US3754903A - High temperature oxidation resistant coating alloy - Google Patents
High temperature oxidation resistant coating alloy Download PDFInfo
- Publication number
- US3754903A US3754903A US00072512A US3754903DA US3754903A US 3754903 A US3754903 A US 3754903A US 00072512 A US00072512 A US 00072512A US 3754903D A US3754903D A US 3754903DA US 3754903 A US3754903 A US 3754903A
- Authority
- US
- United States
- Prior art keywords
- percent
- alloy
- aluminum
- oxidation
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 41
- 239000000956 alloy Substances 0.000 title claims abstract description 41
- 238000000576 coating method Methods 0.000 title claims abstract description 30
- 239000011248 coating agent Substances 0.000 title claims abstract description 20
- 230000003647 oxidation Effects 0.000 title description 12
- 238000007254 oxidation reaction Methods 0.000 title description 12
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 36
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 35
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 25
- 239000011651 chromium Substances 0.000 claims abstract description 19
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 16
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 13
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 11
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000000203 mixture Substances 0.000 abstract description 19
- 229910052751 metal Inorganic materials 0.000 abstract description 13
- 239000002184 metal Substances 0.000 abstract description 13
- 229910000601 superalloy Inorganic materials 0.000 abstract description 13
- -1 at the composition Chemical compound 0.000 abstract description 4
- 238000000034 method Methods 0.000 description 12
- 239000007789 gas Substances 0.000 description 8
- 239000000758 substrate Substances 0.000 description 6
- 229910000951 Aluminide Inorganic materials 0.000 description 5
- 230000035939 shock Effects 0.000 description 5
- 238000004901 spalling Methods 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 4
- 239000008199 coating composition Substances 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- 238000005486 sulfidation Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical compound [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Substances [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 229910052706 scandium Inorganic materials 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 229910052715 tantalum Inorganic materials 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 229910052776 Thorium Inorganic materials 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910052746 lanthanum Inorganic materials 0.000 description 2
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000001294 propane Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000003870 refractory metal Substances 0.000 description 2
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 2
- 235000002639 sodium chloride Nutrition 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000005477 sputtering target Methods 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 239000013077 target material Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 235000008247 Echinochloa frumentacea Nutrition 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910018487 Ni—Cr Inorganic materials 0.000 description 1
- 240000004072 Panicum sumatrense Species 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000010314 arc-melting process Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910000907 nickel aluminide Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/051—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
- C22C19/052—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 40%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/007—Alloys based on nickel or cobalt with a light metal (alkali metal Li, Na, K, Rb, Cs; earth alkali metal Be, Mg, Ca, Sr, Ba, Al Ga, Ge, Ti) or B, Si, Zr, Hf, Sc, Y, lanthanides, actinides, as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/16—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/06—Metallic material
- C23C4/073—Metallic material containing MCrAl or MCrAlY alloys, where M is nickel, cobalt or iron, with or without non-metal elements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S428/00—Stock material or miscellaneous articles
- Y10S428/922—Static electricity metal bleed-off metallic stock
- Y10S428/9335—Product by special process
- Y10S428/938—Vapor deposition or gas diffusion
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12806—Refractory [Group IVB, VB, or VIB] metal-base component
- Y10T428/12826—Group VIB metal-base component
- Y10T428/12847—Cr-base component
- Y10T428/12854—Next to Co-, Fe-, or Ni-base component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12861—Group VIII or IB metal-base component
- Y10T428/12944—Ni-base component
Definitions
- the present invention is directed to oxidationresistant alloys, particularly alloy compositions having application as coatings on the superalloys utilized in the gas turbine engine industry.
- a nickel-base superalloy is typically a nickelchromium solid solution, hardened by the additions of aluminum and titanium to precipitate the intermetallic compound or gamma prime phase Ni (Al,Ti).
- the contemporary superalloys also usually contain cobalt to raise the solvus temperature of the gamma prime phase, refractory metals such as tungsten or tantalum for solution strengthening, and carbon, boron and zirconium to promote ductility and fabricability.
- a limiting factor in the application of the current superalloys to jet engine hardware is their susceptibility to oxidation at very high temperatures with a consequent progressive loss of substrate material.
- the nickel-base superalloys are generally coated with a composition different from and more oxidation-resistant than the structural alloy.
- the requisite layer of icnreased oxidation resistance is provided by reacting aluminum with the surface of the alloy to form an aluminide which in turn oxidizes to provide a surface oxide layer through which the transport rates of the reacting species are low.
- Typical of the processes of this type is that described in the U.S. Pat. to Joseph No. 3,102,044.
- the aluminide coatings as currently provided significantly enhance the lifetimes of superalloy hardware, the theoretically expected behavior of the nickel aluminide intermetallic compound is not in fact realized in dynamic oxidizing environments. This is the result of thermal shock spalling.
- temperature fluctuations caused by the mixing of the hot combustion gases with cooler secondary air or those associated with varying power-levels give rise to thermallyinduced strains at the metal-oxide interface which are sufficiently large to eventually spall the oxide layer. This layer then reforms by the consumption of more aluminum from the interrnetallic coating phase.
- This invention relates to coating alloys of the type generaly identified as the nickel-aluminum interrnetallics. It contemplates a basic nickel-aluminum alloy of relatively specific chemistry containing as an essential ingredient one or more of the reactive metals.
- the chemistry of the alloy is formulated such that, upon oxidation, essentially a single oxide, specifically alumina, is formed rather than other oxides or mixtures of oxides. This is done through maintenance of a particular aluminum level in the alloy.
- the alloy is provided with at least a minor amount of retained reactive metal such as yttrium, scandium, thorium, or lanthanum and the other rare earth elements.
- the alloys of the present invention consist of, by weight, 14-30 percent aluminum, 0.0l-l percent reactive metal, balance nickel together with, on an optional basis, one or more of alloying ingredients compatible with the basic alloy chemistry. Specifically, the compatability of the optional ingredients must be such that they do not interfere with the basic oxidation mechanism of the alloy.
- a preferred embodiment of the invention comprises an alloy consisting essentially of, by weight, about 14-25 percent aluminum, 0.0l-0.5 percent reactive metal, 15-45 percent chromium, balance nickel. This alloy possesses both oxidation-erosion and sulfidation resistance.
- the most preferred coating alloy consists essentially of, by weight, 15-20 percent aluminum, 20-35 percent chromium, 0.05-0.3 percent reactive metal, balance nickel.
