US3807393A - Surgical retractor - Google Patents
Surgical retractor Download PDFInfo
- Publication number
- US3807393A US3807393A US00230799A US23079972A US3807393A US 3807393 A US3807393 A US 3807393A US 00230799 A US00230799 A US 00230799A US 23079972 A US23079972 A US 23079972A US 3807393 A US3807393 A US 3807393A
- Authority
- US
- United States
- Prior art keywords
- slats
- slat
- pivot
- ratchet
- surgical retractor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000008602 contraction Effects 0.000 claims description 19
- 208000002847 Surgical Wound Diseases 0.000 claims description 3
- 238000003780 insertion Methods 0.000 claims description 3
- 230000037431 insertion Effects 0.000 claims description 3
- 229920003023 plastic Polymers 0.000 abstract description 10
- 239000004033 plastic Substances 0.000 abstract description 9
- 238000005286 illumination Methods 0.000 abstract description 6
- 239000013305 flexible fiber Substances 0.000 abstract description 2
- 239000000835 fiber Substances 0.000 description 14
- 238000001356 surgical procedure Methods 0.000 description 7
- 210000003813 thumb Anatomy 0.000 description 5
- 230000003187 abdominal effect Effects 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 3
- 230000033001 locomotion Effects 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 210000003811 finger Anatomy 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000003892 spreading Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- 102000007156 Resistin Human genes 0.000 description 1
- 108010047909 Resistin Proteins 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000004512 die casting Methods 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000036512 infertility Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 210000004003 subcutaneous fat Anatomy 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/32—Devices for opening or enlarging the visual field, e.g. of a tube of the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/06—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
- A61B1/07—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/02—Surgical instruments, devices or methods for holding wounds open, e.g. retractors; Tractors
- A61B17/0293—Surgical instruments, devices or methods for holding wounds open, e.g. retractors; Tractors with ring member to support retractor elements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/30—Devices for illuminating a surgical field, the devices having an interrelation with other surgical devices or with a surgical procedure
- A61B2090/306—Devices for illuminating a surgical field, the devices having an interrelation with other surgical devices or with a surgical procedure using optical fibres
Definitions
- Each of the slats has cooperating ratchet and pawl arrangements to permit substantially free lengthwise extension and restricted lengthwise retraction.
- the slats are pivotally interconnected at their ends with a ratchet arrangement that permits increase in divergence of the slats and restricts decrease in divergence.
- the slats are elastically interconnected at their ends. Extension pieces may be used for varying the size of retractor.
- An illuminator may be mounted on the retractor as a transparent flexible sterilizable sleeve for surrounding a flexible fiber optic bundle thereby providing illumination from a remote light source.
- the retractor is formed of plastic for disposal after use.
- Surgical retractors are used for spreading apart or separating the walls of nartual body orifices or for spreading the margins of surgical incisions. With the edges ,of an incision spread apart, the surgeon has access to the underlying tissues or-organs permitting .a clear view of the surgical site and access for a desired surgical or medical treatment.
- an abdominal retractor may be used in an abdominal incision to hold back the skin, subcutaneous fat and the internal peritoneal wall for ready access to the many abdominal organs.
- Hand retractors are typically steel instruments with a broad hook-like flap at one end for fitting over the tissue to be retracted. These are then pulled apart by hand and may be held or clamped during the surgical procedure.
- Some surgical retractors have arms that are interconnected by a gear or rack and pinion arrangement so that they can be cranked apart and locked in position.
- Another surgical retractor has four pivotally connected, rigid, curved links which can be clamped in any desired position to hold an incision open.
- Still another surgical retractor has a rigid peripheral ring with multiple detachable and movable blades that can be clamped at any point on the ring to hold a surgical site open.
- such instruments have been made of stainless steel so as to be sterilizable between surgical procedures.
- the instruments are relatively heavy and stout because, in some cases, substantial forces may be involved in opening anv incision and keeping it open. Since specially made, the instruments are expensive and it is costly to repetitively sterilize them and maintain sterility for surgery. Some of the more complicated retractors need to be taken apart for cleaning after surgery and reassembled before use.
- a surgical retractor having a pair of elongated elastic slats interconnected at their respective ends with divergence at each end so that the slats elastically bow in arcuate paths therebetween.
- Ratchet means are provided for freely extending the length of the slats and resistin longitudinal contraction thereof.
- FIG. 1 illustrates in a general plan view a surgical retractor constructed according to principles of this invention
- FIG. 2 is a detailed plan view of one end of the retractor ofFlG. 1;
- FIG. 3 is a side view, partially cut away on line 3-3 of FIG. '2, of the end of the retractor;
- FIG. 4 is a transverse cross section of one extendible side arm of the retractor of FIG. 1 taken on line 4-4 of FIG. 1;
- FIG. 5 is a side view of a female portion of the side arm
- FIG. 6 is a side view of a male portion of the side arm
- FIG. 7 is a fragmentary longitudinal cross section of the female member taken on line 7-7 of FIG. 5;
- FIG. 8 is a plan view of another embodiment of ratchet at and end connection of a surgical retractor
- FIG. 9 is a plan view of another embodiment of retractor constructed according to principles of this invention.
- FIG. 10 illustrates in side view an extender piece for a surgical retractor
- FIG. 11 illustrates an illuminator mounted on a surgical retractor
- FIG. 12 illustrates the end of the illuminator.
- FIG. 1 illustrates in general plan view a surgical retractor constructed according to principles of this invention. As illustrated in this drawing many of the details, particularly the end ratchets, are omitted since shown in substantial detail in subsequent drawings.
- the retractor of FIG. 1 comprises a pair of similar, elastically bendable slats 15 pivotally interconnected at their ends.
- Each of the side slats 15 has a male member 16 mated with a female member 17, each of which is described in greater detail hereinafter.
- the male and female members are slidably engaged for length-wise extension and contraction of the combined side slats 15.
- Each of the female members 17 is formed as an extension from a cylindrical hinge half 18 seen in greater detail in FIGS. 2 and 3.
- the other hinge half 19 (FIG. 3, hidden in FIG. 1) is'connected to the malemember 16.
- a hinge pin 21 formed integral with the lower hinge half 19 holds the two hinge halves together and permits pivotal movement at each end of the surgical retractor.
- a pair of intersecting longitudinal slits 23 through the head 22 and at least a portion of the hinge pin 21 permits the hinge pin to collapse part away as the upper hinge half 18 is pressed on.
- the hinge pin snaps back out and the head 22 prevents the two parts from coming apart again.
- the pivot at each end of the surgical retractor is also provided with a ratchet for free rotation of the pivot to permit the male and female members to freely increase divergence and restrict decreae in divergence thereof.
- Recessed into the upper face of the lower hinge half 19 is an annular array of radially extending ratchet teeth 24.
- the surgical retractor is typically opened (increasing divergence of the slats) to only a limited extent during use and therefore the ratchet teeth 24 need extend only a portion of the way around the lower hinge half 19.
- An aperture 26 extends through the upper hinge half 18 opposite the row of ratchet teeth 24.
- a pawl 27 extends through the aperture 26 and engages the ratchet teeth 24.
- the pawl 27 is an end portion on a short lever 28 mounted on the upper face of the upper hinge half by a pair of spaced apart bosses 29.
- a pin 31 extending between the bosses supports the lever near its middle.
- a somewhat enlarged thumb pad 32 at the opposite end of the lever from the pawl 27 enables one to lift the pawl from engagement with the ratchet teeth for releasing the ratchet when desired.
- a coil spring 33 beneath the thumb pad 32 rests in a recess 34 in the combined upper hinge half 18 and male member 17.
- a pin 36 on the bottom side of the lever 28 fits within the spring 33 to assure that it is always captive and cannot become lost in a surgical site.
- the hinges between the male and female members at each end of the surgical retractor and the ratchet and pawl arrangement permit the side slats of the surgical retractor to relatively freely be increased in divergence since the pawl merely clicks along the ratchet teeth. One merely pulls on the side slats to open the retractor. A decrease in divergence of the side slats is restricted when the pawl engages the ratchet teeth. If it is desired to release the ratchet, the thumb pad is pressed, disengaging the pawl from the teeth and the divergence of the side slats can then decrease.
- FIG. 4 is a transverse cross section of one of the side slats in the portion where the male and female members l6 and 17, respectively, are engaged.
- the female member 17 has a curved web 38 forming its principal vertical extent.
- On its outside face, the female member has a pair of hook-like flanges 41 extending along the length.
- the female member thus has a transverse cross section somewhat like an I- beam.
- the male member 16 also has a curved web 43 extending as the principle portion of its height.
- the curvature of the two webs 38 and 43 is such that they bow apart from each other.
- the opposite edges of the web 43 fit into the re-entrant channel formed by the hookshaped flanges 41 on the female member.
- the male member is kept captive in a transverse direction but is free to slide in a longitudinal direction along the female member.
- a pair of ribs 44 extend outwardly from the web 43 along the length of the male member.
- the ribs 44 are spaced a short distance apart from the edges of the web 43 so as to clear the tips of the hookshaped flanges 41.
- the male member has a transverse cross section somewhat in the shape of a bench or Greek letter pi.
- a series of ratchet teeth 46 extend along the length of the inside of the web 43 on the male member, as best seen in FIG. 5, which is a side view of the inner face of one end of the male member.
- Two or three pawl teeth 47 are provided on the outer face of the web 38 on the female member as may be seen in FIGS. 6 and 7, which comprise a view of the outer face of an end of the female member and a fragmentary longitudinal cross section thereof, respectively.
- the pawl teeth 47 engage the ratchet teeth 46 between the webs 38 and 43 of the female and male members.
- the teeth of the ratchet and pawl are oriented to permit motion in a direction tending to extend the length of the side slat 15 formed of the combined male and female members.
- the teeth inhibit or restrict lengthwise contraction of the side slat.
- the pawl teeth can ride over the ratchet teeth due to elastic deformation of the webs 38 and 43 as cammed apart by the teeth.
- the incision is made and the retractor inserted in a contracted state.
- the male and female members are substantially straight or only slightly curved when made and when inserted into the incision.
- the side slats thus are close to each other when the retractor is inserted.
- the flesh to be retracted fits between the two ribs 44 on the male member along part of the slat length and the flanges 41 on the female member along the rest of the slat length and is, hence, held substantially captive in the channels adjacent the webs 43 and 38.
- ribs 48 are.provided on the hinge halves substantially as extensions of the aforementioned ribs and flanges for retaining the flesh to be retracted at the ends of the retractor.
- the two side slats are manually spread apart thereby activating the ratchet and pawl arrangement at the hinges at each end of the retractor.
- the slats diverge adjacent their ends lengthening they are spread apart, they elastically bend along their length in a plane transverse to the webs. This elastic bowing of the side slats forms a double curved opening between the sides of the retractor approximately as shown in FIG. 1.
- their length may also be increased merely by pulling the two end portions of the surgical retractor away from each other. This activates the ratchet and pawl arrangement between the male and female members and permits longitudinal extension of the side slats.
- Such longitudinal extension may be employed for thighshening the available surgical site or may merely provide the additional length required as the side slats are bowed apart. It will be noted that as the stresses due to tissue being retracted increase as the surgical site is opened, the curvature of the side slats typically increases as well thereby strengthening the slats against buckling. Since both the angle at the end of the slats and the length of the slats is adjustable, the retractor is quite versatile and may be used in long narrow openings or short wide ones.
- the retractor When it is desired to close the surgical site, the retractor can be collapsed quite readily.
- the length of the side slats is decreased by pinching the upper and lower edges of the side slats adjacent the pawl teeth towards each other thereby further bowing the webs 38 and 43 and disengaging the pawl teeth 47 from the ratchet teeth 46.
- the male member can then slide into the female member freely for contracting the side slats.
- the ratchets at the ends of the retractor are released simply by pressing the thumb pad 32 on the lever 28 thereby disengaging the pawl 27 from the ratchet teeth 24. This permits the divergence of the side slats to decrease.
- the two ends of the surgical retractor are identical, a pair of identical male members and their integral hinge halves and a pair of female members with their integral hinge halves are snapped together to form the surgical retractor.
- These parts are preferably made by die casting or rubber mold casting of any of a variety of modern plastic on synthetic materials which have already come into wide use in hospitals and other medical practice. Many such materials are readily sterilizable at the time of manufacture and assembly and are then individually packaged, not to be opened until re- I quired for surgery. Since such retractors can be made economically, they can be used once and then discarded, thereby obviating cleaning and resterilization.
- the choice of plastic materials is also advantageous in providing an appropriate degree of elastic bowing of the side slats when the retractor is used.
- the shapes of the male and female members forming the side slats are such that substantial changes in section modulus can be made without substantial changes in the overall dimensions of the side slats.
- steel strips can be imbedded in the plastic for controlled stiffness and strength.
- FIG. 8 illustrates in plan view another embodiment of end ratchet for an elastic surgical retractor as provided in practice of this invention. As illustrated in this embodiment, there are no teeth on the ratchet and continuous adjustment of the width of the surgical site is provided.
- a female member 51 of an elastically bendable and extensible side slat is formed integral with an upper hinge half 52.
- 'A male member 53 of the opposing side slat is integral with a lower hinge half which is hidden beneath the upper hinge half 52 in FIG. 8.
- a hinge pin 54 integral with the lower hinge half extends upwardly through the upper hinge half and ends in a split head 56, which keeps the two hinge halves together. At least a portion 57 of the upper hinge half 52 is cylindrical and coaxial with the hinge pin 54.
- a pivot pin 59 also extends upwardly from the lower hinge half and provides mounting for an eccentric cam 60.
- a spring 61 between the side slat 53 and the cam 60 urges the cam in a clockwise direction as seen in FIG. 8.
- a release lever 62 extends from the cam for thumb or finger pressure for turning the cam in a counterclockwise direction.
- FIG. 9 illustrates in plan view another embodiment of surgical retractor constructed according to principles of this invention.
- the elastically bendable and freely extensible side slats are each formed of a pair of extension pieces 66.
- At each end of the surgical retractor there is a somewhat V- shaped end piece 67 so that the retractor has the same general elongated outline as that hereinabove described and illustrated in FIG. 1.
- the elastically bent side pieces are interconnected by the end pieces 67 which are also elastic but with a somewhat higher section modulus adjacent the tip of the V to maintain the desired shape.
- Each of the side slat pieces 66 has a male cross section for about half its length and a female cross section for about half its length.
- a side view of one of the side slats 66 is seen in FIG. 10.
- One end 71 has a male cross section and the other end 72 has a female cross section substantially the same as those illustrated in the transverse cross section of FIG. 4.
- the male half 71 thus has a pair of parallel ribs 44 extending along its length. Near the mid point, these ribs are gradually converted to side flanges 41' on the female end.
- a few pawl teeth 47' are provided on the outside face of the web 38' of the female end.
- ratchet teeth 46' are provided on the opposite face of the web 43' of the male end.
- a pair of stop teeth 73 are provided on the web 38 of the female member and a corresponding pair of stop teeth 74 are provided on the web 43 of the male member. These teeth 73 and 74 face oppositely to the ratchet and paw] teeth.
- an extension piece 66 may be employed in each side slat of a retractor as hereinabove described and illustrated in FIG. 1 in order to obtain a greater length. This can be provided simply by separating each of the illustrated side slats 15 and inserting an extension piece having half male and half female cross sections between the separated ends.
- FIGS. 11 and 12 illustrate a means for illuminating a surgical site in combination with a retractor as provided in practice of this invention. It will be apparent, however, that the surgical illumination so provided can be employed with other surgical retractors or similar arrangements adjacent a surgical site.
- the female portion 17 of a side slat has the illuminator mounted thereon.
- a plastic clip 76 is snapped onto the flange 41 and lip 39 at thetop edge of the retractor.
- the clip is sufficiently elastically flexible that its lower hook-like legs 77 at each side can spring over the flange and lip for easy installation and tight gripping.
- a hollow spherical socket on the top portion of the clip accommodates a ball 78 which readily snaps into the socket to permit free rotation and tilting through a substantial angle.
- the ball may be partially split or the clip adjacent the socket may be partially split to assist in insertion of the ball into the spherical cavity.
- the ball is preferably slightly larger than the cavity so as to be tightly gripped. The friction between the socket and the ball holds the assembly in any position in which it is placed.
- a pair of cooperating fingers 79 on the top of the ball define a cylindrical space therebetween into which a fiber optic bundle 81 is snapped.
- a thin, flexible transparent plastic sheath 82 surrounds the fiber optic bundle so that only the clip and sheath need be sterilized in order to bring the fiber optic bundle into the surgical site, that is, the fiber optic bundle itself need not be sterilized since it is isolated from the site by the sterilizable sheath.
- the end of the fiber optic bundle is adjacent a conventional light source 83 which can be a great distance from the surgical site.
