenyl- ⁇ -naphthylamine, alkyl- or aralkyl-substituted phenyl- ⁇ -naphthylamine containing one or two alkyl or aralkyl groups each having up to about 16 carbon atoms, alkyl- or aralkyl-substituted phenyl- ⁇ -naphthylamine containing one or two alkyl or aralkyl groups each having up to about 16 carbon atoms, and similar compounds.
- a preferred type of aromatic amine antioxidant is an alkylated diphenylamine of the general formula ##STR15## wherein R 1 is an alkyl group (preferably a branched alkyl group) having 8 to 12 carbon atoms, (more preferably 8 or 9 carbon atoms) and R 2 is a hydrogen atom or an alkyl group (preferably a branched alkyl group) having 8 to 12 carbon atoms, (more preferably 8 or 9 carbon atoms). Most preferably, R 1 and R 2 are the same.
- Naugalube 438L a material which is understood to be predominately a 4,4'-dinonyldiphenylamine (i.e., bis(4-nonylphenyl)amine) wherein the nonyl groups are branched.
- antioxidants for inclusion in the compositions of this invention is comprised to one or more liquid, partially sulfurized phenolic compounds such as are prepared by reacting sulfur monochloride with a liquid mixture of phenols--at least about 50 weight percent of which mixture of phenols is composed of one or more reactive, hindered phenols--in proportions to provide from about 0.3 to about 0.7 gram atoms of sulfur monochloride per mole of reactive, hindered phenol so as to produce a liquid product.
- liquid, partially sulfurized phenolic compounds such as are prepared by reacting sulfur monochloride with a liquid mixture of phenols--at least about 50 weight percent of which mixture of phenols is composed of one or more reactive, hindered phenols--in proportions to provide from about 0.3 to about 0.7 gram atoms of sulfur monochloride per mole of reactive, hindered phenol so as to produce a liquid product.
- Typical phenol mixtures useful in making such liquid product compositions include a mixture containing by weight about 75% of 2,6-di-tert-butylphenol, about 10% of 2-tert-butylphenol, about 13% of 2,4,6-tri-tert-butylphenol, and about 2% of 2,4-di-tert-butylphenol.
- the reaction is exothermic and thus is preferably kept within the range of about 15° C. to about 70° C., most preferably between about 40° C. to about 60° C.
- One suitable mixture is comprised of a combination of (i) an oil-soluble mixture of at least three different sterically-hindered tertiary butylated monohydric phenols which is in the liquid state at 25° C., (ii) an oil-soluble mixture of at least three different sterically-hindered tertiary butylated methylene-bridged polyphenols, and (iii) at least one bis(4-alkylphenyl)amine wherein the alkyl group is a branched alkyl group having 8 to 12 carbon atoms, the proportions of (i), (ii) and (iii) on a weight basis falling in the range of 3.5 to 5.0 parts of component (i) and 0.9 to 1.2 parts of component (ii) per part by weight of component (iii).
- compositions of this invention may also contain a suitable quantity of a rust inhibitor.
- a rust inhibitor This may be a single compound or a mixture of compounds having the property of inhibiting corrosion of ferrous metal surfaces.
- Such materials include oil-soluble monocarboxylic acids such as 2-ethylhexanoic acid, lauric acid, myristic acid, palmitic acid, oleic acid, linoleic acid, linolenic acid, behenic acid, cerotic acid, etc., and oil-soluble polycarboxylic acids including dimer and trimer acids, such as are produced from tall oil fatty acids, oleic acid, linoleic acid, or the like.
- oil-soluble monocarboxylic acids such as 2-ethylhexanoic acid, lauric acid, myristic acid, palmitic acid, oleic acid, linoleic acid, linolenic acid, behenic acid, cerotic acid, etc.
- alkenylsuccinic acids in which the alkenyl group contains 10 or more carbon atoms such as, for example, tetrapropenylsuccinic acid, tetradecenylsuccinic acid, hexadecenylsuccinic acid, and the like; long-chain ⁇ , ⁇ -dicarboxylic acids in the molecular weight range of 600 to 3000; and other similar materials.
- Products of this type are currently available from various commercial sources, such as, for example, the dimer and trimer acids sold under the HYSTRENE trademark by the Humco Chemical Division of Witco Chemical Corporation and under the EMPOL trademark by Emery Chemicals.
- acidic corrosion inhibitors are the half esters of alkenyl succinic acids having 8 to 24 carbon atoms in the alkenyl group with alcohols such as the polyglycols.
- the corresponding half amides of such alkenyl succinic acids are also useful.
- some or all of the carboxylic groups of these carboxylic acid type corrosion inhibitors may be neutralized by excess amine present in the compositions.
- Other suitable corrosion inhibitors include ether amines; acid phosphates; amines; polyethoxylated compounds such as ethoxylated amines, ethoxylated phenols, and ethoxylated alcohols; imidazolines; and the like. Materials of these types are well known to those skilled in the art and a number of such materials are available as articles of commerce.
- each of R 1 , R 2 , R 5 , R 6 and R 7 is, independently, a hydrogen atom or a hydrocarbyl group containing 1 to 30 carbon atoms
- each of R 3 and R 4 is, independently, a hydrogen atom, a hydrocarbyl group containing 1 to 30 carbon atoms, or an acyl group containing from 1 to 30 carbon atoms.
- the groups R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and R 7 when in the form of hydrocarbyl groups, can be, for example, alkyl, cycloalkyl or aromatic containing groups.
- R 1 and R 5 are the same or different straight-chain or branched-chain hydrocarbon radicals containing 1-20 carbon atoms. Most preferably, R 1 and R 5 are saturated hydrocarbon radicals containing 3-6 carbon atoms.
- R 2 , either R 3 or R 4 , R 6 and R 7 , when in the form of hydrocarbyl groups, are preferably the same or different straight-chain or branched-chain saturated hydrocarbon radicals.
- a dialkyl ester of an aminosuccinic acid is used in which R 1 and R 5 are the same or different alkyl groups containing 3-6 carbon atoms, R 2 is a hydrogen atom, and either R 3 or R 4 is an alkyl group containing 15-20 carbon atoms or an acyl group which is derived from a saturated or unsaturated carboxylic acid containing 2-10 carbon atoms.
- aminosuccinic acid derivatives is a dialkylester of an aminosuccinic acid of the above formula wherein R 1 and R 5 are isobutyl, R 2 is a hydrogen atom, R 3 is octadecyl and/or octadecenyl and R 4 is 3-carboxy-1-oxo-2-propenyl.
- R 6 and R 7 are most preferably hydrogen atoms.
- Suitable antifoam agents include silicones and organic polymers such as acrylate polymers. Various antifoam agents are described in Foam Control Agents by H. T. Kerner (Noyes Data Corporation, 1976, pages 125-176). Mixtures of silicone-type antifoam agents such as the liquid dialkyl silicone polymers with various other substances are also effective. Typical of such mixtures are silicones mixed with an acrylate polymer, silicones mixed with one or more amines, and silicones mixed with one or more amine carboxylates. Other such mixtures include combinations of a dimethyl silicone oil with (i) a partial fatty acid ester of a polyhydric alcohol (U.S. Pat. No.
- These materials include such substances as the alkyl phosphonates as disclosed in U.S. Pat. No. 4,356,097, aliphatic hydrocarbyl-substituted succinimides derived from ammonia or alkyl monoamines as disclosed in European Patent Publication No. 20037, dimer acid esters as disclosed in U.S. Pat. No. 4,105,571, oleamide, and the like.
- Such additives when used are generally present in amounts of 0.1 to 5 weight percent.
- Glycerol oleates are another example of fuel economy additives and these are usually present in very small amounts, such as 0.05 to 0.2 weight percent based on the weight of the formulated oil.
- Suitable friction modifiers include aliphatic amines or ethoxylated aliphatic amines, aliphatic fatty acid amides, aliphatic carboxylic acids, aliphatic carboxylic esters, aliphatic carboxylic ester-amides, aliphatic phosphates, aliphatic thiophosphonates, aliphatic thiophosphates, etc., wherein the aliphatic group usually contains above about eight carbon atoms so as to render the compound suitably oil soluble.
- a desirable friction modifier additive combination which may be used in the practice of this invention is described in European Patent Publication No. 389,237. This combination involves use of a long chain succinimide derivative and a long chain amide.
- Additives may be introduced into the compositions of this invention in order to improve the seal performance (elastomer compatibility) of the compositions.
- Known materials of this type include dialkyl diesters such as dioctyl sebacate, aromatic hydrocarbons of suitable viscosity such as Panasol AN-3N, products such as Lubrizol 730, polyol esters such as Emery 2935, 2936, and 2939 esters from the Emery Group of Henkel Corp. and Hatcol 2352, 2962, 2925, 2938, 2939, 2970, 3178, and 4322 polyol esters from Hatco Corp.
- diesters include the adipates, azelates, and sebacates of C 8 -C 13 alkanols (or mixtures thereof), and the phthalates of C 4 -C 13 alkanols (or mixtures thereof). Mixtures of two or more different types of diesters (e.g., dialkyl adipates and dialkyl azelates, etc.) can also be used.
- Such materials include the n-octyl, 2-ethylhexyl, isodecyl, and tridecyl diesters of adipic acid, azelaic acid, and sebacic acid, and the n-butyl, isobutyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, and tridecyl diesters of phthalic acid.
- the lubricant compositions can contain one or more viscosity index improvers (polymeric materials which are often supplied in the form of a solution in a solvent or carrier fluid).
- viscosity index improvers polymeric materials which are often supplied in the form of a solution in a solvent or carrier fluid.
- Dispersant viscosity index improvers which combine the activity of dispersants and viscosity index improvers, suitable for use in the compositions of this invention are described, for example, in U.S. Pat. Nos. 3,702,300; 4,068,056; 4,068,058; 4,089,794; 4,137,185; 4,146,489; 4,149,984; 4,160,739; 4,519,929; 5,035,819; 5,035,820; 5,035,821; and 5,035,822.
- Lubrizol 3174 additive (The Lubrizol Corporation) and HiTEC® 630 additive (Ethyl Petroleum Additives Ltd.; Ethyl Petroleum Additives Inc.; Ethyl S. A.; Ethyl Canada Limited) are illustrative of viscosity index improvers having high shear stability.
- pour point depressants Another useful type of additive which can be included in compositions of this invention is one or more pour point depressants.
- pour point depressants in oil-base compositions to improve the low temperature properties of the compositions is well known to the art. See, for example, the books Lubricant Additives by C. V. Smalheer and R. Kennedy Smith (Lezius-Hiles Co. Publishers, Cleveland, Ohio, 1967); Gear and Transmission Lubricants by C. T. Boner (Reinhold Publishing Corp., New York, 1964); and Lubricant Additives by M. W. Ranney (Noyes Data Corporation, New Jersey, 1973).
- polymethacrylates polymethacrylates
- polyacrylates condensation products of haloparaffin waxes and aromatic compounds
- vinyl carboxylate polymers are also useful as pour point depressants.
- terpolymers made by polymerizing a dialkyl fumarate, vinyl ester of a fatty acid and a vinyl alkyl ether. Techniques for preparing such polymers and their uses are disclosed in U.S. Pat. No. 3,250,715.
- the ashless dispersants of this invention and the additive combinations of this invention can be incorporated in a wide variety of lubricants and functional fluids in effective amounts to provide suitable active ingredient concentrations.
- the base oils not only can be hydrocarbon oils of lubricating viscosity derived from petroleum (or tar sands, coal, shale, etc.), but also can be natural oils of suitable viscosities such as rapeseed oil, etc., and synthetic oils such as hydrogenated polyolefin oils; poly- ⁇ -olefins (e.g., hydrogenated or unhydrogenated ⁇ -olefin oligomers such as hydrogenated poly-1-decene); alkyl esters of dicarboxylic acids; complex esters of dicarboxylic acid, polyglycol and alcohol; alkyl esters of carbonic or phosphoric acids; polysilicones; fluorohydrocarbon oils; and mixtures of mineral, natural and/or synthetic oils in any proportion, etc.
- base oil
- the additive combinations of this invention can thus be used in lubricating oil and functional fluid compositions, such as automotive crankcase lubricating oils, automatic transmission fluids, gear oils, hydraulic oils, cutting oils, etc., in which the base oil of lubricating viscosity is a mineral oil, a synthetic oil, a natural oil such as a vegetable oil, or a mixture thereof, e.g. a mixture of a mineral oil and a synthetic oil.
- the base oil of lubricating viscosity is a mineral oil, a synthetic oil, a natural oil such as a vegetable oil, or a mixture thereof, e.g. a mixture of a mineral oil and a synthetic oil.
- Suitable mineral oils include those of appropriate viscosity refined from crude oil of any source including Gulf Coast, Midcontinent, Pennsylvania, California, Alaska, Middle East, North Sea and the like. Standard refinery operations may be used in processing the mineral oil.
- general types of petroleum oils useful in the compositions of this invention are solvent neutrals, bright stocks, cylinder stocks, residual oils, hydrocracked base stocks, paraffin oils including pale oils, and solvent extracted naphthenic oils. Such oils and blends of them are produced by a number of conventional techniques which are widely known by those skilled in the art.
- the base oil can consist essentially of or comprise a portion of one or more synthetic oils.
- suitable synthetic oils are homo- and inter-polymers of C 2 -C 12 olefins, carboxylic acid esters of both monoalcohols and polyols, polyethers, silicones, polyglycols, silicates, alkylated aromatics, carbonates, thiocarbonates, orthoformates, phosphates and phosphites, borates and halogenated hydrocarbons.