- the drawing is a graph depicting the oxidationerosion behavior of an alloy of the present invention as compared to certain representative contemporary materials.
- the alloys of the present invnetion find particular utility in imparting long-term, oxidation-erosion resistance to the gas turbine superalloys, when utilized as coatings thereon, in the dynamic oxidizing environments of gas turbine engines.
- Representative of the centemporary superalloys requiring such oxidation protection is the alloy identified in the industry as B-l900, the nominal composition of which, by weight, is as follows: 8 percent Cr, 10 percent Co, 1 percent Ti, 6 percent Al, 6 percent M0, 4.3 percent Ta, 0.11 percent C, 0.015 percent B, 0.07 percent Zr, balance Ni.
- the prior art coatings are, in general, most commonly provided by reacting aluminum with the deoxidized surface of the article to be protected and an aluminide layer is formed with consumption of the substrate components.
- This aluminide layer in turn oxidizes to form the desired inert barrier oxide.
- it is difficult to control the coating composition so as to cause the formation of a suitable barrier oxide resistant to thermal shock spalling.
- the alloys of the present invention are in themselves oxidation resistant and do not depend for their protective effect upon a reaction with the substrate material. Their particular formulation is such that the most desirable barrier oxide is preferentially formed in a high temperature oxidizing environment and this oxice is significantly more resistant to thermal shock spalling than that formed on competitive coatings.
- Aluminum contents in excess of about 31.5 weight percent result in the development of a brittle hyperstoichiometric beta phase of the aluminide which, while satisfactory in terms of its oxidation resistance, is in terms of its suitability to the dynamic conditions associated with jet engine operation generally unsatisfactory because of its poor mechanical properties.
- Those' materials which promote adherence of the oxide to the underlying substrate will include those having an affinity for oxygen approximating or exceeding that of aluminum.
- reactive metal has reference to the elements yttrium, scandium, thorium, and lanthanum and the other rare earths, including mixtures of the same.
- 15-45 weight percent chromium is advantageously included in the coating composition.
- the aluminum content of the alloy is preferably reduced and limited to a maximum of about 25 weight percent to forestall the formation of a brittle phase or phases as previously mentioned.
- the higher chromium contents are to be preferred, about 30 percent chromium representing about the optimum amount from a sulfidation standpoint.
- the most preferred alloy composition corre-, sponds to, by weight, l5-20 percent aluminum, -35 percent chromium, 0.05-0.3 percent reactive metal, balance nickel.
- the alloys are relatively easily prepared by the conventional arc melt-drop cast technique.
- compositions so prepared and tested were the following, by weight:
- Example 1 A sputtering target of, by weight, Ni-26 percent Al- 0.12 percent Y was prepared by a standard arc melting process. -A 2.5 mil coating of this composition was deposited on a'specimen of 8-1900 alloy by a sputtering process. Basically this method consists of bombarding the target of correct coating composition with high energy argon ions which causes sublimation of the target material. The sublimed atoms are then condensed on the substrate alloy to form a coating of essentially the same composition as the original target material. The whole process is carried out in a vacuum of a few microns of argon.
- the coated specimen of this example was tested in a hot, high velocity gas stream generated by the combustion of propane in air.
- the coating protected the specimen from oxidation damage for hours at 2,000 F and for a subsequent period of 37 hours at 2.100" F at which time the test was terminated to permit metallographic examination of the specimen.
- Example 2 A sputtering target of, by weight; Ni-30 percent Cr 12 percent Al 0.5 percent Sc was prepared as above. A one mil coating of this composition was deposited on a 8-1900 specimen by the sputtering technique described above.
- Example 3 An ingot of the composition, by weight, Ni 28 percent Cr 14 percent Al 0.4 percent Y was prepared by a standard melting method. A B-l900 erosion bar was coated to a thickness of 4.5 mils of this composition by electron beam evaporation. Subjected to dynamic oxidation-erosion in J PSR fuel exhaust at 2,00() F the erosion bar was protected from oxidavention, some of which are discussed herein, will be evident to those skilled in the art from the teachings herein and will, in the true spirit of the invention, be embraced within the scope of the appended claims.
- An oxidation-erosion resistant coating alloy which consists essentially of, by weight, 14-25 percent aluminum, l5-45 percent chromium, 0.01-0.5 percent yttrium, up to 10 percent of an alloying ingredient selected from the group consisting of cobalt, iron and the refractory metals, balance essentially nickel.
- An oxidation-erosion resistant coating alloy which consists essentially of, by weight, 15-20 percent aluminum, 20-35 percent chromium, 0.05-0.33 percent yttrium, balance essentially nickel.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Coating By Spraying Or Casting (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
A coating alloy for the gas turbine engine super-alloys is described which consists primarily of nickel, aluminum and a reactive metal such as yttrium, particularly at the composition, by weight, 14-30 percent aluminum, 0.01-0.5 percent reactive metal balance nickel. A preferred embodiment also includes 15-45 weight percent chromium.
Description
United States Patent [1 1 Goward et a1.
[ Aug. 28, 1973 1 1 HIGH-TEMPERATURE OXIDATION-RESISTANT COATING ALLOY [75} Inventors: George W. Goward; Donald H.
Boone; Frederick S. Pettit, all of North Haven, Conn.
[73] Assignee: United Aircraft Corporation, East Hartford, Conn.
221 Filed: Sept. 15, 1970 21 Appl. No.: 72,512
Related U.S. Application Data [62] Division of Ser. No. 734,740, June 5, 1968 [52] U.S. Cl. 75/171, 29/194 [51] Int. Cl. C22c 19/08 [58] Field of Search 75/138, 171
[56] References Cited UNITED STATES PATENTS 3,228,095 [/1966 Bird 75/171 3,399,058 8/1968 Roush 75/171 3,536,542 10/1970 Murphy 75/171 3,615,375 10/1971 Beltran 75/171 3,620,693 11/1971 Sama 75/171 Primary Examinerl-lyland Bizot Attorney-Richard N. James [57] ABSTRACT A coating alloy for the gas turbine engine super-alloys is described which consists primarily of nickel, aluminum and a reactive metal such as yttrium, particularly at the composition, by weight, 14-30 percent aluminum, 0.0l-0.5 percent reactive metal balance nickel. A preferred embodiment also includes 15-45 weight percent chromium.