- the other end of the fiber optic bundle which is illustrated in FIG. 12 terminates at the transparent end 84 of the plastic sheath.
- the fiber optic bundle is adjustably fixed to a surgical retractor which is typically mounted in the surgical site.
- the fiber optic light source is fixed in position but, because of the flexibility of the end of the bundle, it can be manipulated and directed to any desired location within the surgical site for either illumination or observation or, if desired, the
- the bundle may be used for transmission of an intense light beam for pinpoint cauterization. Illumination or observation occurs through the transparent end 84 of the sterilizable plastic sheath 82.
- the fiber optic bundle 81 is a conventional item made up of a large plurality of glass or plastic fibers having carefully controlled variations in index of refraction. Because of this, light entering one end of a fiber within the bundle is repetitively reflected along the length of the bundle despite curving thereof and is projected from the other end of the bundle. Since a large number of fibers are used in a bundle, excellent flexibility can be obtained. Illumination of a surgical site by a fiber optic bundle from a remote light source is quite advantageous in modern surgery. Most light sources generate a large amount of heat and by transmitting the light through a fiber optic bundle to the surgical site, the heat can be dissipated at the remote light source without any danger of burning the patient.
- a surgical retractor comprising:
- each slat comprises a pair of interengaging side pieces slidable lengthwise relative to each other, each comprising a curved transverse web, the two webs having their concave sides facing each other;
- ratchet means for freely extending the length of the first and second slats and resisting contraction thereof comprising a plurality of teeth spaced along the length near the center part of the concave side of one web and pawl means comprising at least one tooth near the center part of the concave side of the other web for engaging the ratchet teeth for substantially free lengthwise extension and restricted lengthwise contraction.
- one of the side pieces comprises a pair of opposed hook-like flanges extending lengthwise along the side edges on the concave side of the lip and wherein the web of the other side piece fits between the flanges.
- each of the side slats includes a pair of spaced apart ribs extending along the length thereof for forming a channel for receiving tissueadjacent a surgical incision or the like.
- a surgical retractor comprising:
- ratchet means for freely extending the length of the first and second slats and resisting contraction thereof
- a pivot for connecting each end of the first slat to the respective end of the second slat with mutual divergence of the two slats at each end so that the slats elastically bow in mutually spaced apart arcuate paths between their ends with the concave sides of the slats facing each other;
- ratchet means for permitting the slats to pivot away from each other and restricting pivoting towards each other.
- a surgical retractor comprising:
- ratchet means for freely extending the length of the first and second slats and resisting contraction thereof
- each pivot comprises;
- ratchet means comprises:
- a surgical retractor comprising:
- pivot means connecting each end of the first slat to the respective end of the second slat for pivoting the slats between a contracted position with the faces of the slats in relatively close proximity and an expanded position with the faces of the slats relatively spaced apart; and a ratchet means associated with each pivot means for permitting the slats to pivot away from each other and restricting pivoting towards each other so that the slats elastically bow in mutually spaced apart arcuate paths between their ends with the concave sides of the slats facing each other.
- each ratchet means comprises:
- each of the elastic side slats is freely extensible in a longitudinal direction and includes means for limiting contraction in a lengthwise direction independent of the angle of the pivot.
- each of the elastic side slats comprises:
- a male member connected to the other pivot means and inserted into the female member, said male member being substantially free to withdraw from the female member in a longitudinal direction and being restricted from further insertion in the female member.
- a surgical retractor comprising:
- first pivot means for pivotally interconnecting the first and second arms at one end;
- first ratchet means for permitting the arms to pivot away from each other and restrict pivoting of the arms towards each other;
- second ratchet means for permitting the third and fourth arms to pivot away from each other and inhibit pivoting of the third and fourth arms towards each other.
- each of the arms is elastically bendable in a plane transverse to the axes of the pivot means.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Animal Behavior & Ethology (AREA)
- Engineering & Computer Science (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Optics & Photonics (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Surgical Instruments (AREA)
Abstract
This surgical retractor has a pair of opposed slat-like sides interconnected at their respective ends with divergence at both ends so that the slats are elastically bowed in arcuate paths with the concave sides of the slats facing each other. Each of the slats has cooperating ratchet and pawl arrangements to permit substantially free lengthwise extension and restricted lengthwise retraction. In one embodiment, the slats are pivotally interconnected at their ends with a ratchet arrangement that permits increase in divergence of the slats and restricts decrease in divergence. In another embodiment, the slats are elastically interconnected at their ends. Extension pieces may be used for varying the size of retractor. An illuminator may be mounted on the retractor as a transparent flexible sterilizable sleeve for surrounding a flexible fiber optic bundle thereby providing illumination from a remote light source. Preferably, the retractor is formed of plastic for disposal after use.
Description
United States Patent [1 1 Apr. 30, 1974 McDonald SURGICAL RETRACTOR [76] inventor: Bernard McDonald, 18212 Pacific Coast Hwy., Malibu, Calif. 90265 [22] Filed: Mar. 1, 1972 [21] Appl. No.: 230,799 g Primary ExaminerLucie H. Laudenslager Attorney, Agent, or Firm-Christie, Parker & Hale '[57] ABSTRACT This surgical retractor has a pair of opposed slat-like sides interconnected at their respective ends with divergence at both ends so that the slats are elastically bowed in arcuate paths with the concave sides of the slats facing each other. Each of the slats has cooperating ratchet and pawl arrangements to permit substantially free lengthwise extension and restricted lengthwise retraction. In one embodiment, the slats are pivotally interconnected at their ends with a ratchet arrangement that permits increase in divergence of the slats and restricts decrease in divergence. In another embodiment, the slats are elastically interconnected at their ends. Extension pieces may be used for varying the size of retractor. An illuminator may be mounted on the retractor as a transparent flexible sterilizable sleeve for surrounding a flexible fiber optic bundle thereby providing illumination from a remote light source. Preferably, the retractor is formed of plastic for disposal after use.
12 Claims, 8 Drawing Figures PATENTEDAPRSO m4 sit-307L393 SHEET 3 OF SURGICAL RETRACTOR BACKGROUND OF THE INVENTION Surgical retractors are used for spreading apart or separating the walls of nartual body orifices or for spreading the margins of surgical incisions. With the edges ,of an incision spread apart, the surgeon has access to the underlying tissues or-organs permitting .a clear view of the surgical site and access for a desired surgical or medical treatment. Thus, for example, an abdominal retractor may be used in an abdominal incision to hold back the skin, subcutaneous fat and the internal peritoneal wall for ready access to the many abdominal organs.
In the past, a variety of surgical retractors have been employed. Hand retractors are typically steel instruments with a broad hook-like flap at one end for fitting over the tissue to be retracted. These are then pulled apart by hand and may be held or clamped during the surgical procedure. Some surgical retractors have arms that are interconnected by a gear or rack and pinion arrangement so that they can be cranked apart and locked in position. Another surgical retractor has four pivotally connected, rigid, curved links which can be clamped in any desired position to hold an incision open. Still another surgical retractor has a rigid peripheral ring with multiple detachable and movable blades that can be clamped at any point on the ring to hold a surgical site open.
Typically, such instruments have been made of stainless steel so as to be sterilizable between surgical procedures. The instruments are relatively heavy and stout because, in some cases, substantial forces may be involved in opening anv incision and keeping it open. Since specially made, the instruments are expensive and it is costly to repetitively sterilize them and maintain sterility for surgery. Some of the more complicated retractors need to be taken apart for cleaning after surgery and reassembled before use.
It is desirable to provide a retractor that is sufficiently inexpensive that it can be disposed of after'a single use thereby obviating cleaning and sterilization between uses. Such an instrument should be simple, rugged and versatile.
BRIEF SUMMARY OF THE INVENTION There is, therefore, provided in practice of this invention according to a presently preferred embodient a surgical retractor having a pair of elongated elastic slats interconnected at their respective ends with divergence at each end so that the slats elastically bow in arcuate paths therebetween. Ratchet means are provided for freely extending the length of the slats and resistin longitudinal contraction thereof.
DRAWINGS These and other features and advantages of the present invention will be appreciated as the same becomes better understood by reference to the following detailed description of a presently preferred embodiment when considered in connection with the accompanying drawings wherein:
FIG. 1 illustrates in a general plan view a surgical retractor constructed according to principles of this invention;
FIG. 2 is a detailed plan view of one end of the retractor ofFlG. 1;
FIG. 3 is a side view, partially cut away on line 3-3 of FIG. '2, of the end of the retractor;
FIG. 4 is a transverse cross section of one extendible side arm of the retractor of FIG. 1 taken on line 4-4 of FIG. 1;
FIG. 5 is a side view of a female portion of the side arm;
FIG. 6 is a side view of a male portion of the side arm;
FIG. 7 is a fragmentary longitudinal cross section of the female member taken on line 7-7 of FIG. 5;
FIG. 8 is a plan view of another embodiment of ratchet at and end connection of a surgical retractor;
- FIG. 9 is a plan view of another embodiment of retractor constructed according to principles of this invention;
FIG. 10 illustrates in side view an extender piece for a surgical retractor; 7
FIG. 11 illustrates an illuminator mounted on a surgical retractor; and
FIG. 12 illustrates the end of the illuminator.
DESCRIPTION FIG. 1 illustrates in general plan view a surgical retractor constructed according to principles of this invention. As illustrated in this drawing many of the details, particularly the end ratchets, are omitted since shown in substantial detail in subsequent drawings. Broadly, the retractor of FIG. 1 comprises a pair of similar, elastically bendable slats 15 pivotally interconnected at their ends. Each of the side slats 15 has a male member 16 mated with a female member 17, each of which is described in greater detail hereinafter. The male and female members are slidably engaged for length-wise extension and contraction of the combined side slats 15. Each of the female members 17 is formed as an extension from a cylindrical hinge half 18 seen in greater detail in FIGS. 2 and 3. The other hinge half 19 (FIG. 3, hidden in FIG. 1) is'connected to the malemember 16. A hinge pin 21 formed integral with the lower hinge half 19 holds the two hinge halves together and permits pivotal movement at each end of the surgical retractor. For ease of assembly of the two hinge halves 18 and 19, it is convenient to provide a slightly enlarged head 22on the hinge pin 21. A pair of intersecting longitudinal slits 23 through the head 22 and at least a portion of the hinge pin 21 permits the hinge pin to collapse part away as the upper hinge half 18 is pressed on. When the upper hinge half is pressed on to its full extent, the hinge pin snaps back out and the head 22 prevents the two parts from coming apart again. Thus, by siinply pressing the two halves of the hinge together, it can be assembled without any detachable fasteners.
As seen in greater detail in FIGS. 2 and 3, the pivot at each end of the surgical retractor is also provided with a ratchet for free rotation of the pivot to permit the male and female members to freely increase divergence and restrict decreae in divergence thereof. Recessed into the upper face of the lower hinge half 19 is an annular array of radially extending ratchet teeth 24. As will be apparent, the surgical retractor is typically opened (increasing divergence of the slats) to only a limited extent during use and therefore the ratchet teeth 24 need extend only a portion of the way around the lower hinge half 19.
An aperture 26 extends through the upper hinge half 18 opposite the row of ratchet teeth 24. A pawl 27 extends through the aperture 26 and engages the ratchet teeth 24. The pawl 27 is an end portion on a short lever 28 mounted on the upper face of the upper hinge half by a pair of spaced apart bosses 29. A pin 31 extending between the bosses supports the lever near its middle. A somewhat enlarged thumb pad 32 at the opposite end of the lever from the pawl 27 enables one to lift the pawl from engagement with the ratchet teeth for releasing the ratchet when desired. A coil spring 33 beneath the thumb pad 32 rests in a recess 34 in the combined upper hinge half 18 and male member 17. Preferably, a pin 36 on the bottom side of the lever 28 fits within the spring 33 to assure that it is always captive and cannot become lost in a surgical site.
Thus, the hinges between the male and female members at each end of the surgical retractor and the ratchet and pawl arrangement permit the side slats of the surgical retractor to relatively freely be increased in divergence since the pawl merely clicks along the ratchet teeth. One merely pulls on the side slats to open the retractor. A decrease in divergence of the side slats is restricted when the pawl engages the ratchet teeth. If it is desired to release the ratchet, the thumb pad is pressed, disengaging the pawl from the teeth and the divergence of the side slats can then decrease.
FIG. 4 is a transverse cross section of one of the side slats in the portion where the male and female members l6 and 17, respectively, are engaged. The female member 17 has a curved web 38 forming its principal vertical extent. On its inner or concave side, that is, the side facing the other side slat 15 (FIG. 1) of the surgical retractor, the female member has raised lip 39 along the top and bottom edges. On its outside face, the female member has a pair of hook-like flanges 41 extending along the length. Very broadly, the female member thus has a transverse cross section somewhat like an I- beam.
The male member 16 also has a curved web 43 extending as the principle portion of its height. The curvature of the two webs 38 and 43 is such that they bow apart from each other. The opposite edges of the web 43 fit into the re-entrant channel formed by the hookshaped flanges 41 on the female member. Thus, the male member is kept captive in a transverse direction but is free to slide in a longitudinal direction along the female member. A pair of ribs 44 extend outwardly from the web 43 along the length of the male member. The ribs 44 are spaced a short distance apart from the edges of the web 43 so as to clear the tips of the hookshaped flanges 41. Thus, the male member has a transverse cross section somewhat in the shape of a bench or Greek letter pi.
A series of ratchet teeth 46 extend along the length of the inside of the web 43 on the male member, as best seen in FIG. 5, which is a side view of the inner face of one end of the male member. Two or three pawl teeth 47 are provided on the outer face of the web 38 on the female member as may be seen in FIGS. 6 and 7, which comprise a view of the outer face of an end of the female member and a fragmentary longitudinal cross section thereof, respectively.
As best seen in FIG. 4, the pawl teeth 47 engage the ratchet teeth 46 between the webs 38 and 43 of the female and male members. The teeth of the ratchet and pawl are oriented to permit motion in a direction tending to extend the length of the side slat 15 formed of the combined male and female members. The teeth inhibit or restrict lengthwise contraction of the side slat. The pawl teeth can ride over the ratchet teeth due to elastic deformation of the webs 38 and 43 as cammed apart by the teeth.
When it is desired to release the ratchet and pawl arrangement thus provided, one need only pinch the female member at its side edges adjacent the flanges 41. Such pinching causes the curved webs to bend further and be spaced apart a greater distance at their mid section thereby disengaging the pawl teeth from the ratchet teeth and permitting the side slats to be contracted in a lengthwise direction.
In order to use the surgical retractor in, say, an abdominal incision, the incision is made and the retractor inserted in a contracted state. Typically, the male and female members are substantially straight or only slightly curved when made and when inserted into the incision. The side slats thus are close to each other when the retractor is inserted. The flesh to be retracted fits between the two ribs 44 on the male member along part of the slat length and the flanges 41 on the female member along the rest of the slat length and is, hence, held substantially captive in the channels adjacent the webs 43 and 38. Referring to FIG. 3, ribs 48 are.provided on the hinge halves substantially as extensions of the aforementioned ribs and flanges for retaining the flesh to be retracted at the ends of the retractor.
After positioning the retractor in the incision, the two side slats are manually spread apart thereby activating the ratchet and pawl arrangement at the hinges at each end of the retractor. As the slats diverge adjacent their ends lengthening they are spread apart, they elastically bend along their length in a plane transverse to the webs. This elastic bowing of the side slats forms a double curved opening between the sides of the retractor approximately as shown in FIG. 1. In addition to increasing divergence of the side slats, their length may also be increased merely by pulling the two end portions of the surgical retractor away from each other. This activates the ratchet and pawl arrangement between the male and female members and permits longitudinal extension of the side slats. Such longitudinal extension may be employed for legthening the available surgical site or may merely provide the additional length required as the side slats are bowed apart. It will be noted that as the stresses due to tissue being retracted increase as the surgical site is opened, the curvature of the side slats typically increases as well thereby strengthening the slats against buckling. Since both the angle at the end of the slats and the length of the slats is adjustable, the retractor is quite versatile and may be used in long narrow openings or short wide ones.
When it is desired to close the surgical site, the retractor can be collapsed quite readily. The length of the side slats is decreased by pinching the upper and lower edges of the side slats adjacent the pawl teeth towards each other thereby further bowing the webs 38 and 43 and disengaging the pawl teeth 47 from the ratchet teeth 46. The male member can then slide into the female member freely for contracting the side slats. The ratchets at the ends of the retractor are released simply by pressing the thumb pad 32 on the lever 28 thereby disengaging the pawl 27 from the ratchet teeth 24. This permits the divergence of the side slats to decrease.