- oils are homo- and interpolymers of C 2 -C 12 monoolefinic hydrocarbons, alkylated benzenes (e.g., dodecyl benzenes, didodecyl benzenes, tetradecyl benzenes, dinonyl benzenes, di-(2-ethylhexyl)benzenes, wax-alkylated naphthalenes); and polyphenyls (e.g., biphenyls, terphenyls). Alkylene oxide polymers and interpolymers and derivatives thereof where the terminal hydroxyl groups have been modified by esterification, etherification, etc., constitute another class of synthetic oils.
- alkylated benzenes e.g., dodecyl benzenes, didodecyl benzenes, tetradecyl benzenes, dinonyl benzenes, di-(2-
- oils prepared through polymerization of alkylene oxides such as ethylene oxide or propylene oxide and the alkyl and aryl ethers of these polyoxyalkylene polymers (e.g., methyl polyisopropylene glycol ether having an average molecular weight of 1,000, diphenyl ether of polyethylene glycol having a molecular weight of 500-1,000, diethyl ether of polypropylene glycol having a molecular weight of 1,000-1,500) or mono- and poly-carboxylic esters thereof, for example, the acetic acid ester, mixed C 3 -C 6 fatty acid esters, or the C 13 Oxo acid diester of tetraethylene glycol.
- alkylene oxides such as ethylene oxide or propylene oxide
- alkyl and aryl ethers of these polyoxyalkylene polymers e.g., methyl polyisopropylene glycol ether having an average molecular weight of 1,000, diphenyl ether of polyethylene glycol having
- Another suitable class of synthetic oils comprises the esters of dicarboxylic acids (e.g., phthalic acid, succinic acid, maleic acid, azelaic acid, suberic acid, sebacic acid, fumaric acid, adipic acid, linoleic acid dimer) with a variety of alcohols (e.g., butyl alcohol, hexyl alcohol, dodecyl alcohol, 2-ethylhexyl alcohol, ethylene glycol).
- dicarboxylic acids e.g., phthalic acid, succinic acid, maleic acid, azelaic acid, suberic acid, sebacic acid, fumaric acid, adipic acid, linoleic acid dimer
- alcohols e.g., butyl alcohol, hexyl alcohol, dodecyl alcohol, 2-ethylhexyl alcohol, ethylene glycol.
- esters include dibutyl adipate, di(2-ethylhexyl) adipate, didodecyl adipate, di(tridecyl) adipate, di(2-ethylhexyl) sebacate, dilauryl sebacate, di-n-hexyl fumarate, dioctyl sebacate, diisooctyl azelate, diisodecyl azelate, dioctyl phthalate, didecyl phthalate, di(eicosyl) sebacate, the 2-ethylhexyl diester of linoleic acid dimer, and the complex ester formed by reacting one mole of sebacic acid with two moles of tetraethylene glycol and two moles of 2-ethylhexanoic acid.
- esters which may be used include those made from C 3 -C 18 monocarboxylic acids and polyols and polyol ethers such as neopentyl glycol, trimethylolpropane, pentaerythritol and dipentaerythritol.
- Silicon-based oils such as the polyalkyl-, polyaryl-, polyalkoxy-, or polyaryloxy-siloxane oils and silicate oils comprise another class of synthetic lubricants (e.g., tetraethyl silicate, tetraisopropyl silicate, tetra-(2-ethylhexyl) silicate, tetra-(p-tert-butylphenyl) silicate, poly(methyl)siloxanes, and poly(methylphenyl)siloxanes.
- synthetic lubricants e.g., tetraethyl silicate, tetraisopropyl silicate, tetra-(2-ethylhexyl) silicate, tetra-(p-tert-butylphenyl) silicate, poly(methyl)siloxanes, and poly(methylphenyl)siloxanes.
- Other synthetic lubricating oils include liquid esters of phosphorus-containing acids (e.g., tricresyl phosphate, trioctyl phosphate, triphenyl phosphite, and diethyl ester of decane phosphonic acid.
- liquid esters of phosphorus-containing acids e.g., tricresyl phosphate, trioctyl phosphate, triphenyl phosphite, and diethyl ester of decane phosphonic acid.
- Also useful as base oils or as components of base oils are hydrogenated or unhydrogenated liquid oligomers of C 6 -C 16 ⁇ -olefins, such as hydrogenated or unhydrogenated oligomers formed from 1-decene.
- Methods for the production of such liquid oligomeric 1-alkene hydrocarbons are known and reported in the literature. See for example U.S. Pat. Nos. 3,749,560; 3,763,244; 3,780,128; 4,172,855; 4,218,330; 4,902,846; 4,906,798; 4,910,355; 4,911,758; 4,935,570; 4,950,822; 4,956,513; and 4,981,578.
- hydrogenated 1-alkene oligomers of this type are available as articles of commerce, e.g., under the trade designations ETHYLFLO 162, ETHYLFLO 164, ETHYLFLO 166, ETHYLFLO 168, ETHYLFLO 170, ETHYLFLO 174, and ETHYLFLO 180 poly- ⁇ -olefin oils (Ethyl Corporation; Ethyl Canada Limited; Ethyl S. A.).
- ETHYLFLO is a trademark of Ethyl Corporation. Blends of such materials can also be used in order to adjust the viscometrics of the given base oil.
- Suitable 1-alkene oligomers are also available from other suppliers. As is well known, hydrogenated oligomers of this type contain little, if any, residual ethylenic unsaturation.
- Preferred oligomers are formed by use of a Friedel-Crafts catalyst (especially boron trifluoride promoted with water or a C 1-20 alkanol) followed by catalytic hydrogenation of the oligomer so formed using procedures such as are described in the foregoing U.S. patents.
- a Friedel-Crafts catalyst especially boron trifluoride promoted with water or a C 1-20 alkanol
- catalyst systems which can be used to form oligomers of 1-alkene hydrocarbons, which, on hydrogenation, provide suitable oleaginous liquids include Ziegler catalysts such as ethyl aluminum sesquichloride with titanium tetrachloride, aluminum alkyl catalysts, chromium oxide catalysts on silica or alumina supports and a system in which a boron trifluoride catalyst oligomerization is followed by treatment with an organic peroxide.
- Ziegler catalysts such as ethyl aluminum sesquichloride with titanium tetrachloride, aluminum alkyl catalysts, chromium oxide catalysts on silica or alumina supports and a system in which a boron trifluoride catalyst oligomerization is followed by treatment with an organic peroxide.
- unhydrogenated 1-alkene oligomers can be used as the base oil or as a component in a base oil blend.
- various proprietary synthetic lubricants such as KETJENLUBE synthetic oil of Akzo Chemicals can be employed either as the sole base lubricant or as a component of the base lubricating oil.
- Typical natural oils that may be used as base oils or as components of the base oils include castor oil, olive oil, peanut oil, rapeseed oil, corn oil, sesame oil, cottonseed oil, soybean oil, sunflower oil, safflower oil, hemp oil, linseed oil, tung oil, oiticica oil, jojoba oil, meadowfoam oil, and the like. Such oils may be partially or fully hydrogenated, if desired.
- the base oils used in the compositions of this invention may be composed of (i) one or more mineral oils, (ii) one or more synthetic oils, (iii) one or more natural oils, or (iv) a blend of (i) and (ii), or (i) and (iii), or (ii) and (iii), or (i), (ii) and (iii) does not mean that these various types of oils are necessarily equivalents of each other.
- Certain types of base oils may be used in certain compositions for the specific properties they possess such as biodegradability, high temperature stability, non-flammability or lack of corrosivity towards specific metals (e.g. silver or cadmium).
- the components of the additive compositions of this invention are employed in the oleaginous liquids (e.g., lubricating oils and functional fluids) in minor amounts sufficient to improve the performance characteristics and properties of the base oil or fluid.
- the amounts of the components used in the base oil will vary in accordance with such factors as the viscosity characteristics of the base oil or fluid employed, the viscosity characteristics desired in the finished product, the service conditions for which the finished product is intended, and the performance characteristics desired in the finished product.
- concentrations (weight percent) of other components (on an active ingredients basis, i.e., excluding diluents which often are associated therewith) in the base oils or fluids are illustrative:
- additives are multifunctional additives capable of contributing more than a single property to the blend in which they are used.
- the amount used should of course be sufficient to achieve the function(s) and result(s) desired therefrom.
- the individual components can be separately blended into the base oil or fluid or can be blended therein in various subcombinations, if desired. Moreover, such components can be blended in the form of separate solutions in a diluent. Except for viscosity index improvers and/or pour point depressants (which in many instances are blended apart from other components), it is preferable to blend the other selected components into the base oil by use of an additive concentrate of this invention, as this simplifies the blending operations, reduces the likelihood of blending errors, and takes advantage of the compatibility and solubility characteristics afforded by the overall concentrate.
- the additive concentrates of this invention will contain the individual components in amounts proportioned to yield finished oil or fluid blends consistent with the concentrations tabulated above.
- the additive concentrate will contain one or more diluents such as light mineral oils, to facilitate handling and blending of the concentrate.
- concentrates containing up to 80% by weight of one or more diluents or solvents can be used.
- the oleaginous liquids provided by this invention can be used in a variety of applications.
- they can be employed as crankcase lubricants, gear oils, hydraulic fluids, manual transmission fluids, automatic transmission fluids, cutting and machining fluids, brake fluids, shock absorber fluids, heat transfer fluids, quenching oils, transformer oils, and the like.
- the compositions are particularly suitable for use as automotive and industrial gear oils.
- compositions of this invention one either purchases or synthesizes each of the respective individual components to be used in the formulation or blending operation. Unless one is already in the commercial manufacture of one or more such components, it is usually simpler and thus preferable to purchase, to the extent possible, the ingredients to be used in the compositions of this invention. If it is desired to synthesize one or more components, use may be made of synthesis procedures referred to in the literature, including, but by no means limited to, the applicable references cited herein. In some cases, the components can be formed in situ by in situ reactions between or among components introduced into the mixture.
- amine salts of monothiophosphoric acid esters can be formed in situ by introducing into the blending vessel a material such as sulfurized isobutylene and one or more amines, followed by the introduction of one or more dihydrocarbyl hydrogen phosphites.
- the formulation or blending operations are relatively simple and involve mixing together in a suitable container or vessel, using a dry, inert atmosphere where necessary or desirable, appropriate proportions of the selected ingredients.
- Those skilled in the art are cognizant of and familiar with the procedures suitable for formulating and blending additive concentrates and lubricant compositions.
- the order of addition of components to the blending tank or vessel is not critical provided of course, that the components being blended at any given time are not incompatible or excessively reactive with each other. Agitation such as with mechanical stirring equipment is desirable to facilitate the blending operation.
