US3886948A - Ventricular shunt having a variable pressure valve - Google Patents
Ventricular shunt having a variable pressure valve Download PDFInfo
- Publication number
- US3886948A US3886948A US437767A US43776774A US3886948A US 3886948 A US3886948 A US 3886948A US 437767 A US437767 A US 437767A US 43776774 A US43776774 A US 43776774A US 3886948 A US3886948 A US 3886948A
- Authority
- US
- United States
- Prior art keywords
- valve
- conduit
- biasing
- force
- cerebral
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M27/00—Drainage appliance for wounds or the like, i.e. wound drains, implanted drains
- A61M27/002—Implant devices for drainage of body fluids from one part of the body to another
- A61M27/006—Cerebrospinal drainage; Accessories therefor, e.g. valves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M27/00—Drainage appliance for wounds or the like, i.e. wound drains, implanted drains
- A61M27/002—Implant devices for drainage of body fluids from one part of the body to another
- A61M2027/004—Implant devices for drainage of body fluids from one part of the body to another with at least a part of the circuit outside the body
Definitions
- ABSTRACT In the ventricular shunt system disclosed herein, proper cerebral hydraulic conditions for the treatment of hydrocephalus are maintained by a one-way valve incorporating adjustable biasing means for altering the back pressure maintained by the valve.
- the treatment of hydrocephalus frequently involves the provision of a ventricular shunt for draining excess cerebral spinal fluid (CSF) from the ventricle in the brain.
- the shunt generally consists of a cerebral catheter inserted through the brain tissue into the ventricle and connected through a one-way valve system to drain into the jugular vein or another reservoir in the body.
- the shunt provides for removal of excess CSF from the ventricle and consequent reduction in its size. Control over the drainage is provided by the one-way valve, which normally operates at a fixed closing pressure.
- hydrocephalus is frequently associated with high CSF pressure, there are numerous cases where hydrocephalus is associated with the CSF at normal pressure, see Ojemann, Robert 0., Normal Pressure Hydrocephalus, Clinical Neurosurgery. Vol. 18, pp. 337-370, 1971.
- the brain tissue is subjected to a eounterforee developed by the venous pressure within the intraparenchymatous system, within the brain tissue itself. Whereas CSF pressure tends to enlarge the ventricles, the venous pressure tends to reduce their size. These two forces are normally in balance so that the vetricular size does not increase nor decrease, but remains constant through life.
- the aim in treating hydrocephalus by shunting procedures is not merely to arrest the condition, but to restore, as much as possible, normal ventricular size.
- this restoration is accomplished by reversing the imbalance of the two forces acting on the brain parenchyma.
- the CSF pressure must be reduced by an amount inversely proportional to the size of the ventricles to offset the increase force developed by virtue of their enlarged area.
- the forces developed within the venous system can cause the compressed brain tissue to spring back" against the lower CSF force, and the venous bed will regain its lost volume and free flow.”lhis way brain metabolism becomes normal and the tissue recuperates.
- a reduced CSF pressure is established by a shunt which includes a one-way valve having an operating pressure equal to the desired CSF pressure.
- the CSF pressure remains at a maximum level determined by the implanted valve and drainage of CSF fluid from the ventricles continues long as CSF pressure is not less than the operating pressure of the valve. Since the correction of normal pressure hydrocephalus requires the implantation of a valve having a lower than normal operating pressure, e.g. 30-40 mm. H O, the CSF pressure remains lower than normal as the ventricle decreases in size. On the other hand the venous pressure remains normal; as a consequence the force imbalance is reversed.
- the venous system force becomes greater than the CSF system force because of the progressively smaller ventricular area and lowered CSF pressure. Accordingly, once the ventricle is again normal size the intraventricular CSF pressure must be brought back to normal levels. Otherwise there is not enough force within the ventricle to keep the brain normally expanded.
- the ability to control the CSF pressure with respect to the ventricular size is important to the proper treatment of hydrocephalus, because proper balance within the brain must eventually be established.
- the problem in correcting and maintaining correct normal hydrodynamic balance in the cranial cavity is to maintain the interventricular CSF at a pressure corresponding to the ventricular area.
- the valve provided for the initial drainage should be replaced with one having a closing pressure equivalent to a normal CSF pressure (l25l50) mm. H O.
- valve In an ideal shunt system the valve should provide for initial drainage at a lower than normal pressure and thereafter operate at an operating pressure that maintains the correct intraeranial balance.
- this invention provides a ventricular shunt valve having means to adjust and vary the valve operating pressure with respect to ventricular size such that the proper balance of forces within the cranium may be maintained.
- the invention makes use of the fact that the brain tissue is itself a viscoelastic solid which transmits the force developed at the ventricles outwardly to the dura region. This force may be sensed and utilized to control the operating pressure of the ventriculoatrial shunt valve appropriately to maintain proper drainage condition and balance of forces.
- the present invention provides a valve for a ventricular shunt characterized by an operating pressure that is variable with respect to the ventricular size so as to permit proper balancing of the force exerted on the brain by the CSF pressure in the ventricle with the constraining force developed by the venous pressure.
- This valve may accordingly be implanted to regulate the drainage of CSF from the ventricle at a properly low valve operating pressure, (e.g. 45 mm. H O) when the force of the CSF is excessive, and to provide for an elevated operating pressure as the brain tissue relaxes and the ventricular area decreases.
- This invention features a sensor adapted to be inserted into the dural region between the brain and the skull, in association with a ventricular valve having a working pressure that varies inversely with the force applied to the sensor.
- inverse variation of the operating pressure of the valve is provided by a feedback arrangement, preferably hydraulic, wherein the force applied to the sensor is transmitted to counteract the spring bias which controls the operating pressure, thus to lower the operating pressure as the force increases.
- the spring which is biased to hold the valve closed, is unloaded in response to the force applied by the brain to the sensor.
- FIG. 1 is a schematic illustration showing the valve system in its physiological environment
- FIG. 2 is a longitudinal cross-sectional view of the preferred valve mechanism and sensor of this invention
- FIG. 3 is a longitudinal cross-sectional view illustrating an embodiment featuring a resilient slotted tube valve mechanism
- FIG. 4 is a longitudinal cross-sectional view illustrating a valve mechanism featuring a mechanical brain force sensing control element
- FIG. 5 is a plan view showing the implantation of the valve mechanism illustrated in FIG. 4;
- FIG. 6 is a longitudinal cross-sectional view, including a partial sagital section, illustrating a resilient slotted tube valve mechanism directly operable by brain forces;
- FIG. 7 is a top plan view of the embodiment shown in FIG. 6;
- FIG. 8 is a transverse cross-section taken in 8-8 in FIG. 7;
- FIG. 9 is a cross-section of the alternative embodiment employing direct sensing of sub-dural force.
- FIG. 0 is a cross-sectional view illustrating an alternative construction employing a separate sensor.
- FIG. 1 The implantation of the ventricular shunt is illustrated in FIG. 1.
- a ventricular catheter 50 inserted through a burr hole 52 in the skull 54 and through the brain tissue 58 into the ventricle 56 connects through a one-way drainage valve 60 to a drainage catheter 62 which will normally lead to the right atrium, the peritoneal cavity or some other suitable reservoir.
- the improved shunt valve of this invention is contained in the valve 60.
- the force exerted on the brain is sensed by a fluid filled bladder 24 which hydraulically connects by tube 25 to the valve 69 mechanism described below.
- the sensing bladder is inserted also through the burr hole, and preferably through the dural membrane 64 to lie against the arachnoidal membrane 66 over one or more convolutions, e.g. 68. Best response to the forces in the brain require close association of the sensing bladder with the brain tissue (cortex).
- the subarachnoid space surrounding the convolutions is itself subject to CSF pressure, but this pressure is not transmitted to the sensor because the arachnoid membrane is tethered to the piamater membrane by the arachnoidal strands.
- the object it will be noted, is to sense the force exerted by the brain tissue as distinguished from the pressure of the CSF.
- the hydraulic servo shunt valve of this invention as embodied in FIG. 2 constructed generally as described in Applicants U.S. Pat. No. 3,288,142, and features a housing 10, a valve body 12 formed with a conical valve seat 15 which forms the outlet from an inlet channel 14.
- Thespring 18 is mounted on a base plate 20 which is pivoted to the body 12 at the end of the spring away from the valve sphere.
- a preloading spring 21 extends from a forward shoulder 19 of the body and positions the'base plate 20 for normal or maximum valve spring bias.
- the base plate 20 lies in spaced relation to a recess portion of the valve body on which is mounted a valve bladder 22 which is hydraulically connected by tube 25 to the sensing bladder 24.
- the valve bladder 22 is constructed to expand when hydraulically loaded to push the base plate 20 against the force of the preloading spring 21 and thereby unload the valve spring by moving it in the direction away from the valve sphere 16.
- the valve spring 18 is thus unstrained such that the force applied to the sphere is reduced, correspondingly reducing the working pressure of the valve; which is the fluid pressure at the inlet required to open the valve.
- the outward force exerted by the brain is applied to the sensing bladder 24 situated in the subdural region between the brain and the skull, and is transmitted hydraulically to the valve bladder 22.
- the force, produced by the CSF pressure applied over the ventricular area is increased the operating pressure of the valve is reduced, and vice versa. Accordingly, as the hydraulic brain contracts from CSF drainage, the resultant reduction in the brain force brings about an increased operative pressure effective to maintain proper drainage and a balance of forces.
- Both the sensing bladder 24 and the valve bladder 22 are conveniently constructed of silicone rubber discs cemented together at their edges by means of silicone cement which may be of the RTV type or polymerizable by ionizing radiation.
- Silicone tubing 25 attached to the discs provides for hydraulic connection between the bladders.
- the bladders and tubing are conveniently filled with a radiopaque oil such as ethyl iodophenyl undecylate which provides appropriate viscous dampening of the valve mechanism, permits the hydraulic servo connection to be radiologically viewed, and is a safe material frequently used in myelography.
- valve mechanism described in FIG. 2 is the downstream end of the check valve pair described in U.S. Patv No. 3.288.142. and is mounted in a flexible length of hollowing tubing 11 which surrounds the housing 10.
- the actual construction is more or less conventional, with stainless steel being preferred for the housing 10, valve body 12, spring 18, base plate and preloading spring 21.
- the spherical valve member 16 is preferably synthetic sapphire.
- the biasing spring 18 is spot-welded to the base plate 20 and the preloading spring 21 is spot-welded to the transverse shoulder 19.
- the pivotal mounting of the base plate 20 to the downstream end of the valve body consists of a pin member 23 spotwelded to the lower side of the base plate 20, received at its ends within sleeves 26, conveniently formed of pieces of hypodermic needle tubing, spot-welded to the top side of the downstream end of the valve body 12.
- the tube 25 passes through an opening 27 in the valve body 12 and also through the tubing 11 to which it may be sealed by silicone cement.
- Implantation of the valve of this invention in a ventriculoatrial shunt system follows standard surgical procedures, with the additional procedure of inserting the sensing bladder 24 into the subdural region. Most conveniently this is introduced through the burr hole and then laterally a short distance away to lie between the brain and the skull.
- the valve consists in a resilient hollow closed tube formed with a longitudinal slit 72.
- the CSF fluid enters the valve tube 70, and under sufficient pressure causes the slit 72 to open for drainage.