2 Claims, 1 Drawing Figure l 1 l l HIGH-TEMPERATURE OXIDATION-RESISTANT COATING ALLOY This is a division of Application Ser. No. 734,740, filed June 5, 1968.
BACKGROUND OF THE INVENTION the present invention is directed to oxidationresistant alloys, particularly alloy compositions having application as coatings on the superalloys utilized in the gas turbine engine industry.
A nickel-base superalloy is typically a nickelchromium solid solution, hardened by the additions of aluminum and titanium to precipitate the intermetallic compound or gamma prime phase Ni (Al,Ti). The contemporary superalloys also usually contain cobalt to raise the solvus temperature of the gamma prime phase, refractory metals such as tungsten or tantalum for solution strengthening, and carbon, boron and zirconium to promote ductility and fabricability.
A limiting factor in the application of the current superalloys to jet engine hardware is their susceptibility to oxidation at very high temperatures with a consequent progressive loss of substrate material. For this reason, the nickel-base superalloys are generally coated with a composition different from and more oxidation-resistant than the structural alloy. In most instances the requisite layer of icnreased oxidation resistance is provided by reacting aluminum with the surface of the alloy to form an aluminide which in turn oxidizes to provide a surface oxide layer through which the transport rates of the reacting species are low. Typical of the processes of this type is that described in the U.S. Pat. to Joseph No. 3,102,044.
Although the aluminide coatings as currently provided significantly enhance the lifetimes of superalloy hardware, the theoretically expected behavior of the nickel aluminide intermetallic compound is not in fact realized in dynamic oxidizing environments. This is the result of thermal shock spalling. In the dynamic environment of a gas turbine engine, for example, temperature fluctuations caused by the mixing of the hot combustion gases with cooler secondary air or those associated with varying power-levels give rise to thermallyinduced strains at the metal-oxide interface which are sufficiently large to eventually spall the oxide layer. This layer then reforms by the consumption of more aluminum from the interrnetallic coating phase. In general, this is a rapidly recurring process and the aluminum is more rapidly depleted from the coating phase than would be the case in a truly isothermal environment wherein no thermal shock spalling would occur. In a copending application of the same assignee, Ser. No. 734,706, filed June 5, 1968, entitled NICKEL BASE SUPERALLOY RESISTANT T OXIDA- TION-EROSION, by D. H. Boone et al., there is described a nickel-base superalloy system having an oxidation-erosion resistance significantly superior to the conventional super-alloys. While the utilization of this alloy obviates the need for coatings for satisfactory oxidation resistance, such coatings may be advantageous in some circumstances, perhaps for economic reasons. In such instances the coating herein described will be seen to have particularly advantageous properties.
SUMMARY OF THE INVENTION This invention relates to coating alloys of the type generaly identified as the nickel-aluminum interrnetallics. It contemplates a basic nickel-aluminum alloy of relatively specific chemistry containing as an essential ingredient one or more of the reactive metals.
It has been found that two factors contribute to the improved oxidation-erosion resistance of the alloys of the presentinvention. First, the chemistry of the alloy is formulated such that, upon oxidation, essentially a single oxide, specifically alumina, is formed rather than other oxides or mixtures of oxides. This is done through maintenance of a particular aluminum level in the alloy. Secondly, the alloy is provided with at least a minor amount of retained reactive metal such as yttrium, scandium, thorium, or lanthanum and the other rare earth elements.
In terms of their composition, the alloys of the present invention consist of, by weight, 14-30 percent aluminum, 0.0l-l percent reactive metal, balance nickel together with, on an optional basis, one or more of alloying ingredients compatible with the basic alloy chemistry. Specifically, the compatability of the optional ingredients must be such that they do not interfere with the basic oxidation mechanism of the alloy.
A preferred embodiment of the invention comprises an alloy consisting essentially of, by weight, about 14-25 percent aluminum, 0.0l-0.5 percent reactive metal, 15-45 percent chromium, balance nickel. This alloy possesses both oxidation-erosion and sulfidation resistance.
The most preferred coating alloy consists essentially of, by weight, 15-20 percent aluminum, 20-35 percent chromium, 0.05-0.3 percent reactive metal, balance nickel.
BRIEF DESCRIPTION OF THE DRAWING The drawing is a graph depicting the oxidationerosion behavior of an alloy of the present invention as compared to certain representative contemporary materials.
DESCRIPTION OF THE PREFERRED EMBODIMENTS Although not so confined, the alloys of the present invnetion find particular utility in imparting long-term, oxidation-erosion resistance to the gas turbine superalloys, when utilized as coatings thereon, in the dynamic oxidizing environments of gas turbine engines. Representative of the centemporary superalloys requiring such oxidation protection is the alloy identified in the industry as B-l900, the nominal composition of which, by weight, is as follows: 8 percent Cr, 10 percent Co, 1 percent Ti, 6 percent Al, 6 percent M0, 4.3 percent Ta, 0.11 percent C, 0.015 percent B, 0.07 percent Zr, balance Ni.
As previously mentioned, the prior art coatings are, in general, most commonly provided by reacting aluminum with the deoxidized surface of the article to be protected and an aluminide layer is formed with consumption of the substrate components. This aluminide layer in turn oxidizes to form the desired inert barrier oxide. However, because of the complex nature of most of the contemporary alloys, and because the coating composition thereon is derived in part from the components of the substrate alloys, it is difficult to control the coating composition so as to cause the formation of a suitable barrier oxide resistant to thermal shock spalling. This is particularly true in the case of the contemporary coatings after exposure to an oxidizing environment for an extended period of time, because in the reformation of the oxide barrier at this point the oxides reform as mixtures of many oxides due to the preferential depletion of certain species with time. Such mixtures are more prone to thermal shock spalling than the single oxide.
The alloys of the present invention are in themselves oxidation resistant and do not depend for their protective effect upon a reaction with the substrate material. Their particular formulation is such that the most desirable barrier oxide is preferentially formed in a high temperature oxidizing environment and this oxice is significantly more resistant to thermal shock spalling than that formed on competitive coatings.
The desired results in this case are achieved with a basic alloy containing, by weight, 14-30 percent aluminum, 0.01-1 percent reactive metal, balance nickel. Of course, whatever oxidation-erosion does occur with this coating, or with other coatings for that matter, results in the loss of aluminum from the system. A relatively high aluminum content is, accordingly, preferred from a durability standpoint. In addition, below about 14 percent, or possibly in some instances as low as about 12 weight percent aluminum, complete surface coverage by the desired protective oxide is not formed. The upper limit of the aluminum content, on the other hand, is established primarily by mechanical considerations. Aluminum contents in excess of about 31.5 weight percent result in the development of a brittle hyperstoichiometric beta phase of the aluminide which, while satisfactory in terms of its oxidation resistance, is in terms of its suitability to the dynamic conditions associated with jet engine operation generally unsatisfactory because of its poor mechanical properties.