Since the two ends of the surgical retractor are identical, a pair of identical male members and their integral hinge halves and a pair of female members with their integral hinge halves are snapped together to form the surgical retractor. These parts are preferably made by die casting or rubber mold casting of any of a variety of modern plastic on synthetic materials which have already come into wide use in hospitals and other medical practice. Many such materials are readily sterilizable at the time of manufacture and assembly and are then individually packaged, not to be opened until re- I quired for surgery. Since such retractors can be made economically, they can be used once and then discarded, thereby obviating cleaning and resterilization.
The choice of plastic materials is also advantageous in providing an appropriate degree of elastic bowing of the side slats when the retractor is used. The shapes of the male and female members forming the side slats are such that substantial changes in section modulus can be made without substantial changes in the overall dimensions of the side slats. If desired, steel strips can be imbedded in the plastic for controlled stiffness and strength. With such possible variations, retractors for symmetrical or asymmetrical openings of surgical sites canreadily be provided, and substantial changes in size and the stiffness of the surgical retractor can be made in the course of designfor particular applications.
FIG. 8 illustrates in plan view another embodiment of end ratchet for an elastic surgical retractor as provided in practice of this invention. As illustrated in this embodiment, there are no teeth on the ratchet and continuous adjustment of the width of the surgical site is provided. A female member 51 of an elastically bendable and extensible side slat is formed integral with an upper hinge half 52.'A male member 53 of the opposing side slat is integral with a lower hinge half which is hidden beneath the upper hinge half 52 in FIG. 8. A hinge pin 54 integral with the lower hinge half extends upwardly through the upper hinge half and ends in a split head 56, which keeps the two hinge halves together. At least a portion 57 of the upper hinge half 52 is cylindrical and coaxial with the hinge pin 54. l i
A pivot pin 59 also extends upwardly from the lower hinge half and provides mounting for an eccentric cam 60. A spring 61 between the side slat 53 and the cam 60 urges the cam in a clockwise direction as seen in FIG. 8. A release lever 62 extends from the cam for thumb or finger pressure for turning the cam in a counterclockwise direction. When the retractor is used, the two side slats 51 and 53 are spread apart manually as hereinabove described, thereby causing the cylindrical surface 57 on the upper hinge half to ride along on the eccentric cam 60 and friction therebetween tends to disengage the cam from the cylindrical surface. When the slats are released, however, the spring 61 and any friction with the cylindrical surface 57 urge the cam in a clockwise direction and into wedging engagement with the cylindrical surface. This wedging action effectively prevents the side slats from collapsing towards each other until the release lever 62 is pressed to disengage the eccentric cam from the cylindrical surface. Continuous motion of this toothless ratchet is thereby provided. If desired small teeth or minor roughness may be provided on the cam 0r hinge or both to inhibit slippage in case the camming surfaces become lubricated by fluids during surgery.
- FIG. 9 illustrates in plan view another embodiment of surgical retractor constructed according to principles of this invention. As illustrated in this embodiment, the elastically bendable and freely extensible side slats are each formed of a pair of extension pieces 66. At each end of the surgical retractor, there is a somewhat V- shaped end piece 67 so that the retractor has the same general elongated outline as that hereinabove described and illustrated in FIG. 1. The elastically bent side pieces are interconnected by the end pieces 67 which are also elastic but with a somewhat higher section modulus adjacent the tip of the V to maintain the desired shape.
Each of the side slat pieces 66 has a male cross section for about half its length and a female cross section for about half its length. A side view of one of the side slats 66 is seen in FIG. 10. One end 71 has a male cross section and the other end 72 has a female cross section substantially the same as those illustrated in the transverse cross section of FIG. 4. The male half 71 thus has a pair of parallel ribs 44 extending along its length. Near the mid point, these ribs are gradually converted to side flanges 41' on the female end. A few pawl teeth 47' are provided on the outside face of the web 38' of the female end. Similarly, a row of ratchet teeth 46' are provided on the opposite face of the web 43' of the male end. Thus, when two such side slat pieces are assembled end to end, the pawl teeth of one engage the ratchet teeth of the next.
A pair of stop teeth 73 are provided on the web 38 of the female member and a corresponding pair of stop teeth 74 are provided on the web 43 of the male member. These teeth 73 and 74 face oppositely to the ratchet and paw] teeth. This permits the male end of one extension piece to, be inserted into the female end of another extension piece, however, it limits the extent of withdrawal of the two parts so that over-extension of the side slats is avoided. This is typically of no problem in an embodiment as illustrated in FIG. 1 where the entire extension of the side slats occurs in a single ratchet and pawl assembly. In an embodiment as illustrated in FIG. 9, however, a portion of the extension may occur in each of three ratchet and pawl combinations. It could occur that one of these combinations could be overextended inadvertently and the stop teeth are employed to prevent this from happening.
It will be'apparent that an extension piece 66 may be employed in each side slat of a retractor as hereinabove described and illustrated in FIG. 1 in order to obtain a greater length. This can be provided simply by separating each of the illustrated side slats 15 and inserting an extension piece having half male and half female cross sections between the separated ends.
FIGS. 11 and 12 illustrate a means for illuminating a surgical site in combination with a retractor as provided in practice of this invention. It will be apparent, however, that the surgical illumination so provided can be employed with other surgical retractors or similar arrangements adjacent a surgical site. As illustrated in this embodiment, the female portion 17 of a side slat has the illuminator mounted thereon. A plastic clip 76 is snapped onto the flange 41 and lip 39 at thetop edge of the retractor. The clip is sufficiently elastically flexible that its lower hook-like legs 77 at each side can spring over the flange and lip for easy installation and tight gripping. A hollow spherical socket on the top portion of the clip accommodates a ball 78 which readily snaps into the socket to permit free rotation and tilting through a substantial angle. If desired, the ball may be partially split or the clip adjacent the socket may be partially split to assist in insertion of the ball into the spherical cavity. The ball is preferably slightly larger than the cavity so as to be tightly gripped. The friction between the socket and the ball holds the assembly in any position in which it is placed.
A pair of cooperating fingers 79 on the top of the ball define a cylindrical space therebetween into which a fiber optic bundle 81 is snapped. A thin, flexible transparent plastic sheath 82 surrounds the fiber optic bundle so that only the clip and sheath need be sterilized in order to bring the fiber optic bundle into the surgical site, that is, the fiber optic bundle itself need not be sterilized since it is isolated from the site by the sterilizable sheath. The end of the fiber optic bundle is adjacent a conventional light source 83 which can be a great distance from the surgical site.
The other end of the fiber optic bundle which is illustrated in FIG. 12 terminates at the transparent end 84 of the plastic sheath. In this way, the fiber optic bundle is adjustably fixed to a surgical retractor which is typically mounted in the surgical site. The fiber optic light source is fixed in position but, because of the flexibility of the end of the bundle, it can be manipulated and directed to any desired location within the surgical site for either illumination or observation or, if desired, the
bundle may be used for transmission of an intense light beam for pinpoint cauterization. Illumination or observation occurs through the transparent end 84 of the sterilizable plastic sheath 82.
The fiber optic bundle 81 is a conventional item made up of a large plurality of glass or plastic fibers having carefully controlled variations in index of refraction. Because of this, light entering one end of a fiber within the bundle is repetitively reflected along the length of the bundle despite curving thereof and is projected from the other end of the bundle. Since a large number of fibers are used in a bundle, excellent flexibility can be obtained. Illumination of a surgical site by a fiber optic bundle from a remote light source is quite advantageous in modern surgery. Most light sources generate a large amount of heat and by transmitting the light through a fiber optic bundle to the surgical site, the heat can be dissipated at the remote light source without any danger of burning the patient. The removal of the electrical hazard from the proximity of the patient or surgical personnel is also of significant importance, not only in eliminating shock hazard but also in avoiding explosion hazards with some anaesthet- Although limited embodiments, of surgical retractor constructed according to principles of this invention have been described an illustrsted herein, many modifications and variations will be apparent to one skilled in the art. Clearly, many ratchet and pawl arrangements can be adapted to a retractor having elastically bendable and extensible side slats. A variety of modifications in other aspects of the detailed structure will be apparent to one skilled in the art. It is therefore to be understood that within the scope of the appended claims, the invention may be practiced otherwise that as specifically described.
What is claimed is:
l. A surgical retractor comprising:
a first elongated elastic slat;
a second elongated elastic slat facing the first slat;
means for connecting each end of the first slat to the respective end of the second slat with mutual divergence of the two slats at each end so that the slats elastically bow in mutually spaced apart arcuate paths between their ends with the concave sides of the slats facing each other; and wherein each slat comprises a pair of interengaging side pieces slidable lengthwise relative to each other, each comprising a curved transverse web, the two webs having their concave sides facing each other; and
ratchet means for freely extending the length of the first and second slats and resisting contraction thereof comprising a plurality of teeth spaced along the length near the center part of the concave side of one web and pawl means comprising at least one tooth near the center part of the concave side of the other web for engaging the ratchet teeth for substantially free lengthwise extension and restricted lengthwise contraction.
2. A surgical retractor as defined in claim 1 wherein one of the side pieces comprises a pair of opposed hook-like flanges extending lengthwise along the side edges on the concave side of the lip and wherein the web of the other side piece fits between the flanges.
3. A surgical retractor as defined in claim 1 wherein each of the side slats includes a pair of spaced apart ribs extending along the length thereof for forming a channel for receiving tissueadjacent a surgical incision or the like.
4. A surgical retractor comprising:
a first elongated elastic slat;
a second elongated elastic slat facing the first slat;
ratchet means for freely extending the length of the first and second slats and resisting contraction thereof;
a pivot for connecting each end of the first slat to the respective end of the second slat with mutual divergence of the two slats at each end so that the slats elastically bow in mutually spaced apart arcuate paths between their ends with the concave sides of the slats facing each other; and
ratchet means for permitting the slats to pivot away from each other and restricting pivoting towards each other.
5. A surgical retractor comprising:
a first elongated elastic slat;
a second elongated elastic slat facing the first slat;
ratchet means for freely extending the length of the first and second slats and resisting contraction thereof;
a pivot connecting each end of the first slat to the respective end of the second slat with mutual divergence of the two slats at each end so that the slats elastically bow in mutually spaced apart arcuate paths between their ends with the concave sides of the slats facing each other; and
ratchet means for permitting the slats to pivot away from each other and restricting pivoting towards each other; and wherein each pivot comprises;
a first hinge half integral with one slat;
a second hinge half integral with the other slat; and
a pin for interconnecting the two hinge halves in pivoting engagement; and wherein the ratchet means comprises:
an annular array of radially extending ratchet teeth on the face of one hinge half; and
a tooth engaging pawl on the other hinge half.
6. A surgical retractor comprising:
a first elongated elastically bendable slat;
a second elongated elastically bendable slat facing the first slat;
pivot means connecting each end of the first slat to the respective end of the second slat for pivoting the slats between a contracted position with the faces of the slats in relatively close proximity and an expanded position with the faces of the slats relatively spaced apart; and a ratchet means associated with each pivot means for permitting the slats to pivot away from each other and restricting pivoting towards each other so that the slats elastically bow in mutually spaced apart arcuate paths between their ends with the concave sides of the slats facing each other.
7. A surgical retractor as defined in claim 6 wherein each ratchet means comprises:
an annular array of ratchet teeth connected to one slat and extending at least part way around the pivot means;
a pawl connected to the other slat and engaging the ratchet teeth; and
means for disengaging the pawl from the teeth for permitting the slats to pivot towards each other.
8. A surgical retractor as defined in claim 6 wherein each of the elastic side slats is freely extensible in a longitudinal direction and includes means for limiting contraction in a lengthwise direction independent of the angle of the pivot.
9. A surgical retractor as defined in claim 8 wherein each of the elastic side slats comprises:
a female member connected to one pivot means;
a male member connected to the other pivot means and inserted into the female member, said male member being substantially free to withdraw from the female member in a longitudinal direction and being restricted from further insertion in the female member.
10. A surgical retractor as defined in claim 9 wherein the male and female members each include a bowed transverse web with respective concave faces thereof facing each other and interengaging ratchet means on the webs for permitting extension and limiting contraction and arranged so that further bowing of the webs disengages the ratchet means.
11. A surgical retractor comprising:
a first arm;
a second arm;
first pivot means for pivotally interconnecting the first and second arms at one end;
first ratchet means for permitting the arms to pivot away from each other and restrict pivoting of the arms towards each other;
a third arm connected as an extension of the first arm away from the first ratchet means;
means for freely extending the combined length of the first and third arms and resisting contraction of the combined length thereof;
a fourth arm connected as an extension of the second arm away from the first ratchet means;
means for freely extending the combined length of the second and fourth arms and resisting contraction of the combined length thereof; second pivot means for pivotally interconnecting the third and fourth arms at the ends thereof opposite from the first and second arms respectively; and
second ratchet means for permitting the third and fourth arms to pivot away from each other and inhibit pivoting of the third and fourth arms towards each other.
12. A surgical retractor as defined in claim 11 wherein each of the arms is elastically bendable in a plane transverse to the axes of the pivot means.
Claims (12)
1. A surgical retractor comprising: a first elongated elastic slat; a second elongated elastic slat facing the first slat; means for connecting each end of the first slat to the respective end of the second slat with mutual divergence of the two slats at each end so that the slats elastically bow in mutually spaced apart arcuate paths between their ends with the concave sides of the slats facing each other; and wherein each slat comprises a pair of interengaging side pieces slidable lengthwise relative to each other, each comprising a curved transverse web, the two webs having their concave sides facing each other; and ratchet means for freely extending the length of the first and second slats and resisting contraction thereof comprising a plurality of teeth spaced along the length near the center part of the concave side of one web and pawl means comprising at least one tooth near the center part of the concave side of the other web for engaging the ratchet teeth for substantially free lengthwise extension and restricted lengthwise contraction.
2. A surgical retractor as defined in claim 1 wherein one of the side pieces comprises a pair of opposed hook-like flanges extending lengthwise along the side edges on the concave side of the lip and wherein the web of the other side piece fits between the flanges.
3. A surgical retractor as defined in claim 1 wherein each of the side slats includes a pair of spaced apart ribs extending along the length thereof for forming a channel for receiving tissue adjacent a surgical incision or the like.
4. A surgical retractor comprising: a first elongated elastic slat; a second elongated elastic slat facing the first slat; ratchet means for freely extending the length of the first and second slats and resisting contraction thereof; a pivot for connecting each end of the first slat to the respective end of the second slat with mutual divergence of the two slats at each end so that the slats elastically bow in mutually spaced apart arcuate paths between their ends with the concave sides of the slats facing each other; and ratchet means for permitting the slats to pivot away from each other and restricting pivoting towards each other.
5. A surgical retractor comprising: a first elongated elastic slat; a second elongated elastic slat facing the first slat; ratchet means for freely extending the length of the firSt and second slats and resisting contraction thereof; a pivot connecting each end of the first slat to the respective end of the second slat with mutual divergence of the two slats at each end so that the slats elastically bow in mutually spaced apart arcuate paths between their ends with the concave sides of the slats facing each other; and ratchet means for permitting the slats to pivot away from each other and restricting pivoting towards each other; and wherein each pivot comprises; a first hinge half integral with one slat; a second hinge half integral with the other slat; and a pin for interconnecting the two hinge halves in pivoting engagement; and wherein the ratchet means comprises: an annular array of radially extending ratchet teeth on the face of one hinge half; and a tooth engaging pawl on the other hinge half.
6. A surgical retractor comprising: a first elongated elastically bendable slat; a second elongated elastically bendable slat facing the first slat; pivot means connecting each end of the first slat to the respective end of the second slat for pivoting the slats between a contracted position with the faces of the slats in relatively close proximity and an expanded position with the faces of the slats relatively spaced apart; and ratchet means associated with each pivot means for permitting the slats to pivot away from each other and restricting pivoting towards each other so that the slats elastically bow in mutually spaced apart arcuate paths between their ends with the concave sides of the slats facing each other.
7. A surgical retractor as defined in claim 6 wherein each ratchet means comprises: an annular array of ratchet teeth connected to one slat and extending at least part way around the pivot means; a pawl connected to the other slat and engaging the ratchet teeth; and means for disengaging the pawl from the teeth for permitting the slats to pivot towards each other.
8. A surgical retractor as defined in claim 6 wherein each of the elastic side slats is freely extensible in a longitudinal direction and includes means for limiting contraction in a lengthwise direction independent of the angle of the pivot.
9. A surgical retractor as defined in claim 8 wherein each of the elastic side slats comprises: a female member connected to one pivot means; a male member connected to the other pivot means and inserted into the female member, said male member being substantially free to withdraw from the female member in a longitudinal direction and being restricted from further insertion in the female member.
10. A surgical retractor as defined in claim 9 wherein the male and female members each include a bowed transverse web with respective concave faces thereof facing each other and interengaging ratchet means on the webs for permitting extension and limiting contraction and arranged so that further bowing of the webs disengages the ratchet means.