- the slit is also under the control of an internal spherical bladder 22a, hydraulically connected to the sensing bladder 24 and expansible under hydraulic pressure to urge the slit to open.
- control mechanism consists of a pin 76 mounted to the underside of the base plate 20, passing through a silicone rubber seal 78.
- the pin 76 is adjustably connected, e.g. threaded, to a sensing button 80, adapted to be placed in contact with the exterior of the brain in the dural region.
- the threaded engagement between the pin 76 and the sensing button 80 provides for adjustment to the individual patient.
- FIG. 5 The mounting of this embodiment is illustrated in FIG. 5 and features two burr holes and 86, the former accommodating the catheter 50 and the latter accommodating the sensing mechanism.
- the valve mechanism is conveniently attached to the skull by a mounting pin which passes through the valve body 12 and terminates in eyes by which the valve can be fastened to the skull, eg by screws 92.
- valve mechanism is contained within a resilient chamber 102, e.g. silicone rubber. formed for direct placement in the dural region in contact with the brain.
- the catheter 50 leads into the chamber 102 and termiiates in a resilient closed tube having a transverse slit 108 on a side wall portion.
- the top and bottom of the tube 100 contact opposite top and bottom walls of the chamber 102 and may incorporate small metal discs 106.
- a drainage catheter 104 leads from the chamber 102.
- FIG. 9 like that of FIG. 4, is adapted to employ direct mechanical sensing of the sub-dural force.
- the valve employs a generally cylindrical body member which is of a size to fit within a burr hole through the patients skull, as indicated at 122 in FIG. 9, the lower portion of the valve assembly projecting below the inner surface of the skull, as indicated, for directly contacting the brain.
- a pair of thin, disk-like plates 124 and 126, one on either side of the body member 120, are coupled together by cylindrical pins 132 which extend through corresponding axial apertures l34-136 in the valve body 120.
- the pins 130-132 are slightly longer than the depth of the body member 120, so that some movement of the plates 124 and 126, with respect to the body member, is permitted.
- An inlet port 137 communicates with the opening 134 and thus also with the spaces between the plates 124 and 126 and the valve body 120.
- Conduit 137 is adapted for connection into the ventricular catheter 50.
- An outlet conduit 139 adapted to be connected to the drainage catheter 62, communicates with a central bore 140 in the valve body 120.
- the upper end of the bore 140 is sealed by a cap 142 while the lower end of the bore is shaped to provide a conical valve seat 144.
- a spherical valve member 146 is biased against seat 144 by a helical spring 148.
- a short pin 147 welded to the plate 126 allows the ball valve 146 to be lifted from its seat by a pressure exerted upwardly against the plate 126.
- this embodiment is essentially similar to that of the device illustrated in FIG. 4.
- An increase in sub-dural force is sensed by the plate 126 which bears against the ball valve member 146, reducing the pressure necessary to permit venting of CSF from the ventricles. Accordingly, a servo valve operation is obtained in which the sub-dural force is automatically regulated to a level essentially preselected by the characteristics of the spring 148.
- FIG. 10 The embodiment illustrated in FIG. 10, is adapted to employ a separate sensor in a manner similar to the embodiment illustrated in FIG. 1, the valve assembly itself being implantable underneath the patients scalp but outside of the skull.
- the FIG. 10 device employs a pair of disk-like members 150 and 152 connected by pins 154-156 extending through corresponding apertures 158 160 in a valve body 162.
- each of the disks 150 and 152 is. however, sealed to the valve body by a respective silastic diaphragm 162, 164, the diaphragms 162 and 164 being clamped and sealed to the valve body by respective caps 166 and 168.
- the entire valve assembly is surrounded by a silastic envelope 184 which is sealed to all inlet and outlet conduits.
- An inlet conduit 170 communicates with a central cavity 172 which is shaped to provide a conical valve seat as indicated at 174.
- a ball valve member 176 is biased against the valve seat 174 by a convoluted spring 178.
- the spring 178 carries an extension 179 which can be engaged by a hook 181 carried by the disk-like member 150.
- the downstream side of the ball valve communicates with the space between the disks 150 and 152 and also with an outlet conduit 180.
- the sensing bladder 24, located as illustrated in FIG. 1, is coupled through a conduit 181 with the space between diaphragm 164 and the corresponding cap 168.
- this space may be considered to be at atmo spheric pressure in considering the operation of this valve mechanism.
- this space may be filled with a suitable hydraulic fluid to provide pressure communication.
- a radiopaque oil such as ethyl iodophenyl undecylate could be used.
- this valve mechanism is analogous to the operation of the device illustrated in FIG. 1.
- An increase in the sub-dural force drives hydraulic fluid from the bladder 24, through conduit 181, into the space between cap 168 and diaphragm 164.
- This displacement will raise the disk-like members 152 together with member 150, owing to the coupling provided by pins 154156.
- Lifting of the plate 150 causes the hool-like member 181 to lift the spring extension 179, thereby decreasing the force biasing the ball valve 176 against seat 174. This reduces the back pressure exerted by the valve on the flow of CSF from the patients ventricles to the drain conduit.
- This reduces the back pressure exerted by the valve on the flow of CSF from the patients ventricles to the drain conduit.
- a cerebral-spinal fluid shunt system comprising:
- bypass valve connecting said vent conduit and said drain conduit.
- said bypass valve including biasing means for maintaining a pressure differential between said vent conduit and said drain conduit', and
- biasing means comprises a spring mounted to a movable base with means for adjustably moving said base.
- the means for controlling the biasing means includes hydraulically interconnected sensor bladder and control bladder, the sensor bladder being adapted to contact the brain directly or through its enveloping membranes and the control bladder being operatively associated with the biasing means thereby to vary the biasing force exerted by the biasing means.
- a cerebral-spinal fluid shunt valve comprising a conduit member having an inlet and an outlet. a valve body within said conduit member having a passageway between said inlet and outlet terminating in a valve seat, a valve member overlying said seat and forming a one-way closure to said passageway, resilient means movably mounted relative to said valve body biasing said valve member against said seat thereby to maintain a preselected back pressure in the ventricle.
- force responsive means outside said conduit adapted to contact brain in the epior subdural region, and movable means responsive to said force responsive means and operatively interconnected with said resilient biasing means to increase the bias thereof as the force decreases and vice versa thereby to maintain said force at a preselected level.
- a cerebral-spinal fluid shunt valve comprising a conduit member having an inlet and an outlet, a valve within said conduit including resilient means biasing the valve closed. and an hydraulic servo mechanism comprising a sensing bladder adapted to contact the brain in the dural region and a control bladder in said valve operatively associated with said resilient means opposing said biasing, said sensing bladder and control bladder being hydraulically interconnected.
- valve pressure responsive to the sensed force thereby to vent said cerebral spinal fluid to maintain said sensed force substantially at a desired level.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Neurology (AREA)
- Ophthalmology & Optometry (AREA)
- Otolaryngology (AREA)
- Anesthesiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Hematology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- External Artificial Organs (AREA)
Abstract
In the ventricular shunt system disclosed herein, proper cerebral hydraulic conditions for the treatment of hydrocephalus are maintained by a one-way valve incorporating adjustable biasing means for altering the back pressure maintained by the valve.
Description
United States Patent [191 Hakim June 3, 1975 VENTRICULAR SHUNT HAVING A VARIABLE PRESSURE VALVE [75] Inventor: Salomon Hakim, Bogota, Colombia [73] Assignee: Hakim Company Limited, Saint Vincent, British W. Indies [22] Filed: Jan. 30, 1974 [21] Appl. No.: 437,767
Related U.S. Application Data [63] Continuation-impart of Ser. No, 280,451, Aug. 14,
[52] U.S. C1 128/350 V [51] Int. Cl A61m 27/00 [58] Field of Search... 128/350, 351, 350 V, 349 R, 128/349 B [56] References Cited UNITED STATES PATENTS 1,103,967 7/1914 Hughes 128/350 R 2,969,066 1/1961 Holter 128/350 V 3,504,676 4/1970 Lomholt 128/351 3,527,226 9/1970 Hakim 128/350 V 3,654,932 4/1972 Newkirk 128/350 V Primary Examiner-Richard A. Gaudet Assistant Examiner-Henry J. Recla Attorney, Agent, or FirmKenway & .lenney [57] ABSTRACT In the ventricular shunt system disclosed herein, proper cerebral hydraulic conditions for the treatment of hydrocephalus are maintained by a one-way valve incorporating adjustable biasing means for altering the back pressure maintained by the valve.
8 Claims, 10 Drawing Figures SHEET FIG.
l/ll/l/l/ FIG. 2
I VENTRICULAR SHUNT HAVING A VARIABLE PRESSURE VALVE This application is a continuation-in-part of Ser. No. 280,451 Aug. 14, 1972.
BACKGROUND OF THE INVENTION The treatment of hydrocephalus frequently involves the provision of a ventricular shunt for draining excess cerebral spinal fluid (CSF) from the ventricle in the brain. The shunt generally consists of a cerebral catheter inserted through the brain tissue into the ventricle and connected through a one-way valve system to drain into the jugular vein or another reservoir in the body. The shunt provides for removal of excess CSF from the ventricle and consequent reduction in its size. Control over the drainage is provided by the one-way valve, which normally operates at a fixed closing pressure.
Although hydrocephalus is frequently associated with high CSF pressure, there are numerous cases where hydrocephalus is associated with the CSF at normal pressure, see Ojemann, Robert 0., Normal Pressure Hydrocephalus, Clinical Neurosurgery. Vol. 18, pp. 337-370, 1971.
An analysis of the hydromechanics involved in normal pressure hydrocephalus syndrome leads to the conclusion that the effective expansive force from the ventricles is not dependent on the CSF pressure alone. but is the product of the CSF pressure and ventricular area. In other words, in the presence of ventricular enlargement a normal pressure is acting. Thus, in normal pressure hydrocephalus the ventricle remains enlarged, because the area subjected to the pressure of the CSF is larger than normal and hence the total force on the brain tissue, the product of the pressure times the area, is excessive, (See S. Hakim and R. D. Adams, The special clinical problem of symptomatic hydrocephalus with normal cerebrospinal fluid pressure: Observations on cerebrospinal fluid hydrodynamics. J. Neurol. Sci., Vol. 2 pp. 307-327, 1965).
In addition to the forces developed by the CSF pressure, the brain tissue is subjected to a eounterforee developed by the venous pressure within the intraparenchymatous system, within the brain tissue itself. Whereas CSF pressure tends to enlarge the ventricles, the venous pressure tends to reduce their size. These two forces are normally in balance so that the vetricular size does not increase nor decrease, but remains constant through life.
Accordingly, the aim in treating hydrocephalus by shunting procedures is not merely to arrest the condition, but to restore, as much as possible, normal ventricular size. Once hydrocephalus has developed, this restoration is accomplished by reversing the imbalance of the two forces acting on the brain parenchyma. The CSF pressure must be reduced by an amount inversely proportional to the size of the ventricles to offset the increase force developed by virtue of their enlarged area. Then the forces developed within the venous system can cause the compressed brain tissue to spring back" against the lower CSF force, and the venous bed will regain its lost volume and free flow."lhis way brain metabolism becomes normal and the tissue recuperates.