Those' materials which promote adherence of the oxide to the underlying substrate will include those having an affinity for oxygen approximating or exceeding that of aluminum. As used herein, however, the term reactive metal has reference to the elements yttrium, scandium, thorium, and lanthanum and the other rare earths, including mixtures of the same.
In those environments where not only oxidation but sulfidation may also be a problem, as is the case with many if not most gas turbine engine systems, 15-45 weight percent chromium is advantageously included in the coating composition. With the chromium addition, the aluminum content of the alloy is preferably reduced and limited to a maximum of about 25 weight percent to forestall the formation of a brittle phase or phases as previously mentioned. Experimentation has also revealed that, as a general rule, the higher chromium contents are to be preferred, about 30 percent chromium representing about the optimum amount from a sulfidation standpoint.
As the best balance between chemical and physical properties, the most preferred alloy composition corre-, sponds to, by weight, l5-20 percent aluminum, -35 percent chromium, 0.05-0.3 percent reactive metal, balance nickel.
Those skilled in the art will recognize that certain other elements are known to be compatible with the basic chemistry of the present alloys. Accordingly,
. other elements such as cobalt, iron or tantalum may be advantageously added to the alloy as required in certain applications for modification of the mechanical, diffusional or hot corrosion characteristics of the coatings.
The alloys are relatively easily prepared by the conventional arc melt-drop cast technique. Among the compositions so prepared and tested were the following, by weight:
Ni 16% Al .5%Y
Ni 25% Al .5% Y
Ni 30% Al .5% Y
Ni 16% Al .1% Sc Ni 30% Al .25% Sc Ni 12% Al .85% Y Ni 12% Al .6% Nd Ni 20% Cr 14.5% Al .5% Y
Ni 30% Cr 15% Al .1% Sc Ni 15% Cr 15% Al .l% Sc Ni 15% Cr 12% Al 4% Ta .25% Sc With respect to the processes whereby the alloy is applied as a coating to the surface'to be protected, the necessary presence in the alloy of the reactive metals precludes synthesis of these alloys in coating form by the widely. used slurry or simple pack cementation techniques. It appears, however, that various of the other methods discussed in the literature including vapor deposition, plasma spraying, mechanical bonding, electrolysis, electrophoresis, gaseous ion plating and sputtering may be adapted to applying the specific compositions herein discussed. Several of these techniques have been utilized in connection with this invention as discussed in the following examples:
Example 1 A sputtering target of, by weight, Ni-26 percent Al- 0.12 percent Y was prepared by a standard arc melting process. -A 2.5 mil coating of this composition was deposited on a'specimen of 8-1900 alloy by a sputtering process. Basically this method consists of bombarding the target of correct coating composition with high energy argon ions which causes sublimation of the target material. The sublimed atoms are then condensed on the substrate alloy to form a coating of essentially the same composition as the original target material. The whole process is carried out in a vacuum of a few microns of argon.
The coated specimen of this example was tested in a hot, high velocity gas stream generated by the combustion of propane in air. The coating protected the specimen from oxidation damage for hours at 2,000 F and for a subsequent period of 37 hours at 2.100" F at which time the test was terminated to permit metallographic examination of the specimen.
Example 2 A sputtering target of, by weight; Ni-30 percent Cr 12 percent Al 0.5 percent Sc was prepared as above. A one mil coating of this composition was deposited on a 8-1900 specimen by the sputtering technique described above.
Testing of this specimen was conducted in a hot high velocity propane exhaust stream contaminated with 0.4 percent sulfur (sulfur/fuel ratio) and 3.5 ppm sea salt (salt/air ratio) to simulated gas turbine hot corrosion (sulfidation) conditions. At a specimen temperature of l,650 F, the test article survived for a total of 330 hours. Uncoated 8-1900 is catastrophically attacked under these test conditions.
Example 3 An ingot of the composition, by weight, Ni 28 percent Cr 14 percent Al 0.4 percent Y was prepared by a standard melting method. A B-l900 erosion bar was coated to a thickness of 4.5 mils of this composition by electron beam evaporation. Subjected to dynamic oxidation-erosion in J PSR fuel exhaust at 2,00() F the erosion bar was protected from oxidavention, some of which are discussed herein, will be evident to those skilled in the art from the teachings herein and will, in the true spirit of the invention, be embraced within the scope of the appended claims.
We claim:
1. An oxidation-erosion resistant coating alloy which consists essentially of, by weight, 14-25 percent aluminum, l5-45 percent chromium, 0.01-0.5 percent yttrium, up to 10 percent of an alloying ingredient selected from the group consisting of cobalt, iron and the refractory metals, balance essentially nickel.
2. An oxidation-erosion resistant coating alloy which consists essentially of, by weight, 15-20 percent aluminum, 20-35 percent chromium, 0.05-0.33 percent yttrium, balance essentially nickel.