- the additive ingredients When forming the lubricant compositions of this invention, it is usually desirable to introduce the additive ingredients into the base oil with stirring and application of mildly elevated temperatures, as this facilitates the dissolution of the components in the oil and achievement of product uniformity.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
R--CO--CH═CH--CO--R'
Description
R--CO--CH═CH--CO--R'
R--CO--CH═CH--CO--R'
R--CO--CH═CH--CO--R'
R--CO--CH═CH--CO--R' (I)
______________________________________ Cook Time, minutes Pressure, psig ______________________________________ 0 12.5 5 13.0 15 8.0 25 5.0 40 4.5 50 3.5 65 2.0 95 0.5 135 0 150 -0.5 170 0 185 0.5 210 1.5 235 3.0 255 4.0 300 6.0 ______________________________________
______________________________________ Cook Time, minutes Pressure, psig ______________________________________ 0 17.0 5 14.0 25 6.0 35 4.5 45 3.0 55 2.5 75 2.0 90 2.0 105 2.0 135 3.5 170 5.0 205 5.0 250 6.0 300 7.0 ______________________________________
______________________________________ Cook Time, minutes Pressure, psig ______________________________________ 0 12.0 5 14.5 10 12.0 30 6.0 60 3.5 90 2.0 120 1.0 150 1.0 180 1.0 210 1.0 240 1.5 270 3.0 300 4.5 ______________________________________
______________________________________ Cook Time, minutes Pressure, psig ______________________________________ 0 17.0 10 15.0 25 10.0 30 9.0 45 7.5 55 7.0 65 6.0 80 5.5 95 6.0 115 6.0 135 8.5 155 10.0 180 13.5 195 16.0 215 19.0 235 22.5 250 25.5 265 28.0 280 31.5 300 34.0 ______________________________________
______________________________________ Cook Time, minutes Pressure, psig ______________________________________ 0 18.0 5 17.5 35 7.0 60 5.0 90 4.5 120 5.0 150 6.0 180 7.0 210 10.0 240 13.5 270 17.0 300 21.0 ______________________________________
______________________________________ Cook Time, minutes Pressure, psig ______________________________________ 0 17.0 15 14.0 30 10.5 45 8.0 70 6.5 95 6.5 115 8.0 150 12.0 195 19.0 230 26.0 260 33.0 300 40.5 ______________________________________
______________________________________ Cook Time, minutes Pressure, psig ______________________________________ 0 15.5 5 16.0 20 12.5 40 10.0 45 9.5 60 8.5 80 8.5 110 10.0 140 14.0 180 20.5 205 26.5 245 37.0 255 40.5 270 43.0 300 50.0 ______________________________________
______________________________________ 3 to 5 Excellent; very clean reactor, tar formation minimal or non-existent 6 to 10 Good; some tar formation 11 to 14 Fair; significant level of tar formation 15 to 20 Poor; medium to heavy tar formation 20 to 30 Very Poor; heavy to severe tar formation ______________________________________
TABLE 1 ______________________________________ Key Properties of Polyisobutenyl Succinic Anhydrides Reaction Temper- MA:PIB Maximum Total Stripped Example ature Ratio Pressure Tars Acid No. ______________________________________ 1 225° C. 1.00 13.0 psig 4 0.76 2 240° C. 1.00 17.0 psig 4 0.82 3 225° C. 1.10 14.5 psig 3 0.81 4 240° C. 1.10 34.0 psig 3 0.90 5 240° C. 1.20 21.0 psig 3 0.95 Control 225° C. 1.00 15.0 psig 7 0.60 ______________________________________
______________________________________ Cook Time, minutes Pressure, psig ______________________________________ 0 16.5 10 11.5 35 7.0 50 6.0 75 6.0 100 7.0 130 9.0 165 11.5 195 14.5 240 20.0 260 22.0 280 25.0 300 27.0 ______________________________________
______________________________________ Run 1 Run 2 Run 3 Cook Cook Cook Time Pressure Time Pressure Time Pressure minutes psig minutes psig minutes psig ______________________________________ 0 19.0 0 20.0 0 16.0 10 14.5 10 16.0 10 14.0 25 9.5 25 9.0 20 9.5 35 8.0 40 7.5 40 7.0 60 5.5 65 5.0 55 5.0 95 5.5 85 5.0 85 5.0 130 7.5 120 6.0 100 5.0 150 9.0 155 9.0 120 5.0 180 12.0 175 11.5 170 9.0 225 19.0 215 17.0 200 11.0 255 23.0 240 21.0 230 16.0 260 28.0 260 23.5 285 23.5 300 30.0 280 27.0 300 25.0 300 30.0 ______________________________________
TABLE 2 ______________________________________ Highlights of Recycle Process Run % MA Total Stripped Unreacted No. Recycled Tars Acid No. PIB, % ______________________________________ 1 None 3 0.75 27.2 2 9.8 3 0.73 24.0 3 10.5 3 0.73 24.2 ______________________________________
______________________________________ Cook Time, minutes Pressure, psig ______________________________________ 0 17.0 10 15.0 25 10.0 30 9.0 45 7.5 55 7.0 65 6.0 80 5.5 95 6.0 115 6.0 135 8.5 155 10.0 180 13.5 195 16.0 215 19.0 235 22.5 250 25.5 265 28.0 280 31.5 300 34.0 ______________________________________
TABLE 3 ______________________________________ Results of Comparative Runs Maxi- mum Total Unstripped Stripped Unreacted Example Pressure Tars Acid No. Acid No. PIB, % ______________________________________ 11 13.8 psig 9.0 0.73 0.66 25.4 12 21.0 psig 9.7 0.73 0.64 23.3 Control 17.0 psig 19.0 0.70 0.53 40.3 ______________________________________
NH.sub.2 -alkylene-(O-alkylene).sub.m -NH.sub.2 (II)
R-[alkylene-(O-alkylene).sub.n -NH.sub.2 ].sub.q (III)
R--C(O)--C(R)H--CH.sub.2 --C(O)--R (IV)
H.sub.2 N(CH.sub.2 CH.sub.2 NH).sub.n H (V)
TABLE 4 ______________________________________ Post-Treatments Post-Treating Agents Pat. Nos. ______________________________________ Inorganic phosphorus acid or anhydride 3,403,102; 3,502,677; 3,513,093; 4,615,826; 4,648,980 Organic phosphorus compound 3,403,102; 3,502,677; 3,511,780; 3,513,093; GB 1,153,161 GB 2,140,811 Phosphorus pentasulfide 3,184,411; 3,342,735 Boron compound 3,087,936; 3,254,025; 3,281,428; 3,282,955; 2,284,409; 2,284,410; 3,338,832; 3,344,069; 3,533,945; 3,658,836; 3,703,536; 3,718,663; 4,455,243; 4,652,387; Mono- or polycarboxylic acid, anhydride, 3,185,704; and/or acid halide 3,216,936; 3,245,908; 3,245,909; 3,245,910; 3,415,750; 3,639,242; 3,692,681; 3,708,522; 4,548,724; 4,927,562; 4,948,386; GB 1,065,595; GB 1,162,436; GB 2,140,811; EP 0,438,849 Mono- or polyepoxide or thioepoxide 3,367,943; 3,373,111; 3,579,450; 3,859,318; 5,026,495; 5,030,369 Aldehyde or ketone 3,369,021; 3,455,831; 3,455,832; 3,458,530; Carbon disulfide 3,200,107; 3,256,185 Glycidol 4,617,137; 4,631,070 Urea, thiourea or guanidine 3,312,619; 3,865,813; GB 1,065,595 Organic sulfonic acid 3,189,544; GB 2,140,811 Alkenyl cyanide 3,278,550; 3,366,569 Diketene 3,546,243 A diisocyanate 3,573,205 Alkane sultone 3,749,695 1,3-Dicarbonyl compound 4,579,675 Sulfate of alkoxylated alcohol or phenol 3,954,639 Cyclic lactone 4,617,138; 4,645,515; 4,668,246; 4,963,275; 4,971,711 Cyclic carbonate or thiocarbonate, linear 4,612,132; monocarbonate or polycarbonate, or 4,647,390; chloroformate 4,648,886; 4,670,170 Nitrogen-containing carboxylic acid 4,971,598; GB 2,140,811 Hydroxy-protected chlorodicarbonyloxy compound 4,614,522 Lactam, thiolactam, thiolactone or dithiolactone 4,614,603; 4,666,460 Cyclic carbamate, cyclic thiocarbamate or 4,663,062; cyclic dithiocarbamate 4,666,459 Hydroxyaliphatic carboxylic acid 4,482,464; 4,521,318; 4,713,189 Oxidizing agent 4,379,064 Combination of phosphorus pentasulfide and a 3,185,647 polyalkylene polyamine Combination of carboxylic acid or an aldehyde 3,390,086; or ketone and sulfur or sulfur chloride 3,470,098 Combination of a hydrazine and carbon disulfide 3,519,564 Combination of an aldehyde and a phenol 3,649,229; 5,030,249; 5,039,307 Combination of an aldehyde and an O,O-diester 3,865,740 of dithiophosphoric acid Combination of a hydroxyaliphatic carboxylic 4,554,086 acid and a boric acid Combination of a hydroxyaliphatic carboxylic 4,636,322 acid, then formaldehyde and a phenol Combination of a hydroxyaliphatic carboxylic 4,663,064 acid and then an aliphatic dicarboxylic acid Combination of formaldehyde and a phenol, and 4,699,724 then glycolic acid Combination of a hydroxyaliphatic carboxylic 4,713,191 acid or oxalic acid and then a diisocyanate Combination of inorganic acid or anhydride of 4,857,214 phosphorus or a partial or total sulfur analog thereof and a boron compound Combination of an organic diacid, then an 4,973,412 unsaturated fatty acid, and then a nitroso- aromatic amine, optionally followed by a boron compound and then a glycolating agent Combination of an aldehyde and a triazole 4,963,278 Combination of an aldehyde and a triazole, 4,981,492 then a boron compound Combination of cyclic lactone and a boron 4,963,275; compound 4,971,711 ______________________________________
R--CO--CH═CH--CO--R'
R--CO--CH═CH--CO--R'
R--CO--CH═CH--CO--R'
R--CO--CH═CH--CO--R'
R--CO--CH═CH--CO--R'
______________________________________ Typical Preferred Range Range ______________________________________ Amine salt of carboxylic acid 0-1 0.01-2 Demulsifier 0-0.5 0-0.2 Cu corrosion inhibitor 0-0.5 0.01-0.2 Supplemental ashless dispersant 0-3 0-2 Antioxidant 0-2 0-1 Rust inhibitor 0-1 0.02-0.5 Antifoam agent 0-0.3 0.0002-0.1 Friction modifier 0-2 0-1 Seal swell agent 0-20 0-10 Viscosity index improver 0-20 0-15 Pour point depressant 0-2 0-1 Other metal corrosion inhibitors 0-1 0-0.5 ______________________________________
Claims (19)
R--CO--CH═CH--CO--R'
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/895,001 US5241003A (en) | 1990-05-17 | 1992-06-08 | Ashless dispersants formed from substituted acylating agents and their production and use |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/524,422 US5071919A (en) | 1990-05-17 | 1990-05-17 | Substituted acylating agents and their production |
US07/762,453 US5137978A (en) | 1990-05-17 | 1991-09-19 | Substituted acylating agents and their production |
US07/801,488 US5137980A (en) | 1990-05-17 | 1991-12-02 | Ashless dispersants formed from substituted acylating agents and their production and use |
US07/895,001 US5241003A (en) | 1990-05-17 | 1992-06-08 | Ashless dispersants formed from substituted acylating agents and their production and use |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/762,453 Continuation-In-Part US5137978A (en) | 1990-05-17 | 1991-09-19 | Substituted acylating agents and their production |
US07/801,488 Division US5137980A (en) | 1990-05-17 | 1991-12-02 | Ashless dispersants formed from substituted acylating agents and their production and use |
Publications (1)
Publication Number | Publication Date |
---|---|
US5241003A true US5241003A (en) | 1993-08-31 |
Family
ID=27504588
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/895,001 Expired - Lifetime US5241003A (en) | 1990-05-17 | 1992-06-08 | Ashless dispersants formed from substituted acylating agents and their production and use |
Country Status (1)
Country | Link |
---|---|
US (1) | US5241003A (en) |
Cited By (156)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5384375A (en) * | 1994-02-28 | 1995-01-24 | Eastman Kodak Company | Urea derivatives of maleated polyolefins |
EP0684262A2 (en) | 1994-05-26 | 1995-11-29 | The Lubrizol Corporation | Treatment of lubricating oil intermediates |
US5565128A (en) * | 1994-10-12 | 1996-10-15 | Exxon Chemical Patents Inc | Lubricating oil mannich base dispersants derived from heavy polyamine |
US5569407A (en) * | 1994-03-25 | 1996-10-29 | Mobil Oil Corporation | Additives for fuels and lubricants |
US5580484A (en) * | 1994-12-30 | 1996-12-03 | Exxon Chemical Patents Inc. | Lubricating oil dispersants derived from hydroxy aromatic succinimide Mannich base condensates of heavy polyamine |
US5587432A (en) * | 1993-12-14 | 1996-12-24 | Ethyl Petroleum Additives Limited | Dispersants for lubricating oil |
US5614081A (en) * | 1995-06-12 | 1997-03-25 | Betzdearborn Inc. | Methods for inhibiting fouling in hydrocarbons |
EP0776963A1 (en) | 1995-12-01 | 1997-06-04 | Chevron Chemical Company | Polyalkylene succinimides and post-treated derivatives thereof |
US5670462A (en) * | 1994-05-11 | 1997-09-23 | Bp Chemicals (Additives) Limited | Lubricating oil additives |
US5674819A (en) * | 1995-11-09 | 1997-10-07 | The Lubrizol Corporation | Carboxylic compositions, derivatives,lubricants, fuels and concentrates |
US5716912A (en) * | 1996-04-09 | 1998-02-10 | Chevron Chemical Company | Polyalkylene succinimides and post-treated derivatives thereof |
EP0825249A1 (en) * | 1996-08-20 | 1998-02-25 | Chevron Chemical Company | Novel polymeric dispersants |
EP0831104A2 (en) | 1996-08-20 | 1998-03-25 | Chevron Chemical Company | Novel dispersant terpolymers |
US5756431A (en) * | 1994-06-17 | 1998-05-26 | Exxon Chemical Patents Inc | Dispersants derived from heavy polyamine and second amine |
US5792730A (en) * | 1994-07-11 | 1998-08-11 | Exxon Chemical Patents, Inc. | Lubricating oil succinimide dispersants derived from heavy polyamine |