In treating hydrocephalus, a reduced CSF pressure is established by a shunt which includes a one-way valve having an operating pressure equal to the desired CSF pressure. With the shunt in place the CSF pressure remains at a maximum level determined by the implanted valve and drainage of CSF fluid from the ventricles continues long as CSF pressure is not less than the operating pressure of the valve. Since the correction of normal pressure hydrocephalus requires the implantation of a valve having a lower than normal operating pressure, e.g. 30-40 mm. H O, the CSF pressure remains lower than normal as the ventricle decreases in size. On the other hand the venous pressure remains normal; as a consequence the force imbalance is reversed. The venous system force becomes greater than the CSF system force because of the progressively smaller ventricular area and lowered CSF pressure. Accordingly, once the ventricle is again normal size the intraventricular CSF pressure must be brought back to normal levels. Otherwise there is not enough force within the ventricle to keep the brain normally expanded.
If on the other hand lower than normal CSF pressure is maintained, overcorrection of hydrocephalus may cause undesirable pathological consequences, such as swelling" or engorgement of the veins, cerebral edema, slit ventricles" and microcephaly. In other cases complications such a subdural hygromas, hematomas and overlapping of the skull bones are known to occur.
The ability to control the CSF pressure with respect to the ventricular size is important to the proper treatment of hydrocephalus, because proper balance within the brain must eventually be established.
In brief the problem in correcting and maintaining correct normal hydrodynamic balance in the cranial cavity is to maintain the interventricular CSF at a pressure corresponding to the ventricular area. When the ventricle attains normal size, the valve provided for the initial drainage should be replaced with one having a closing pressure equivalent to a normal CSF pressure (l25l50) mm. H O.
To date there has been little recognition of the problem of maintaining the correct balance of CSF pressure, ventricular area and venous pressure within the brain.
In an ideal shunt system the valve should provide for initial drainage at a lower than normal pressure and thereafter operate at an operating pressure that maintains the correct intraeranial balance.
Accordingly, in one aspect this invention provides a ventricular shunt valve having means to adjust and vary the valve operating pressure with respect to ventricular size such that the proper balance of forces within the cranium may be maintained.
In another aspect the invention makes use of the fact that the brain tissue is itself a viscoelastic solid which transmits the force developed at the ventricles outwardly to the dura region. This force may be sensed and utilized to control the operating pressure of the ventriculoatrial shunt valve appropriately to maintain proper drainage condition and balance of forces.
BRIEF DESCRIPTION OF THE INVENTION The present invention provides a valve for a ventricular shunt characterized by an operating pressure that is variable with respect to the ventricular size so as to permit proper balancing of the force exerted on the brain by the CSF pressure in the ventricle with the constraining force developed by the venous pressure. This valve may accordingly be implanted to regulate the drainage of CSF from the ventricle at a properly low valve operating pressure, (e.g. 45 mm. H O) when the force of the CSF is excessive, and to provide for an elevated operating pressure as the brain tissue relaxes and the ventricular area decreases.
Applicant has discovered that the force on the brain resulting from the CSF pressure exerted over the area of the ventricle is transmitted through the brain tissue as a viscoelastic solid and may be sensed in the subdural space where the brain lies adjacent to the skull. This invention features a sensor adapted to be inserted into the dural region between the brain and the skull, in association with a ventricular valve having a working pressure that varies inversely with the force applied to the sensor.
In the preferred embodiment of the invention, inverse variation of the operating pressure of the valve is provided by a feedback arrangement, preferably hydraulic, wherein the force applied to the sensor is transmitted to counteract the spring bias which controls the operating pressure, thus to lower the operating pressure as the force increases. The spring which is biased to hold the valve closed, is unloaded in response to the force applied by the brain to the sensor.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT The preferred embodiment of this invention is described below with reference to the accompanying drawings in which:
FIG. 1 is a schematic illustration showing the valve system in its physiological environment;
FIG. 2 is a longitudinal cross-sectional view of the preferred valve mechanism and sensor of this invention;
FIG. 3 is a longitudinal cross-sectional view illustrating an embodiment featuring a resilient slotted tube valve mechanism;
FIG. 4 is a longitudinal cross-sectional view illustrating a valve mechanism featuring a mechanical brain force sensing control element;
FIG. 5 is a plan view showing the implantation of the valve mechanism illustrated in FIG. 4;
FIG. 6 is a longitudinal cross-sectional view, including a partial sagital section, illustrating a resilient slotted tube valve mechanism directly operable by brain forces;
FIG. 7 is a top plan view of the embodiment shown in FIG. 6;
FIG. 8 is a transverse cross-section taken in 8-8 in FIG. 7;
FIG. 9 is a cross-section of the alternative embodiment employing direct sensing of sub-dural force; and
FIG. 0 is a cross-sectional view illustrating an alternative construction employing a separate sensor.
The implantation of the ventricular shunt is illustrated in FIG. 1. A ventricular catheter 50 inserted through a burr hole 52 in the skull 54 and through the brain tissue 58 into the ventricle 56 connects through a one-way drainage valve 60 to a drainage catheter 62 which will normally lead to the right atrium, the peritoneal cavity or some other suitable reservoir. The improved shunt valve of this invention is contained in the valve 60. The force exerted on the brain is sensed by a fluid filled bladder 24 which hydraulically connects by tube 25 to the valve 69 mechanism described below.
The sensing bladder is inserted also through the burr hole, and preferably through the dural membrane 64 to lie against the arachnoidal membrane 66 over one or more convolutions, e.g. 68. Best response to the forces in the brain require close association of the sensing bladder with the brain tissue (cortex). The subarachnoid space surrounding the convolutions is itself subject to CSF pressure, but this pressure is not transmitted to the sensor because the arachnoid membrane is tethered to the piamater membrane by the arachnoidal strands. The object, it will be noted, is to sense the force exerted by the brain tissue as distinguished from the pressure of the CSF.
As in general with ventricular shunts the entire drainage assembly is ultimately covered and held in place by the scalp (not shown).
The hydraulic servo shunt valve of this invention as embodied in FIG. 2 constructed generally as described in Applicants U.S. Pat. No. 3,288,142, and features a housing 10, a valve body 12 formed with a conical valve seat 15 which forms the outlet from an inlet channel 14. A spherical valve member 16, held down by a spring 18, rests within the conical sear and maintains the valve closed until the fluid pressure at this inlet is sufficient to overcome the bias force of the spring.
Both the sensing bladder 24 and the valve bladder 22 are conveniently constructed of silicone rubber discs cemented together at their edges by means of silicone cement which may be of the RTV type or polymerizable by ionizing radiation. Silicone tubing 25 attached to the discs provides for hydraulic connection between the bladders. The bladders and tubing are conveniently filled with a radiopaque oil such as ethyl iodophenyl undecylate which provides appropriate viscous dampening of the valve mechanism, permits the hydraulic servo connection to be radiologically viewed, and is a safe material frequently used in myelography.
It will be understood that the valve mechanism described in FIG. 2 is the downstream end of the check valve pair described in U.S. Patv No. 3.288.142. and is mounted in a flexible length of hollowing tubing 11 which surrounds the housing 10.
The actual construction is more or less conventional, with stainless steel being preferred for the housing 10, valve body 12, spring 18, base plate and preloading spring 21. The spherical valve member 16 is preferably synthetic sapphire. The biasing spring 18 is spot-welded to the base plate 20 and the preloading spring 21 is spot-welded to the transverse shoulder 19. The pivotal mounting of the base plate 20 to the downstream end of the valve body consists of a pin member 23 spotwelded to the lower side of the base plate 20, received at its ends within sleeves 26, conveniently formed of pieces of hypodermic needle tubing, spot-welded to the top side of the downstream end of the valve body 12. The tube 25 passes through an opening 27 in the valve body 12 and also through the tubing 11 to which it may be sealed by silicone cement.
Implantation of the valve of this invention in a ventriculoatrial shunt system follows standard surgical procedures, with the additional procedure of inserting the sensing bladder 24 into the subdural region. Most conveniently this is introduced through the burr hole and then laterally a short distance away to lie between the brain and the skull.
After the system has been implanted, it may be desirable to make hydraulic adjustments to the servo connection to insure that the valve will open and close properly in response to variations in the force at the sensor. This may be accomplished by shimming the sensor with thin pieces of silicone. or by injecting or removing fluid with a hypodermic needle, preferably through a side branch tube (not shown) which may subsequently be sealed.
In the embodiment illustrated in FIG. 3 the valve consists in a resilient hollow closed tube formed with a longitudinal slit 72. The CSF fluid enters the valve tube 70, and under sufficient pressure causes the slit 72 to open for drainage. The slit is also under the control of an internal spherical bladder 22a, hydraulically connected to the sensing bladder 24 and expansible under hydraulic pressure to urge the slit to open.
In the embodiment illustrated in FIG. 4 and 5, the construction is generally as described with reference to FIG. 2 with the exception that the control mechanism consists of a pin 76 mounted to the underside of the base plate 20, passing through a silicone rubber seal 78. The pin 76 is adjustably connected, e.g. threaded, to a sensing button 80, adapted to be placed in contact with the exterior of the brain in the dural region. The threaded engagement between the pin 76 and the sensing button 80 provides for adjustment to the individual patient.
The mounting of this embodiment is illustrated in FIG. 5 and features two burr holes and 86, the former accommodating the catheter 50 and the latter accommodating the sensing mechanism. The valve mechanism is conveniently attached to the skull by a mounting pin which passes through the valve body 12 and terminates in eyes by which the valve can be fastened to the skull, eg by screws 92.
In the embodiment illustrated in FIGS. 6, 7, and 8, the valve mechanism is contained within a resilient chamber 102, e.g. silicone rubber. formed for direct placement in the dural region in contact with the brain. The catheter 50 leads into the chamber 102 and termiiates in a resilient closed tube having a transverse slit 108 on a side wall portion. The top and bottom of the tube 100 contact opposite top and bottom walls of the chamber 102 and may incorporate small metal discs 106. A drainage catheter 104 leads from the chamber 102.
In operation, sufficient CSF pressure will cause the slit 108 to open and provide drainage from the catheter 50 into the chamber 102. Should excessive forces develop, the chamber 102 becomes squeezed and the discs 106 compress the tube 100 causing the slit 108 to tend to open. Drainage at a lower CSF pressure is thus provided. As the brain contracts the force applied by the discs 106 is lessened and an increased CSF pressure becomes necessary for drainage. Thus proper drainage conditions and balance of forces may be maintained.
The embodiment of FIG. 9, like that of FIG. 4, is adapted to employ direct mechanical sensing of the sub-dural force. For this purpose, the valve employs a generally cylindrical body member which is of a size to fit within a burr hole through the patients skull, as indicated at 122 in FIG. 9, the lower portion of the valve assembly projecting below the inner surface of the skull, as indicated, for directly contacting the brain. A pair of thin, disk- like plates 124 and 126, one on either side of the body member 120, are coupled together by cylindrical pins 132 which extend through corresponding axial apertures l34-136 in the valve body 120. The pins 130-132 are slightly longer than the depth of the body member 120, so that some movement of the plates 124 and 126, with respect to the body member, is permitted.