Claims (1)
- 2. An oxidation-erosion resistant coating alloy which consists essentially of, by weight, 15-20 percent aluminum, 20-35 percent chromium, 0.05-0.3 percent yttrium, balance essentially nickel. >
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US7251270A | 1970-09-15 | 1970-09-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3754903A true US3754903A (en) | 1973-08-28 |
Family
ID=22108077
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00072512A Expired - Lifetime US3754903A (en) | 1970-09-15 | 1970-09-15 | High temperature oxidation resistant coating alloy |
Country Status (1)
Country | Link |
---|---|
US (1) | US3754903A (en) |
Cited By (79)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3869779A (en) * | 1972-10-16 | 1975-03-11 | Nasa | Duplex aluminized coatings |
US3890456A (en) * | 1973-08-06 | 1975-06-17 | United Aircraft Corp | Process of coating a gas turbine engine alloy substrate |
US3918139A (en) * | 1974-07-10 | 1975-11-11 | United Technologies Corp | MCrAlY type coating alloy |
DE2520192A1 (en) * | 1974-05-13 | 1975-11-27 | United Technologies Corp | HEAT-RESISTANT NICOCRALY COATINGS |
US3964877A (en) * | 1975-08-22 | 1976-06-22 | General Electric Company | Porous high temperature seal abradable member |
US3993454A (en) * | 1975-06-23 | 1976-11-23 | United Technologies Corporation | Alumina forming coatings containing hafnium for high temperature applications |
US4005989A (en) * | 1976-01-13 | 1977-02-01 | United Technologies Corporation | Coated superalloy article |
DE2640829A1 (en) * | 1975-09-11 | 1977-03-17 | United Technologies Corp | THERMAL RESISTANCE COATING FOR NICKEL BASED SUPER ALLOYS |
US4013424A (en) * | 1971-06-19 | 1977-03-22 | Rolls-Royce (1971) Limited | Composite articles |
US4022587A (en) * | 1974-04-24 | 1977-05-10 | Cabot Corporation | Protective nickel base alloy coatings |
US4029477A (en) * | 1975-10-29 | 1977-06-14 | General Electric Company | Coated Ni-Cr base dispersion-modified alloy article |
US4080486A (en) * | 1973-04-02 | 1978-03-21 | General Electric Company | Coating system for superalloys |
US4094673A (en) * | 1974-02-28 | 1978-06-13 | Brunswick Corporation | Abradable seal material and composition thereof |
US4101713A (en) * | 1977-01-14 | 1978-07-18 | General Electric Company | Flame spray oxidation and corrosion resistant superalloys |
US4139376A (en) * | 1974-02-28 | 1979-02-13 | Brunswick Corporation | Abradable seal material and composition thereof |
DE2842848A1 (en) * | 1977-10-17 | 1979-04-19 | United Technologies Corp | COVERED OBJECT, IN PARTICULAR SUPER ALLOY GAS TURBINE BLADE |
US4246323A (en) * | 1977-07-13 | 1981-01-20 | United Technologies Corporation | Plasma sprayed MCrAlY coating |
US4248940A (en) * | 1977-06-30 | 1981-02-03 | United Technologies Corporation | Thermal barrier coating for nickel and cobalt base super alloys |
US4275090A (en) * | 1978-10-10 | 1981-06-23 | United Technologies Corporation | Process for carbon bearing MCrAlY coating |
US4275124A (en) * | 1978-10-10 | 1981-06-23 | United Technologies Corporation | Carbon bearing MCrAlY coating |
US4346137A (en) * | 1979-12-19 | 1982-08-24 | United Technologies Corporation | High temperature fatigue oxidation resistant coating on superalloy substrate |
EP0061322A2 (en) * | 1981-03-23 | 1982-09-29 | Hitachi, Ltd. | Alloy coated metal structure having excellent resistance to high-temperature corrosion and thermal shock |
DE3229293A1 (en) * | 1981-08-05 | 1983-03-24 | United Technologies Corp., 06101 Hartford, Conn. | COVERINGS FOR SUPER ALLOYS |
USRE31339E (en) * | 1977-08-03 | 1983-08-09 | Howmet Turbine Components Corporation | Process for producing elevated temperature corrosion resistant metal articles |
US4518406A (en) * | 1983-12-06 | 1985-05-21 | Owens-Corning Fiberglas Corporation | Drain bushing |
GB2152082A (en) * | 1983-12-27 | 1985-07-31 | United Technologies Corp | Enhancement of superalloy resistance to environmental degradation |
US4536202A (en) * | 1983-12-06 | 1985-08-20 | Owens-Corning Fiberglas Corporation | Drain bushing |
US4615865A (en) * | 1981-08-05 | 1986-10-07 | United Technologies Corporation | Overlay coatings with high yttrium contents |
US4711665A (en) * | 1985-07-26 | 1987-12-08 | Pennsylvania Research Corporation | Oxidation resistant alloy |
WO1988009397A1 (en) * | 1987-05-18 | 1988-12-01 | The Secretary Of State For Defence In Her Britanni | COATED NEAR -alpha TITANIUM ARTICLES |
US4889589A (en) * | 1986-06-26 | 1989-12-26 | United Technologies Corporation | Gaseous removal of ceramic coatings |
US5015502A (en) * | 1988-11-03 | 1991-05-14 | Allied-Signal Inc. | Ceramic thermal barrier coating with alumina interlayer |
USRE33876E (en) * | 1975-09-11 | 1992-04-07 | United Technologies Corporation | Thermal barrier coating for nickel and cobalt base super alloys |
US5277936A (en) * | 1987-11-19 | 1994-01-11 | United Technologies Corporation | Oxide containing MCrAlY-type overlay coatings |
US5352540A (en) * | 1992-08-26 | 1994-10-04 | Alliedsignal Inc. | Strain-tolerant ceramic coated seal |
US5397649A (en) * | 1992-08-26 | 1995-03-14 | Alliedsignal Inc. | Intermediate coating layer for high temperature rubbing seals for rotary regenerators |
US5455119A (en) * | 1993-11-08 | 1995-10-03 | Praxair S.T. Technology, Inc. | Coating composition having good corrosion and oxidation resistance |
EP0780484A1 (en) | 1995-12-22 | 1997-06-25 | General Electric Company | Thermal barrier coated articles and method for coating |
US5716720A (en) * | 1995-03-21 | 1998-02-10 | Howmet Corporation | Thermal barrier coating system with intermediate phase bondcoat |
US5824423A (en) * | 1996-02-07 | 1998-10-20 | N.V. Interturbine | Thermal barrier coating system and methods |
US6132890A (en) * | 1997-03-24 | 2000-10-17 | Tocalo Co., Ltd. | High-temperature spray coated member and method of production thereof |