11. A surgical retractor comprising: a first arm; a second arm; first pivot means for pivotally interconnecting the first and second arms at one end; first ratchet means for permitting the arms to pivot away from each other and restrict pivoting of the arms towards each other; a third arm connected as an extension of the first arm away from the first ratchet means; means for freely extending the combined length of the first and third arms and resisting contraction of the combined length thereof; a fourth arm connected as an extension of the second arm away from the first ratchet means; means for freely extending the combined length of the second and fourth arms and resisting contraction of the combined length thereof; second pivot means for pivotally interconnecting the third and fourth arms at the ends thereof opposite from the first and second arms respectively; and second ratchet means for permitting the third and fourth arms to pivot away from each other and inhibIt pivoting of the third and fourth arms towards each other.
12. A surgical retractor as defined in claim 11 wherein each of the arms is elastically bendable in a plane transverse to the axes of the pivot means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US00230799A US3807393A (en) | 1972-03-01 | 1972-03-01 | Surgical retractor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US00230799A US3807393A (en) | 1972-03-01 | 1972-03-01 | Surgical retractor |
Publications (1)
Publication Number | Publication Date |
---|---|
US3807393A true US3807393A (en) | 1974-04-30 |
Family
ID=22866628
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00230799A Expired - Lifetime US3807393A (en) | 1972-03-01 | 1972-03-01 | Surgical retractor |
Country Status (1)
Country | Link |
---|---|
US (1) | US3807393A (en) |
Cited By (172)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5159921A (en) * | 1990-11-27 | 1992-11-03 | Hoover Rocklin L | Surgical retractor |
US5267553A (en) * | 1992-02-18 | 1993-12-07 | Graether John M | Pupil expander and method of using the same |
US5322054A (en) * | 1992-02-18 | 1994-06-21 | Graether John M | Pupil expander carrier and means for manipulating a pupil expander |
US5353786A (en) * | 1992-01-24 | 1994-10-11 | Wilk Peter J | Surgical lighting method |
US5427088A (en) * | 1992-02-18 | 1995-06-27 | Graether; John M. | Apparatus for inserting a pupil expander |
US5460170A (en) * | 1994-08-23 | 1995-10-24 | Hammerslag; Julius G. | Adjustable surgical retractor |
EP0698374A2 (en) * | 1994-07-19 | 1996-02-28 | International Surgical Technology, Inc. | Apparatus for direct access endoscopic surgery |
US5556417A (en) * | 1994-03-23 | 1996-09-17 | Eyefix, Inc. | Luminescent eye fixation device |
US5613939A (en) * | 1994-07-11 | 1997-03-25 | Ethicon, Inc. | Abdominal wall lift employing interconnecting bar members |
US5634884A (en) * | 1992-02-18 | 1997-06-03 | Graether Development Corporation | Apparatus for inserting a pupil expander |
US5723006A (en) * | 1991-02-22 | 1998-03-03 | Ledergerber; Walter J. | Breast implant introducer |
WO1999038440A1 (en) * | 1998-01-30 | 1999-08-05 | Edwards Lifesciences Corporation | Methods and apparatus for retracting tissue |
US5951466A (en) * | 1998-04-13 | 1999-09-14 | Viamedics, Llc | Self-seating surgical access device and method of gaining surgical access to a body cavity |
US5984867A (en) * | 1997-05-02 | 1999-11-16 | Heartport, Inc. | Surgical retractor and method of retracting |
US6185356B1 (en) | 1995-06-27 | 2001-02-06 | Lumitex, Inc. | Protective cover for a lighting device |
US6312377B1 (en) | 2000-04-06 | 2001-11-06 | Viamedics, Llc | Soft tissue compression shield and method of retracting tissue |
US6331157B2 (en) | 1999-04-15 | 2001-12-18 | Heartport, Inc. | Apparatus and methods for off-pump cardiac surgery |
US20020001202A1 (en) * | 1997-07-02 | 2002-01-03 | Williams Jeffrey B. | Light delivery systems and applications thereof |
US20020029045A1 (en) * | 2000-01-14 | 2002-03-07 | Bonutti Peter M. | Method of performing surgery |
DE20121029U1 (en) | 2001-12-28 | 2002-04-04 | Pommerrenig, Annemarie, 60528 Frankfurt | Self-anchoring wound spreader |
US20030036677A1 (en) * | 1996-02-20 | 2003-02-20 | Taylor Charles S. | Surgical devices for imposing a negative pressure to stabilize the cardiac tissue during surgery |
US20030095781A1 (en) * | 1997-07-02 | 2003-05-22 | Williams Jeffrey B. | Illuminated surgical retractor |
US6582364B2 (en) | 1999-10-14 | 2003-06-24 | Atropos Limited | Retractor and method for use |
US6591049B2 (en) | 1997-07-02 | 2003-07-08 | Lumitex, Inc. | Light delivery systems and applications thereof |
US20030191371A1 (en) * | 2002-04-05 | 2003-10-09 | Smith Maurice M. | Devices and methods for percutaneous tissue retraction and surgery |
US20040073090A1 (en) * | 1999-10-14 | 2004-04-15 | John Butler | Wound retractor |
US20040082958A1 (en) * | 2001-03-01 | 2004-04-29 | Michelson Gary K. | Dynamic guard and method for use thereof |
US20040092795A1 (en) * | 1998-12-01 | 2004-05-13 | Atropos Limited | Laparoscopic sealed access device |
US20040092796A1 (en) * | 1999-10-14 | 2004-05-13 | John Butler | Wound retractor system |
US6746396B1 (en) | 1999-04-13 | 2004-06-08 | Viamedics, Llc | Self-seating surgical access device and method of use |
US20040143169A1 (en) * | 2002-08-02 | 2004-07-22 | Branch Charles L. | Systems and techniques for illuminating a surgical space |
US6770078B2 (en) | 2000-01-14 | 2004-08-03 | Peter M. Bonutti | Movable knee implant and methods therefor |
US20040154624A1 (en) * | 2002-12-16 | 2004-08-12 | Frank Bonadio | Surgical device |
US20040215063A1 (en) * | 1993-09-06 | 2004-10-28 | Atropos Ltd. | Apparatus for use in surgery and a valve |
US20040236184A1 (en) * | 1998-05-01 | 2004-11-25 | Benetti Federico J. | Xyphoid access for surgical procedures |
US6846287B2 (en) | 1998-12-01 | 2005-01-25 | Atropos Limited | Surgical device for retracting and/or sealing an incision |
US20050038440A1 (en) * | 2002-12-13 | 2005-02-17 | Jeffrey Larson | Guided retractor and methods of use |
US20050090717A1 (en) * | 1998-12-01 | 2005-04-28 | Frank Bonadio | Wound retractor device |
US20050148823A1 (en) * | 2003-10-15 | 2005-07-07 | Trevor Vaugh | Surgical sealing device |
US20050149042A1 (en) * | 2003-01-15 | 2005-07-07 | Robert Metzger | Instrumentation for knee resection |
US20050159650A1 (en) * | 2003-12-18 | 2005-07-21 | Depuy Spine, Inc. | Surgical methods and surgical kits |
US20050155611A1 (en) * | 2003-11-05 | 2005-07-21 | Trevor Vaugh | Surgical sealing device |
US20050171408A1 (en) * | 1997-07-02 | 2005-08-04 | Parker Jeffery R. | Light delivery systems and applications thereof |
US20050192483A1 (en) * | 1998-12-01 | 2005-09-01 | Frank Bonadio | Device |
US6939297B2 (en) | 1999-04-15 | 2005-09-06 | Heartport, Inc. | Apparatus and methods for cardiac surgery |
US20050197537A1 (en) * | 1998-12-01 | 2005-09-08 | Frank Bonadio | Wound retractor device |
US20050203346A1 (en) * | 1999-10-14 | 2005-09-15 | Frank Bonadio | Wound retractor device |
US20050215862A1 (en) * | 2003-11-26 | 2005-09-29 | Jeffrey Larson | Guided retractor and methods of use |
US20050216085A1 (en) * | 2001-02-04 | 2005-09-29 | Michelson Gary K | Method for using lordotic guard with moveable extensions for creating an implantation space posteriorly in the lumbar spine |
US20060161050A1 (en) * | 2003-10-15 | 2006-07-20 | John Butler | A surgical sealing device |
US7104996B2 (en) | 2000-01-14 | 2006-09-12 | Marctec. Llc | Method of performing surgery |
US20060247498A1 (en) * | 1998-12-01 | 2006-11-02 | Frank Bonadio | Instrument access device |
US20070004968A1 (en) * | 1998-12-01 | 2007-01-04 | Frank Bonadio | Seal for a cannula |
US20070093695A1 (en) * | 1999-12-01 | 2007-04-26 | Frank Bonadio | Wound retractor |
US20070118175A1 (en) * | 2002-08-08 | 2007-05-24 | John Butler | Device |
US20070208349A1 (en) * | 2006-03-06 | 2007-09-06 | Howmedica Osteonics Corp. | Single use resection guide |
US20070208226A1 (en) * | 2006-01-18 | 2007-09-06 | Spotlight Surgical, Inc. | Retractor illumination system |
US20070213739A1 (en) * | 2001-03-01 | 2007-09-13 | Sdgi Holdings, Inc. | Method for using dynamic lordotic guard with movable extensions for creating an implantation space posteriorly in the lumbar spine |
US20070233140A1 (en) * | 2006-02-27 | 2007-10-04 | Biomet Manufacturing Corp. | Femoral adjustment device and associated method |
US20070282451A1 (en) * | 2006-05-31 | 2007-12-06 | Biomet Manufacturing Corp. | Prosthesis and implementation system |
US20070293729A1 (en) * | 2006-05-26 | 2007-12-20 | Spotlight Surgical, Inc. | Blade insert illuminator |
US20080021283A1 (en) * | 2006-07-24 | 2008-01-24 | Joseph Kuranda | Apparatus and method for retracting tissue of a patient during an orthopaedic surgical procedure |
US20080033251A1 (en) * | 2006-06-30 | 2008-02-07 | Ali Araghi | Surgical retractor and method of use |
US20080147075A1 (en) * | 2000-01-14 | 2008-06-19 | Peter M Bonutti | Minimally Invasive Surgical Systems and Methods |
US20080183046A1 (en) * | 2007-01-26 | 2008-07-31 | Wayne Boucher | Surgical retractor with removable blades and method of use |
US20080183044A1 (en) * | 2007-01-26 | 2008-07-31 | Dennis Colleran | Flexible surgical retractor and method of use |
US20080200767A1 (en) * | 2001-10-20 | 2008-08-21 | Applied Medical Resources Corporation | Wound retraction apparatus and method |
US20080287937A1 (en) * | 2007-05-15 | 2008-11-20 | Warsaw Orthopedic, Inc. | Surgical Instrument for Illuminating and Monitoring a Surgical Site |
US7488324B1 (en) | 2003-12-08 | 2009-02-10 | Biomet Manufacturing Corporation | Femoral guide for implanting a femoral knee prosthesis |
US20090112068A1 (en) * | 2007-10-24 | 2009-04-30 | Spotlight Surgical, Inc. | Blade Insert Illuminator |
JP2009523504A (en) * | 2006-01-17 | 2009-06-25 | ミナス, セオドア コロネオ, | Sac implant for maintaining the shape and / or position of the opening formed by capsulotomy |
US7695479B1 (en) | 2005-04-12 | 2010-04-13 | Biomet Manufacturing Corp. | Femoral sizer |
US7708741B1 (en) | 2001-08-28 | 2010-05-04 | Marctec, Llc | Method of preparing bones for knee replacement surgery |
US20100204548A1 (en) * | 2007-06-05 | 2010-08-12 | Frank Bonadio | Instrument Access Device |
US20100217088A1 (en) * | 2009-02-26 | 2010-08-26 | Heiges Bradley A | Surgical dilator, retractor and mounting pad |
US20100217090A1 (en) * | 2009-02-26 | 2010-08-26 | Heiges Bradley A | Retractor and mounting pad |
US7837690B2 (en) | 2003-01-15 | 2010-11-23 | Biomet Manufacturing Corp. | Method and apparatus for less invasive knee resection |
US7887542B2 (en) | 2003-01-15 | 2011-02-15 | Biomet Manufacturing Corp. | Method and apparatus for less invasive knee resection |
US20110201894A1 (en) * | 2010-02-12 | 2011-08-18 | O'prey Cormac | Expandable thoracic access port |
US20110201896A1 (en) * | 2010-02-12 | 2011-08-18 | O'prey Cormac | Expandable surgical access port |
US20110201892A1 (en) * | 2010-02-12 | 2011-08-18 | Fiona Middlemiss Haig | Expandable thoracic access port |
US20110213207A1 (en) * | 2006-01-05 | 2011-09-01 | Depuy Spine, Inc. | Non-rigid surgical retractor |
US8016755B2 (en) | 2000-10-19 | 2011-09-13 | Applied Medical Resources Corporation | Surgical access apparatus and method |
US20110224495A1 (en) * | 2010-03-12 | 2011-09-15 | Tyco Healthcare Group Lp | Surgical access port |
US8070752B2 (en) | 2006-02-27 | 2011-12-06 | Biomet Manufacturing Corp. | Patient specific alignment guide and inter-operative adjustment |
US8109873B2 (en) | 2007-05-11 | 2012-02-07 | Applied Medical Resources Corporation | Surgical retractor with gel pad |
US8157835B2 (en) | 2001-08-14 | 2012-04-17 | Applied Medical Resouces Corporation | Access sealing apparatus and method |
US8187177B2 (en) | 2003-09-17 | 2012-05-29 | Applied Medical Resources Corporation | Surgical instrument access device |
US8187178B2 (en) | 2007-06-05 | 2012-05-29 | Atropos Limited | Instrument access device |
US8226552B2 (en) | 2007-05-11 | 2012-07-24 | Applied Medical Resources Corporation | Surgical retractor |
US8235054B2 (en) | 2002-06-05 | 2012-08-07 | Applied Medical Resources Corporation | Wound retractor |
US8262568B2 (en) | 2008-10-13 | 2012-09-11 | Applied Medical Resources Corporation | Single port access system |
US8267858B2 (en) | 2005-10-14 | 2012-09-18 | Applied Medical Resources Corporation | Wound retractor with gel cap |
US20120245427A1 (en) * | 2011-03-23 | 2012-09-27 | Tyco Healthcare Group Lp | Surgical retractor including rotatable knobs |
US8343047B2 (en) | 2008-01-22 | 2013-01-01 | Applied Medical Resources Corporation | Surgical instrument access device |
US8375955B2 (en) | 2009-02-06 | 2013-02-19 | Atropos Limited | Surgical procedure |
US20130184535A1 (en) * | 2012-01-10 | 2013-07-18 | The Board Of Trustees Of The Leland Stanford Junior University | Expandable tissue retraction devices |
US8517935B2 (en) | 2006-01-04 | 2013-08-27 | DePuy Synthes Products, LLC | Surgical retractors and methods of minimally invasive surgery |
US8540628B2 (en) | 2010-02-12 | 2013-09-24 | Covidien Lp | Expandable thoracic access port |
US8550995B2 (en) | 2006-01-04 | 2013-10-08 | DePuy Synthes Products, LLC | Surgical access devices and methods of minimally invasive surgery |
US8551100B2 (en) | 2003-01-15 | 2013-10-08 | Biomet Manufacturing, Llc | Instrumentation for knee resection |
US8597181B1 (en) * | 2009-06-03 | 2013-12-03 | Larry Sasaki | Transparent surgical pelvic retractor |
US8597180B2 (en) | 2010-08-12 | 2013-12-03 | Covidien Lp | Expandable thoracic access port |
US8703034B2 (en) | 2001-08-14 | 2014-04-22 | Applied Medical Resources Corporation | Method of making a tack-free gel |
US8747439B2 (en) | 2000-03-13 | 2014-06-10 | P Tech, Llc | Method of using ultrasonic vibration to secure body tissue with fastening element |
US8758235B2 (en) | 2011-07-13 | 2014-06-24 | Cook Medical Technologies Llc | Foldable surgical retractor |
US8758236B2 (en) | 2011-05-10 | 2014-06-24 | Applied Medical Resources Corporation | Wound retractor |
US8808329B2 (en) | 1998-02-06 | 2014-08-19 | Bonutti Skeletal Innovations Llc | Apparatus and method for securing a portion of a body |