An inlet port 137 communicates with the opening 134 and thus also with the spaces between the plates 124 and 126 and the valve body 120. Conduit 137 is adapted for connection into the ventricular catheter 50. An outlet conduit 139, adapted to be connected to the drainage catheter 62, communicates with a central bore 140 in the valve body 120. The upper end of the bore 140 is sealed by a cap 142 while the lower end of the bore is shaped to provide a conical valve seat 144. A spherical valve member 146 is biased against seat 144 by a helical spring 148. A short pin 147 welded to the plate 126 allows the ball valve 146 to be lifted from its seat by a pressure exerted upwardly against the plate 126. An envelope 127 of silastic, i.e. silicone rubber, surrounds the plates 124 and 126, together with the valve body 120, this envelope being sealed with adhesive around the inlet and outlet conduits 137 and 139 respectively.
The operation of this embodiment is essentially similar to that of the device illustrated in FIG. 4. An increase in sub-dural force is sensed by the plate 126 which bears against the ball valve member 146, reducing the pressure necessary to permit venting of CSF from the ventricles. Accordingly, a servo valve operation is obtained in which the sub-dural force is automatically regulated to a level essentially preselected by the characteristics of the spring 148.
The embodiment illustrated in FIG. 10, is adapted to employ a separate sensor in a manner similar to the embodiment illustrated in FIG. 1, the valve assembly itself being implantable underneath the patients scalp but outside of the skull. In common with the embodiment illustrated in FIG. 9, the FIG. 10 device employs a pair of disk- like members 150 and 152 connected by pins 154-156 extending through corresponding apertures 158 160 in a valve body 162. In this version, each of the disks 150 and 152 is. however, sealed to the valve body by a respective silastic diaphragm 162, 164, the diaphragms 162 and 164 being clamped and sealed to the valve body by respective caps 166 and 168. As in the previous embodiment, the entire valve assembly is surrounded by a silastic envelope 184 which is sealed to all inlet and outlet conduits.
An inlet conduit 170 communicates with a central cavity 172 which is shaped to provide a conical valve seat as indicated at 174. A ball valve member 176 is biased against the valve seat 174 by a convoluted spring 178. The spring 178 carries an extension 179 which can be engaged by a hook 181 carried by the disk-like member 150. The downstream side of the ball valve communicates with the space between the disks 150 and 152 and also with an outlet conduit 180. The sensing bladder 24, located as illustrated in FIG. 1, is coupled through a conduit 181 with the space between diaphragm 164 and the corresponding cap 168. The space between the diaphragm 162 and the cap 166 is vented, through an aperture 186 in cap 166, to the space between the valve assembly and the surrounding envelope 184. Thus, this space may be considered to be at atmo spheric pressure in considering the operation of this valve mechanism. In practice, this space may be filled with a suitable hydraulic fluid to provide pressure communication. A radiopaque oil such as ethyl iodophenyl undecylate could be used.
The operation of this valve mechanism is analogous to the operation of the device illustrated in FIG. 1. An increase in the sub-dural force drives hydraulic fluid from the bladder 24, through conduit 181, into the space between cap 168 and diaphragm 164. This displacement will raise the disk-like members 152 together with member 150, owing to the coupling provided by pins 154156. Lifting of the plate 150 causes the hool-like member 181 to lift the spring extension 179, thereby decreasing the force biasing the ball valve 176 against seat 174. This reduces the back pressure exerted by the valve on the flow of CSF from the patients ventricles to the drain conduit. As will be understood. the loop gain of this servo system will be quite high so that the system will tend to maintain the subdural force at a preselected level. corresponding to the nominal tension exerted by the spring 178. An advantage of this arrangement is that the hydraulic pressure developed by the sensor 24 operates against atmo' spheric pressure rather than the pressure at the downstream side of the valve so that siphon effects are mini mized.
In view of the foregoing. it may be seen that several objects of the present invention are achieved and other advantageous results have been attained.
As various changes could be made in the above constructions without departing from the scope of the invention. it should be understood that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
I claim:
1. A cerebral-spinal fluid shunt system comprising:
a conduit for venting fluid from a patients cerebralspinal fluid system;
a conduit for draining cerebral-spinal fluid into a selected drainage site within the patients body; means for sensing the force exerted by the brain in the dural region;
a one-way bypass valve connecting said vent conduit and said drain conduit. said bypass valve including biasing means for maintaining a pressure differential between said vent conduit and said drain conduit', and
means interconnected with said biasing means responsive to said sensing means for adjusting the biasing of said bypass valve as a function of the sensed force thereby to maintain said force substantially at the desired level.
2. The improvement defined by claim 1 wherein the biasing means comprises a spring mounted to a movable base with means for adjustably moving said base.
3. The improvement defined by claim 1 wherein the means for controlling the biasing means includes hydraulically interconnected sensor bladder and control bladder, the sensor bladder being adapted to contact the brain directly or through its enveloping membranes and the control bladder being operatively associated with the biasing means thereby to vary the biasing force exerted by the biasing means.
4. A cerebral-spinal fluid shunt valve comprising a conduit member having an inlet and an outlet. a valve body within said conduit member having a passageway between said inlet and outlet terminating in a valve seat, a valve member overlying said seat and forming a one-way closure to said passageway, resilient means movably mounted relative to said valve body biasing said valve member against said seat thereby to maintain a preselected back pressure in the ventricle. force responsive means outside said conduit adapted to contact brain in the epior subdural region, and movable means responsive to said force responsive means and operatively interconnected with said resilient biasing means to increase the bias thereof as the force decreases and vice versa thereby to maintain said force at a preselected level.
5. The cerebral-spinal fluid shunt valve defined by claim 4 wherein the force responsive means and movable means comprise hydraulically connected bladders including a sensing bladder adapted to be inserted into the dural region and a control bladder operatively associated with the resilient means thereby to vary the biasing force exerted by the biasing member.
6. A cerebral-spinal fluid shunt valve comprising a conduit member having an inlet and an outlet, a valve within said conduit including resilient means biasing the valve closed. and an hydraulic servo mechanism comprising a sensing bladder adapted to contact the brain in the dural region and a control bladder in said valve operatively associated with said resilient means opposing said biasing, said sensing bladder and control bladder being hydraulically interconnected.
7. The valve defined by claim 6 wherein the hydraulic interconnection comprises a radiopaque fluid.
8. The method of treating hydrocephalus comprising:
providing a conduit for venting cerebral-spinal fluid from a patient's cerebral-spinal fluid system through a one-way valve providing an adjustable back prcssure;
sensing the force exerted by the brain against the skull in the dural region; and
automatically adjusting said valve pressure responsive to the sensed force thereby to vent said cerebral spinal fluid to maintain said sensed force substantially at a desired level.
Claims (8)
1. A cerebral-spinal fluid shunt system comprising: a conduit for venting fluid from a patient''s cerebral-spinal fluid system; a conduit for draining cerebral-spinal fluid into a selected drainage site within the patient''s body; means for sensing the force exerted by the brain in the dural region; a one-way bypass valve connecting said vent conduit and said drain conduit, said bypass valve including biasing means for maintaining a pressure differential between said vent conduit and said drain conduit; and means interconnected with said biasing means responsive to said sensing means for adjusting the biasing of said bypass valve as a function of the sensed force thereby to maintain said force substantially at the desired level.
1. A cerebral-spinal fluid shunt system comprising: a conduit for venting fluid from a patient''s cerebral-spinal fluid system; a conduit for draining cerebral-spinal fluid into a selected drainage site within the patient''s body; means for sensing the force exerted by the brain in the dural region; a one-way bypass valve connecting said vent conduit and said drain conduit, said bypass valve including biasing means for maintaining a pressure differential between said vent conduit and said drain conduit; and means interconnected with said biasing means responsive to said sensing means for adjusting the biasing of said bypass valve as a function of the sensed force thereby to maintain said force substantially at the desired level.
2. The improvement defined by claim 1 wherein the biasing means comprises a spring mounted to a movable base with means for adjustably moving said base.
3. The improvement defined by claim 1 wherein the means for controlling the biasing means includes hydraulically interconnected sensor bladder and control bladder, the sensor bladder being adapted to contact the brain directly or through its enveloping membranes and the control bladder being operatively associated with the biasing means thereby to vary the biasing force exerted by the biasing means.
4. A cerebral-spinal fluid shunt valve comprising a conduit member having an inlet and an outlet, a valve body within said conduit member having a passageway between said inlet and outlet terminating in a valve seat, a valve member overlying said seat and forming a one-way closure to said passageway, resilient means movably mounted relative to said valve body biasing said valve member against said seat thereby to maintain a preselected back pressure in the ventricle, force responsive means outside said conduit adapted to contact brain in the epi- or sub- dural region, and movable means responsive to said force responsive means and operatively interconnected with said resilient biasing means to increase the bias thereof as the force decreases and vice versa thereby to maintain said force at a preselected level.
5. The cerebral-spinal fluid shunt valve defined by claim 4 wherein the force responsive means and movable means comprise hydraulically connected bladders including a sensing bladder adapted to be inserted into the dural region and a control bladder operatively associated with the resilient means thereby to vary the biasing force exerted by the biasing member.
6. A cerebral-spinal fluid shunt valve comprising a conduit member having an inlet and an outlet, a valve within said conduit including resilient means biasing the valve closed, and an hydraulic servo mechanism comprising a sensing bladder adapted to contact the brain in the dural region and a control bladder in said valve operatively associated with said resilient means opposing said biasing, said sensing bladder and control bladder being hydraulically interconnected.