US6180259B1 (en) * | 1997-03-24 | 2001-01-30 | Tocalo Co., Ltd. | Spray coated member resistant to high temperature environment and method of production thereof |
US6532657B1 (en) * | 2001-09-21 | 2003-03-18 | General Electric Co., | Pre-service oxidation of gas turbine disks and seals |
US6607789B1 (en) | 2001-04-26 | 2003-08-19 | General Electric Company | Plasma sprayed thermal bond coat system |
EP1342803A2 (en) * | 2002-03-06 | 2003-09-10 | Siemens Westinghouse Power Corporation | Superalloy material with improved weldability |
US20040079648A1 (en) * | 2002-10-15 | 2004-04-29 | Alstom (Switzerland) Ltd. | Method of depositing an oxidation and fatigue resistant MCrAIY-coating |
US20040108019A1 (en) * | 2002-12-06 | 2004-06-10 | Alstom Technology Ltd. | Non-destructive testing method of determining the depletion of a coating |
US20040159376A1 (en) * | 2002-12-06 | 2004-08-19 | Alstom Technology Ltd | Non-destructive testing method of determining the service metal temperature of a component |
US20040159552A1 (en) * | 2002-12-06 | 2004-08-19 | Alstom Technology Ltd. | Method of depositing a local MCrAIY-coating |
US20040163583A1 (en) * | 2002-12-06 | 2004-08-26 | Alstom Technology Ltd. | Method of depositing a local MCrAIY-coating |
US20040191545A1 (en) * | 2002-01-08 | 2004-09-30 | Applied Materials, Inc. | Process chamber component having electroplated yttrium containing coating |
US20040234808A1 (en) * | 2001-09-22 | 2004-11-25 | Alexander Schnell | Mcraly-coating |
US20040244676A1 (en) * | 2001-09-22 | 2004-12-09 | Alexander Schnell | Method of growing a mcraly-coating and an article coated with the mcraly-coating |
US20050003227A1 (en) * | 2002-01-10 | 2005-01-06 | Alstom Technology Ltd | MCrAIY bond coating and method of depositing said MCrAIY bond coating |
US20050042474A1 (en) * | 2002-01-18 | 2005-02-24 | Hans-Peter Bossmann | High-temperature protection layer |
US6924045B2 (en) | 2001-05-25 | 2005-08-02 | Alstom Technology Ltd | Bond or overlay MCrAIY-coating |
US6942929B2 (en) * | 2002-01-08 | 2005-09-13 | Nianci Han | Process chamber having component with yttrium-aluminum coating |
EP1752553A2 (en) | 2005-08-04 | 2007-02-14 | United Technologies Corporation | Method for microstructure control of ceramic thermal spray coating |
EP1798300A1 (en) * | 2005-12-16 | 2007-06-20 | Siemens Aktiengesellschaft | Alloy, protective coating to protect a part against corrosion and/or oxidation at high temperatures and component |
US20070160873A1 (en) * | 2006-01-10 | 2007-07-12 | United Technologies Corporation | Thermal barrier coating compositions, processes for applying same and articles coated with same |
US20070190354A1 (en) * | 2006-02-13 | 2007-08-16 | Taylor Thomas A | Low thermal expansion bondcoats for thermal barrier coatings |
US20070187005A1 (en) * | 2006-02-13 | 2007-08-16 | Taylor Thomas A | Alloy powders and coating compositions containing same |
EP1829984A1 (en) | 2006-03-01 | 2007-09-05 | United Technologies Corporation | High Density Thermal Barrier Coating |
US20070231589A1 (en) * | 2006-04-04 | 2007-10-04 | United Technologies Corporation | Thermal barrier coatings and processes for applying same |
US20080032105A1 (en) * | 2006-02-13 | 2008-02-07 | Taylor Thomas A | Low thermal expansion bondcoats for thermal barrier coatings |
US20080113217A1 (en) * | 2006-01-10 | 2008-05-15 | United Technologies Corporation | Thermal barrier coating compositions, processes for applying same and articles coated with same |
US20080113218A1 (en) * | 2006-01-10 | 2008-05-15 | United Technologies Corporation | Thermal barrier coating compositions, processes for applying same and articles coated with same |
EP1939326A2 (en) | 2006-12-22 | 2008-07-02 | United Technologies Corporation | Process for preventing the formation of secondary reaction zone in susceptible articles, and articles manufactured using same |
US20080199722A1 (en) * | 2007-02-16 | 2008-08-21 | Prasad Shrikrishna Apte | Thermal spray coatings and applications therefor |
EP2014786A1 (en) | 2007-07-11 | 2009-01-14 | United Technologies Corporation | Process for controlling fatigue debit of a coated article |
US20100098923A1 (en) * | 2006-10-05 | 2010-04-22 | United Technologies Corporation | Segmented abradable coatings and process (ES) for applying the same |
US20100159149A1 (en) * | 2008-12-24 | 2010-06-24 | United Technologies Corporation | Apparatus for reducing stress when applying coatings, processes for applying the same and their coated articles |
US20120156054A1 (en) * | 2010-12-15 | 2012-06-21 | General Electric Company | Turbine component with near-surface cooling passage and process therefor |
CN103911581A (en) * | 2014-03-24 | 2014-07-09 | 燕山大学 | Preparation method of zirconia thermal barrier coating based on roller |
US20160281514A1 (en) * | 2013-11-19 | 2016-09-29 | United Technologies Corporation | Article having variable composition coating |
EP3118345A1 (en) | 2015-07-17 | 2017-01-18 | General Electric Technology GmbH | High temperature protective coating |
CN106521442A (en) * | 2016-11-24 | 2017-03-22 | 清华大学 | Amorphous hard wear-resistant corrosion-resistant coating with adjustable color and adjustable transparency and preparation method thereof |
US9926629B2 (en) | 2007-10-09 | 2018-03-27 | Man Diesel & Turbo Se | Hot gas-guided component of a turbomachine |
WO2024036104A1 (en) | 2022-08-09 | 2024-02-15 | Praxair S.T. Technology, Inc. | High performance alumina-forming multi- element materials for high temperature applications |
-
1970
- 1970-09-15 US US00072512A patent/US3754903A/en not_active Expired - Lifetime
Cited By (125)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4013424A (en) * | 1971-06-19 | 1977-03-22 | Rolls-Royce (1971) Limited | Composite articles |
US3869779A (en) * | 1972-10-16 | 1975-03-11 | Nasa | Duplex aluminized coatings |