US8814902B2 (en) | 2000-05-03 | 2014-08-26 | Bonutti Skeletal Innovations Llc | Method of securing body tissue |
US8845687B2 (en) | 1996-08-19 | 2014-09-30 | Bonutti Skeletal Innovations Llc | Anchor for securing a suture |
US8845699B2 (en) | 1999-08-09 | 2014-09-30 | Bonutti Skeletal Innovations Llc | Method of securing tissue |
US8864658B2 (en) | 2010-08-12 | 2014-10-21 | Covidien Lp | Expandable surgical access port |
US8932214B2 (en) | 2003-02-25 | 2015-01-13 | Applied Medical Resources Corporation | Surgical access system |
US8961409B2 (en) | 2011-12-07 | 2015-02-24 | Covidien Lp | Thoracic access assembly |
US8961408B2 (en) | 2010-08-12 | 2015-02-24 | Covidien Lp | Expandable surgical access port |
US9039610B2 (en) | 2011-05-19 | 2015-05-26 | Covidien Lp | Thoracic access port |
US9119665B2 (en) | 2011-03-21 | 2015-09-01 | Covidien Lp | Thoracic access port including foldable anchor |
US9247955B2 (en) | 2010-08-12 | 2016-02-02 | Covidien Lp | Thoracic access port |
US20160051243A1 (en) * | 2009-02-26 | 2016-02-25 | Bhdl Holdings, Llc | Surgical dilator, retractor and mounting pad |
US9289200B2 (en) | 2010-10-01 | 2016-03-22 | Applied Medical Resources Corporation | Natural orifice surgery system |
US9289115B2 (en) | 2010-10-01 | 2016-03-22 | Applied Medical Resources Corporation | Natural orifice surgery system |
US20160100857A1 (en) * | 2014-04-23 | 2016-04-14 | Applied Medical Resources Corporation | System and methods for tissue removal |
US9351759B2 (en) | 2007-06-05 | 2016-05-31 | Atropos Limited | Instrument access device |
US20160262794A1 (en) * | 2014-11-13 | 2016-09-15 | Applied Medical Resources Corporation | Systems and methods for tissue removal |
US20170112484A1 (en) * | 2013-01-17 | 2017-04-27 | Abbott Cardiovascular Systems, Inc. | Access device for accessing tissue |
US9642608B2 (en) | 2014-07-18 | 2017-05-09 | Applied Medical Resources Corporation | Gels having permanent tack free coatings and method of manufacture |
US9700329B2 (en) | 2006-02-27 | 2017-07-11 | Biomet Manufacturing, Llc | Patient-specific orthopedic instruments |
US9743935B2 (en) | 2011-03-07 | 2017-08-29 | Biomet Manufacturing, Llc | Patient-specific femoral version guide |
US9770238B2 (en) | 2001-12-03 | 2017-09-26 | P Tech, Llc | Magnetic positioning apparatus |
US9795399B2 (en) | 2006-06-09 | 2017-10-24 | Biomet Manufacturing, Llc | Patient-specific knee alignment guide and associated method |
US9913734B2 (en) | 2006-02-27 | 2018-03-13 | Biomet Manufacturing, Llc | Patient-specific acetabular alignment guides |
US9949730B2 (en) | 2014-11-25 | 2018-04-24 | Applied Medical Resources Corporation | Circumferential wound retraction with support and guidance structures |
US9955960B2 (en) | 2011-02-26 | 2018-05-01 | Abbott Cardiovascular Systems, Inc. | Hinged tissue support device |
US9968376B2 (en) | 2010-11-29 | 2018-05-15 | Biomet Manufacturing, Llc | Patient-specific orthopedic instruments |
US9999414B2 (en) | 2014-01-24 | 2018-06-19 | Contour Surgical, Inc. | Retraction devices and methods of its use and manufacture |
US10159498B2 (en) | 2008-04-16 | 2018-12-25 | Biomet Manufacturing, Llc | Method and apparatus for manufacturing an implant |
US10172641B2 (en) | 2014-08-15 | 2019-01-08 | Applied Medical Resources Corporation | Natural orifice surgery system |
US10206695B2 (en) | 2006-02-27 | 2019-02-19 | Biomet Manufacturing, Llc | Femoral acetabular impingement guide |
US10278711B2 (en) | 2006-02-27 | 2019-05-07 | Biomet Manufacturing, Llc | Patient-specific femoral guide |
US10327809B2 (en) | 2016-02-29 | 2019-06-25 | Covidien Lp | Clip collar advanced fixation |
US10368908B2 (en) | 2015-09-15 | 2019-08-06 | Applied Medical Resources Corporation | Surgical robotic access system |
US10390845B2 (en) | 2006-02-27 | 2019-08-27 | Biomet Manufacturing, Llc | Patient-specific shoulder guide |
US10413287B2 (en) | 2009-02-26 | 2019-09-17 | Bhdl Holdings, Llc | Surgical dilator, retractor and mounting pad |
US10426492B2 (en) | 2006-02-27 | 2019-10-01 | Biomet Manufacturing, Llc | Patient specific alignment guide with cutting surface and laser indicator |
US10463352B2 (en) | 2014-08-18 | 2019-11-05 | Applied Medical Resources Corporation | Systems and methods for tissue containment and retrieval |
US10507029B2 (en) | 2006-02-27 | 2019-12-17 | Biomet Manufacturing, Llc | Patient-specific acetabular guides and associated instruments |
US10568659B2 (en) | 2015-04-23 | 2020-02-25 | Applied Medical Resources Corporation | Systems and methods for tissue removal |
US10575840B2 (en) | 2015-10-07 | 2020-03-03 | Applied Medical Resources Corporation | Wound retractor with multi-segment outer ring |
US10603179B2 (en) | 2006-02-27 | 2020-03-31 | Biomet Manufacturing, Llc | Patient-specific augments |
US10674896B2 (en) | 2016-09-12 | 2020-06-09 | Applied Medical Resources Corporation | Surgical robotic access system for irregularly shaped robotic actuators and associated robotic surgical instruments |
US10687797B2 (en) | 2008-12-18 | 2020-06-23 | Howmedica Osteonics Corp. | Lateral access system for the lumbar spine |
US10722310B2 (en) | 2017-03-13 | 2020-07-28 | Zimmer Biomet CMF and Thoracic, LLC | Virtual surgery planning system and method |
US10743937B2 (en) | 2006-02-27 | 2020-08-18 | Biomet Manufacturing, Llc | Backup surgical instrument system and method |
US10987128B2 (en) | 2017-03-22 | 2021-04-27 | Covidien Lp | Cannula assembly |
US11020145B2 (en) | 2017-08-17 | 2021-06-01 | Stryker European Holdings I, Llc | Expanders for rod retraction |
US11141191B2 (en) | 2020-01-15 | 2021-10-12 | Covidien Lp | Surgical access assembly |
US11166709B2 (en) | 2016-08-23 | 2021-11-09 | Stryker European Operations Holdings Llc | Instrumentation and methods for the implantation of spinal implants |
US11166708B2 (en) * | 2019-12-13 | 2021-11-09 | Alcon Inc. | Trans-scleral illumination system for vitreoretinal surgery |
US11191532B2 (en) | 2018-03-30 | 2021-12-07 | Stryker European Operations Holdings Llc | Lateral access retractor and core insertion |
WO2022076918A1 (en) * | 2020-10-08 | 2022-04-14 | Applied Medical Resources Corporation | Lighted surgical access system |
US11382711B2 (en) | 2008-08-13 | 2022-07-12 | Invuity, Inc. | Cyclo olefin polymer and copolymer medical devices |
US11413029B2 (en) | 2018-10-24 | 2022-08-16 | Stryker European Operations Holdings Llc | Anterior to psoas instrumentation |
US11464504B2 (en) | 2017-08-17 | 2022-10-11 | Stryker European Operations Holdings Llc | Lateral access bridges, shims and lighting including rod lighting |
US11471142B2 (en) | 2013-03-15 | 2022-10-18 | Applied Medical Resources Corporation | Mechanical gel surgical access device |
US11534313B2 (en) | 2006-02-27 | 2022-12-27 | Biomet Manufacturing, Llc | Patient-specific pre-operative planning |
US11554019B2 (en) | 2007-04-17 | 2023-01-17 | Biomet Manufacturing, Llc | Method and apparatus for manufacturing an implant |
US11564674B2 (en) | 2019-11-27 | 2023-01-31 | K2M, Inc. | Lateral access system and method of use |
US11596439B2 (en) | 2017-11-07 | 2023-03-07 | Prescient Surgical, Inc. | Methods and apparatus for prevention of surgical site infection |
US11871917B2 (en) | 2016-01-22 | 2024-01-16 | Applied Medical Resources Corporation | Systems and methods for tissue removal |
US12150639B2 (en) | 2018-09-20 | 2024-11-26 | Applied Medical Resources Corporation | Tissue removal containment systems |
US12251130B2 (en) | 2021-05-03 | 2025-03-18 | Covidien Lp | Surgical access device having a balloon and methods for manufacturing the same |
US12256917B2 (en) | 2022-07-15 | 2025-03-25 | Stryker European Operations Holdings Llc | Anterior to psoas instrumentation |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US447761A (en) * | 1891-03-10 | Speculum | ||
US2473266A (en) * | 1946-06-12 | 1949-06-14 | David J Wexler | Self-retaining abdominal retractor |
US2812758A (en) * | 1955-07-26 | 1957-11-12 | John C Blumenschein | Surgical retractor |
US3129706A (en) * | 1962-11-13 | 1964-04-21 | Jr Walker Reynolds | Surgical retractor |
US3680546A (en) * | 1970-10-30 | 1972-08-01 | Instrumentation For Medicine I | Illuminated surgical retractor |
-
1972
- 1972-03-01 US US00230799A patent/US3807393A/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US447761A (en) * | 1891-03-10 | Speculum | ||
US2473266A (en) * | 1946-06-12 | 1949-06-14 | David J Wexler | Self-retaining abdominal retractor |
US2812758A (en) * | 1955-07-26 | 1957-11-12 | John C Blumenschein | Surgical retractor |
US3129706A (en) * | 1962-11-13 | 1964-04-21 | Jr Walker Reynolds | Surgical retractor |
US3680546A (en) * | 1970-10-30 | 1972-08-01 | Instrumentation For Medicine I | Illuminated surgical retractor |
Cited By (399)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5159921A (en) * | 1990-11-27 | 1992-11-03 | Hoover Rocklin L | Surgical retractor |
US5723006A (en) * | 1991-02-22 | 1998-03-03 | Ledergerber; Walter J. | Breast implant introducer |
US5353786A (en) * | 1992-01-24 | 1994-10-11 | Wilk Peter J | Surgical lighting method |
US5267553A (en) * | 1992-02-18 | 1993-12-07 | Graether John M | Pupil expander and method of using the same |
US5322054A (en) * | 1992-02-18 | 1994-06-21 | Graether John M | Pupil expander carrier and means for manipulating a pupil expander |
US5427088A (en) * | 1992-02-18 | 1995-06-27 | Graether; John M. | Apparatus for inserting a pupil expander |
US5634884A (en) * | 1992-02-18 | 1997-06-03 | Graether Development Corporation | Apparatus for inserting a pupil expander |
US20040215063A1 (en) * | 1993-09-06 | 2004-10-28 | Atropos Ltd. | Apparatus for use in surgery and a valve |
US8752553B2 (en) | 1993-09-06 | 2014-06-17 | Atropos Limited | Apparatus for use in surgery and a valve |
US5556417A (en) * | 1994-03-23 | 1996-09-17 | Eyefix, Inc. | Luminescent eye fixation device |
US5613939A (en) * | 1994-07-11 | 1997-03-25 | Ethicon, Inc. | Abdominal wall lift employing interconnecting bar members |
EP0698374A2 (en) * | 1994-07-19 | 1996-02-28 | International Surgical Technology, Inc. | Apparatus for direct access endoscopic surgery |
EP0698374A3 (en) * | 1994-07-19 | 1996-03-13 | Int Surgical Tech Inc | |
US5460170A (en) * | 1994-08-23 | 1995-10-24 | Hammerslag; Julius G. | Adjustable surgical retractor |
US6185356B1 (en) | 1995-06-27 | 2001-02-06 | Lumitex, Inc. | Protective cover for a lighting device |
US6504985B2 (en) | 1995-06-27 | 2003-01-07 | Lumitex, Inc. | Illuminated surgical retractor |
US20070149844A1 (en) * | 1996-02-20 | 2007-06-28 | Benetti Federico J | Surgical devices for imposing a negative pressure to stabilize the cardiac tissue during surgery |
US20110172568A1 (en) * | 1996-02-20 | 2011-07-14 | Taylor Charles S | Surgical Devices for Imposing a Negative Pressure to Stabilize the Cardiac Tissue During Surgery |
US20030036677A1 (en) * | 1996-02-20 | 2003-02-20 | Taylor Charles S. | Surgical devices for imposing a negative pressure to stabilize the cardiac tissue during surgery |
US7335158B2 (en) | 1996-02-20 | 2008-02-26 | Cardiothoracic Systems, Inc. | Surgical devices for imposing a negative pressure to stabilize the cardiac tissue during surgery |
US20080114201A1 (en) * | 1996-02-20 | 2008-05-15 | Taylor Charles S | Surgical devices for imposing a negative pressure to stabilize the cardiac tissue during surgery |
US8382654B2 (en) | 1996-02-20 | 2013-02-26 | Maquet Cardiovascular Llc | Surgical devices for imposing a negative pressure to stabilize the cardiac tissue during surgery |
US8845687B2 (en) | 1996-08-19 | 2014-09-30 | Bonutti Skeletal Innovations Llc | Anchor for securing a suture |
US5984867A (en) * | 1997-05-02 | 1999-11-16 | Heartport, Inc. | Surgical retractor and method of retracting |
US6416468B2 (en) | 1997-05-02 | 2002-07-09 | Heartport, Inc. | Method of retracting a portion of a patient's body |
US7306559B2 (en) | 1997-07-02 | 2007-12-11 | Lumitex, Inc. | Illuminated surgical retractor |
US20020001202A1 (en) * | 1997-07-02 | 2002-01-03 | Williams Jeffrey B. | Light delivery systems and applications thereof |
US20060217596A1 (en) * | 1997-07-02 | 2006-09-28 | Lumitex, Inc. | Illuminated surgical retractor |
US6591049B2 (en) | 1997-07-02 | 2003-07-08 | Lumitex, Inc. | Light delivery systems and applications thereof |
US20050171408A1 (en) * | 1997-07-02 | 2005-08-04 | Parker Jeffery R. | Light delivery systems and applications thereof |
US20030095781A1 (en) * | 1997-07-02 | 2003-05-22 | Williams Jeffrey B. | Illuminated surgical retractor |
US6739744B2 (en) | 1997-07-02 | 2004-05-25 | Lumitex, Inc. | Light delivery systems and applications thereof |
WO1999038440A1 (en) * | 1998-01-30 | 1999-08-05 | Edwards Lifesciences Corporation | Methods and apparatus for retracting tissue |
US8808329B2 (en) | 1998-02-06 | 2014-08-19 | Bonutti Skeletal Innovations Llc | Apparatus and method for securing a portion of a body |
US5951466A (en) * | 1998-04-13 | 1999-09-14 | Viamedics, Llc | Self-seating surgical access device and method of gaining surgical access to a body cavity |
US6488620B1 (en) | 1998-04-13 | 2002-12-03 | Viamedics, Llc | Self-seating surgical access device |
US20040236184A1 (en) * | 1998-05-01 | 2004-11-25 | Benetti Federico J. | Xyphoid access for surgical procedures |
US20050090717A1 (en) * | 1998-12-01 | 2005-04-28 | Frank Bonadio | Wound retractor device |
US7559893B2 (en) | 1998-12-01 | 2009-07-14 | Atropos Limited | Wound retractor device |
US8317691B2 (en) | 1998-12-01 | 2012-11-27 | Atropos Limited | Wound retractor device |
US9757110B2 (en) | 1998-12-01 | 2017-09-12 | Atropos Limited | Instrument access device |
US8888693B2 (en) | 1998-12-01 | 2014-11-18 | Atropos Limited | Instrument access device |
US10278688B2 (en) | 1998-12-01 | 2019-05-07 | Atropos Limited | Wound retractor device |
US6846287B2 (en) | 1998-12-01 | 2005-01-25 | Atropos Limited | Surgical device for retracting and/or sealing an incision |
US9700296B2 (en) | 1998-12-01 | 2017-07-11 | Atropos Limited | Wound retractor device |
US8734336B2 (en) | 1998-12-01 | 2014-05-27 | Atropos Limited | Wound retractor device |
US20040092795A1 (en) * | 1998-12-01 | 2004-05-13 | Atropos Limited | Laparoscopic sealed access device |