US5858176A (en) * | 1997-04-22 | 1999-01-12 | Betzdearborn Inc. | Compositions and methods for inhibiting fouling of vinyl monomers |
US5861363A (en) * | 1998-01-29 | 1999-01-19 | Chevron Chemical Company Llc | Polyalkylene succinimide composition useful in internal combustion engines |
EP0894845A1 (en) * | 1997-08-01 | 1999-02-03 | Ethyl Corporation | Phosphorylated and/or boronated dispersants as thermal stability additives for distillate fuels |
US5880070A (en) * | 1996-08-20 | 1999-03-09 | Chevron Chemical Company | Cross-linked succinimides from an acid derivative, a polyamine, and a polycarboxylic acid derivative |
US6015776A (en) * | 1998-09-08 | 2000-01-18 | Chevron Chemical Company | Polyalkylene polysuccinimides and post-treated derivatives thereof |
US6066605A (en) * | 1996-06-17 | 2000-05-23 | Infineum Usa L.P. | Carboxylic amide-containing polymers for use as fuel or lubricating oil additives and processes for their preparation |
US6107450A (en) * | 1998-12-15 | 2000-08-22 | Chevron Chemical Company Llc | Polyalkylene succinimides and post-treated derivatives thereof |
US6156850A (en) * | 1998-09-16 | 2000-12-05 | Chevron Chemical Company Llc | Process for making polyalkenyl derivative of an unsaturated acidic reagent |
EP1076087A1 (en) * | 1999-08-11 | 2001-02-14 | Ethyl Corporation | Zinc and phosphorus containing transmission fluids having enhanced performance capabilities |
US6407170B1 (en) | 1999-06-24 | 2002-06-18 | The Lubrizol Corporation | Dispersants prepared from high polydispersity olefin polymers |
US6642191B2 (en) | 2001-11-29 | 2003-11-04 | Chevron Oronite Company Llc | Lubricating oil additive system particularly useful for natural gas fueled engines |
US20030224948A1 (en) * | 2002-02-14 | 2003-12-04 | Dam Willem Van | Lubricating oil additive comprising EC-treated succinimide, borated dispersant and corrosion inhibitor |
US6756348B2 (en) | 2001-11-29 | 2004-06-29 | Chevron Oronite Company Llc | Lubricating oil having enhanced resistance to oxidation, nitration and viscosity increase |
WO2004065430A1 (en) * | 2003-01-21 | 2004-08-05 | The Lubrizol Corporation | Low color polyisobutylene succinic anhydride-derived emulsifiers |
US20040214734A1 (en) * | 2001-09-05 | 2004-10-28 | King James P. | Soybean oil based metalworking fluids |
US20040235682A1 (en) * | 2003-05-22 | 2004-11-25 | Chevron Oronite Company Llc | Low emission diesel lubricant with improved corrosion protection |
US20040248744A1 (en) * | 2001-08-14 | 2004-12-09 | King James P. | Soy-based methyl ester high performance metal working fluids |
US20040260027A1 (en) * | 2003-06-20 | 2004-12-23 | Michaud Vincent Jean Marie | Process for forming polyalkenyl acylating agents |
US20040260032A1 (en) * | 2003-06-20 | 2004-12-23 | Irving Matthew David | Low sediment process for thermally reacting highly reactive polymers and enophiles |
US20060025313A1 (en) * | 2004-07-29 | 2006-02-02 | Chevron Oronite Company Llc | Lubricating oil composition for internal combustion engines |
WO2006063161A2 (en) * | 2004-12-09 | 2006-06-15 | The Lubrizol Corporation | Process of preparation of an additive and its use |
US20060247386A1 (en) * | 2005-04-29 | 2006-11-02 | Chevron Oronite Company Llc. | Lubricating oil additive composition and method of making the same |
US20070027267A1 (en) * | 2005-04-29 | 2007-02-01 | Chevron Oronite Company Llc | Lubricating oil additive composition and method of making the same |
EP1757673A1 (en) | 2005-08-23 | 2007-02-28 | Chevron Oronite Company LLC | Lubricating oil composition for internal combustion engines |
US20070049504A1 (en) * | 2005-09-01 | 2007-03-01 | Culley Scott A | Fluid additive composition |
US20070245620A1 (en) * | 2006-04-25 | 2007-10-25 | Malfer Dennis J | Diesel fuel compositions |
US20080040968A1 (en) * | 2006-08-17 | 2008-02-21 | Malfer Dennis J | Fuel additive compounds and method of making the compounds |
US20080096775A1 (en) * | 2004-07-23 | 2008-04-24 | Idemitsu Kosan Co., Ltd. | Lubricant Composition |
EP1916293A1 (en) | 2006-10-27 | 2008-04-30 | Chevron Oronite Company LLC | A lubricating oil additive composition and method of making the same |
EP1916292A1 (en) | 2006-10-27 | 2008-04-30 | Chevron Oronite Company LLC | A lubricating oil additive composition and method of making the same |
US20080103236A1 (en) * | 2006-10-27 | 2008-05-01 | Chevron Oronite Company Llc | Lubricating oil additive composition and method of making the same |
US20080103074A1 (en) * | 2006-10-27 | 2008-05-01 | Chevron Oronite Company Llc | Lubricating oil additive composition and method of making the same |
US20080103076A1 (en) * | 2006-10-27 | 2008-05-01 | Chevron Oronite Company Llc | Lubricating oil additive composition and method of making the same |
US20080113889A1 (en) * | 2006-10-27 | 2008-05-15 | Chevron Oronite Company Llc | lubricating oil additive composition and method of making the same |
US20080182768A1 (en) * | 2007-01-31 | 2008-07-31 | Devlin Cathy C | Lubricant composition for bio-diesel fuel engine applications |
US20090082235A1 (en) * | 2005-06-23 | 2009-03-26 | Andree Hilker | Oxidative Stable Oil Formulation |
US20090105104A1 (en) * | 2005-06-23 | 2009-04-23 | David John Wedlock | Lubricating Oil Composition |
US20090137435A1 (en) * | 2005-06-23 | 2009-05-28 | Andree Hilker | Electrical Oil Formulation |
EP2083063A1 (en) | 2008-01-22 | 2009-07-29 | Infineum International Limited | Lubricating oil composition |
US20090270531A1 (en) * | 2008-04-25 | 2009-10-29 | Chevron Oronite Company Llc | Lubricating oil additive composition and method of making the same |
US7618928B2 (en) | 2005-08-31 | 2009-11-17 | Chevron Oronite Company Llc | Lubricating oil additive composition and method of making the same |
US20100022688A1 (en) * | 2008-07-23 | 2010-01-28 | Baker Hughes Incorporated | Process for improving the transfer properties of bitumen |
US20100081588A1 (en) * | 2008-09-30 | 2010-04-01 | Chevron Oronite Company Llc | Lubricating oil compositions |
US20100160192A1 (en) * | 2008-12-22 | 2010-06-24 | Chevron Oronite LLC | lubricating oil additive composition and method of making the same |
EP2236590A1 (en) | 2009-04-01 | 2010-10-06 | Infineum International Limited | Lubricating oil composition |
EP2290040A1 (en) | 2009-07-31 | 2011-03-02 | Chevron Japan Ltd. | Friction modifier and transmission oil |
EP2290041A2 (en) | 2009-08-24 | 2011-03-02 | Infineum International Limited | A lubricating oil composition |
US8901050B2 (en) | 2010-03-31 | 2014-12-02 | Chevron Oronite Company Llc | Method for improving copper corrosion performance |
US8933001B2 (en) | 2010-03-31 | 2015-01-13 | Chevron Oronite Company Llc | Method for improving fluorocarbon elastomer seal compatibility |
EP2851413A1 (en) | 2013-09-23 | 2015-03-25 | Chevron Japan Ltd. | Fuel economy engine oil composition |
EP2933320A1 (en) | 2014-04-17 | 2015-10-21 | Afton Chemical Corporation | Lubricant additives and lubricant compositions having improved frictional characteristics |
EP2940110A1 (en) | 2014-04-29 | 2015-11-04 | Infineum International Limited | Lubricating oil compositions |
EP2990469A1 (en) | 2014-08-27 | 2016-03-02 | Afton Chemical Corporation | Lubricant composition suitable for use in gasoline direct injection engines |
WO2016140998A1 (en) | 2015-03-04 | 2016-09-09 | Huntsman Petrochemical Llc | Novel organic friction modifiers |
EP3072949A1 (en) | 2015-03-23 | 2016-09-28 | Chevron Japan Ltd. | Lubricating oil composition for construction machines |
EP3072948A1 (en) | 2015-03-23 | 2016-09-28 | Chevron Japan Ltd. | Lubricating oil compositions for construction machines |
WO2017011689A1 (en) | 2015-07-16 | 2017-01-19 | Afton Chemical Corporation | Lubricants with titanium and/or tungsten and their use for improving low speed pre-ignition |
EP3124581A1 (en) | 2015-07-30 | 2017-02-01 | Infineum International Limited | Dispersant additives and additive concentrates and lubricating oil compositions containing same |
EP3135750A1 (en) | 2015-08-26 | 2017-03-01 | Infineum International Limited | Lubricating oil compositions |
EP3144372A1 (en) | 2015-09-16 | 2017-03-22 | Infineum International Limited | Additive concentrates for the formulation of lubricating oil compositions |
EP3153568A1 (en) | 2015-10-05 | 2017-04-12 | Infineum International Limited | Additive concentrates for the formulation of lubricating oil compositions |
US9677026B1 (en) | 2016-04-08 | 2017-06-13 | Afton Chemical Corporation | Lubricant additives and lubricant compositions having improved frictional characteristics |
US9701921B1 (en) | 2016-04-08 | 2017-07-11 | Afton Chemical Corporation | Lubricant additives and lubricant compositions having improved frictional characteristics |
WO2017146867A1 (en) | 2016-02-25 | 2017-08-31 | Afton Chemical Corporation | Lubricants for use in boosted engines |
WO2017189277A1 (en) | 2016-04-26 | 2017-11-02 | Afton Chemical Corporation | Random copolymers of acrylates as polymeric friction modifiers, and lubricants containing same |
WO2017192202A1 (en) | 2016-05-05 | 2017-11-09 | Afton Chemical Corporaion | Lubricant compositions for reducing timing chain stretch |
WO2017192217A1 (en) | 2016-05-05 | 2017-11-09 | Afton Chemical Corporation | Lubricants for use in boosted engines |
EP3246383A1 (en) | 2016-05-17 | 2017-11-22 | Afton Chemical Corporation | Synergistic dispersants |
WO2018077621A1 (en) | 2016-10-25 | 2018-05-03 | Chevron Oronite Technology B.V. | Lubricating oil compositions comprising a biodiesel fuel and a dispersant |
RU2653541C1 (en) * | 2017-07-05 | 2018-05-11 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский государственный энергетический университет" (ФГБОУ ВО "КГЭУ") | Transformer oil oxidation retardation method |
EP3336163A1 (en) | 2016-12-13 | 2018-06-20 | Afton Chemical Corporation | Polyolefin-derived dispersants |
WO2018111726A1 (en) | 2016-12-16 | 2018-06-21 | Afton Chemical Corporation | Multi-functional olefin copolymers and lubricating compositions containing same |
EP3339404A1 (en) | 2006-07-18 | 2018-06-27 | Infineum International Limited | Lubricating oil compositions |
WO2018136138A1 (en) | 2017-01-18 | 2018-07-26 | Afton Chemical Corporation | Lubricants with overbased calcium and overbased magnesium detergents and method for improving low-speed pre-ignition |
WO2018136136A1 (en) | 2017-01-18 | 2018-07-26 | Afton Chemical Corporation | Lubricants with calcium-containing detergents and their use for improving low-speed pre-ignition |
WO2018136137A1 (en) | 2017-01-18 | 2018-07-26 | Afton Chemical Corporation | Lubricants with calcium and magnesium-containing detergents and their use for improving low-speed pre-ignition and for corrosion resistance |
EP3366755A1 (en) | 2017-02-22 | 2018-08-29 | Infineum International Limited | Improvements in and relating to lubricating compositions |
EP3369802A1 (en) | 2017-03-01 | 2018-09-05 | Infineum International Limited | Improvements in and relating to lubricating compositions |
WO2018197312A1 (en) | 2017-04-27 | 2018-11-01 | Shell Internationale Research Maatschappij B.V. | Lubricating composition |
EP3434755A1 (en) | 2017-07-24 | 2019-01-30 | Infineum International Limited | Motorcycle lubricant |
US10214703B2 (en) | 2015-07-16 | 2019-02-26 | Afton Chemical Corporation | Lubricants with zinc dialkyl dithiophosphate and their use in boosted internal combustion engines |
EP3461877A1 (en) | 2017-09-27 | 2019-04-03 | Infineum International Limited | Improvements in and relating to lubricating compositions |
US10260019B2 (en) * | 2016-06-30 | 2019-04-16 | The Lubrizol Corporation | Hydroxyaromatic succinimide detergents for lubricating compositions |
EP3476923A1 (en) | 2017-10-25 | 2019-05-01 | Afton Chemical Corporation | Dispersant viscosity index improvers to enhance wear protection in engine oils |
US10280383B2 (en) | 2015-07-16 | 2019-05-07 | Afton Chemical Corporation | Lubricants with molybdenum and their use for improving low speed pre-ignition |
EP3495462A1 (en) | 2017-12-11 | 2019-06-12 | Infineum International Limited | Low ash and ash-free acid neutralizing compositions and lubricating oil compositions containing same |
US10336959B2 (en) | 2015-07-16 | 2019-07-02 | Afton Chemical Corporation | Lubricants with calcium-containing detergent and their use for improving low speed pre-ignition |
US10377963B2 (en) | 2016-02-25 | 2019-08-13 | Afton Chemical Corporation | Lubricants for use in boosted engines |