7. The valve defined by claim 6 wherein the hydraulic interconnection comprises a radiopaque fluid.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US437767A US3886948A (en) | 1972-08-14 | 1974-01-30 | Ventricular shunt having a variable pressure valve |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US28045172A | 1972-08-14 | 1972-08-14 | |
US437767A US3886948A (en) | 1972-08-14 | 1974-01-30 | Ventricular shunt having a variable pressure valve |
Publications (1)
Publication Number | Publication Date |
---|---|
US3886948A true US3886948A (en) | 1975-06-03 |
Family
ID=26960312
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US437767A Expired - Lifetime US3886948A (en) | 1972-08-14 | 1974-01-30 | Ventricular shunt having a variable pressure valve |
Country Status (1)
Country | Link |
---|---|
US (1) | US3886948A (en) |
Cited By (101)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2372366A1 (en) * | 1976-11-26 | 1978-06-23 | Hakim Carlos | SERVO-VALVE FOR A SLOWED HYDRAULIC EQUIPMENT, USED FOR THE TREATMENT OF HYDROCEPHALIA |
US4114603A (en) * | 1976-08-06 | 1978-09-19 | Wilkinson Harold A | Intracranial pressure monitoring catheter |
FR2446112A1 (en) * | 1979-01-10 | 1980-08-08 | Hakim Carlos | PRESSURE REGULATING VALVE FOR SURGICAL SHUNT, AND METHOD FOR VERIFYING THE SEALING OF ITS SHUTTER |
US4332255A (en) * | 1979-01-10 | 1982-06-01 | Hakim Company Limited | Shunt valve |
EP0060369A1 (en) * | 1981-03-18 | 1982-09-22 | SOPHYSA, Société dite: | Valve for the treatment of hydrocephalus |
US4475899A (en) * | 1982-09-03 | 1984-10-09 | Becton, Dickinson And Company | Shunt valve and method of use |
US4540400A (en) * | 1983-02-17 | 1985-09-10 | Cordis Corporation | Non-invasively adjustable valve |
US4551128A (en) * | 1983-05-11 | 1985-11-05 | Salomon Hakim | Cerebrospinal fluid shunt valve |
US4553956A (en) * | 1982-09-03 | 1985-11-19 | Becton, Dickinson And Co. | Shunt valve and method of use |
US4557721A (en) * | 1983-11-29 | 1985-12-10 | Cordis Corporation | Servo valve |
US4598579A (en) * | 1984-10-23 | 1986-07-08 | Cordis Corporation | Portable instrument to test pressure/flow of ventricular shunt valves |
US4615691A (en) * | 1983-12-08 | 1986-10-07 | Salomon Hakim | Surgically-implantable stepping motor |
US4673384A (en) * | 1986-04-14 | 1987-06-16 | Sophysa | Valve for the treatment of hydrocephalus |
US4675003A (en) * | 1985-12-23 | 1987-06-23 | Cordis Corporation | Three stage pressure regulator valve |
US4676772A (en) * | 1985-12-23 | 1987-06-30 | Cordis Corporation | Adjustable implantable valve having non-invasive position indicator |
US4681559A (en) * | 1985-12-23 | 1987-07-21 | Cordis Corporation | Plural valve three stage pressure relief system |
US4705499A (en) * | 1985-12-23 | 1987-11-10 | Cordis Corporation | Implantable servo valve having integral pressure sensor |
US4714458A (en) * | 1985-12-23 | 1987-12-22 | Cordis Corporation | Three stage valve with flexible valve seat |
US4714459A (en) * | 1985-12-23 | 1987-12-22 | Cordis Corporation | Three stage intracranial pressure control valve |
US4729762A (en) * | 1985-12-23 | 1988-03-08 | Cordis Corporation | Three stage implantable pressure relief valve with adjustable valve stem members |
US4769002A (en) * | 1983-02-17 | 1988-09-06 | Cordis Corporation | Intercranial pressure regulator valve |
US4776839A (en) * | 1986-10-21 | 1988-10-11 | Cordis Corporation | Three stage implantable pressure relief valve with improved valve stem member |
US4776838A (en) * | 1983-12-08 | 1988-10-11 | Cordis Corporation | Three stage valve |
US4781672A (en) * | 1986-10-21 | 1988-11-01 | Cordis Corporation | Three stage implantable flow control valve with improved valve closure member |
US4787886A (en) * | 1987-02-05 | 1988-11-29 | Cosman Eric R | Pressure sensor controlled valve |
US4795437A (en) * | 1987-01-29 | 1989-01-03 | Pudenz-Schulte Medical Research Corporation | Siphon control device |
US4861331A (en) * | 1988-03-24 | 1989-08-29 | Pudenz-Schulte Medical Research Corp. | Implantable shunt system and method of assembly |
US4867740A (en) * | 1988-03-24 | 1989-09-19 | Pudenz-Schulte Medical Research Corp. | Multiple-membrane flow control valve and implantable shunt system |
EP0421558A2 (en) * | 1983-07-21 | 1991-04-10 | Salomon Hakim | A surgically implantable device |
WO1994012222A1 (en) * | 1992-11-30 | 1994-06-09 | Drevet Jean Baptiste | Valve for the treatment of hydrocephalus |
US5336166A (en) * | 1991-12-19 | 1994-08-09 | Cordis Corporation | Three stage implantable valve |
US5368556A (en) * | 1992-01-22 | 1994-11-29 | Cordis Corporation | Implantable drainage valve for the treatment of hydrocephalus |
US5437627A (en) * | 1992-09-15 | 1995-08-01 | Cordis Corporation | Implantable valve for the treatment of hydrocephaly |
WO1998036792A1 (en) * | 1997-02-19 | 1998-08-27 | Micromedical Industries Limited | Ball valve system for heart-assist device and method of manufacture |
US5830172A (en) * | 1991-04-11 | 1998-11-03 | Leveen; Harry H. | Ascites valve |
EP0888795A1 (en) | 1997-07-02 | 1999-01-07 | Johnson & Johnson Professional, Inc. | Pediatric programmable hydrocephalus valve |
US5980480A (en) * | 1996-07-11 | 1999-11-09 | Cs Fluids, Inc. | Method and apparatus for treating adult-onset dementia of the alzheimer's type |
US6113553A (en) * | 1996-03-05 | 2000-09-05 | Lifesensors, Inc. | Telemetric intracranial pressure monitoring system |
US6126628A (en) * | 1997-04-22 | 2000-10-03 | Johnson & Johnson Professional, Inc. | Fluid flow limiting device |
US6383160B1 (en) | 1999-04-29 | 2002-05-07 | Children's Medical Center Corporation | Variable anti-siphon valve apparatus and method |
US20030032915A1 (en) * | 2001-08-09 | 2003-02-13 | Eunoe, Inc. | System and method for treating elevated intracranial pressure |
US6544208B2 (en) | 2000-12-29 | 2003-04-08 | C. Ross Ethier | Implantable shunt device |
US6689085B1 (en) | 1996-07-11 | 2004-02-10 | Eunoe, Inc. | Method and apparatus for treating adult-onset dementia of the Alzheimer's type |
US20040068221A1 (en) * | 1998-11-10 | 2004-04-08 | Eunoe, Inc. | Methods for the treatment of a normal pressure hydrocephalus |
US20040193094A1 (en) * | 2003-03-27 | 2004-09-30 | Kraus Robert G. | Hydrocephalus shunt system with endoscopic placement features |
US20050010159A1 (en) * | 2002-01-04 | 2005-01-13 | Sanford Reich | Csf physiologic controller |
US20050038371A1 (en) * | 2002-02-13 | 2005-02-17 | Sanford Reich | Controlled cerebrospinal infusion and shunt system |
US6875192B1 (en) | 1998-11-10 | 2005-04-05 | Eunoe, Inc. | Devices and methods for removing cerebrospinal fluids from a patient's CSF space |
US20050175658A1 (en) * | 2004-02-06 | 2005-08-11 | Dimauro Thomas M. | Implant having a photocatalytic unit |
US20060004317A1 (en) * | 2004-06-30 | 2006-01-05 | Christophe Mauge | Hydrocephalus shunt |
US20060019889A1 (en) * | 2004-07-23 | 2006-01-26 | Dimauro Thomas M | Anti-osteolytic therapy involving adiponectin |
US20060019869A1 (en) * | 2004-07-23 | 2006-01-26 | Thomas Dimauro M | Intradiscal anti-inflammatory therapy involving autologous adiponectin |
US20060018887A1 (en) * | 2004-07-23 | 2006-01-26 | Sudhakar Kadiyala | Enhanced adipose tissue |
US20060019875A1 (en) * | 2004-07-23 | 2006-01-26 | Hassan Serhan | Autologous coatings for implants |
EP1491232A3 (en) * | 2003-06-26 | 2006-02-22 | CODMAN & SHURTLEFF, INC. | Self adjusting hydrocephalus valve |
EP1642613A2 (en) | 2004-09-30 | 2006-04-05 | CODMAN & SHURTLEFF, INC. | High pressure range hydrocephalus valve system |
EP1676527A1 (en) | 2004-12-29 | 2006-07-05 | Codman & Shurtleff, Inc. | System and method for measuring the pressure of a fluid system within a patient |
US20060199997A1 (en) * | 2005-02-24 | 2006-09-07 | Ethicon Endo-Surgery, Inc. | Monitoring of a food intake restriction device |
US20060211913A1 (en) * | 2005-02-24 | 2006-09-21 | Dlugos Daniel F | Non-invasive pressure measurement in a fluid adjustable restrictive device |
US20060211914A1 (en) * | 2005-02-24 | 2006-09-21 | Hassler William L Jr | System and method for determining implanted device positioning and obtaining pressure data |
US20070005000A1 (en) * | 2005-06-29 | 2007-01-04 | Codman & Shurtleff, Inc. | Apparatus and method for adjusting a locking mechanism of a shunt valve |
US20070010787A1 (en) * | 2005-07-07 | 2007-01-11 | Hackett Steven S | Embolic protection device and methods of use |
US7192413B2 (en) | 2003-06-11 | 2007-03-20 | Codman & Shurtleff, Inc. | Needle guard having inherent probe directing features |
US20070129663A1 (en) * | 2005-12-01 | 2007-06-07 | Medtronic, Inc. | Implantable cerebrospinal fluid flow device and method of controlling flow of cerebrospinal fluid |
US20070213837A1 (en) * | 2005-02-24 | 2007-09-13 | Ferreri Annie L | System and Method for Determining Implanted Device Orientation |
US20070235083A1 (en) * | 2005-02-24 | 2007-10-11 | Dlugos Daniel F | Apparatus for Adjustment and Sensing of Gastric Band Pressure |
US7282040B2 (en) | 2002-12-24 | 2007-10-16 | Vygon Us, Llc | Gravitational pressure regulating mechanism |
US20080160535A1 (en) * | 1997-12-15 | 2008-07-03 | Somalogic, Inc. | Methods and Reagents for Detecting Target Binding by Nucleic Acid Ligands |
US20080214983A1 (en) * | 2005-03-15 | 2008-09-04 | Codman & Shurtleff, Inc. | Pressure sensing valve |
US20080307854A1 (en) * | 2007-06-18 | 2008-12-18 | Codman & Shurtleff, Inc. | Method and kit for maintaining a sterile environment during calibration of a medical device |
US20090005720A1 (en) * | 2007-06-29 | 2009-01-01 | Codman & Shurtleff, Inc. | Programmable Shunt with Electromechanical Valve Actuator |
US20090112147A1 (en) * | 2007-10-31 | 2009-04-30 | Codman Shurleff, Inc. | Wireless Pressure Setting Indicator |