US20050090716A1 (en) * | 1998-12-01 | 2005-04-28 | Atropos Limited | Surgical device for retracting and/or sealing an incision |
US20060247498A1 (en) * | 1998-12-01 | 2006-11-02 | Frank Bonadio | Instrument access device |
US7081089B2 (en) | 1998-12-01 | 2006-07-25 | Atropos Limited | Surgical device for retracting and/or sealing an incision |
US7300399B2 (en) | 1998-12-01 | 2007-11-27 | Atropos Limited | Surgical device for retracting and/or sealing an incision |
US7537564B2 (en) | 1998-12-01 | 2009-05-26 | Atropos Limited | Wound retractor device |
US7998068B2 (en) | 1998-12-01 | 2011-08-16 | Atropos Limited | Instrument access device |
US20070203398A1 (en) * | 1998-12-01 | 2007-08-30 | Atropos Limited | Surgical device for retracting and/or sealing an incision |
US20050192483A1 (en) * | 1998-12-01 | 2005-09-01 | Frank Bonadio | Device |
US20070004968A1 (en) * | 1998-12-01 | 2007-01-04 | Frank Bonadio | Seal for a cannula |
US20050197537A1 (en) * | 1998-12-01 | 2005-09-08 | Frank Bonadio | Wound retractor device |
US20090292176A1 (en) * | 1998-12-01 | 2009-11-26 | Atropos Limited | Wound retractor device |
US20100063362A1 (en) * | 1998-12-01 | 2010-03-11 | Frank Bonadio | Wound retractor device |
US9095300B2 (en) | 1998-12-01 | 2015-08-04 | Atropos Limited | Wound retractor device |
US20050240082A1 (en) * | 1998-12-01 | 2005-10-27 | Atropos Limited | Surgical device for retracting and/or sealing an incision |
US6746396B1 (en) | 1999-04-13 | 2004-06-08 | Viamedics, Llc | Self-seating surgical access device and method of use |
US6939297B2 (en) | 1999-04-15 | 2005-09-06 | Heartport, Inc. | Apparatus and methods for cardiac surgery |
US6331157B2 (en) | 1999-04-15 | 2001-12-18 | Heartport, Inc. | Apparatus and methods for off-pump cardiac surgery |
US20020016527A1 (en) * | 1999-04-15 | 2002-02-07 | Hancock Andrew H. | Apparatus and methods for off-pump cardiac surgery |
US8845699B2 (en) | 1999-08-09 | 2014-09-30 | Bonutti Skeletal Innovations Llc | Method of securing tissue |
US20040073090A1 (en) * | 1999-10-14 | 2004-04-15 | John Butler | Wound retractor |
US7867164B2 (en) | 1999-10-14 | 2011-01-11 | Atropos Limited | Wound retractor system |
US20040049100A1 (en) * | 1999-10-14 | 2004-03-11 | Atropos Limited | Retractor |
US8986202B2 (en) | 1999-10-14 | 2015-03-24 | Atropos Limited | Retractor |
US20110092778A1 (en) * | 1999-10-14 | 2011-04-21 | Atropos Limited | Wound retractor system |
US6582364B2 (en) | 1999-10-14 | 2003-06-24 | Atropos Limited | Retractor and method for use |
US7540839B2 (en) | 1999-10-14 | 2009-06-02 | Atropos Limited | Wound retractor |
US9277908B2 (en) | 1999-10-14 | 2016-03-08 | Atropos Limited | Retractor |
US20040092796A1 (en) * | 1999-10-14 | 2004-05-13 | John Butler | Wound retractor system |
US20050203346A1 (en) * | 1999-10-14 | 2005-09-15 | Frank Bonadio | Wound retractor device |
US7445597B2 (en) | 1999-10-14 | 2008-11-04 | Atropos Limited | Retractor |
US8740785B2 (en) | 1999-10-14 | 2014-06-03 | Atropos Limited | Wound retractor system |
US8021296B2 (en) | 1999-12-01 | 2011-09-20 | Atropos Limited | Wound retractor |
US8657741B2 (en) | 1999-12-01 | 2014-02-25 | Atropos Limited | Wound retractor |
US20070093695A1 (en) * | 1999-12-01 | 2007-04-26 | Frank Bonadio | Wound retractor |
US9192459B2 (en) | 2000-01-14 | 2015-11-24 | Bonutti Skeletal Innovations Llc | Method of performing total knee arthroplasty |
US7806897B1 (en) | 2000-01-14 | 2010-10-05 | Marctec, Llc | Knee arthroplasty and preservation of the quadriceps mechanism |
US7806896B1 (en) | 2000-01-14 | 2010-10-05 | Marctec, Llc | Knee arthroplasty method |
US6702821B2 (en) | 2000-01-14 | 2004-03-09 | The Bonutti 2003 Trust A | Instrumentation for minimally invasive joint replacement and methods for using same |
US8784495B2 (en) | 2000-01-14 | 2014-07-22 | Bonutti Skeletal Innovations Llc | Segmental knee arthroplasty |
US20020029045A1 (en) * | 2000-01-14 | 2002-03-07 | Bonutti Peter M. | Method of performing surgery |
US7615054B1 (en) | 2000-01-14 | 2009-11-10 | Martec, LLC | Bicompartmental knee implant and method |
US6770078B2 (en) | 2000-01-14 | 2004-08-03 | Peter M. Bonutti | Movable knee implant and methods therefor |
US9795394B2 (en) | 2000-01-14 | 2017-10-24 | Bonutti Skeletal Innovations Llc | Method for placing implant using robotic system |
US20080147075A1 (en) * | 2000-01-14 | 2008-06-19 | Peter M Bonutti | Minimally Invasive Surgical Systems and Methods |
US7837736B2 (en) | 2000-01-14 | 2010-11-23 | Marctec, Llc | Minimally invasive surgical systems and methods |
US7959635B1 (en) | 2000-01-14 | 2011-06-14 | Marctec, Llc. | Limited incision total joint replacement methods |
US7635390B1 (en) | 2000-01-14 | 2009-12-22 | Marctec, Llc | Joint replacement component having a modular articulating surface |
US7828852B2 (en) | 2000-01-14 | 2010-11-09 | Marctec, Llc. | Inlaid articular implant |
US9101443B2 (en) | 2000-01-14 | 2015-08-11 | Bonutti Skeletal Innovations Llc | Methods for robotic arthroplasty |
US8632552B2 (en) | 2000-01-14 | 2014-01-21 | Bonutti Skeletal Innovations Llc | Method of preparing a femur and tibia in knee arthroplasty |
US7749229B1 (en) | 2000-01-14 | 2010-07-06 | Marctec, Llc | Total knee arthroplasty through shortened incision |
US7510557B1 (en) | 2000-01-14 | 2009-03-31 | Bonutti Research Inc. | Cutting guide |
US8133229B1 (en) | 2000-01-14 | 2012-03-13 | Marctec, Llc. | Knee arthroplasty method |
US7708740B1 (en) | 2000-01-14 | 2010-05-04 | Marctec, Llc | Method for total knee arthroplasty and resecting bone in situ |
US7892236B1 (en) | 2000-01-14 | 2011-02-22 | Marctec, Llc | System and method for total joint replacement |
US8425522B2 (en) | 2000-01-14 | 2013-04-23 | Bonutti Skeletal Innovations Llc | Joint replacement method |
US7931690B1 (en) | 2000-01-14 | 2011-04-26 | Marctec, Llc | Method of resurfacing an articular surface of a bone |
US7104996B2 (en) | 2000-01-14 | 2006-09-12 | Marctec. Llc | Method of performing surgery |
US8747439B2 (en) | 2000-03-13 | 2014-06-10 | P Tech, Llc | Method of using ultrasonic vibration to secure body tissue with fastening element |
US6312377B1 (en) | 2000-04-06 | 2001-11-06 | Viamedics, Llc | Soft tissue compression shield and method of retracting tissue |
US8814902B2 (en) | 2000-05-03 | 2014-08-26 | Bonutti Skeletal Innovations Llc | Method of securing body tissue |
US8105234B2 (en) | 2000-10-19 | 2012-01-31 | Applied Medical Resources Corporation | Surgical access apparatus and method |
US8911366B2 (en) | 2000-10-19 | 2014-12-16 | Applied Medical Resources Corporation | Surgical access apparatus and method |
US8016755B2 (en) | 2000-10-19 | 2011-09-13 | Applied Medical Resources Corporation | Surgical access apparatus and method |
US8672839B2 (en) | 2000-10-19 | 2014-03-18 | Applied Medical Resource Corporation | Surgical access apparatus and method |
US8070676B2 (en) | 2000-10-19 | 2011-12-06 | Applied Medical Resources Corporation | Surgical access apparatus and method |
US8496581B2 (en) | 2000-10-19 | 2013-07-30 | Applied Medical Resources Corporation | Surgical access apparatus and method |
US20050216085A1 (en) * | 2001-02-04 | 2005-09-29 | Michelson Gary K | Method for using lordotic guard with moveable extensions for creating an implantation space posteriorly in the lumbar spine |
US8496664B2 (en) | 2001-02-04 | 2013-07-30 | Warsaw Orthopedic, Inc. | Method for using lordotic guard with moveable extensions for creating an implantation space posteriorly in the lumbar spine |
US9597202B2 (en) | 2001-03-01 | 2017-03-21 | Warsaw Orthopedic, Inc. | Method for using a guard for creating a socket posteriorly in the spine |
US20070213739A1 (en) * | 2001-03-01 | 2007-09-13 | Sdgi Holdings, Inc. | Method for using dynamic lordotic guard with movable extensions for creating an implantation space posteriorly in the lumbar spine |
US20070016220A1 (en) * | 2001-03-01 | 2007-01-18 | Sdgi Holding, Inc. | Method for using dynamic lordotic guard |
US7998143B2 (en) | 2001-03-01 | 2011-08-16 | Warsaw Orthopedic, Inc. | Dynamic guard |
US7909832B2 (en) | 2001-03-01 | 2011-03-22 | Warsaw Orthopedic, Inc. | Retractor for percutaneous surgery in a patient and method for use thereof |
US20050043741A1 (en) * | 2001-03-01 | 2005-02-24 | Michelson Gary K. | Retractor for percutaneous surgery in a patient and method for use thereof |
US7955360B2 (en) | 2001-03-01 | 2011-06-07 | Warsaw Orthopedic, Inc. | Method for using dynamic lordotic guard with movable extensions for creating an implantation space posteriorly in the lumbar spine |
US20040082958A1 (en) * | 2001-03-01 | 2004-04-29 | Michelson Gary K. | Dynamic guard and method for use thereof |
US7867238B2 (en) | 2001-03-01 | 2011-01-11 | Warsaw Orthopedic, Inc. | Method for using dynamic lordotic guard |
US9211198B2 (en) | 2001-03-01 | 2015-12-15 | Warsaw Orthopedic, Inc. | Method for using a guard for creating a socket posteriorly in the lumbar spine |
US8764755B2 (en) | 2001-03-01 | 2014-07-01 | Warsaw Orthopedic, Inc. | Method for using a guard for creating a socket posteriorly in the lumbar spine |
US8372079B2 (en) | 2001-03-01 | 2013-02-12 | Warsaw Orthopedic, Inc. | Dynamic guard and method for use thereof |
US8157835B2 (en) | 2001-08-14 | 2012-04-17 | Applied Medical Resouces Corporation | Access sealing apparatus and method |
US9669153B2 (en) | 2001-08-14 | 2017-06-06 | Applied Medical Resources Corporation | Method of manufacturing a tack-free gel for a surgical device |
US8870904B2 (en) | 2001-08-14 | 2014-10-28 | Applied Medical Resources Corporation | Access sealing apparatus and method |
US8703034B2 (en) | 2001-08-14 | 2014-04-22 | Applied Medical Resources Corporation | Method of making a tack-free gel |
US9878140B2 (en) | 2001-08-14 | 2018-01-30 | Applied Medical Resources Corporation | Access sealing apparatus and method |
US8641726B2 (en) | 2001-08-28 | 2014-02-04 | Bonutti Skeletal Innovations Llc | Method for robotic arthroplasty using navigation |
US8858557B2 (en) | 2001-08-28 | 2014-10-14 | Bonutti Skeletal Innovations Llc | Method of preparing a femur and tibia in knee arthroplasty |
US9060797B2 (en) | 2001-08-28 | 2015-06-23 | Bonutti Skeletal Innovations Llc | Method of preparing a femur and tibia in knee arthroplasty |
US10321918B2 (en) | 2001-08-28 | 2019-06-18 | Bonutti Skeletal Innovations Llc | Methods for robotic surgery using a cannula |
US9763683B2 (en) | 2001-08-28 | 2017-09-19 | Bonutti Skeletal Innovations Llc | Method for performing surgical procedures using optical cutting guides |
US10231739B1 (en) | 2001-08-28 | 2019-03-19 | Bonutti Skeletal Innovations Llc | System and method for robotic surgery |
US10470780B2 (en) | 2001-08-28 | 2019-11-12 | Bonutti Skeletal Innovations Llc | Systems and methods for ligament balancing in robotic surgery |
US7708741B1 (en) | 2001-08-28 | 2010-05-04 | Marctec, Llc | Method of preparing bones for knee replacement surgery |
US8834490B2 (en) | 2001-08-28 | 2014-09-16 | Bonutti Skeletal Innovations Llc | Method for robotic arthroplasty using navigation |
US8840629B2 (en) | 2001-08-28 | 2014-09-23 | Bonutti Skeletal Innovations Llc | Robotic arthroplasty system including navigation |
US8623030B2 (en) | 2001-08-28 | 2014-01-07 | Bonutti Skeletal Innovations Llc | Robotic arthroplasty system including navigation |
US20080200767A1 (en) * | 2001-10-20 | 2008-08-21 | Applied Medical Resources Corporation | Wound retraction apparatus and method |
US8388526B2 (en) | 2001-10-20 | 2013-03-05 | Applied Medical Resources Corporation | Wound retraction apparatus and method |
US9770238B2 (en) | 2001-12-03 | 2017-09-26 | P Tech, Llc | Magnetic positioning apparatus |
DE20121029U1 (en) | 2001-12-28 | 2002-04-04 | Pommerrenig, Annemarie, 60528 Frankfurt | Self-anchoring wound spreader |
AU2003262144B2 (en) * | 2002-04-05 | 2006-12-14 | Warsaw Orthopedic, Inc. | Devices and methods for tissue retraction |
US20070270655A1 (en) * | 2002-04-05 | 2007-11-22 | Smith Maurice M | Devices and methods for percutaneous tissue retraction and surgery |
US7261688B2 (en) * | 2002-04-05 | 2007-08-28 | Warsaw Orthopedic, Inc. | Devices and methods for percutaneous tissue retraction and surgery |
USRE46403E1 (en) * | 2002-04-05 | 2017-05-16 | Warsaw Orthopedic, Inc. | Devices and methods for percutaneous tissue retraction and surgery |
US20030191371A1 (en) * | 2002-04-05 | 2003-10-09 | Smith Maurice M. | Devices and methods for percutaneous tissue retraction and surgery |
US20070118023A1 (en) * | 2002-04-05 | 2007-05-24 | Smith Maurice M | Devices and methods for percutaneous tissue retraction and surgery |
US7988624B2 (en) | 2002-04-05 | 2011-08-02 | Warsaw Orthopedic, Inc. | Devices and methods for percutaneous tissue retraction and surgery |
US7981030B2 (en) | 2002-04-05 | 2011-07-19 | Warsaw Orthopedic, Inc. | Devices and methods for percutaneous tissue retraction and surgery |
USRE46148E1 (en) | 2002-04-05 | 2016-09-20 | Warsaw Orthopedic, Inc. | Devices and methods for percutaneous tissue retraction and surgery |
USRE46134E1 (en) | 2002-04-05 | 2016-09-06 | Warsaw Othopedic, Inc. | Devices and methods for percutaneous tissue retraction and surgery |
US8235054B2 (en) | 2002-06-05 | 2012-08-07 | Applied Medical Resources Corporation | Wound retractor |
US9561024B2 (en) | 2002-06-05 | 2017-02-07 | Applied Medical Resources Corporation | Wound retractor |
US8973583B2 (en) | 2002-06-05 | 2015-03-10 | Applied Medical Resources Corporation | Wound retractor |
US10507017B2 (en) | 2002-06-05 | 2019-12-17 | Applied Medical Resources Corporation | Wound retractor |
US7556601B2 (en) * | 2002-08-02 | 2009-07-07 | Warsaw Orthopedic, Inc. | Systems and techniques for illuminating a surgical space |
US20040143169A1 (en) * | 2002-08-02 | 2004-07-22 | Branch Charles L. | Systems and techniques for illuminating a surgical space |
US20070118175A1 (en) * | 2002-08-08 | 2007-05-24 | John Butler | Device |
US10405883B2 (en) | 2002-08-08 | 2019-09-10 | Atropos Limited | Surgical device |
US9271753B2 (en) | 2002-08-08 | 2016-03-01 | Atropos Limited | Surgical device |
US9737335B2 (en) | 2002-08-08 | 2017-08-22 | Atropos Limited | Device |
US9307976B2 (en) | 2002-10-04 | 2016-04-12 | Atropos Limited | Wound retractor |