WO2019162744A1 (en) | 2018-02-22 | 2019-08-29 | Chevron Japan Ltd. | Lubricating oils for automatic transmissions |
US10421922B2 (en) | 2015-07-16 | 2019-09-24 | Afton Chemical Corporation | Lubricants with magnesium and their use for improving low speed pre-ignition |
EP3546549A1 (en) | 2018-03-27 | 2019-10-02 | Infineum International Limited | Lubricating oil composition |
EP3560966A2 (en) | 2018-04-25 | 2019-10-30 | Afton Chemical Corporation | Multifunctional branched polymers with improved low-temperature performance |
EP3578625A1 (en) | 2018-06-05 | 2019-12-11 | Afton Chemical Corporation | Lubricant composition and dispersants therefor having a beneficial effect on oxidation stability |
CN110559696A (en) * | 2019-08-29 | 2019-12-13 | 安徽銮威化工科技开发有限公司 | Defoaming agent with high defoaming speed and preparation method thereof |
WO2020149958A1 (en) | 2019-01-18 | 2020-07-23 | Afton Chemical Corporation | Engine oils for soot handling and friction reduction |
WO2020174454A1 (en) | 2019-02-28 | 2020-09-03 | Afton Chemical Corporation | Lubricating compositions for diesel particulate filter performance |
US10781394B2 (en) | 2016-10-25 | 2020-09-22 | Chevron Oronite Technology B.V. | Lubricating oil compositions comprising a biodiesel fuel and a Mannich condensation product |
US10836976B2 (en) | 2018-07-18 | 2020-11-17 | Afton Chemical Corporation | Polymeric viscosity modifiers for use in lubricants |
EP3778841A1 (en) | 2019-08-15 | 2021-02-17 | Infineum International Limited | Method for reducing piston deposits in a marine diesel engine |
EP3812445A1 (en) | 2019-10-24 | 2021-04-28 | Afton Chemical Corporation | Synergistic lubricants with reduced electrical conductivity |
WO2021138285A1 (en) | 2020-01-03 | 2021-07-08 | Afton Chemical Corporation | Silicone functionlized viscosity index improver |
EP3858954A1 (en) | 2020-01-29 | 2021-08-04 | Afton Chemical Corporation | Lubricant formulations with silicon-containing compounds |
EP3954753A1 (en) | 2020-08-12 | 2022-02-16 | Afton Chemical Corporation | Polymeric surfactants for improved emulsion and flow properties at low temperatures |
CN114058421A (en) * | 2020-08-04 | 2022-02-18 | 中国石油天然气股份有限公司 | Ashless dispersant for lubricating oil and preparation method thereof |
WO2022094557A1 (en) | 2020-10-30 | 2022-05-05 | Afton Chemical Corporation | Engine oils with low temperature pump ability |
EP4067463A1 (en) | 2021-03-30 | 2022-10-05 | Afton Chemical Corporation | Engine oils with improved viscometric performance |
US11479736B1 (en) | 2021-06-04 | 2022-10-25 | Afton Chemical Corporation | Lubricant composition for reduced engine sludge |
EP4098723A1 (en) | 2021-06-04 | 2022-12-07 | Afton Chemical Corporation | Lubricating compositions for a hybrid engine |
WO2023004265A1 (en) | 2021-07-21 | 2023-01-26 | Afton Chemical Corporation | Methods of reducing lead corrosion in an internal combustion engine |
EP4124648A1 (en) | 2021-07-31 | 2023-02-01 | Afton Chemical Corporation | Engine oil formulations for low timing chain stretch |
WO2023141399A1 (en) | 2022-01-18 | 2023-07-27 | Afton Chemical Corporation | Lubricating compositions for reduced high temperature deposits |
WO2023147258A1 (en) | 2022-01-26 | 2023-08-03 | Afton Chemical Corporation | Sulfurized additives with low levels of alkyl phenols |
WO2023144721A1 (en) | 2022-01-25 | 2023-08-03 | Chevron Japan Ltd. | Lubricating oil composition |
WO2023159095A1 (en) | 2022-02-21 | 2023-08-24 | Afton Chemical Corporation | Polyalphaolefin phenols with high para-position selectivity |
US11746302B2 (en) | 2021-05-13 | 2023-09-05 | Ecolab Usa Inc. | Synthetic lubricity additives for hydrocarbon fuels |
US11773343B2 (en) | 2021-11-17 | 2023-10-03 | Afton Chemical Corporation | Engine oil formulation with improved Sequence VIII performance |
US11788027B2 (en) | 2022-02-18 | 2023-10-17 | Afton Chemical Corporation | Engine oil formulation with improved sequence VIII performance |
WO2023212165A1 (en) | 2022-04-27 | 2023-11-02 | Afton Chemical Corporation | Additives with high sulfurization for lubricating oil compositions |
EP4282937A1 (en) | 2022-05-26 | 2023-11-29 | Afton Chemical Corporation | Engine oil formluation for controlling particulate emissions |
US11851628B2 (en) | 2021-12-21 | 2023-12-26 | Afton Chemical Corporation | Lubricating oil composition having resistance to engine deposits |
EP4306624A1 (en) | 2022-07-14 | 2024-01-17 | Afton Chemical Corporation | Transmission lubricants containing molybdenum |
EP4310162A1 (en) | 2022-07-15 | 2024-01-24 | Afton Chemical Corporation | Detergent systems for oxidation resistance in lubricants |
EP4317369A1 (en) | 2022-08-02 | 2024-02-07 | Afton Chemical Corporation | Detergent systems for improved piston cleanliness |
WO2024030592A1 (en) * | 2022-08-05 | 2024-02-08 | The Lubrizol Corporation | Processes for producing radically-functionalized pibsa product derivatives and compositions comprising same |
US11898119B2 (en) | 2022-01-25 | 2024-02-13 | Afton Chemical Corporation | Lubricating oil compositions with resistance to engine deposit and varnish formation |
US11912955B1 (en) | 2022-10-28 | 2024-02-27 | Afton Chemical Corporation | Lubricating compositions for reduced low temperature valve train wear |
US11926804B1 (en) | 2023-01-31 | 2024-03-12 | Afton Chemical Corporation | Dispersant and detergent systems for improved motor oil performance |
WO2024073304A1 (en) | 2022-09-27 | 2024-04-04 | Afton Chemical Corporation | Lubricating composition for motorcycle applications |
EP4357442A1 (en) | 2022-09-21 | 2024-04-24 | Afton Chemical Corporation | Lubricating composition for fuel efficient motorcycle applications |
EP4368687A1 (en) | 2022-11-10 | 2024-05-15 | Afton Chemical Corporation | Corrosion inhibitor and industrial lubricant including the same |
EP4386070A1 (en) | 2022-12-09 | 2024-06-19 | Afton Chemical Corporation | Driveline and transmission fluids for low speed wear and scuffing |
EP4389859A2 (en) | 2022-12-20 | 2024-06-26 | Afton Chemical Corporation | Low ash lubricating compositions for controlling steel corrosion |
EP4435077A1 (en) | 2023-03-22 | 2024-09-25 | Afton Chemical Corporation | Antiwear systems for medium and/or heavy duty diesel engines |
EP4442798A1 (en) | 2023-04-06 | 2024-10-09 | Afton Chemical Corporation | Methods of improving the performance of combustion engine after-treatment devices |
EP4446398A1 (en) | 2023-04-13 | 2024-10-16 | Afton Chemical Corporation | Lubricating composition for durability and enhanced fuel economy |
WO2024220396A1 (en) | 2023-04-17 | 2024-10-24 | Chevron Oronite Company Llc | Friction modifier for wet clutch |
WO2024220394A1 (en) | 2023-04-17 | 2024-10-24 | Chevron Oronite Company Llc | Friction modifier for automatic transmission fluid |
EP4461789A1 (en) | 2023-05-10 | 2024-11-13 | Afton Chemical Corporation | Lubricating oil compositions for improving low-speed pre-ignition |
WO2024263502A1 (en) | 2023-06-23 | 2024-12-26 | Afton Chemical Corporation | Lubricant additives for performance boosting |
US12187819B1 (en) | 2023-11-15 | 2025-01-07 | Tpc Group, Llc | Compound, its preparation and use |
US12187970B2 (en) | 2020-11-13 | 2025-01-07 | Ecolab Usa Inc. | Synthetic lubricity additives for hydrocarbon fuels |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3215707A (en) * | 1960-06-07 | 1965-11-02 | Lubrizol Corp | Lubricant |
US3231587A (en) * | 1960-06-07 | 1966-01-25 | Lubrizol Corp | Process for the preparation of substituted succinic acid compounds |
US3382172A (en) * | 1966-05-18 | 1968-05-07 | Chevron Res | Alkenyl succinic acids as antiwear agents |
US3476774A (en) * | 1965-10-07 | 1969-11-04 | Ethyl Corp | Hindered phenol stabilized maleic anhydride and its use in making alkenyl succinic anhydrides |
SU579283A1 (en) * | 1975-02-04 | 1977-11-05 | Электрогорский Филиал Всесоюзного Научно-Исследовательского Институт По Переботке Нефти | Method of preparing high-molecular anhydrides |
US4152499A (en) * | 1977-01-22 | 1979-05-01 | Basf Aktiengesellschaft | Polyisobutenes |
DE2904314A1 (en) * | 1979-02-05 | 1980-08-14 | Basf Ag | METHOD FOR PRODUCING POLYISOBUTENES |
US4234435A (en) * | 1979-02-23 | 1980-11-18 | The Lubrizol Corporation | Novel carboxylic acid acylating agents, derivatives thereof, concentrate and lubricant compositions containing the same, and processes for their preparation |
US4235786A (en) * | 1979-10-01 | 1980-11-25 | Exxon Research & Engineering Co. | Process for producing oil-soluble derivatives of unsaturated C4 -C.sub. |
US4736044A (en) * | 1979-06-20 | 1988-04-05 | Amoco Corporation | Boron compounds to inhibit formation of tar during the "ene" reaction of an ethylenically unsaturated alpha, beta dicarboxylic acid compound and an ethylenically unsaturated hydrocarbon |
US4761488A (en) * | 1987-11-13 | 1988-08-02 | Shell Oil Company | Reaction of olefins with maleic anhydride |
EP0317004A2 (en) * | 1987-11-13 | 1989-05-24 | Shell Internationale Researchmaatschappij B.V. | Process for the preparation of a substituted succinic anhydride |
US4883886A (en) * | 1988-01-14 | 1989-11-28 | Amoco Corporation | Process for manufacturing polyalkenyl succinic anhydrides |
EP0355895A2 (en) * | 1988-08-05 | 1990-02-28 | Shell Internationale Researchmaatschappij B.V. | Process for the preparation of succinic anhydride derivatives |
US4956478A (en) * | 1988-09-14 | 1990-09-11 | The Procter & Gamble Company | Method for the production of alkenyl-succinic anhydrides |
-
1992
- 1992-06-08 US US07/895,001 patent/US5241003A/en not_active Expired - Lifetime
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3215707A (en) * | 1960-06-07 | 1965-11-02 | Lubrizol Corp | Lubricant |
US3231587A (en) * | 1960-06-07 | 1966-01-25 | Lubrizol Corp | Process for the preparation of substituted succinic acid compounds |
US3476774A (en) * | 1965-10-07 | 1969-11-04 | Ethyl Corp | Hindered phenol stabilized maleic anhydride and its use in making alkenyl succinic anhydrides |
US3382172A (en) * | 1966-05-18 | 1968-05-07 | Chevron Res | Alkenyl succinic acids as antiwear agents |
SU579283A1 (en) * | 1975-02-04 | 1977-11-05 | Электрогорский Филиал Всесоюзного Научно-Исследовательского Институт По Переботке Нефти | Method of preparing high-molecular anhydrides |
US4152499A (en) * | 1977-01-22 | 1979-05-01 | Basf Aktiengesellschaft | Polyisobutenes |
DE2904314A1 (en) * | 1979-02-05 | 1980-08-14 | Basf Ag | METHOD FOR PRODUCING POLYISOBUTENES |
US4234435A (en) * | 1979-02-23 | 1980-11-18 | The Lubrizol Corporation | Novel carboxylic acid acylating agents, derivatives thereof, concentrate and lubricant compositions containing the same, and processes for their preparation |
US4736044A (en) * | 1979-06-20 | 1988-04-05 | Amoco Corporation | Boron compounds to inhibit formation of tar during the "ene" reaction of an ethylenically unsaturated alpha, beta dicarboxylic acid compound and an ethylenically unsaturated hydrocarbon |
US4235786A (en) * | 1979-10-01 | 1980-11-25 | Exxon Research & Engineering Co. | Process for producing oil-soluble derivatives of unsaturated C4 -C.sub. |
US4761488A (en) * | 1987-11-13 | 1988-08-02 | Shell Oil Company | Reaction of olefins with maleic anhydride |
EP0317004A2 (en) * | 1987-11-13 | 1989-05-24 | Shell Internationale Researchmaatschappij B.V. | Process for the preparation of a substituted succinic anhydride |
US4883886A (en) * | 1988-01-14 | 1989-11-28 | Amoco Corporation | Process for manufacturing polyalkenyl succinic anhydrides |
EP0355895A2 (en) * | 1988-08-05 | 1990-02-28 | Shell Internationale Researchmaatschappij B.V. | Process for the preparation of succinic anhydride derivatives |
US4956478A (en) * | 1988-09-14 | 1990-09-11 | The Procter & Gamble Company | Method for the production of alkenyl-succinic anhydrides |
Cited By (245)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5587432A (en) * | 1993-12-14 | 1996-12-24 | Ethyl Petroleum Additives Limited | Dispersants for lubricating oil |
US5393824A (en) * | 1994-02-28 | 1995-02-28 | Eastman Chemical Company | Urea derivatives of maleated polyolefins |
US5455304A (en) * | 1994-02-28 | 1995-10-03 | Eastman Chemical Company | Urea derivatives of maleated polyolefins |
US5384375A (en) * | 1994-02-28 | 1995-01-24 | Eastman Kodak Company | Urea derivatives of maleated polyolefins |
US5569407A (en) * | 1994-03-25 | 1996-10-29 | Mobil Oil Corporation | Additives for fuels and lubricants |
US5670462A (en) * | 1994-05-11 | 1997-09-23 | Bp Chemicals (Additives) Limited | Lubricating oil additives |