US20090112103A1 (en) * | 2007-10-31 | 2009-04-30 | Codman & Shurtleff, Inc. | Wireless Pressure Sensing Shunts |
US20090107233A1 (en) * | 2007-10-31 | 2009-04-30 | Codman Shurleff, Inc. | Wireless Flow Sensor |
US20090112308A1 (en) * | 2007-10-31 | 2009-04-30 | Codman Shurleff, Inc. | Wireless Shunts With Storage |
US20090204019A1 (en) * | 2008-02-13 | 2009-08-13 | Alec Ginggen | Combined Pressure and Flow Sensor Integrated in a Shunt System |
US7927270B2 (en) | 2005-02-24 | 2011-04-19 | Ethicon Endo-Surgery, Inc. | External mechanical pressure sensor for gastric band pressure measurements |
US20110166495A1 (en) * | 2008-07-02 | 2011-07-07 | Christoph Miethke | Cerebrospinal fluid drainage |
US8016744B2 (en) | 2005-02-24 | 2011-09-13 | Ethicon Endo-Surgery, Inc. | External pressure-based gastric band adjustment system and method |
US8152710B2 (en) | 2006-04-06 | 2012-04-10 | Ethicon Endo-Surgery, Inc. | Physiological parameter analysis for an implantable restriction device and a data logger |
WO2014055015A1 (en) * | 2012-10-01 | 2014-04-10 | Roxhed Niclas | A cerebrospinal fluid shunt for treatment of hydrocephalus |
WO2014144703A2 (en) | 2013-03-15 | 2014-09-18 | Hakim Carlos | Externally programmable valve assembly |
US8870742B2 (en) | 2006-04-06 | 2014-10-28 | Ethicon Endo-Surgery, Inc. | GUI for an implantable restriction device and a data logger |
US20150038949A1 (en) * | 2013-07-31 | 2015-02-05 | Alcyone Lifesciences, Inc. | Systems and methods for drug delivery, treatment, and monitoring |
US9433764B2 (en) | 2014-04-18 | 2016-09-06 | Alcyone Lifesciences, Inc. | Systems and methods for shunting fluid |
US9629987B2 (en) | 2013-01-22 | 2017-04-25 | Alcoyne Lifesciences, Inc. | Systems and methods for shunting fluid |
US9636070B2 (en) | 2013-03-14 | 2017-05-02 | DePuy Synthes Products, Inc. | Methods, systems, and devices for monitoring and displaying medical parameters for a patient |
WO2018071650A1 (en) | 2016-10-13 | 2018-04-19 | Alcyone Lifesciences, Inc. | Shunt flushers and related methods |
US10052463B2 (en) | 2016-09-12 | 2018-08-21 | Koucky & Volkodav Llc | Shunt systems and methods for removing excess cerebrospinal fluid |
US10065016B2 (en) | 2012-12-18 | 2018-09-04 | Alcyone Lifesciences, Inc. | Systems and methods for reducing or preventing backflow in a delivery system |
US10137244B2 (en) | 2011-08-01 | 2018-11-27 | Alcyone Lifesciences, Inc. | Microfluidic drug delivery devices with venturi effect |
US20190091459A1 (en) * | 2017-09-22 | 2019-03-28 | Critical Innovations, LLC | Percutaneous access pathway system |
US10362947B2 (en) | 2005-03-15 | 2019-07-30 | Integra LifeSciences Switzerland Sarl | Pressure sensing devices |
US10456533B2 (en) | 2013-06-17 | 2019-10-29 | Alcyone Lifesciences, Inc. | Methods and devices for protecting catheter tips and stereotactic fixtures for microcatheters |
US10531882B2 (en) | 2016-01-04 | 2020-01-14 | Alcyone Lifesciences, Inc. | Methods and devices for treating stroke |
US10702174B2 (en) | 2007-06-27 | 2020-07-07 | Integra Lifesciences Corporation | Medical monitor user interface |
US10806396B2 (en) | 2015-01-26 | 2020-10-20 | Alcyone Lifesciences, Inc. | Drug delivery methods with tracer |
US10864356B2 (en) | 2013-12-26 | 2020-12-15 | Critical Innovations, LLC | Percutaneous access pathway system and method |
US11364326B2 (en) | 2012-08-07 | 2022-06-21 | Critical Innovations, LLC | Method and device for simultaneously documenting and treating tension pneumothorax and/or hemothorax |
US11752315B1 (en) | 2016-10-07 | 2023-09-12 | Carlos A. Hakim | Method of treating normal pressure hydrocephalus |
US12263320B2 (en) | 2023-12-01 | 2025-04-01 | Critical Innovations Llc | Percutaneous access pathway system and method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1103967A (en) * | 1914-04-02 | 1914-07-21 | Harry Elverton Hughes | Drainage-tube. |
US2969066A (en) * | 1956-10-02 | 1961-01-24 | Holter Company | Device for draining ventricular fluid in cases of hydrocephalus |
US3504676A (en) * | 1966-06-16 | 1970-04-07 | Vagn Niels Finsen Lomholt | Endotracheal balloon catheter provided with inflation pressure regulating valve |
US3527226A (en) * | 1966-02-03 | 1970-09-08 | Cordis Corp | Ventricular catheter with valve and pump flushing means |
US3654932A (en) * | 1969-11-26 | 1972-04-11 | John B Newkirk | Surgical drain for shunting fluid |
-
1974
- 1974-01-30 US US437767A patent/US3886948A/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1103967A (en) * | 1914-04-02 | 1914-07-21 | Harry Elverton Hughes | Drainage-tube. |
US2969066A (en) * | 1956-10-02 | 1961-01-24 | Holter Company | Device for draining ventricular fluid in cases of hydrocephalus |
US3527226A (en) * | 1966-02-03 | 1970-09-08 | Cordis Corp | Ventricular catheter with valve and pump flushing means |
US3504676A (en) * | 1966-06-16 | 1970-04-07 | Vagn Niels Finsen Lomholt | Endotracheal balloon catheter provided with inflation pressure regulating valve |
US3654932A (en) * | 1969-11-26 | 1972-04-11 | John B Newkirk | Surgical drain for shunting fluid |
Cited By (178)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4114603A (en) * | 1976-08-06 | 1978-09-19 | Wilkinson Harold A | Intracranial pressure monitoring catheter |
FR2372366A1 (en) * | 1976-11-26 | 1978-06-23 | Hakim Carlos | SERVO-VALVE FOR A SLOWED HYDRAULIC EQUIPMENT, USED FOR THE TREATMENT OF HYDROCEPHALIA |
US4106510A (en) * | 1976-11-26 | 1978-08-15 | Hakim Company Limited | Servo valve |
US4332255A (en) * | 1979-01-10 | 1982-06-01 | Hakim Company Limited | Shunt valve |
FR2446112A1 (en) * | 1979-01-10 | 1980-08-08 | Hakim Carlos | PRESSURE REGULATING VALVE FOR SURGICAL SHUNT, AND METHOD FOR VERIFYING THE SEALING OF ITS SHUTTER |
EP0060369A1 (en) * | 1981-03-18 | 1982-09-22 | SOPHYSA, Société dite: | Valve for the treatment of hydrocephalus |
US4443214A (en) * | 1981-03-18 | 1984-04-17 | Society Dite: Sophysa | Valve for the treatment of hydrocephalus |
US4553956A (en) * | 1982-09-03 | 1985-11-19 | Becton, Dickinson And Co. | Shunt valve and method of use |
US4475899A (en) * | 1982-09-03 | 1984-10-09 | Becton, Dickinson And Company | Shunt valve and method of use |
US4540400A (en) * | 1983-02-17 | 1985-09-10 | Cordis Corporation | Non-invasively adjustable valve |
US4769002A (en) * | 1983-02-17 | 1988-09-06 | Cordis Corporation | Intercranial pressure regulator valve |
US4551128A (en) * | 1983-05-11 | 1985-11-05 | Salomon Hakim | Cerebrospinal fluid shunt valve |
EP0421558A3 (en) * | 1983-07-21 | 1991-05-08 | Hakim Salomon | A surgically implantable device and stepping motor apparatus which may be used therein |
EP0421558A2 (en) * | 1983-07-21 | 1991-04-10 | Salomon Hakim | A surgically implantable device |
US4557721A (en) * | 1983-11-29 | 1985-12-10 | Cordis Corporation | Servo valve |
US4615691A (en) * | 1983-12-08 | 1986-10-07 | Salomon Hakim | Surgically-implantable stepping motor |
US4776838A (en) * | 1983-12-08 | 1988-10-11 | Cordis Corporation | Three stage valve |
US4598579A (en) * | 1984-10-23 | 1986-07-08 | Cordis Corporation | Portable instrument to test pressure/flow of ventricular shunt valves |
US4675003A (en) * | 1985-12-23 | 1987-06-23 | Cordis Corporation | Three stage pressure regulator valve |
US4714458A (en) * | 1985-12-23 | 1987-12-22 | Cordis Corporation | Three stage valve with flexible valve seat |
US4714459A (en) * | 1985-12-23 | 1987-12-22 | Cordis Corporation | Three stage intracranial pressure control valve |
US4729762A (en) * | 1985-12-23 | 1988-03-08 | Cordis Corporation | Three stage implantable pressure relief valve with adjustable valve stem members |
US4681559A (en) * | 1985-12-23 | 1987-07-21 | Cordis Corporation | Plural valve three stage pressure relief system |
US4705499A (en) * | 1985-12-23 | 1987-11-10 | Cordis Corporation | Implantable servo valve having integral pressure sensor |
US4676772A (en) * | 1985-12-23 | 1987-06-30 | Cordis Corporation | Adjustable implantable valve having non-invasive position indicator |
US4673384A (en) * | 1986-04-14 | 1987-06-16 | Sophysa | Valve for the treatment of hydrocephalus |
US4776839A (en) * | 1986-10-21 | 1988-10-11 | Cordis Corporation | Three stage implantable pressure relief valve with improved valve stem member |
US4781672A (en) * | 1986-10-21 | 1988-11-01 | Cordis Corporation | Three stage implantable flow control valve with improved valve closure member |
US4795437A (en) * | 1987-01-29 | 1989-01-03 | Pudenz-Schulte Medical Research Corporation | Siphon control device |
US4787886A (en) * | 1987-02-05 | 1988-11-29 | Cosman Eric R | Pressure sensor controlled valve |
US4861331A (en) * | 1988-03-24 | 1989-08-29 | Pudenz-Schulte Medical Research Corp. | Implantable shunt system and method of assembly |
US4867740A (en) * | 1988-03-24 | 1989-09-19 | Pudenz-Schulte Medical Research Corp. | Multiple-membrane flow control valve and implantable shunt system |
US5830172A (en) * | 1991-04-11 | 1998-11-03 | Leveen; Harry H. | Ascites valve |
US5336166A (en) * | 1991-12-19 | 1994-08-09 | Cordis Corporation | Three stage implantable valve |
US5368556A (en) * | 1992-01-22 | 1994-11-29 | Cordis Corporation | Implantable drainage valve for the treatment of hydrocephalus |
US5437627A (en) * | 1992-09-15 | 1995-08-01 | Cordis Corporation | Implantable valve for the treatment of hydrocephaly |
WO1994012222A1 (en) * | 1992-11-30 | 1994-06-09 | Drevet Jean Baptiste | Valve for the treatment of hydrocephalus |
US5643195A (en) * | 1992-11-30 | 1997-07-01 | Drevet; Jean-Baptiste | Device for regulating the flow of cerebrospinal fluid in a drainage circuit |
US6113553A (en) * | 1996-03-05 | 2000-09-05 | Lifesensors, Inc. | Telemetric intracranial pressure monitoring system |