US4080486A (en) * | 1973-04-02 | 1978-03-21 | General Electric Company | Coating system for superalloys |
US3890456A (en) * | 1973-08-06 | 1975-06-17 | United Aircraft Corp | Process of coating a gas turbine engine alloy substrate |
US4139376A (en) * | 1974-02-28 | 1979-02-13 | Brunswick Corporation | Abradable seal material and composition thereof |
US4094673A (en) * | 1974-02-28 | 1978-06-13 | Brunswick Corporation | Abradable seal material and composition thereof |
US4022587A (en) * | 1974-04-24 | 1977-05-10 | Cabot Corporation | Protective nickel base alloy coatings |
DE2520192A1 (en) * | 1974-05-13 | 1975-11-27 | United Technologies Corp | HEAT-RESISTANT NICOCRALY COATINGS |
US3928026A (en) * | 1974-05-13 | 1975-12-23 | United Technologies Corp | High temperature nicocraly coatings |
US3918139A (en) * | 1974-07-10 | 1975-11-11 | United Technologies Corp | MCrAlY type coating alloy |
DE2530197A1 (en) * | 1974-07-10 | 1976-01-29 | United Technologies Corp | COATING ALLOYS OF THE MCRALY TYPE |
US3993454A (en) * | 1975-06-23 | 1976-11-23 | United Technologies Corporation | Alumina forming coatings containing hafnium for high temperature applications |
US3964877A (en) * | 1975-08-22 | 1976-06-22 | General Electric Company | Porous high temperature seal abradable member |
DE2640829A1 (en) * | 1975-09-11 | 1977-03-17 | United Technologies Corp | THERMAL RESISTANCE COATING FOR NICKEL BASED SUPER ALLOYS |
DK151901B (en) * | 1975-09-11 | 1988-01-11 | United Technologies Corp | THERMALLY PROTECTED CONSTRUCTION OF A SUPER alloy |
USRE33876E (en) * | 1975-09-11 | 1992-04-07 | United Technologies Corporation | Thermal barrier coating for nickel and cobalt base super alloys |
US4029477A (en) * | 1975-10-29 | 1977-06-14 | General Electric Company | Coated Ni-Cr base dispersion-modified alloy article |
US4005989A (en) * | 1976-01-13 | 1977-02-01 | United Technologies Corporation | Coated superalloy article |
US4101713A (en) * | 1977-01-14 | 1978-07-18 | General Electric Company | Flame spray oxidation and corrosion resistant superalloys |
US4248940A (en) * | 1977-06-30 | 1981-02-03 | United Technologies Corporation | Thermal barrier coating for nickel and cobalt base super alloys |
US4246323A (en) * | 1977-07-13 | 1981-01-20 | United Technologies Corporation | Plasma sprayed MCrAlY coating |
USRE31339E (en) * | 1977-08-03 | 1983-08-09 | Howmet Turbine Components Corporation | Process for producing elevated temperature corrosion resistant metal articles |
FR2406000A1 (en) * | 1977-10-17 | 1979-05-11 | United Technologies Corp | ARTICLES IN NICKEL, COBALT AND / OR IRON SUPERALLY COATED, RESISTANT TO OXIDATION AND WEAR |
DE2842848A1 (en) * | 1977-10-17 | 1979-04-19 | United Technologies Corp | COVERED OBJECT, IN PARTICULAR SUPER ALLOY GAS TURBINE BLADE |
US4275090A (en) * | 1978-10-10 | 1981-06-23 | United Technologies Corporation | Process for carbon bearing MCrAlY coating |
US4275124A (en) * | 1978-10-10 | 1981-06-23 | United Technologies Corporation | Carbon bearing MCrAlY coating |
US4346137A (en) * | 1979-12-19 | 1982-08-24 | United Technologies Corporation | High temperature fatigue oxidation resistant coating on superalloy substrate |
EP0061322A2 (en) * | 1981-03-23 | 1982-09-29 | Hitachi, Ltd. | Alloy coated metal structure having excellent resistance to high-temperature corrosion and thermal shock |
EP0061322A3 (en) * | 1981-03-23 | 1983-07-27 | Hitachi, Ltd. | Alloy coated metal structure having excellent resistance to high-temperature corrosion and thermal shock |
US4615865A (en) * | 1981-08-05 | 1986-10-07 | United Technologies Corporation | Overlay coatings with high yttrium contents |
DE3229293A1 (en) * | 1981-08-05 | 1983-03-24 | United Technologies Corp., 06101 Hartford, Conn. | COVERINGS FOR SUPER ALLOYS |
US4536202A (en) * | 1983-12-06 | 1985-08-20 | Owens-Corning Fiberglas Corporation | Drain bushing |
US4518406A (en) * | 1983-12-06 | 1985-05-21 | Owens-Corning Fiberglas Corporation | Drain bushing |
GB2152082A (en) * | 1983-12-27 | 1985-07-31 | United Technologies Corp | Enhancement of superalloy resistance to environmental degradation |
US4711665A (en) * | 1985-07-26 | 1987-12-08 | Pennsylvania Research Corporation | Oxidation resistant alloy |
US4889589A (en) * | 1986-06-26 | 1989-12-26 | United Technologies Corporation | Gaseous removal of ceramic coatings |
US5126213A (en) * | 1987-05-18 | 1992-06-30 | The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland | Coated near-alpha titanium articles |
WO1988009397A1 (en) * | 1987-05-18 | 1988-12-01 | The Secretary Of State For Defence In Her Britanni | COATED NEAR -alpha TITANIUM ARTICLES |
US5277936A (en) * | 1987-11-19 | 1994-01-11 | United Technologies Corporation | Oxide containing MCrAlY-type overlay coatings |
US5015502A (en) * | 1988-11-03 | 1991-05-14 | Allied-Signal Inc. | Ceramic thermal barrier coating with alumina interlayer |
US5352540A (en) * | 1992-08-26 | 1994-10-04 | Alliedsignal Inc. | Strain-tolerant ceramic coated seal |
US5397649A (en) * | 1992-08-26 | 1995-03-14 | Alliedsignal Inc. | Intermediate coating layer for high temperature rubbing seals for rotary regenerators |
US5455119A (en) * | 1993-11-08 | 1995-10-03 | Praxair S.T. Technology, Inc. | Coating composition having good corrosion and oxidation resistance |
US5856027A (en) * | 1995-03-21 | 1999-01-05 | Howmet Research Corporation | Thermal barrier coating system with intermediate phase bondcoat |
US5716720A (en) * | 1995-03-21 | 1998-02-10 | Howmet Corporation | Thermal barrier coating system with intermediate phase bondcoat |
EP0780484A1 (en) | 1995-12-22 | 1997-06-25 | General Electric Company | Thermal barrier coated articles and method for coating |
US5824423A (en) * | 1996-02-07 | 1998-10-20 | N.V. Interturbine | Thermal barrier coating system and methods |