EP0684262A2 (en) | 1994-05-26 | 1995-11-29 | The Lubrizol Corporation | Treatment of lubricating oil intermediates |
US5783735A (en) * | 1994-06-17 | 1998-07-21 | Exxon Chemical Patents Inc. | Process for preparing polymeric amides useful as additives in fuels and lubricating oils |
US5854186A (en) * | 1994-06-17 | 1998-12-29 | Exxon Chemical Patents, Inc. | Lubricating oil dispersants derived from heavy polyamine |
US5756431A (en) * | 1994-06-17 | 1998-05-26 | Exxon Chemical Patents Inc | Dispersants derived from heavy polyamine and second amine |
US5872084A (en) * | 1994-06-17 | 1999-02-16 | Exxon Chemical Patents, Inc. | Dispersants derived from heavy polyamine and second amine |
US5792730A (en) * | 1994-07-11 | 1998-08-11 | Exxon Chemical Patents, Inc. | Lubricating oil succinimide dispersants derived from heavy polyamine |
US5565128A (en) * | 1994-10-12 | 1996-10-15 | Exxon Chemical Patents Inc | Lubricating oil mannich base dispersants derived from heavy polyamine |
US5580484A (en) * | 1994-12-30 | 1996-12-03 | Exxon Chemical Patents Inc. | Lubricating oil dispersants derived from hydroxy aromatic succinimide Mannich base condensates of heavy polyamine |
US5614081A (en) * | 1995-06-12 | 1997-03-25 | Betzdearborn Inc. | Methods for inhibiting fouling in hydrocarbons |
US5910469A (en) * | 1995-06-12 | 1999-06-08 | Betzdearborn Inc. | Crude oil composition comprising an alkylphosphonate antifouling additive |
US5674819A (en) * | 1995-11-09 | 1997-10-07 | The Lubrizol Corporation | Carboxylic compositions, derivatives,lubricants, fuels and concentrates |
US5821205A (en) * | 1995-12-01 | 1998-10-13 | Chevron Chemical Company | Polyalkylene succinimides and post-treated derivatives thereof |
US5872083A (en) * | 1995-12-01 | 1999-02-16 | Chevron Chemical Company | Post-treated derivatives of polyalkylene succinimides |
EP0776963A1 (en) | 1995-12-01 | 1997-06-04 | Chevron Chemical Company | Polyalkylene succinimides and post-treated derivatives thereof |
US6358892B1 (en) * | 1995-12-01 | 2002-03-19 | Chevron Chemical Company | Polyalkylene succinimides and post-treated derivatives thereof |
US5849676A (en) * | 1995-12-01 | 1998-12-15 | Chevron Chemical Company | Post-treated derivatives of polyalkylene succinimides |
US5851965A (en) * | 1995-12-01 | 1998-12-22 | Chevron Chemical Company | Dispersant compositions having polyalkylene succinimides |
US5853434A (en) * | 1995-12-01 | 1998-12-29 | Chevron Chemical Company | Fuel compositions having polyalkylene succinimides and preparation thereof |
US5716912A (en) * | 1996-04-09 | 1998-02-10 | Chevron Chemical Company | Polyalkylene succinimides and post-treated derivatives thereof |
US6066605A (en) * | 1996-06-17 | 2000-05-23 | Infineum Usa L.P. | Carboxylic amide-containing polymers for use as fuel or lubricating oil additives and processes for their preparation |
US5753597A (en) * | 1996-08-20 | 1998-05-19 | Chevron Chemical Company | Polymeric dispersants |
EP0831104A2 (en) | 1996-08-20 | 1998-03-25 | Chevron Chemical Company | Novel dispersant terpolymers |
US5792729A (en) * | 1996-08-20 | 1998-08-11 | Chevron Chemical Corporation | Dispersant terpolymers |
EP0825249A1 (en) * | 1996-08-20 | 1998-02-25 | Chevron Chemical Company | Novel polymeric dispersants |
US5880070A (en) * | 1996-08-20 | 1999-03-09 | Chevron Chemical Company | Cross-linked succinimides from an acid derivative, a polyamine, and a polycarboxylic acid derivative |
US5951748A (en) * | 1997-04-22 | 1999-09-14 | Betzdearborn Inc. | Compositions and methods for inhibiting fouling of vinyl monomers |
US5858176A (en) * | 1997-04-22 | 1999-01-12 | Betzdearborn Inc. | Compositions and methods for inhibiting fouling of vinyl monomers |
EP0894845A1 (en) * | 1997-08-01 | 1999-02-03 | Ethyl Corporation | Phosphorylated and/or boronated dispersants as thermal stability additives for distillate fuels |
US6042626A (en) * | 1997-08-01 | 2000-03-28 | Ethyl Corporation | Phosphorylated and/or boronated dispersants as thermal stability additives for distillate fuels |
US5861363A (en) * | 1998-01-29 | 1999-01-19 | Chevron Chemical Company Llc | Polyalkylene succinimide composition useful in internal combustion engines |
US6015776A (en) * | 1998-09-08 | 2000-01-18 | Chevron Chemical Company | Polyalkylene polysuccinimides and post-treated derivatives thereof |
US6146431A (en) * | 1998-09-08 | 2000-11-14 | Chevron Chemical Company Llc | Polyalkylene polysuccinimides and post-treated derivatives thereof |
US6156850A (en) * | 1998-09-16 | 2000-12-05 | Chevron Chemical Company Llc | Process for making polyalkenyl derivative of an unsaturated acidic reagent |
US6107450A (en) * | 1998-12-15 | 2000-08-22 | Chevron Chemical Company Llc | Polyalkylene succinimides and post-treated derivatives thereof |
US6407170B1 (en) | 1999-06-24 | 2002-06-18 | The Lubrizol Corporation | Dispersants prepared from high polydispersity olefin polymers |
US6482778B2 (en) | 1999-08-11 | 2002-11-19 | Ethyl Corporation | Zinc and phosphorus containing transmission fluids having enhanced performance capabilities |
EP1076087A1 (en) * | 1999-08-11 | 2001-02-14 | Ethyl Corporation | Zinc and phosphorus containing transmission fluids having enhanced performance capabilities |
US20040248744A1 (en) * | 2001-08-14 | 2004-12-09 | King James P. | Soy-based methyl ester high performance metal working fluids |
US7683016B2 (en) | 2001-08-14 | 2010-03-23 | United Soybean Board | Soy-based methyl ester high performance metal working fluids |
US7439212B2 (en) * | 2001-09-05 | 2008-10-21 | United Soybean Board | Soybean oil based metalworking fluids |
US20040214734A1 (en) * | 2001-09-05 | 2004-10-28 | King James P. | Soybean oil based metalworking fluids |
US6756348B2 (en) | 2001-11-29 | 2004-06-29 | Chevron Oronite Company Llc | Lubricating oil having enhanced resistance to oxidation, nitration and viscosity increase |
US6642191B2 (en) | 2001-11-29 | 2003-11-04 | Chevron Oronite Company Llc | Lubricating oil additive system particularly useful for natural gas fueled engines |
US20030224948A1 (en) * | 2002-02-14 | 2003-12-04 | Dam Willem Van | Lubricating oil additive comprising EC-treated succinimide, borated dispersant and corrosion inhibitor |
WO2004065430A1 (en) * | 2003-01-21 | 2004-08-05 | The Lubrizol Corporation | Low color polyisobutylene succinic anhydride-derived emulsifiers |
US20060223945A1 (en) * | 2003-01-21 | 2006-10-05 | Hollingshurst Claire L | Low color polyisobutylene succinic anhydride-derived emulsifiers |
US20040235682A1 (en) * | 2003-05-22 | 2004-11-25 | Chevron Oronite Company Llc | Low emission diesel lubricant with improved corrosion protection |
US20040260027A1 (en) * | 2003-06-20 | 2004-12-23 | Michaud Vincent Jean Marie | Process for forming polyalkenyl acylating agents |
US20040260032A1 (en) * | 2003-06-20 | 2004-12-23 | Irving Matthew David | Low sediment process for thermally reacting highly reactive polymers and enophiles |
US6933351B2 (en) | 2003-06-20 | 2005-08-23 | Infineum International Limited | Process for forming polyalkenyl acylating agents |
US7339007B2 (en) | 2003-06-20 | 2008-03-04 | Infineum International Limited | Low sediment process for thermally reacting highly reactive polymers and enophiles |
US7803745B2 (en) * | 2004-07-23 | 2010-09-28 | Idemitsu Kosan Co., Ltd. | Lubricant composition |
US20080096775A1 (en) * | 2004-07-23 | 2008-04-24 | Idemitsu Kosan Co., Ltd. | Lubricant Composition |
US20060025313A1 (en) * | 2004-07-29 | 2006-02-02 | Chevron Oronite Company Llc | Lubricating oil composition for internal combustion engines |
US7875576B2 (en) | 2004-07-29 | 2011-01-25 | Chevron Oronite Company Llc | Lubricating oil composition for internal combustion engines |
JP2008523222A (en) * | 2004-12-09 | 2008-07-03 | ザ ルブリゾル コーポレイション | Methods for preparing additives and uses thereof |
US9481841B2 (en) * | 2004-12-09 | 2016-11-01 | The Lubrizol Corporation | Process of preparation of an additive and its use |
US20090149358A1 (en) * | 2004-12-09 | 2009-06-11 | Rhoads Gabriel B | Process of Preparation of an Additive and Its Use |
WO2006063161A2 (en) * | 2004-12-09 | 2006-06-15 | The Lubrizol Corporation | Process of preparation of an additive and its use |
WO2006063161A3 (en) * | 2004-12-09 | 2007-02-22 | Lubrizol Corp | Process of preparation of an additive and its use |
CN101072798B (en) * | 2004-12-09 | 2013-10-16 | 卢布里佐尔公司 | Process of preparation of an additive and its use |
US7745542B2 (en) | 2005-04-29 | 2010-06-29 | Chevron Oronite Company Llc | Lubricating oil additive composition and method of making the same |
US20070027267A1 (en) * | 2005-04-29 | 2007-02-01 | Chevron Oronite Company Llc | Lubricating oil additive composition and method of making the same |
US20060247386A1 (en) * | 2005-04-29 | 2006-11-02 | Chevron Oronite Company Llc. | Lubricating oil additive composition and method of making the same |
US7745541B2 (en) | 2005-04-29 | 2010-06-29 | Chevron Oronite Company Llc | Lubricating oil additive composition and method of making the same |
US7846882B2 (en) | 2005-06-23 | 2010-12-07 | Shell Oil Company | Electrical oil formulation |
US20090137435A1 (en) * | 2005-06-23 | 2009-05-28 | Andree Hilker | Electrical Oil Formulation |
US20090105104A1 (en) * | 2005-06-23 | 2009-04-23 | David John Wedlock | Lubricating Oil Composition |
US20090082235A1 (en) * | 2005-06-23 | 2009-03-26 | Andree Hilker | Oxidative Stable Oil Formulation |
EP1757673A1 (en) | 2005-08-23 | 2007-02-28 | Chevron Oronite Company LLC | Lubricating oil composition for internal combustion engines |
US7618928B2 (en) | 2005-08-31 | 2009-11-17 | Chevron Oronite Company Llc | Lubricating oil additive composition and method of making the same |
US20070049504A1 (en) * | 2005-09-01 | 2007-03-01 | Culley Scott A | Fluid additive composition |
US20070245620A1 (en) * | 2006-04-25 | 2007-10-25 | Malfer Dennis J | Diesel fuel compositions |
EP3339404A1 (en) | 2006-07-18 | 2018-06-27 | Infineum International Limited | Lubricating oil compositions |
US20080040968A1 (en) * | 2006-08-17 | 2008-02-21 | Malfer Dennis J | Fuel additive compounds and method of making the compounds |
US20080103074A1 (en) * | 2006-10-27 | 2008-05-01 | Chevron Oronite Company Llc | Lubricating oil additive composition and method of making the same |
US7928044B2 (en) | 2006-10-27 | 2011-04-19 | Chevron Oronite Company Llc | Lubricating oil additive composition and method of making the same |
EP1916293A1 (en) | 2006-10-27 | 2008-04-30 | Chevron Oronite Company LLC | A lubricating oil additive composition and method of making the same |
US8067347B2 (en) | 2006-10-27 | 2011-11-29 | Chevron Oronite Company Llc | Lubricating oil additive composition and method of making the same |
EP1916292A1 (en) | 2006-10-27 | 2008-04-30 | Chevron Oronite Company LLC | A lubricating oil additive composition and method of making the same |
US20080103236A1 (en) * | 2006-10-27 | 2008-05-01 | Chevron Oronite Company Llc | Lubricating oil additive composition and method of making the same |
US20080103076A1 (en) * | 2006-10-27 | 2008-05-01 | Chevron Oronite Company Llc | Lubricating oil additive composition and method of making the same |
US7858566B2 (en) | 2006-10-27 | 2010-12-28 | Chevron Oronite Company Llc | Lubricating oil additive composition and method of making the same |
US20080113889A1 (en) * | 2006-10-27 | 2008-05-15 | Chevron Oronite Company Llc | lubricating oil additive composition and method of making the same |
US20080113888A1 (en) * | 2006-10-27 | 2008-05-15 | Chevron Oronite Company Llc | Lubricating oil additive composition and method of making the same |
US20080103075A1 (en) * | 2006-10-27 | 2008-05-01 | Chevron Oronite Company Llc | Lubricating oil additive composition and method of making the same |
US7816309B2 (en) | 2006-10-27 | 2010-10-19 | Chevron Oronite Company Llc | Lubricating oil additive composition and method of making the same |
US7820604B2 (en) | 2006-10-27 | 2010-10-26 | Chevron Oronite Company Llc | Lubricating oil additive composition and method of making the same |
US7820605B2 (en) | 2006-10-27 | 2010-10-26 | Chevron Oronite Company Llc | Lubricating oil additive composition and method of making the same |
US20080182768A1 (en) * | 2007-01-31 | 2008-07-31 | Devlin Cathy C | Lubricant composition for bio-diesel fuel engine applications |
DE102008005330A1 (en) | 2007-01-31 | 2008-08-07 | Afton Chemical Corp. | Lubricant composition for biodiesel fuel engine uses |