US5980480A (en) * | 1996-07-11 | 1999-11-09 | Cs Fluids, Inc. | Method and apparatus for treating adult-onset dementia of the alzheimer's type |
US6264625B1 (en) | 1996-07-11 | 2001-07-24 | Cs Fluids, Inc. | Method and apparatus for treating adult-onset dementia of the Alzheimer's type |
US20040030279A1 (en) * | 1996-07-11 | 2004-02-12 | Eunoe, Inc. | Internally powered CSF pump systems and methods |
US7025742B2 (en) | 1996-07-11 | 2006-04-11 | Integra Lifesciences Corporation | Internally powered CSF pump systems and methods |
US6689085B1 (en) | 1996-07-11 | 2004-02-10 | Eunoe, Inc. | Method and apparatus for treating adult-onset dementia of the Alzheimer's type |
WO1998036792A1 (en) * | 1997-02-19 | 1998-08-27 | Micromedical Industries Limited | Ball valve system for heart-assist device and method of manufacture |
US6126628A (en) * | 1997-04-22 | 2000-10-03 | Johnson & Johnson Professional, Inc. | Fluid flow limiting device |
EP0888795A1 (en) | 1997-07-02 | 1999-01-07 | Johnson & Johnson Professional, Inc. | Pediatric programmable hydrocephalus valve |
US5928182A (en) * | 1997-07-02 | 1999-07-27 | Johnson & Johnson Professional, Inc. | Pediatric programmable hydrocephalus valve |
US20080160535A1 (en) * | 1997-12-15 | 2008-07-03 | Somalogic, Inc. | Methods and Reagents for Detecting Target Binding by Nucleic Acid Ligands |
US20040068221A1 (en) * | 1998-11-10 | 2004-04-08 | Eunoe, Inc. | Methods for the treatment of a normal pressure hydrocephalus |
US6875192B1 (en) | 1998-11-10 | 2005-04-05 | Eunoe, Inc. | Devices and methods for removing cerebrospinal fluids from a patient's CSF space |
US7189221B2 (en) | 1998-11-10 | 2007-03-13 | Integra Life Sciences Corporation | Methods for the treatment of a normal pressure hydrocephalus |
US6383160B1 (en) | 1999-04-29 | 2002-05-07 | Children's Medical Center Corporation | Variable anti-siphon valve apparatus and method |
US6544208B2 (en) | 2000-12-29 | 2003-04-08 | C. Ross Ethier | Implantable shunt device |
US7025739B2 (en) * | 2001-08-09 | 2006-04-11 | Integra Lifesciences Corporation | System and method for treating elevated intracranial pressure |
US20030032915A1 (en) * | 2001-08-09 | 2003-02-13 | Eunoe, Inc. | System and method for treating elevated intracranial pressure |
US20050010159A1 (en) * | 2002-01-04 | 2005-01-13 | Sanford Reich | Csf physiologic controller |
US20050038371A1 (en) * | 2002-02-13 | 2005-02-17 | Sanford Reich | Controlled cerebrospinal infusion and shunt system |
US7282040B2 (en) | 2002-12-24 | 2007-10-16 | Vygon Us, Llc | Gravitational pressure regulating mechanism |
US20040193094A1 (en) * | 2003-03-27 | 2004-09-30 | Kraus Robert G. | Hydrocephalus shunt system with endoscopic placement features |
US7235060B2 (en) | 2003-03-27 | 2007-06-26 | Codman & Shurtleff, Inc. | Hydrocephalus shunt system with endoscopic placement features |
US7192413B2 (en) | 2003-06-11 | 2007-03-20 | Codman & Shurtleff, Inc. | Needle guard having inherent probe directing features |
EP1491232A3 (en) * | 2003-06-26 | 2006-02-22 | CODMAN & SHURTLEFF, INC. | Self adjusting hydrocephalus valve |
US7318813B2 (en) | 2003-06-26 | 2008-01-15 | Codman & Shurtleff, Inc. | Self adjusting hydrocephalus valve |
US20080132823A1 (en) * | 2003-06-26 | 2008-06-05 | Codman & Shurtleff, Inc. | Self adjusting hydrocephalus valve |
US7922685B2 (en) | 2003-06-26 | 2011-04-12 | Codman & Shurtleff, Inc. | Self adjusting hydrocephalus valve |
US7744555B2 (en) | 2004-02-06 | 2010-06-29 | Depuy Spine, Inc. | Implant having a photocatalytic unit |
US20050175658A1 (en) * | 2004-02-06 | 2005-08-11 | Dimauro Thomas M. | Implant having a photocatalytic unit |
EP1961442A1 (en) | 2004-06-30 | 2008-08-27 | Codman & Shurtleff, Inc. | Hydrocephalus shunt |
US20100268151A1 (en) * | 2004-06-30 | 2010-10-21 | Christoph Mauge | Intracranial Implant Emitting Light Between 450 nm and 600 nm |
EP1614442A2 (en) | 2004-06-30 | 2006-01-11 | Codman & Shurtleff, Inc. | Hydrocephalus shunt |
US20060004317A1 (en) * | 2004-06-30 | 2006-01-05 | Christophe Mauge | Hydrocephalus shunt |
US7399742B2 (en) | 2004-07-23 | 2008-07-15 | Depuy Spine, Inc. | Anti-osteolytic therapy involving adiponectin |
US20060019869A1 (en) * | 2004-07-23 | 2006-01-26 | Thomas Dimauro M | Intradiscal anti-inflammatory therapy involving autologous adiponectin |
US20060018887A1 (en) * | 2004-07-23 | 2006-01-26 | Sudhakar Kadiyala | Enhanced adipose tissue |
US20060019875A1 (en) * | 2004-07-23 | 2006-01-26 | Hassan Serhan | Autologous coatings for implants |
US7217425B2 (en) | 2004-07-23 | 2007-05-15 | Depuy Spine, Inc. | Autologous coatings for implants |
US8715733B2 (en) | 2004-07-23 | 2014-05-06 | DePuy Synthes Products, LLC | Enhanced adipose tissue |
US20060019889A1 (en) * | 2004-07-23 | 2006-01-26 | Dimauro Thomas M | Anti-osteolytic therapy involving adiponectin |
US20060074371A1 (en) * | 2004-09-30 | 2006-04-06 | Codman & Shurtleff, Inc. | High pressure range hydrocephalus valve system |
EP1642613A2 (en) | 2004-09-30 | 2006-04-05 | CODMAN & SHURTLEFF, INC. | High pressure range hydrocephalus valve system |
US8088092B2 (en) | 2004-09-30 | 2012-01-03 | Codman & Shurtleff, Inc. | High pressure range hydrocephalus valve system |
US20100010415A1 (en) * | 2004-09-30 | 2010-01-14 | Codman & Shurtleff, Inc. | High pressure range hydrocephalus valve system |
US7559912B2 (en) | 2004-09-30 | 2009-07-14 | Codman & Shurtleff, Inc. | High pressure range hydrocephalus valve system |
EP1676527A1 (en) | 2004-12-29 | 2006-07-05 | Codman & Shurtleff, Inc. | System and method for measuring the pressure of a fluid system within a patient |
US9220424B2 (en) | 2004-12-29 | 2015-12-29 | DePuy Synthes Products, Inc. | System and method for measuring the pressure of a fluid system within a patient |
US9931043B2 (en) | 2004-12-29 | 2018-04-03 | Integra Lifesciences Switzerland Sàrl | System and method for measuring the pressure of a fluid system within a patient |
US20090270759A1 (en) * | 2004-12-29 | 2009-10-29 | Codman & Shurtleff, Inc. | System and Method for Measuring the Pressure of a Fluid System Within a Patient |
US8066629B2 (en) | 2005-02-24 | 2011-11-29 | Ethicon Endo-Surgery, Inc. | Apparatus for adjustment and sensing of gastric band pressure |
US8016744B2 (en) | 2005-02-24 | 2011-09-13 | Ethicon Endo-Surgery, Inc. | External pressure-based gastric band adjustment system and method |
US8016745B2 (en) | 2005-02-24 | 2011-09-13 | Ethicon Endo-Surgery, Inc. | Monitoring of a food intake restriction device |
US7927270B2 (en) | 2005-02-24 | 2011-04-19 | Ethicon Endo-Surgery, Inc. | External mechanical pressure sensor for gastric band pressure measurements |
US20060211913A1 (en) * | 2005-02-24 | 2006-09-21 | Dlugos Daniel F | Non-invasive pressure measurement in a fluid adjustable restrictive device |
US20070235083A1 (en) * | 2005-02-24 | 2007-10-11 | Dlugos Daniel F | Apparatus for Adjustment and Sensing of Gastric Band Pressure |
US7775966B2 (en) | 2005-02-24 | 2010-08-17 | Ethicon Endo-Surgery, Inc. | Non-invasive pressure measurement in a fluid adjustable restrictive device |
US7775215B2 (en) | 2005-02-24 | 2010-08-17 | Ethicon Endo-Surgery, Inc. | System and method for determining implanted device positioning and obtaining pressure data |
US20070213837A1 (en) * | 2005-02-24 | 2007-09-13 | Ferreri Annie L | System and Method for Determining Implanted Device Orientation |
US7658196B2 (en) | 2005-02-24 | 2010-02-09 | Ethicon Endo-Surgery, Inc. | System and method for determining implanted device orientation |
US20060199997A1 (en) * | 2005-02-24 | 2006-09-07 | Ethicon Endo-Surgery, Inc. | Monitoring of a food intake restriction device |
US20060211914A1 (en) * | 2005-02-24 | 2006-09-21 | Hassler William L Jr | System and method for determining implanted device positioning and obtaining pressure data |
US20080214983A1 (en) * | 2005-03-15 | 2008-09-04 | Codman & Shurtleff, Inc. | Pressure sensing valve |
US8282566B2 (en) | 2005-03-15 | 2012-10-09 | Codman & Shurtleff, Inc. | Pressure sensing valve |
US20090156960A1 (en) * | 2005-03-15 | 2009-06-18 | Codman & Shurtleff, Inc. | Pressure sensing valve |
US10362947B2 (en) | 2005-03-15 | 2019-07-30 | Integra LifeSciences Switzerland Sarl | Pressure sensing devices |
US8192366B2 (en) | 2005-03-15 | 2012-06-05 | Codman & Shurtleff, Inc. | Method for measuring ventricular pressure using a pressure sensing valve |
US20070005000A1 (en) * | 2005-06-29 | 2007-01-04 | Codman & Shurtleff, Inc. | Apparatus and method for adjusting a locking mechanism of a shunt valve |
US7334594B2 (en) | 2005-06-29 | 2008-02-26 | Codman & Shurtleff, Inc. | Apparatus and method for adjusting a locking mechanism of a shunt valve |
US8221348B2 (en) | 2005-07-07 | 2012-07-17 | St. Jude Medical, Cardiology Division, Inc. | Embolic protection device and methods of use |
US20070010787A1 (en) * | 2005-07-07 | 2007-01-11 | Hackett Steven S | Embolic protection device and methods of use |
WO2007008407A3 (en) * | 2005-07-07 | 2007-11-15 | St Jude Medical Cardiology Div | Embolic protection device and methods of use |
US20070129663A1 (en) * | 2005-12-01 | 2007-06-07 | Medtronic, Inc. | Implantable cerebrospinal fluid flow device and method of controlling flow of cerebrospinal fluid |
US8870742B2 (en) | 2006-04-06 | 2014-10-28 | Ethicon Endo-Surgery, Inc. | GUI for an implantable restriction device and a data logger |
US8152710B2 (en) | 2006-04-06 | 2012-04-10 | Ethicon Endo-Surgery, Inc. | Physiological parameter analysis for an implantable restriction device and a data logger |
US7827845B2 (en) | 2007-06-18 | 2010-11-09 | Codman & Shurtleff, Inc. | Method and kit for maintaining a sterile environment during calibration of a medical device |
EP2016893A2 (en) | 2007-06-18 | 2009-01-21 | CODMAN & SHURTLEFF, INC. | Method and kit for maintaining a sterile environment during calibration of a medical device |