EP1561137B1 (en) * | 2002-11-14 | 2011-06-01 | Lumitex, Inc. | Illuminated surgical retractor |
EP1561137A1 (en) * | 2002-11-14 | 2005-08-10 | Lumitex, Inc. | Illuminated surgical retractor |
US20050038440A1 (en) * | 2002-12-13 | 2005-02-17 | Jeffrey Larson | Guided retractor and methods of use |
US7014608B2 (en) | 2002-12-13 | 2006-03-21 | Synthes Spine Company, Lp | Guided retractor and methods of use |
US20040154624A1 (en) * | 2002-12-16 | 2004-08-12 | Frank Bonadio | Surgical device |
US9023053B2 (en) | 2003-01-15 | 2015-05-05 | Biomet Manufacturing, Llc | Instrumentation for knee resection |
US7837690B2 (en) | 2003-01-15 | 2010-11-23 | Biomet Manufacturing Corp. | Method and apparatus for less invasive knee resection |
US7789885B2 (en) | 2003-01-15 | 2010-09-07 | Biomet Manufacturing Corp. | Instrumentation for knee resection |
US20050149042A1 (en) * | 2003-01-15 | 2005-07-07 | Robert Metzger | Instrumentation for knee resection |
US8551100B2 (en) | 2003-01-15 | 2013-10-08 | Biomet Manufacturing, Llc | Instrumentation for knee resection |
US7887542B2 (en) | 2003-01-15 | 2011-02-15 | Biomet Manufacturing Corp. | Method and apparatus for less invasive knee resection |
US9693788B2 (en) | 2003-01-15 | 2017-07-04 | Biomet Manufacturing, Llc | Instrumentation for knee resection |
US8518047B2 (en) | 2003-01-15 | 2013-08-27 | Biomet Manufacturing, Llc | Method and apparatus for less invasive knee resection |
US8870883B2 (en) | 2003-01-15 | 2014-10-28 | Biomet Manufacturing, Llc | Method for less invasive knee resection |
US9295459B2 (en) | 2003-02-25 | 2016-03-29 | Applied Medical Resources Corporation | Surgical access system |
US8932214B2 (en) | 2003-02-25 | 2015-01-13 | Applied Medical Resources Corporation | Surgical access system |
US8357086B2 (en) | 2003-09-17 | 2013-01-22 | Applied Medical Resources Corporation | Surgical instrument access device |
US8187177B2 (en) | 2003-09-17 | 2012-05-29 | Applied Medical Resources Corporation | Surgical instrument access device |
US20060161050A1 (en) * | 2003-10-15 | 2006-07-20 | John Butler | A surgical sealing device |
US20050148823A1 (en) * | 2003-10-15 | 2005-07-07 | Trevor Vaugh | Surgical sealing device |
US20050155611A1 (en) * | 2003-11-05 | 2005-07-21 | Trevor Vaugh | Surgical sealing device |
US20050215862A1 (en) * | 2003-11-26 | 2005-09-29 | Jeffrey Larson | Guided retractor and methods of use |
US7144368B2 (en) | 2003-11-26 | 2006-12-05 | Synthes Spine Company, Lp | Guided retractor and methods of use |
US7488324B1 (en) | 2003-12-08 | 2009-02-10 | Biomet Manufacturing Corporation | Femoral guide for implanting a femoral knee prosthesis |
US8123758B2 (en) | 2003-12-08 | 2012-02-28 | Biomet Manufacturing Corp. | Femoral guide for implanting a femoral knee prosthesis |
US8834486B2 (en) | 2003-12-08 | 2014-09-16 | Biomet Manufacturing, Llc | Femoral guide for implanting a femoral knee prosthesis |
US8622897B2 (en) | 2003-12-18 | 2014-01-07 | DePuy Synthes Products, LLC | Surgical methods and surgical kits |
US10869657B2 (en) | 2003-12-18 | 2020-12-22 | DePuy Synthes Products, Inc. | Surgical retractor systems and illuminated cannulae |
US20090018400A1 (en) * | 2003-12-18 | 2009-01-15 | Depuy Spine, Inc. | Surgical retractor systems and illuminated cannulae |
US8038611B2 (en) | 2003-12-18 | 2011-10-18 | Depuy Spine, Inc. | Surgical methods and surgical kits |
US20050159650A1 (en) * | 2003-12-18 | 2005-07-21 | Depuy Spine, Inc. | Surgical methods and surgical kits |
US8602984B2 (en) * | 2003-12-18 | 2013-12-10 | DePuy Synthes Products, LLC | Surgical retractor systems and illuminated cannulae |
US7695479B1 (en) | 2005-04-12 | 2010-04-13 | Biomet Manufacturing Corp. | Femoral sizer |
US8313431B2 (en) | 2005-10-14 | 2012-11-20 | Applied Medical Resources Corporation | Split hoop wound retractor |
US8414487B2 (en) | 2005-10-14 | 2013-04-09 | Applied Medical Resources Corporation | Circular surgical retractor |
US8308639B2 (en) | 2005-10-14 | 2012-11-13 | Applied Medical Resources Corporation | Split hoop wound retractor with gel pad |
US9017254B2 (en) | 2005-10-14 | 2015-04-28 | Applied Medical Resources Corporation | Hand access laparoscopic device |
US8647265B2 (en) | 2005-10-14 | 2014-02-11 | Applied Medical Resources Corporation | Hand access laparoscopic device |
US8267858B2 (en) | 2005-10-14 | 2012-09-18 | Applied Medical Resources Corporation | Wound retractor with gel cap |
US9649102B2 (en) | 2005-10-14 | 2017-05-16 | Applied Medical Resources Corporation | Wound retractor with split hoops |
US9101354B2 (en) | 2005-10-14 | 2015-08-11 | Applied Medical Resources Corporation | Wound retractor with gel cap |
US9474519B2 (en) | 2005-10-14 | 2016-10-25 | Applied Medical Resources Corporation | Hand access laparoscopic device |
US8517935B2 (en) | 2006-01-04 | 2013-08-27 | DePuy Synthes Products, LLC | Surgical retractors and methods of minimally invasive surgery |
US8550995B2 (en) | 2006-01-04 | 2013-10-08 | DePuy Synthes Products, LLC | Surgical access devices and methods of minimally invasive surgery |
US9254126B2 (en) | 2006-01-05 | 2016-02-09 | DePuy Synthes Products, Inc. | Non-rigid surgical retractor |
US20110213207A1 (en) * | 2006-01-05 | 2011-09-01 | Depuy Spine, Inc. | Non-rigid surgical retractor |
US9622857B2 (en) | 2006-01-17 | 2017-04-18 | Minas Theodore Coroneo | Method of maintaining the structure of an opening in the anterior or posterior capsule |
JP2009523504A (en) * | 2006-01-17 | 2009-06-25 | ミナス, セオドア コロネオ, | Sac implant for maintaining the shape and / or position of the opening formed by capsulotomy |
US9271709B2 (en) | 2006-01-18 | 2016-03-01 | Invuity, Inc. | Retractor illumination system |
US8409088B2 (en) | 2006-01-18 | 2013-04-02 | Invuity, Inc. | Retractor illumination system |
US9271710B2 (en) | 2006-01-18 | 2016-03-01 | Invuity, Inc. | Retractor illumination system |
US9055935B2 (en) | 2006-01-18 | 2015-06-16 | Invuity, Inc. | Retractor illumination system |
US20070208226A1 (en) * | 2006-01-18 | 2007-09-06 | Spotlight Surgical, Inc. | Retractor illumination system |
US9844364B2 (en) | 2006-01-18 | 2017-12-19 | Invuity, Inc. | Retractor illumination system |
US9913734B2 (en) | 2006-02-27 | 2018-03-13 | Biomet Manufacturing, Llc | Patient-specific acetabular alignment guides |
US10507029B2 (en) | 2006-02-27 | 2019-12-17 | Biomet Manufacturing, Llc | Patient-specific acetabular guides and associated instruments |
US10390845B2 (en) | 2006-02-27 | 2019-08-27 | Biomet Manufacturing, Llc | Patient-specific shoulder guide |
US10426492B2 (en) | 2006-02-27 | 2019-10-01 | Biomet Manufacturing, Llc | Patient specific alignment guide with cutting surface and laser indicator |
US10743937B2 (en) | 2006-02-27 | 2020-08-18 | Biomet Manufacturing, Llc | Backup surgical instrument system and method |
US10278711B2 (en) | 2006-02-27 | 2019-05-07 | Biomet Manufacturing, Llc | Patient-specific femoral guide |
US7780672B2 (en) | 2006-02-27 | 2010-08-24 | Biomet Manufacturing Corp. | Femoral adjustment device and associated method |
US8070752B2 (en) | 2006-02-27 | 2011-12-06 | Biomet Manufacturing Corp. | Patient specific alignment guide and inter-operative adjustment |
US20070233140A1 (en) * | 2006-02-27 | 2007-10-04 | Biomet Manufacturing Corp. | Femoral adjustment device and associated method |
US10603179B2 (en) | 2006-02-27 | 2020-03-31 | Biomet Manufacturing, Llc | Patient-specific augments |
US10206695B2 (en) | 2006-02-27 | 2019-02-19 | Biomet Manufacturing, Llc | Femoral acetabular impingement guide |
US11534313B2 (en) | 2006-02-27 | 2022-12-27 | Biomet Manufacturing, Llc | Patient-specific pre-operative planning |
US9700329B2 (en) | 2006-02-27 | 2017-07-11 | Biomet Manufacturing, Llc | Patient-specific orthopedic instruments |
US20100160914A1 (en) * | 2006-03-06 | 2010-06-24 | Howmedica Osteonics Corp. | Single use resection guide |
US7704253B2 (en) | 2006-03-06 | 2010-04-27 | Howmedica Osteonics Corp. | Single use resection guide |
US20070208349A1 (en) * | 2006-03-06 | 2007-09-06 | Howmedica Osteonics Corp. | Single use resection guide |
US9241617B2 (en) | 2006-05-26 | 2016-01-26 | Invuity, Inc. | Blade insert illuminator |
US20070293729A1 (en) * | 2006-05-26 | 2007-12-20 | Spotlight Surgical, Inc. | Blade insert illuminator |
US8047987B2 (en) | 2006-05-26 | 2011-11-01 | Invuity, Inc. | Blade insert illuminator |
US8920316B2 (en) | 2006-05-26 | 2014-12-30 | Invuity, Inc. | Blade insert illuminator |
US9877639B2 (en) | 2006-05-26 | 2018-01-30 | Invuity, Inc. | Blade insert illuminator |
US20100198224A1 (en) * | 2006-05-31 | 2010-08-05 | Biomet Manufacturing Corp. | Prosthesis and Implementation System |
US7695520B2 (en) | 2006-05-31 | 2010-04-13 | Biomet Manufacturing Corp. | Prosthesis and implementation system |
US20070282451A1 (en) * | 2006-05-31 | 2007-12-06 | Biomet Manufacturing Corp. | Prosthesis and implementation system |
US9795399B2 (en) | 2006-06-09 | 2017-10-24 | Biomet Manufacturing, Llc | Patient-specific knee alignment guide and associated method |
US10206697B2 (en) | 2006-06-09 | 2019-02-19 | Biomet Manufacturing, Llc | Patient-specific knee alignment guide and associated method |
US10893879B2 (en) | 2006-06-09 | 2021-01-19 | Biomet Manufacturing, Llc | Patient-specific knee alignment guide and associated method |
US11576689B2 (en) | 2006-06-09 | 2023-02-14 | Biomet Manufacturing, Llc | Patient-specific knee alignment guide and associated method |
US20080033251A1 (en) * | 2006-06-30 | 2008-02-07 | Ali Araghi | Surgical retractor and method of use |
US20080021283A1 (en) * | 2006-07-24 | 2008-01-24 | Joseph Kuranda | Apparatus and method for retracting tissue of a patient during an orthopaedic surgical procedure |
US20080183044A1 (en) * | 2007-01-26 | 2008-07-31 | Dennis Colleran | Flexible surgical retractor and method of use |
US8062217B2 (en) | 2007-01-26 | 2011-11-22 | Theken Spine, Llc | Surgical retractor with removable blades and method of use |
US20080183046A1 (en) * | 2007-01-26 | 2008-07-31 | Wayne Boucher | Surgical retractor with removable blades and method of use |
US11554019B2 (en) | 2007-04-17 | 2023-01-17 | Biomet Manufacturing, Llc | Method and apparatus for manufacturing an implant |
US8961410B2 (en) | 2007-05-11 | 2015-02-24 | Applied Medical Resources Corporation | Surgical retractor with gel pad |
US8226552B2 (en) | 2007-05-11 | 2012-07-24 | Applied Medical Resources Corporation | Surgical retractor |
US8109873B2 (en) | 2007-05-11 | 2012-02-07 | Applied Medical Resources Corporation | Surgical retractor with gel pad |
US20080287937A1 (en) * | 2007-05-15 | 2008-11-20 | Warsaw Orthopedic, Inc. | Surgical Instrument for Illuminating and Monitoring a Surgical Site |
US9351759B2 (en) | 2007-06-05 | 2016-05-31 | Atropos Limited | Instrument access device |
US9408597B2 (en) | 2007-06-05 | 2016-08-09 | Atropos Limited | Instrument access device |
US8657740B2 (en) | 2007-06-05 | 2014-02-25 | Atropos Limited | Instrument access device |
US10321934B2 (en) | 2007-06-05 | 2019-06-18 | Atropos Limited | Instrument access device |
US10537360B2 (en) | 2007-06-05 | 2020-01-21 | Atropos Limited | Instrument access device |
US20100204548A1 (en) * | 2007-06-05 | 2010-08-12 | Frank Bonadio | Instrument Access Device |
US8187178B2 (en) | 2007-06-05 | 2012-05-29 | Atropos Limited | Instrument access device |
US10582844B2 (en) | 2007-10-24 | 2020-03-10 | Invuity, Inc. | Blade insert illuminator |
US9060707B2 (en) | 2007-10-24 | 2015-06-23 | Invuity, Inc. | Blade insert illuminator |
US9468366B2 (en) | 2007-10-24 | 2016-10-18 | Invuity, Inc. | Blade insert illuminator |
US9986901B2 (en) | 2007-10-24 | 2018-06-05 | Invuity, Inc. | Blade insert illuminator |
US20090112068A1 (en) * | 2007-10-24 | 2009-04-30 | Spotlight Surgical, Inc. | Blade Insert Illuminator |
US11583175B2 (en) | 2007-10-24 | 2023-02-21 | Invuity, Inc. | Blade insert illuminator |
US12161301B2 (en) | 2007-10-24 | 2024-12-10 | Invuity, Inc. | Blade insert illuminator |
US8088066B2 (en) | 2007-10-24 | 2012-01-03 | Invuity, Inc. | Blade insert illuminator |
US8343047B2 (en) | 2008-01-22 | 2013-01-01 | Applied Medical Resources Corporation | Surgical instrument access device |
US10159498B2 (en) | 2008-04-16 | 2018-12-25 | Biomet Manufacturing, Llc | Method and apparatus for manufacturing an implant |
US11382711B2 (en) | 2008-08-13 | 2022-07-12 | Invuity, Inc. | Cyclo olefin polymer and copolymer medical devices |
US8721537B2 (en) | 2008-10-13 | 2014-05-13 | Applied Medical Resources Corporation | Single port access system |
US8894571B2 (en) | 2008-10-13 | 2014-11-25 | Applied Medical Resources Corporation | Single port access system |
US8262568B2 (en) | 2008-10-13 | 2012-09-11 | Applied Medical Resources Corporation | Single port access system |
US8480575B2 (en) | 2008-10-13 | 2013-07-09 | Applied Medical Resources Corporation | Single port access system |
US10687797B2 (en) | 2008-12-18 | 2020-06-23 | Howmedica Osteonics Corp. | Lateral access system for the lumbar spine |
US11925342B2 (en) | 2008-12-18 | 2024-03-12 | Howmedica Osteonics Corp. | Lateral access system for the lumbar spine |
US8375955B2 (en) | 2009-02-06 | 2013-02-19 | Atropos Limited | Surgical procedure |
US8870760B2 (en) | 2009-02-26 | 2014-10-28 | Bhdl Holdings, Llc | Surgical dilator, retractor and mounting pad |
US9675334B2 (en) * | 2009-02-26 | 2017-06-13 | Bhdl Holdings, Llc | Surgical dilator, retractor and mounting pad |
US8480704B2 (en) * | 2009-02-26 | 2013-07-09 | Bhdl Holdings, Llc | Surgical dilator, retractor and mounting pad |
US10413287B2 (en) | 2009-02-26 | 2019-09-17 | Bhdl Holdings, Llc | Surgical dilator, retractor and mounting pad |
US20100217088A1 (en) * | 2009-02-26 | 2010-08-26 | Heiges Bradley A | Surgical dilator, retractor and mounting pad |
US11272912B2 (en) | 2009-02-26 | 2022-03-15 | Curiteva, Inc. | Surgical dilator, retractor and mounting pad |
US9585648B2 (en) | 2009-02-26 | 2017-03-07 | Bhdl Holdings, Llc | Surgical dilator, retractor and mounting pad |
US20100217090A1 (en) * | 2009-02-26 | 2010-08-26 | Heiges Bradley A | Retractor and mounting pad |
US20160051243A1 (en) * | 2009-02-26 | 2016-02-25 | Bhdl Holdings, Llc | Surgical dilator, retractor and mounting pad |