EP2083063A1 (en) | 2008-01-22 | 2009-07-29 | Infineum International Limited | Lubricating oil composition |
US8455568B2 (en) | 2008-04-25 | 2013-06-04 | Chevron Oronite Company Llc | Lubricating oil additive composition and method of making the same |
US20090270531A1 (en) * | 2008-04-25 | 2009-10-29 | Chevron Oronite Company Llc | Lubricating oil additive composition and method of making the same |
US9034093B2 (en) * | 2008-07-23 | 2015-05-19 | Baker Hughes Incorporated | Process for improving the transfer properties of bitumen |
US20100022688A1 (en) * | 2008-07-23 | 2010-01-28 | Baker Hughes Incorporated | Process for improving the transfer properties of bitumen |
US20100081588A1 (en) * | 2008-09-30 | 2010-04-01 | Chevron Oronite Company Llc | Lubricating oil compositions |
US8153566B2 (en) | 2008-09-30 | 2012-04-10 | Cherron Oronite Company LLC | Lubricating oil compositions |
US20100160192A1 (en) * | 2008-12-22 | 2010-06-24 | Chevron Oronite LLC | lubricating oil additive composition and method of making the same |
EP2236590A1 (en) | 2009-04-01 | 2010-10-06 | Infineum International Limited | Lubricating oil composition |
EP2290040A1 (en) | 2009-07-31 | 2011-03-02 | Chevron Japan Ltd. | Friction modifier and transmission oil |
EP3272840A1 (en) | 2009-07-31 | 2018-01-24 | Chevron Japan Ltd. | Friction modifier and transmission oil |
EP2290041A2 (en) | 2009-08-24 | 2011-03-02 | Infineum International Limited | A lubricating oil composition |
US8933001B2 (en) | 2010-03-31 | 2015-01-13 | Chevron Oronite Company Llc | Method for improving fluorocarbon elastomer seal compatibility |
US8901050B2 (en) | 2010-03-31 | 2014-12-02 | Chevron Oronite Company Llc | Method for improving copper corrosion performance |
EP2851413A1 (en) | 2013-09-23 | 2015-03-25 | Chevron Japan Ltd. | Fuel economy engine oil composition |
US10669507B2 (en) | 2013-09-23 | 2020-06-02 | Chevron Japan Ltd. | Fuel economy engine oil composition |
EP2933320A1 (en) | 2014-04-17 | 2015-10-21 | Afton Chemical Corporation | Lubricant additives and lubricant compositions having improved frictional characteristics |
US9657252B2 (en) | 2014-04-17 | 2017-05-23 | Afton Chemical Corporation | Lubricant additives and lubricant compositions having improved frictional characteristics |
EP2940110A1 (en) | 2014-04-29 | 2015-11-04 | Infineum International Limited | Lubricating oil compositions |
EP3415589A1 (en) | 2014-04-29 | 2018-12-19 | Infineum International Limited | Lubricating oil compositions |
EP2990469A1 (en) | 2014-08-27 | 2016-03-02 | Afton Chemical Corporation | Lubricant composition suitable for use in gasoline direct injection engines |
WO2016140998A1 (en) | 2015-03-04 | 2016-09-09 | Huntsman Petrochemical Llc | Novel organic friction modifiers |
EP3072948A1 (en) | 2015-03-23 | 2016-09-28 | Chevron Japan Ltd. | Lubricating oil compositions for construction machines |
EP3072949A1 (en) | 2015-03-23 | 2016-09-28 | Chevron Japan Ltd. | Lubricating oil composition for construction machines |
EP3943581A1 (en) | 2015-07-16 | 2022-01-26 | Afton Chemical Corporation | Lubricants with tungsten and their use for improving low speed pre-ignition |
US10214703B2 (en) | 2015-07-16 | 2019-02-26 | Afton Chemical Corporation | Lubricants with zinc dialkyl dithiophosphate and their use in boosted internal combustion engines |
US10280383B2 (en) | 2015-07-16 | 2019-05-07 | Afton Chemical Corporation | Lubricants with molybdenum and their use for improving low speed pre-ignition |
WO2017011689A1 (en) | 2015-07-16 | 2017-01-19 | Afton Chemical Corporation | Lubricants with titanium and/or tungsten and their use for improving low speed pre-ignition |
US10336959B2 (en) | 2015-07-16 | 2019-07-02 | Afton Chemical Corporation | Lubricants with calcium-containing detergent and their use for improving low speed pre-ignition |
US10550349B2 (en) | 2015-07-16 | 2020-02-04 | Afton Chemical Corporation | Lubricants with titanium and/or tungsten and their use for improving low speed pre-ignition |
US10421922B2 (en) | 2015-07-16 | 2019-09-24 | Afton Chemical Corporation | Lubricants with magnesium and their use for improving low speed pre-ignition |
US10472584B2 (en) | 2015-07-30 | 2019-11-12 | Infineum International Ltd. | Dispersant additives and additive concentrates and lubricating oil compositions containing same |
EP3124581A1 (en) | 2015-07-30 | 2017-02-01 | Infineum International Limited | Dispersant additives and additive concentrates and lubricating oil compositions containing same |
EP3135750A1 (en) | 2015-08-26 | 2017-03-01 | Infineum International Limited | Lubricating oil compositions |
EP3144372A1 (en) | 2015-09-16 | 2017-03-22 | Infineum International Limited | Additive concentrates for the formulation of lubricating oil compositions |
US10487288B2 (en) | 2015-09-16 | 2019-11-26 | Infineum International Limited | Additive concentrates for the formulation of lubricating oil compositions |
US11168280B2 (en) | 2015-10-05 | 2021-11-09 | Infineum International Limited | Additive concentrates for the formulation of lubricating oil compositions |
EP3153568A1 (en) | 2015-10-05 | 2017-04-12 | Infineum International Limited | Additive concentrates for the formulation of lubricating oil compositions |
US10377963B2 (en) | 2016-02-25 | 2019-08-13 | Afton Chemical Corporation | Lubricants for use in boosted engines |
EP3613831A1 (en) | 2016-02-25 | 2020-02-26 | Afton Chemical Corporation | Lubricants for use in boosted engines |
WO2017146867A1 (en) | 2016-02-25 | 2017-08-31 | Afton Chemical Corporation | Lubricants for use in boosted engines |
US9677026B1 (en) | 2016-04-08 | 2017-06-13 | Afton Chemical Corporation | Lubricant additives and lubricant compositions having improved frictional characteristics |
US9701921B1 (en) | 2016-04-08 | 2017-07-11 | Afton Chemical Corporation | Lubricant additives and lubricant compositions having improved frictional characteristics |
EP3228684A1 (en) | 2016-04-08 | 2017-10-11 | Afton Chemical Corporation | Lubricant compositions having improved frictional characteristics and methods of use thereof |
EP3243892A1 (en) | 2016-04-08 | 2017-11-15 | Afton Chemical Corporation | Lubricant compositions having improved frictional characteristics and methods of use thereof |
WO2017189277A1 (en) | 2016-04-26 | 2017-11-02 | Afton Chemical Corporation | Random copolymers of acrylates as polymeric friction modifiers, and lubricants containing same |
US11155764B2 (en) | 2016-05-05 | 2021-10-26 | Afton Chemical Corporation | Lubricants for use in boosted engines |
WO2017192217A1 (en) | 2016-05-05 | 2017-11-09 | Afton Chemical Corporation | Lubricants for use in boosted engines |
US10323205B2 (en) | 2016-05-05 | 2019-06-18 | Afton Chemical Corporation | Lubricant compositions for reducing timing chain stretch |
WO2017192202A1 (en) | 2016-05-05 | 2017-11-09 | Afton Chemical Corporaion | Lubricant compositions for reducing timing chain stretch |
US10494583B2 (en) | 2016-05-17 | 2019-12-03 | Afton Chemical Corporation | Synergistic dispersants |
US10179886B2 (en) | 2016-05-17 | 2019-01-15 | Afton Chemical Corporation | Synergistic dispersants |
EP3246383A1 (en) | 2016-05-17 | 2017-11-22 | Afton Chemical Corporation | Synergistic dispersants |
US10260019B2 (en) * | 2016-06-30 | 2019-04-16 | The Lubrizol Corporation | Hydroxyaromatic succinimide detergents for lubricating compositions |
WO2018077621A1 (en) | 2016-10-25 | 2018-05-03 | Chevron Oronite Technology B.V. | Lubricating oil compositions comprising a biodiesel fuel and a dispersant |
US10781394B2 (en) | 2016-10-25 | 2020-09-22 | Chevron Oronite Technology B.V. | Lubricating oil compositions comprising a biodiesel fuel and a Mannich condensation product |
US10344245B2 (en) | 2016-10-25 | 2019-07-09 | Chevron Oronite Technology B.V. | Lubricating oil compositions comprising a biodiesel fuel and a dispersant |
WO2018111846A1 (en) | 2016-12-13 | 2018-06-21 | Afton Chemical Corporation | Polyolefin-derived dispersants |
US10584297B2 (en) | 2016-12-13 | 2020-03-10 | Afton Chemical Corporation | Polyolefin-derived dispersants |
WO2019117992A1 (en) | 2016-12-13 | 2019-06-20 | Afton Chemical Corporation | Polyolefin-derived dispersants |
EP3336163A1 (en) | 2016-12-13 | 2018-06-20 | Afton Chemical Corporation | Polyolefin-derived dispersants |
WO2018111726A1 (en) | 2016-12-16 | 2018-06-21 | Afton Chemical Corporation | Multi-functional olefin copolymers and lubricating compositions containing same |
WO2018136136A1 (en) | 2017-01-18 | 2018-07-26 | Afton Chemical Corporation | Lubricants with calcium-containing detergents and their use for improving low-speed pre-ignition |
US10443558B2 (en) | 2017-01-18 | 2019-10-15 | Afton Chemical Corporation | Lubricants with calcium and magnesium-containing detergents and their use for improving low-speed pre-ignition and for corrosion resistance |
US10443011B2 (en) | 2017-01-18 | 2019-10-15 | Afton Chemical Corporation | Lubricants with overbased calcium and overbased magnesium detergents and method for improving low-speed pre-ignition |
WO2018136137A1 (en) | 2017-01-18 | 2018-07-26 | Afton Chemical Corporation | Lubricants with calcium and magnesium-containing detergents and their use for improving low-speed pre-ignition and for corrosion resistance |
US10370615B2 (en) | 2017-01-18 | 2019-08-06 | Afton Chemical Corporation | Lubricants with calcium-containing detergents and their use for improving low-speed pre-ignition |
WO2018136138A1 (en) | 2017-01-18 | 2018-07-26 | Afton Chemical Corporation | Lubricants with overbased calcium and overbased magnesium detergents and method for improving low-speed pre-ignition |
EP3366755A1 (en) | 2017-02-22 | 2018-08-29 | Infineum International Limited | Improvements in and relating to lubricating compositions |
EP3369802A1 (en) | 2017-03-01 | 2018-09-05 | Infineum International Limited | Improvements in and relating to lubricating compositions |
WO2018197312A1 (en) | 2017-04-27 | 2018-11-01 | Shell Internationale Research Maatschappij B.V. | Lubricating composition |
RU2653541C1 (en) * | 2017-07-05 | 2018-05-11 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский государственный энергетический университет" (ФГБОУ ВО "КГЭУ") | Transformer oil oxidation retardation method |
EP3434755A1 (en) | 2017-07-24 | 2019-01-30 | Infineum International Limited | Motorcycle lubricant |
EP3461877A1 (en) | 2017-09-27 | 2019-04-03 | Infineum International Limited | Improvements in and relating to lubricating compositions |
EP3476923A1 (en) | 2017-10-25 | 2019-05-01 | Afton Chemical Corporation | Dispersant viscosity index improvers to enhance wear protection in engine oils |
US10513668B2 (en) | 2017-10-25 | 2019-12-24 | Afton Chemical Corporation | Dispersant viscosity index improvers to enhance wear protection in engine oils |
US10731103B2 (en) | 2017-12-11 | 2020-08-04 | Infineum International Limited | Low ash and ash-free acid neutralizing compositions and lubricating oil compositions containing same |
EP3495462A1 (en) | 2017-12-11 | 2019-06-12 | Infineum International Limited | Low ash and ash-free acid neutralizing compositions and lubricating oil compositions containing same |
US10604719B2 (en) | 2018-02-22 | 2020-03-31 | Chevron Japan Ltd. | Lubricating oils for automatic transmissions |
WO2019162744A1 (en) | 2018-02-22 | 2019-08-29 | Chevron Japan Ltd. | Lubricating oils for automatic transmissions |
EP3546549A1 (en) | 2018-03-27 | 2019-10-02 | Infineum International Limited | Lubricating oil composition |
US11760953B2 (en) | 2018-04-25 | 2023-09-19 | Afton Chemical Corporation | Multifunctional branched polymers with improved low-temperature performance |
EP3560966A2 (en) | 2018-04-25 | 2019-10-30 | Afton Chemical Corporation | Multifunctional branched polymers with improved low-temperature performance |
US11098262B2 (en) | 2018-04-25 | 2021-08-24 | Afton Chemical Corporation | Multifunctional branched polymers with improved low-temperature performance |
EP3578625A1 (en) | 2018-06-05 | 2019-12-11 | Afton Chemical Corporation | Lubricant composition and dispersants therefor having a beneficial effect on oxidation stability |
US11459521B2 (en) | 2018-06-05 | 2022-10-04 | Afton Chemical Coporation | Lubricant composition and dispersants therefor having a beneficial effect on oxidation stability |
US10836976B2 (en) | 2018-07-18 | 2020-11-17 | Afton Chemical Corporation | Polymeric viscosity modifiers for use in lubricants |