US20080307854A1 (en) * | 2007-06-18 | 2008-12-18 | Codman & Shurtleff, Inc. | Method and kit for maintaining a sterile environment during calibration of a medical device |
US10702174B2 (en) | 2007-06-27 | 2020-07-07 | Integra Lifesciences Corporation | Medical monitor user interface |
US9925360B2 (en) | 2007-06-29 | 2018-03-27 | Integra Lifesciences Switzerland Sàrl | Programmable shunt with electromechanical valve actuator |
US8123714B2 (en) * | 2007-06-29 | 2012-02-28 | Codman & Shurtleff, Inc. | Programmable shunt with electromechanical valve actuator |
US20090005720A1 (en) * | 2007-06-29 | 2009-01-01 | Codman & Shurtleff, Inc. | Programmable Shunt with Electromechanical Valve Actuator |
US8480612B2 (en) | 2007-10-31 | 2013-07-09 | DePuy Synthes Products, LLC | Wireless shunts with storage |
US20090112103A1 (en) * | 2007-10-31 | 2009-04-30 | Codman & Shurtleff, Inc. | Wireless Pressure Sensing Shunts |
US8454524B2 (en) | 2007-10-31 | 2013-06-04 | DePuy Synthes Products, LLC | Wireless flow sensor |
US10265509B2 (en) | 2007-10-31 | 2019-04-23 | Integra LifeSciences Switzerland Sarl | Wireless shunts with storage |
US8579847B2 (en) | 2007-10-31 | 2013-11-12 | Codman & Shurtleff, Inc. | Wireless pressure setting indicator |
EP2055227A1 (en) | 2007-10-31 | 2009-05-06 | Codman & Shurtleff, Inc. | Wireless pressure sensing shunts |
US20090112147A1 (en) * | 2007-10-31 | 2009-04-30 | Codman Shurleff, Inc. | Wireless Pressure Setting Indicator |
EP2055230A1 (en) | 2007-10-31 | 2009-05-06 | Codman & Shurtleff, Inc. | Wireless shunts with storage |
US20090112308A1 (en) * | 2007-10-31 | 2009-04-30 | Codman Shurleff, Inc. | Wireless Shunts With Storage |
US8864666B2 (en) | 2007-10-31 | 2014-10-21 | DePuy Synthes Products, LLC | Wireless flow sensor |
US7842004B2 (en) | 2007-10-31 | 2010-11-30 | Codman & Shurtleff, Inc. | Wireless pressure setting indicator |
US8870768B2 (en) | 2007-10-31 | 2014-10-28 | DePuy Synthes Products, LLC | Wireless flow sensor methods |
US20090107233A1 (en) * | 2007-10-31 | 2009-04-30 | Codman Shurleff, Inc. | Wireless Flow Sensor |
US9204812B2 (en) | 2007-10-31 | 2015-12-08 | DePuy Synthes Products, LLC | Wireless pressure sensing shunts |
AU2009200549B2 (en) * | 2008-02-13 | 2014-05-29 | Integra LifeSciences Switzerland Sarl | Combined pressure and flow sensor integrated in a shunt system |
US20090204019A1 (en) * | 2008-02-13 | 2009-08-13 | Alec Ginggen | Combined Pressure and Flow Sensor Integrated in a Shunt System |
US20110166495A1 (en) * | 2008-07-02 | 2011-07-07 | Christoph Miethke | Cerebrospinal fluid drainage |
US9295821B2 (en) | 2008-07-02 | 2016-03-29 | Christoph Miethke | Cerebrospinal fluid drainage |
US10137244B2 (en) | 2011-08-01 | 2018-11-27 | Alcyone Lifesciences, Inc. | Microfluidic drug delivery devices with venturi effect |
US10434251B2 (en) | 2011-08-01 | 2019-10-08 | Alcyone Lifesciences, Inc. | Multi-directional microfluidic drug delivery device |
US11364326B2 (en) | 2012-08-07 | 2022-06-21 | Critical Innovations, LLC | Method and device for simultaneously documenting and treating tension pneumothorax and/or hemothorax |
US12005165B2 (en) | 2012-08-07 | 2024-06-11 | Critical Innovations, LLC | Method and device for simultaneously documenting and treating tension pneumothorax and/or hemothorax |
US10525239B2 (en) | 2012-10-01 | 2020-01-07 | Niclas Roxhed | Cerebrospinal fluid shunt for treatment of hydrocephalus |
WO2014055015A1 (en) * | 2012-10-01 | 2014-04-10 | Roxhed Niclas | A cerebrospinal fluid shunt for treatment of hydrocephalus |
US11213653B2 (en) | 2012-12-18 | 2022-01-04 | Alcyone Lifesciences, Inc. | Systems and methods for reducing or preventing backflow in a delivery system |
US10065016B2 (en) | 2012-12-18 | 2018-09-04 | Alcyone Lifesciences, Inc. | Systems and methods for reducing or preventing backflow in a delivery system |
US11260201B2 (en) | 2012-12-18 | 2022-03-01 | Alcyone Lifesciences, Inc. | Systems and methods for reducing or preventing backflow in a delivery system |
US10363394B2 (en) | 2012-12-18 | 2019-07-30 | Alcyone Lifesciences, Inc. | Systems and methods for reducing or preventing backflow in a delivery system |
US10639461B2 (en) | 2013-01-22 | 2020-05-05 | Anuncia, Inc. | Systems and methods for shunting fluid |
EP3453420A1 (en) | 2013-01-22 | 2019-03-13 | Anuncia, Inc. | Device for flushing a shunting system |
US9629987B2 (en) | 2013-01-22 | 2017-04-25 | Alcoyne Lifesciences, Inc. | Systems and methods for shunting fluid |
US9636070B2 (en) | 2013-03-14 | 2017-05-02 | DePuy Synthes Products, Inc. | Methods, systems, and devices for monitoring and displaying medical parameters for a patient |
US11311704B2 (en) | 2013-03-15 | 2022-04-26 | Ceredyn Biotechnology Llc | Externally programmable valve assembly |
US10322267B2 (en) | 2013-03-15 | 2019-06-18 | Carlos A. Hakim | Externally programmable valve assembly |
WO2014144703A2 (en) | 2013-03-15 | 2014-09-18 | Hakim Carlos | Externally programmable valve assembly |
US11602375B2 (en) | 2013-06-17 | 2023-03-14 | Alcyone Therapeutics, Inc. | Methods and devices for protecting catheter tips and stereotactic fixtures for microcatheters |
US10456533B2 (en) | 2013-06-17 | 2019-10-29 | Alcyone Lifesciences, Inc. | Methods and devices for protecting catheter tips and stereotactic fixtures for microcatheters |
US11534592B2 (en) | 2013-07-31 | 2022-12-27 | Alcyone Therapeutics, Inc. | Systems and methods for drug delivery, treatment, and monitoring |
US20150038949A1 (en) * | 2013-07-31 | 2015-02-05 | Alcyone Lifesciences, Inc. | Systems and methods for drug delivery, treatment, and monitoring |
US10441770B2 (en) * | 2013-07-31 | 2019-10-15 | Alcyone Lifesciences, Inc. | Systems and methods for drug delivery, treatment, and monitoring |
US11865281B2 (en) | 2013-12-26 | 2024-01-09 | Critical Innovations, LLC | Percutaneous access pathway system and method |
US10864356B2 (en) | 2013-12-26 | 2020-12-15 | Critical Innovations, LLC | Percutaneous access pathway system and method |
US9433764B2 (en) | 2014-04-18 | 2016-09-06 | Alcyone Lifesciences, Inc. | Systems and methods for shunting fluid |
EP3679977A1 (en) | 2014-04-18 | 2020-07-15 | Anuncia, Inc. | Systems for shunting fluid |
US9744338B2 (en) | 2014-04-18 | 2017-08-29 | Alcyone Lifesciences, Inc. | Systems and methods for shunting fluid |
US10493249B2 (en) | 2014-04-18 | 2019-12-03 | Anuncia, Inc. | System and methods for shunting fluid |
US10806396B2 (en) | 2015-01-26 | 2020-10-20 | Alcyone Lifesciences, Inc. | Drug delivery methods with tracer |
US10531882B2 (en) | 2016-01-04 | 2020-01-14 | Alcyone Lifesciences, Inc. | Methods and devices for treating stroke |
US10926070B2 (en) | 2016-09-12 | 2021-02-23 | Koucky & Volkodav Llc | Shunt systems and methods for removing excess cerebrospinal fluid |
US10052463B2 (en) | 2016-09-12 | 2018-08-21 | Koucky & Volkodav Llc | Shunt systems and methods for removing excess cerebrospinal fluid |
US12121684B1 (en) | 2016-10-07 | 2024-10-22 | Carlos A. Hakim | Method of treating normal pressure hydrocephalus |
US11752315B1 (en) | 2016-10-07 | 2023-09-12 | Carlos A. Hakim | Method of treating normal pressure hydrocephalus |
US10792480B2 (en) | 2016-10-13 | 2020-10-06 | Anuncia, Inc. | Shunt flushers and related methods |
WO2018071650A1 (en) | 2016-10-13 | 2018-04-19 | Alcyone Lifesciences, Inc. | Shunt flushers and related methods |
US10814119B2 (en) * | 2017-09-22 | 2020-10-27 | Critical Innovations, LLC | Percutaneous access pathway system |
US11406809B2 (en) * | 2017-09-22 | 2022-08-09 | Critical Innovations, LLC | Percutaneous access pathway system |
US20190091459A1 (en) * | 2017-09-22 | 2019-03-28 | Critical Innovations, LLC | Percutaneous access pathway system |
US12263320B2 (en) | 2023-12-01 | 2025-04-01 | Critical Innovations Llc | Percutaneous access pathway system and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3886948A (en) | Ventricular shunt having a variable pressure valve | |
US3924635A (en) | Ventricular shunt having a variable pressure valve | |
US6090062A (en) | Programmable antisiphon shunt system | |
US3985140A (en) | Dual pressure valve for use in ventricular shunt system | |
US3889687A (en) | Shunt system for the transport of cerebrospinal fluid | |
US4557721A (en) | Servo valve | |
US4551128A (en) | Cerebrospinal fluid shunt valve | |
US4681559A (en) | Plural valve three stage pressure relief system | |
US4675003A (en) | Three stage pressure regulator valve | |
DE2626215C3 (en) | Drainage device for draining excess fluid from the cerebral cavities | |
US7025739B2 (en) | System and method for treating elevated intracranial pressure | |
US7118549B2 (en) | Shunt system including a flow control device for controlling the flow of cerebrospinal fluid out of a brain ventricle | |
US3583387A (en) | Pressure absorbing appliance for treating hydrocephalus | |
US4776838A (en) | Three stage valve | |
US4627832A (en) | Three stage intracranial pressure relief valve having single-piece valve stem | |
US8231563B2 (en) | Electrokinetic actuator to titrate fluid flow | |
US7922685B2 (en) | Self adjusting hydrocephalus valve | |
US5368556A (en) | Implantable drainage valve for the treatment of hydrocephalus | |
US4714458A (en) | Three stage valve with flexible valve seat | |
Hakim | Hydraulic and mechanical mis‐matching of valve shunts used in the treatment of hydrocephalus: The need for a servo‐valve shunt | |
US4705499A (en) | Implantable servo valve having integral pressure sensor | |
US5192265A (en) | Adjustable-resistance anti-siphon device | |
US7282040B2 (en) | Gravitational pressure regulating mechanism | |
JPS5841065B2 (en) | ventricular drainage valve | |
EP0156974B1 (en) | Three-stage valve for the flow control of body fluids |