US8597181B1 (en) * | 2009-06-03 | 2013-12-03 | Larry Sasaki | Transparent surgical pelvic retractor |
US11324522B2 (en) | 2009-10-01 | 2022-05-10 | Biomet Manufacturing, Llc | Patient specific alignment guide with cutting surface and laser indicator |
US8777849B2 (en) | 2010-02-12 | 2014-07-15 | Covidien Lp | Expandable thoracic access port |
US8579810B2 (en) | 2010-02-12 | 2013-11-12 | Covidien Lp | Expandable thoracic access port |
US8574155B2 (en) | 2010-02-12 | 2013-11-05 | Covidien Lp | Expandable surgical access port |
US20110201892A1 (en) * | 2010-02-12 | 2011-08-18 | Fiona Middlemiss Haig | Expandable thoracic access port |
US8540628B2 (en) | 2010-02-12 | 2013-09-24 | Covidien Lp | Expandable thoracic access port |
US9402613B2 (en) | 2010-02-12 | 2016-08-02 | Covidien Lp | Expandable thoracic access port |
US20110201894A1 (en) * | 2010-02-12 | 2011-08-18 | O'prey Cormac | Expandable thoracic access port |
US20110201896A1 (en) * | 2010-02-12 | 2011-08-18 | O'prey Cormac | Expandable surgical access port |
US10893876B2 (en) | 2010-03-05 | 2021-01-19 | Biomet Manufacturing, Llc | Method and apparatus for manufacturing an implant |
US20110224495A1 (en) * | 2010-03-12 | 2011-09-15 | Tyco Healthcare Group Lp | Surgical access port |
US8597180B2 (en) | 2010-08-12 | 2013-12-03 | Covidien Lp | Expandable thoracic access port |
US9247955B2 (en) | 2010-08-12 | 2016-02-02 | Covidien Lp | Thoracic access port |
US8961408B2 (en) | 2010-08-12 | 2015-02-24 | Covidien Lp | Expandable surgical access port |
US8864658B2 (en) | 2010-08-12 | 2014-10-21 | Covidien Lp | Expandable surgical access port |
US9597114B2 (en) | 2010-08-12 | 2017-03-21 | Covidien Lp | Expandable surgical access port |
US9168031B2 (en) | 2010-08-12 | 2015-10-27 | Covidien Lp | Expandable thoracic access port |
US12089872B2 (en) | 2010-10-01 | 2024-09-17 | Applied Medical Resources Corporation | Natural orifice surgery system |
US10376282B2 (en) | 2010-10-01 | 2019-08-13 | Applied Medical Resources Corporation | Natural orifice surgery system |
US9289200B2 (en) | 2010-10-01 | 2016-03-22 | Applied Medical Resources Corporation | Natural orifice surgery system |
US9289115B2 (en) | 2010-10-01 | 2016-03-22 | Applied Medical Resources Corporation | Natural orifice surgery system |
US11123102B2 (en) | 2010-10-01 | 2021-09-21 | Applied Medical Resources Corporation | Natural orifice surgery system |
US9872702B2 (en) | 2010-10-01 | 2018-01-23 | Applied Medical Resources Corporation | Natural orifice surgery system |
US10271875B2 (en) | 2010-10-01 | 2019-04-30 | Applied Medical Resources Corporation | Natural orifice surgery system |
US11234719B2 (en) | 2010-11-03 | 2022-02-01 | Biomet Manufacturing, Llc | Patient-specific shoulder guide |
US9968376B2 (en) | 2010-11-29 | 2018-05-15 | Biomet Manufacturing, Llc | Patient-specific orthopedic instruments |
US9955960B2 (en) | 2011-02-26 | 2018-05-01 | Abbott Cardiovascular Systems, Inc. | Hinged tissue support device |
US9743935B2 (en) | 2011-03-07 | 2017-08-29 | Biomet Manufacturing, Llc | Patient-specific femoral version guide |
US9549722B2 (en) | 2011-03-21 | 2017-01-24 | Covidien Lp | Thoracic access port including foldable anchor |
US9119665B2 (en) | 2011-03-21 | 2015-09-01 | Covidien Lp | Thoracic access port including foldable anchor |
US9033873B2 (en) * | 2011-03-23 | 2015-05-19 | Covidien Lp | Surgical retractor including rotatable knobs |
US20120245427A1 (en) * | 2011-03-23 | 2012-09-27 | Tyco Healthcare Group Lp | Surgical retractor including rotatable knobs |
US9192366B2 (en) | 2011-05-10 | 2015-11-24 | Applied Medical Resources Corporation | Wound retractor |
US8758236B2 (en) | 2011-05-10 | 2014-06-24 | Applied Medical Resources Corporation | Wound retractor |
US9241697B2 (en) | 2011-05-10 | 2016-01-26 | Applied Medical Resources Corporation | Wound retractor |
US9307975B2 (en) | 2011-05-10 | 2016-04-12 | Applied Medical Resources Corporation | Wound retractor |
US9039610B2 (en) | 2011-05-19 | 2015-05-26 | Covidien Lp | Thoracic access port |
US10420541B2 (en) | 2011-05-19 | 2019-09-24 | Covidien Lp | Thoracic access port |
US8758235B2 (en) | 2011-07-13 | 2014-06-24 | Cook Medical Technologies Llc | Foldable surgical retractor |
US8961409B2 (en) | 2011-12-07 | 2015-02-24 | Covidien Lp | Thoracic access assembly |
US9629657B2 (en) | 2011-12-07 | 2017-04-25 | Covidien Lp | Thoracic access assembly |
US20130184535A1 (en) * | 2012-01-10 | 2013-07-18 | The Board Of Trustees Of The Leland Stanford Junior University | Expandable tissue retraction devices |
US10993709B2 (en) | 2012-01-10 | 2021-05-04 | The Board Of Trustees Of The Leland Stanford Junior University | Systems for the prevention of surgical site infections |
US9084594B2 (en) | 2012-01-10 | 2015-07-21 | The Board Of Trustees Of The Lealand Stanford Junior University | Methods for the prevention of surgical site infections |
US9788823B2 (en) | 2012-01-10 | 2017-10-17 | The Board Of Trustees Of The Leland Stanford Junior University | Methods for the prevention of surgical site infections |
US9393005B2 (en) | 2012-01-10 | 2016-07-19 | The Board Of Trustees Of The Leland Stanford Junior University | Systems for the prevention of surgical site infections |
US10085734B2 (en) | 2012-01-10 | 2018-10-02 | The Board Of Trustees Of The Leland Stanford Junior University | Systems for the prevention of surgical site infections |
US10143460B2 (en) * | 2013-01-17 | 2018-12-04 | Abbott Cardiovascular Systems, Inc. | Access device for accessing tissue |
US20170112484A1 (en) * | 2013-01-17 | 2017-04-27 | Abbott Cardiovascular Systems, Inc. | Access device for accessing tissue |
US11471142B2 (en) | 2013-03-15 | 2022-10-18 | Applied Medical Resources Corporation | Mechanical gel surgical access device |
US9999414B2 (en) | 2014-01-24 | 2018-06-19 | Contour Surgical, Inc. | Retraction devices and methods of its use and manufacture |
US10660630B2 (en) | 2014-01-24 | 2020-05-26 | David S. Ruppert | Retraction devices and methods of its use and manufacture |
US11737782B2 (en) * | 2014-04-23 | 2023-08-29 | Applied Medical Resources Corporation | Systems and methods for tissue removal |
US20160100857A1 (en) * | 2014-04-23 | 2016-04-14 | Applied Medical Resources Corporation | System and methods for tissue removal |
US10219830B2 (en) * | 2014-04-23 | 2019-03-05 | Applied Medical Resources Corporation | System and methods for tissue removal |
US10987132B2 (en) * | 2014-04-23 | 2021-04-27 | Applied Medical Resources Corporation | Systems and methods for tissue removal |
US20210259733A1 (en) * | 2014-04-23 | 2021-08-26 | Applied Medical Resources Corporation | Systems and methods for tissue removal |
US9642608B2 (en) | 2014-07-18 | 2017-05-09 | Applied Medical Resources Corporation | Gels having permanent tack free coatings and method of manufacture |
US11583316B2 (en) | 2014-08-15 | 2023-02-21 | Applied Medical Resources Corporation | Natural orifice surgery system |
US10172641B2 (en) | 2014-08-15 | 2019-01-08 | Applied Medical Resources Corporation | Natural orifice surgery system |
US10952768B2 (en) | 2014-08-15 | 2021-03-23 | Applied Medical Resources Corporation | Natural orifice surgery system |
US10463352B2 (en) | 2014-08-18 | 2019-11-05 | Applied Medical Resources Corporation | Systems and methods for tissue containment and retrieval |
US11918197B2 (en) | 2014-08-18 | 2024-03-05 | Applied Medical Resources Corporation | Systems and methods for tissue containment and retrieval |
US11547444B2 (en) * | 2014-11-13 | 2023-01-10 | Applied Medical Resources Corporation | Systems and methods for tissue removal |
US10219831B2 (en) * | 2014-11-13 | 2019-03-05 | Applied Medical Resources Corporation | Systems and methods for tissue removal |
US10842530B2 (en) * | 2014-11-13 | 2020-11-24 | Applied Medical Resources Corporation | Systems and methods for tissue removal |
US20160262794A1 (en) * | 2014-11-13 | 2016-09-15 | Applied Medical Resources Corporation | Systems and methods for tissue removal |
US20210085364A1 (en) * | 2014-11-13 | 2021-03-25 | Applied Medical Resources Corporation | Systems and methods for tissue removal |
US9949730B2 (en) | 2014-11-25 | 2018-04-24 | Applied Medical Resources Corporation | Circumferential wound retraction with support and guidance structures |
US11744612B2 (en) | 2015-04-23 | 2023-09-05 | Applied Medical Resources Corporation | Systems and methods for tissue removal |
US10568659B2 (en) | 2015-04-23 | 2020-02-25 | Applied Medical Resources Corporation | Systems and methods for tissue removal |
US11883068B2 (en) | 2015-09-15 | 2024-01-30 | Applied Medical Resources Corporation | Surgical robotic access system |
US10368908B2 (en) | 2015-09-15 | 2019-08-06 | Applied Medical Resources Corporation | Surgical robotic access system |
US11382658B2 (en) | 2015-09-15 | 2022-07-12 | Applied Medical Resources Corporation | Surgical robotic access system |
US12185932B2 (en) | 2015-10-07 | 2025-01-07 | Applied Medical Resources Corporation | Wound retractor with multi-segment outer ring |
US11602338B2 (en) | 2015-10-07 | 2023-03-14 | Applied Medical Resources Corporation | Wound retractor with multi-segment outer ring |
US10575840B2 (en) | 2015-10-07 | 2020-03-03 | Applied Medical Resources Corporation | Wound retractor with multi-segment outer ring |
US11871917B2 (en) | 2016-01-22 | 2024-01-16 | Applied Medical Resources Corporation | Systems and methods for tissue removal |
US10327809B2 (en) | 2016-02-29 | 2019-06-25 | Covidien Lp | Clip collar advanced fixation |
US11278316B2 (en) | 2016-02-29 | 2022-03-22 | Covidien Lp | Clip collar advanced fixation |
US11166709B2 (en) | 2016-08-23 | 2021-11-09 | Stryker European Operations Holdings Llc | Instrumentation and methods for the implantation of spinal implants |
US12133643B2 (en) | 2016-08-23 | 2024-11-05 | Stryker European Operations Holdings Llc | Instrumentation and methods for the implantation of spinal implants |
US11992184B2 (en) | 2016-09-12 | 2024-05-28 | Applied Medical Resources Corporation | Surgical robotic access system for irregularly shaped robotic actuators and associated robotic surgical instruments |
US11627867B2 (en) | 2016-09-12 | 2023-04-18 | Applied Medical Resources Corporation | Surgical robotic access system for irregularly shaped robotic actuators and associated robotic surgical instruments |
US10674896B2 (en) | 2016-09-12 | 2020-06-09 | Applied Medical Resources Corporation | Surgical robotic access system for irregularly shaped robotic actuators and associated robotic surgical instruments |
US10722310B2 (en) | 2017-03-13 | 2020-07-28 | Zimmer Biomet CMF and Thoracic, LLC | Virtual surgery planning system and method |
US10987128B2 (en) | 2017-03-22 | 2021-04-27 | Covidien Lp | Cannula assembly |
US11864792B2 (en) | 2017-03-22 | 2024-01-09 | Covidien Lp | Cannula assembly |
US11464504B2 (en) | 2017-08-17 | 2022-10-11 | Stryker European Operations Holdings Llc | Lateral access bridges, shims and lighting including rod lighting |
US11832847B2 (en) | 2017-08-17 | 2023-12-05 | Stryker European Operations Holdings Llc | Expanders for rod retraction |
US12102353B2 (en) | 2017-08-17 | 2024-10-01 | Stryker European Operations Holdings Llc | Expanders for rod retraction |
US11020145B2 (en) | 2017-08-17 | 2021-06-01 | Stryker European Holdings I, Llc | Expanders for rod retraction |
US11596439B2 (en) | 2017-11-07 | 2023-03-07 | Prescient Surgical, Inc. | Methods and apparatus for prevention of surgical site infection |
US11911016B2 (en) | 2018-03-30 | 2024-02-27 | Stryker European Operations Holdings Llc | Lateral access retractor and core insertion |
US11191532B2 (en) | 2018-03-30 | 2021-12-07 | Stryker European Operations Holdings Llc | Lateral access retractor and core insertion |
US12150639B2 (en) | 2018-09-20 | 2024-11-26 | Applied Medical Resources Corporation | Tissue removal containment systems |
US11413029B2 (en) | 2018-10-24 | 2022-08-16 | Stryker European Operations Holdings Llc | Anterior to psoas instrumentation |
US11564674B2 (en) | 2019-11-27 | 2023-01-31 | K2M, Inc. | Lateral access system and method of use |
US11166708B2 (en) * | 2019-12-13 | 2021-11-09 | Alcon Inc. | Trans-scleral illumination system for vitreoretinal surgery |
US11141191B2 (en) | 2020-01-15 | 2021-10-12 | Covidien Lp | Surgical access assembly |
WO2022076918A1 (en) * | 2020-10-08 | 2022-04-14 | Applied Medical Resources Corporation | Lighted surgical access system |
US12251130B2 (en) | 2021-05-03 | 2025-03-18 | Covidien Lp | Surgical access device having a balloon and methods for manufacturing the same |
US12256917B2 (en) | 2022-07-15 | 2025-03-25 | Stryker European Operations Holdings Llc | Anterior to psoas instrumentation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3807393A (en) | Surgical retractor | |
US3782370A (en) | Surgical retractor | |
AU736625B2 (en) | Surgical retractor | |
US7922658B2 (en) | Surgical retractor device and related methods | |
US20200297385A1 (en) | Uterine manipulator | |
US6096026A (en) | Surgical instruments for minimally invasive surgical procedures | |
KR100569808B1 (en) | speculum | |
CA2202833C (en) | Surgical retractor | |
US6190312B1 (en) | Variable geometry retractor and disposable retractor stay clips and method of use | |
US5976080A (en) | Surgical apparatus and method | |
US3815585A (en) | Disposable vaginal speculum | |
US6450952B1 (en) | Medical body access device | |
US6302842B1 (en) | Episiotomy retractor | |
US6004329A (en) | Shape-adjustable surgical implement handle | |
US10092323B2 (en) | Ergonomic, lighted uterine manipulator with cautery | |
US9011325B2 (en) | Tissue retractor stay | |
US5899853A (en) | Double grip surgical retractor stay | |
US20190328399A1 (en) | Latch assemblies and surgical instruments including the same | |
US9408633B2 (en) | Obstetrical instrument | |
CN109770975B (en) | Traction clamp for laparoscopic surgery | |
US11337730B2 (en) | Vaginal speculum | |
US5643316A (en) | Method of thoracoscopic surgery using hinged tissue grasping forceps | |
KR101993256B1 (en) | Angle adjustment of laparoscopic telescope | |
US10213194B2 (en) | Surgical retraction systems including sternal retractors and hemostatic inserts | |
US20200268412A1 (en) | Access assembly including flexible cannula |