US11008527B2 (en) | 2019-01-18 | 2021-05-18 | Afton Chemical Corporation | Engine oils for soot handling and friction reduction |
WO2020149958A1 (en) | 2019-01-18 | 2020-07-23 | Afton Chemical Corporation | Engine oils for soot handling and friction reduction |
WO2020174454A1 (en) | 2019-02-28 | 2020-09-03 | Afton Chemical Corporation | Lubricating compositions for diesel particulate filter performance |
EP3778841A1 (en) | 2019-08-15 | 2021-02-17 | Infineum International Limited | Method for reducing piston deposits in a marine diesel engine |
CN110559696A (en) * | 2019-08-29 | 2019-12-13 | 安徽銮威化工科技开发有限公司 | Defoaming agent with high defoaming speed and preparation method thereof |
US11066622B2 (en) | 2019-10-24 | 2021-07-20 | Afton Chemical Corporation | Synergistic lubricants with reduced electrical conductivity |
EP3812445A1 (en) | 2019-10-24 | 2021-04-28 | Afton Chemical Corporation | Synergistic lubricants with reduced electrical conductivity |
US11214753B2 (en) | 2020-01-03 | 2022-01-04 | Afton Chemical Corporation | Silicone functionalized viscosity index improver |
WO2021138285A1 (en) | 2020-01-03 | 2021-07-08 | Afton Chemical Corporation | Silicone functionlized viscosity index improver |
EP3858954A1 (en) | 2020-01-29 | 2021-08-04 | Afton Chemical Corporation | Lubricant formulations with silicon-containing compounds |
CN114058421A (en) * | 2020-08-04 | 2022-02-18 | 中国石油天然气股份有限公司 | Ashless dispersant for lubricating oil and preparation method thereof |
CN114058421B (en) * | 2020-08-04 | 2022-07-05 | 中国石油天然气股份有限公司 | Ashless dispersant for lubricating oil and preparation method thereof |
EP4368689A1 (en) | 2020-08-12 | 2024-05-15 | Afton Chemical Corporation | Polymeric surfactants for improved emulsion and flow properties at low temperatures |
EP3954753A1 (en) | 2020-08-12 | 2022-02-16 | Afton Chemical Corporation | Polymeric surfactants for improved emulsion and flow properties at low temperatures |
WO2022094557A1 (en) | 2020-10-30 | 2022-05-05 | Afton Chemical Corporation | Engine oils with low temperature pump ability |
US12187970B2 (en) | 2020-11-13 | 2025-01-07 | Ecolab Usa Inc. | Synthetic lubricity additives for hydrocarbon fuels |
EP4067463A1 (en) | 2021-03-30 | 2022-10-05 | Afton Chemical Corporation | Engine oils with improved viscometric performance |
US12018222B2 (en) | 2021-05-13 | 2024-06-25 | Ecolab Usa Inc. | Synthetic lubricity additives for hydrocarbon fuels |
US11746302B2 (en) | 2021-05-13 | 2023-09-05 | Ecolab Usa Inc. | Synthetic lubricity additives for hydrocarbon fuels |
EP4098722A1 (en) | 2021-06-04 | 2022-12-07 | Afton Chemical Corporation | Lubricant composition for reduced engine sludge |
EP4098723A1 (en) | 2021-06-04 | 2022-12-07 | Afton Chemical Corporation | Lubricating compositions for a hybrid engine |
US11753599B2 (en) | 2021-06-04 | 2023-09-12 | Afton Chemical Corporation | Lubricating compositions for a hybrid engine |
US11479736B1 (en) | 2021-06-04 | 2022-10-25 | Afton Chemical Corporation | Lubricant composition for reduced engine sludge |
WO2023004265A1 (en) | 2021-07-21 | 2023-01-26 | Afton Chemical Corporation | Methods of reducing lead corrosion in an internal combustion engine |
EP4124648A1 (en) | 2021-07-31 | 2023-02-01 | Afton Chemical Corporation | Engine oil formulations for low timing chain stretch |
US11608477B1 (en) | 2021-07-31 | 2023-03-21 | Afton Chemical Corporation | Engine oil formulations for low timing chain stretch |
US11773343B2 (en) | 2021-11-17 | 2023-10-03 | Afton Chemical Corporation | Engine oil formulation with improved Sequence VIII performance |
US11851628B2 (en) | 2021-12-21 | 2023-12-26 | Afton Chemical Corporation | Lubricating oil composition having resistance to engine deposits |
WO2023141399A1 (en) | 2022-01-18 | 2023-07-27 | Afton Chemical Corporation | Lubricating compositions for reduced high temperature deposits |
WO2023144721A1 (en) | 2022-01-25 | 2023-08-03 | Chevron Japan Ltd. | Lubricating oil composition |
US11898119B2 (en) | 2022-01-25 | 2024-02-13 | Afton Chemical Corporation | Lubricating oil compositions with resistance to engine deposit and varnish formation |
WO2023147258A1 (en) | 2022-01-26 | 2023-08-03 | Afton Chemical Corporation | Sulfurized additives with low levels of alkyl phenols |
US11788027B2 (en) | 2022-02-18 | 2023-10-17 | Afton Chemical Corporation | Engine oil formulation with improved sequence VIII performance |
WO2023159095A1 (en) | 2022-02-21 | 2023-08-24 | Afton Chemical Corporation | Polyalphaolefin phenols with high para-position selectivity |
WO2023212165A1 (en) | 2022-04-27 | 2023-11-02 | Afton Chemical Corporation | Additives with high sulfurization for lubricating oil compositions |
EP4282937A1 (en) | 2022-05-26 | 2023-11-29 | Afton Chemical Corporation | Engine oil formluation for controlling particulate emissions |
EP4306624A1 (en) | 2022-07-14 | 2024-01-17 | Afton Chemical Corporation | Transmission lubricants containing molybdenum |
EP4310162A1 (en) | 2022-07-15 | 2024-01-24 | Afton Chemical Corporation | Detergent systems for oxidation resistance in lubricants |
US11970671B2 (en) | 2022-07-15 | 2024-04-30 | Afton Chemical Corporation | Detergent systems for oxidation resistance in lubricants |
EP4317369A1 (en) | 2022-08-02 | 2024-02-07 | Afton Chemical Corporation | Detergent systems for improved piston cleanliness |
WO2024030592A1 (en) * | 2022-08-05 | 2024-02-08 | The Lubrizol Corporation | Processes for producing radically-functionalized pibsa product derivatives and compositions comprising same |
EP4357442A1 (en) | 2022-09-21 | 2024-04-24 | Afton Chemical Corporation | Lubricating composition for fuel efficient motorcycle applications |
WO2024073304A1 (en) | 2022-09-27 | 2024-04-04 | Afton Chemical Corporation | Lubricating composition for motorcycle applications |
EP4361235A1 (en) | 2022-10-28 | 2024-05-01 | Afton Chemical Corporation | Lubricating compositions for reduced low temperature valve train wear |
US11912955B1 (en) | 2022-10-28 | 2024-02-27 | Afton Chemical Corporation | Lubricating compositions for reduced low temperature valve train wear |
EP4368687A1 (en) | 2022-11-10 | 2024-05-15 | Afton Chemical Corporation | Corrosion inhibitor and industrial lubricant including the same |
US12157866B2 (en) | 2022-12-09 | 2024-12-03 | Afton Chemical Corporation | Driveline and transmission fluids for low speed wear and scuffing |
EP4386070A1 (en) | 2022-12-09 | 2024-06-19 | Afton Chemical Corporation | Driveline and transmission fluids for low speed wear and scuffing |
EP4389859A2 (en) | 2022-12-20 | 2024-06-26 | Afton Chemical Corporation | Low ash lubricating compositions for controlling steel corrosion |
WO2024137363A1 (en) | 2022-12-20 | 2024-06-27 | Afton Chemical Corporation | Detergent-free and low-ash lubricating composition |
US11926804B1 (en) | 2023-01-31 | 2024-03-12 | Afton Chemical Corporation | Dispersant and detergent systems for improved motor oil performance |
EP4410934A1 (en) | 2023-01-31 | 2024-08-07 | Afton Chemical Corporation | Dispersant and detergent systems for improved motor oil performance |
EP4435077A1 (en) | 2023-03-22 | 2024-09-25 | Afton Chemical Corporation | Antiwear systems for medium and/or heavy duty diesel engines |
US12110468B1 (en) | 2023-03-22 | 2024-10-08 | Afton Chemical Corporation | Antiwear systems for improved wear in medium and/or heavy duty diesel engines |
EP4442798A1 (en) | 2023-04-06 | 2024-10-09 | Afton Chemical Corporation | Methods of improving the performance of combustion engine after-treatment devices |
EP4446398A1 (en) | 2023-04-13 | 2024-10-16 | Afton Chemical Corporation | Lubricating composition for durability and enhanced fuel economy |
WO2024220396A1 (en) | 2023-04-17 | 2024-10-24 | Chevron Oronite Company Llc | Friction modifier for wet clutch |
WO2024220394A1 (en) | 2023-04-17 | 2024-10-24 | Chevron Oronite Company Llc | Friction modifier for automatic transmission fluid |
EP4461789A1 (en) | 2023-05-10 | 2024-11-13 | Afton Chemical Corporation | Lubricating oil compositions for improving low-speed pre-ignition |
WO2024263502A1 (en) | 2023-06-23 | 2024-12-26 | Afton Chemical Corporation | Lubricant additives for performance boosting |
US12187819B1 (en) | 2023-11-15 | 2025-01-07 | Tpc Group, Llc | Compound, its preparation and use |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5241003A (en) | Ashless dispersants formed from substituted acylating agents and their production and use | |
US5137980A (en) | Ashless dispersants formed from substituted acylating agents and their production and use | |
US5464549A (en) | Oil soluble dispersants suitable for use in fuels and lubricants | |
US5328619A (en) | Oil additive concentrates and lubricants of enhanced performance capabilities | |
US5358652A (en) | Inhibiting hydrolytic degradation of hydrolyzable oleaginous fluids | |
US5652201A (en) | Lubricating oil compositions and concentrates and the use thereof | |
AU657563B2 (en) | Oil additive concentrates and lubricants of enhanced performance capabilities | |
US5703023A (en) | Lubricants with enhanced low temperature properties | |
EP0480644B1 (en) | Ashless or low-ash synthetic base compositions and additives therefor | |
EP0531000B1 (en) | Oil additive concentrates and lubricants of enhanced performance capabilities | |
EP0578490B1 (en) | Lubricant with improved anticorrosion properties | |
JPH07150185A (en) | Motor oil composition, thick additive for producing said oil and its use | |
US5700764A (en) | Lubricant compositions | |
EP0537338B1 (en) | Thermally stable compositions and lubricants and functional fluids containing the same | |
EP0062714A1 (en) | Ashless dispersants for lubricating oils, lubricating oil compositions, additive packages for lubricating oils and methods for the manufacture of such dispersants, compositions and packages | |
US4705642A (en) | Haze, oxidation, and corrosion resistant diesel engine lubricant | |
EP0493928A1 (en) | Lubricating oil compositions, concentrates and the use thereof | |
KR100242407B1 (en) | Low molecular weight basic nitrogen-containing reaction products as enhanced phosphorous/boron carriers in lubrication oils | |
US5154843A (en) | Hydroxyalkane phosphonic acids and derivatives thereof and lubricants containing the same | |
CA2009488C (en) | Lubricants containing salts of hydroxyalkane phosphonic acids | |
EP0516461B1 (en) | Lubricating oil compositions and concentrates and the use thereof | |
EP0529161A1 (en) | Lubricants and functional fluids having enhanced foam-inhibiting properties | |
AU646516B2 (en) | Lubricating oil compositions and concentrations and the use thereof | |
EP0395258A1 (en) | Process for preparing sulfurized branched alkyl phosphite lubricant additive | |
CA2225646A1 (en) | Lubricants with improved rust inhibition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: BANK OF AMERICA, N.A., AS COLLATERAL AGENT, CALIFO Free format text: NOTICE OF GRANT OF SECURITY INTEREST;ASSIGNOR:ETHYL PETROLEUM ADDITIVES, INC.;REEL/FRAME:011700/0406 Effective date: 20010410 |
|
AS | Assignment |
Owner name: CREDIT SUISSE FIRST BOSTON, CAYMAN ISLANDS BRANCH, Free format text: GRANT OF SECURITY INTEREST;ASSIGNOR:ETHYL PETROLEUM ADDITIVES, INC.;REEL/FRAME:014146/0655 Effective date: 20030430 Owner name: ETHYL PETROLEUM ADDITIVES, INC., VIRGINIA Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:014154/0219 Effective date: 20030430 |
|
AS | Assignment |
Owner name: SUNTRUST BANK, AS ADMINISTRATIVE AGENT, GEORGIA Free format text: ASSIGNMT OF SECURITY INTEREST;ASSIGNOR:CREDIT SUISSE FIRS BOSTON, CAYMAN ISLANDS BRANCH;REEL/FRAME:014782/0327 Effective date: 20040618 Owner name: SUNTRUST BANK, AS ADMINISTRATIVE AGENT, GEORGIA Free format text: SECURITY AGREEMENT;ASSIGNOR:ETHYL PETROLEUM ADDITIVES, INC.;REEL/FRAME:014782/0317 Effective date: 20040618 |
|
AS | Assignment |
Owner name: AFTON CHEMICAL CORPORATION, VIRGINIA Free format text: CHANGE OF NAME;ASSIGNOR:ETHYL PETROLEUM ADDITIVES, INC.;REEL/FRAME:015918/0557 Effective date: 20040701 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: SUNTRUST BANK,VIRGINIA Free format text: SECURITY AGREEMENT;ASSIGNOR:AFTON CHEMICAL CORPORATION;REEL/FRAME:018883/0865 Effective date: 20061221 Owner name: SUNTRUST BANK, VIRGINIA Free format text: SECURITY AGREEMENT;ASSIGNOR:AFTON CHEMICAL CORPORATION;REEL/FRAME:018883/0865 Effective date: 20061221 |
|
AS | Assignment |
Owner name: AFTON CHEMICAL CORPORATION, VIRGINIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SUNTRUST BANK;REEL/FRAME:026707/0563 Effective date: 20110513 |