US6132890A (en) * | 1997-03-24 | 2000-10-17 | Tocalo Co., Ltd. | High-temperature spray coated member and method of production thereof |
US6180259B1 (en) * | 1997-03-24 | 2001-01-30 | Tocalo Co., Ltd. | Spray coated member resistant to high temperature environment and method of production thereof |
US6607789B1 (en) | 2001-04-26 | 2003-08-19 | General Electric Company | Plasma sprayed thermal bond coat system |
US6924045B2 (en) | 2001-05-25 | 2005-08-02 | Alstom Technology Ltd | Bond or overlay MCrAIY-coating |
US6532657B1 (en) * | 2001-09-21 | 2003-03-18 | General Electric Co., | Pre-service oxidation of gas turbine disks and seals |
US7094475B2 (en) | 2001-09-22 | 2006-08-22 | Alstom Technology Ltd | MCrAlY-coating |
US7014923B2 (en) | 2001-09-22 | 2006-03-21 | Alstom Technology Ltd | Method of growing a MCrAlY-coating and an article coated with the MCrAlY-coating |
US20040244676A1 (en) * | 2001-09-22 | 2004-12-09 | Alexander Schnell | Method of growing a mcraly-coating and an article coated with the mcraly-coating |
US20040234808A1 (en) * | 2001-09-22 | 2004-11-25 | Alexander Schnell | Mcraly-coating |
US7833401B2 (en) | 2002-01-08 | 2010-11-16 | Applied Materials, Inc. | Electroplating an yttrium-containing coating on a chamber component |
US20080017516A1 (en) * | 2002-01-08 | 2008-01-24 | Applied Materials, Inc. | Forming a chamber component having a yttrium-containing coating |
US7371467B2 (en) * | 2002-01-08 | 2008-05-13 | Applied Materials, Inc. | Process chamber component having electroplated yttrium containing coating |
US20040191545A1 (en) * | 2002-01-08 | 2004-09-30 | Applied Materials, Inc. | Process chamber component having electroplated yttrium containing coating |
US20080223725A1 (en) * | 2002-01-08 | 2008-09-18 | Applied Materials, Inc. | Process chamber component having electroplated yttrium containing coating |
US8110086B2 (en) | 2002-01-08 | 2012-02-07 | Applied Materials, Inc. | Method of manufacturing a process chamber component having yttrium-aluminum coating |
US6942929B2 (en) * | 2002-01-08 | 2005-09-13 | Nianci Han | Process chamber having component with yttrium-aluminum coating |
US8114525B2 (en) | 2002-01-08 | 2012-02-14 | Applied Materials, Inc. | Process chamber component having electroplated yttrium containing coating |
US9012030B2 (en) | 2002-01-08 | 2015-04-21 | Applied Materials, Inc. | Process chamber component having yttrium—aluminum coating |
US20050003227A1 (en) * | 2002-01-10 | 2005-01-06 | Alstom Technology Ltd | MCrAIY bond coating and method of depositing said MCrAIY bond coating |
US7264887B2 (en) | 2002-01-10 | 2007-09-04 | Alstom Technology Ltd. | MCrAlY bond coating and method of depositing said MCrAlY bond coating |
US20070281103A1 (en) * | 2002-01-10 | 2007-12-06 | Alstom Technology Ltd | MCrAIY BOND COATING AND METHOD OF DEPOSITING SAID MCrAIY BOND COATING |
US7052782B2 (en) | 2002-01-18 | 2006-05-30 | Alstom Technology Ltd. | High-temperature protection layer |
US20050042474A1 (en) * | 2002-01-18 | 2005-02-24 | Hans-Peter Bossmann | High-temperature protection layer |
EP1342803A2 (en) * | 2002-03-06 | 2003-09-10 | Siemens Westinghouse Power Corporation | Superalloy material with improved weldability |
EP1342803A3 (en) * | 2002-03-06 | 2003-10-01 | Siemens Westinghouse Power Corporation | Superalloy material with improved weldability |
US6696176B2 (en) | 2002-03-06 | 2004-02-24 | Siemens Westinghouse Power Corporation | Superalloy material with improved weldability |
US20040079648A1 (en) * | 2002-10-15 | 2004-04-29 | Alstom (Switzerland) Ltd. | Method of depositing an oxidation and fatigue resistant MCrAIY-coating |
US20040159552A1 (en) * | 2002-12-06 | 2004-08-19 | Alstom Technology Ltd. | Method of depositing a local MCrAIY-coating |
US20040163583A1 (en) * | 2002-12-06 | 2004-08-26 | Alstom Technology Ltd. | Method of depositing a local MCrAIY-coating |
US7150798B2 (en) | 2002-12-06 | 2006-12-19 | Alstom Technology Ltd. | Non-destructive testing method of determining the service metal temperature of a component |
US7175720B2 (en) | 2002-12-06 | 2007-02-13 | Alstom Technology Ltd | Non-destructive testing method of determining the depletion of a coating |
US20040108019A1 (en) * | 2002-12-06 | 2004-06-10 | Alstom Technology Ltd. | Non-destructive testing method of determining the depletion of a coating |
US20040159376A1 (en) * | 2002-12-06 | 2004-08-19 | Alstom Technology Ltd | Non-destructive testing method of determining the service metal temperature of a component |
US20080166489A1 (en) * | 2005-08-04 | 2008-07-10 | United Technologies Corporation | Method for microstructure control of ceramic thermal spray coating |
EP1752553A2 (en) | 2005-08-04 | 2007-02-14 | United Technologies Corporation | Method for microstructure control of ceramic thermal spray coating |
US8802199B2 (en) | 2005-08-04 | 2014-08-12 | United Technologies Corporation | Method for microstructure control of ceramic thermal spray coating |
EP1798300A1 (en) * | 2005-12-16 | 2007-06-20 | Siemens Aktiengesellschaft | Alloy, protective coating to protect a part against corrosion and/or oxidation at high temperatures and component |
US7579087B2 (en) | 2006-01-10 | 2009-08-25 | United Technologies Corporation | Thermal barrier coating compositions, processes for applying same and articles coated with same |
US20070160873A1 (en) * | 2006-01-10 | 2007-07-12 | United Technologies Corporation | Thermal barrier coating compositions, processes for applying same and articles coated with same |
US8529999B2 (en) | 2006-01-10 | 2013-09-10 | United Technologies Corporation | Thermal barrier coating application processes |
US20080113217A1 (en) * | 2006-01-10 | 2008-05-15 | United Technologies Corporation | Thermal barrier coating compositions, processes for applying same and articles coated with same |
US20080113218A1 (en) * | 2006-01-10 | 2008-05-15 | United Technologies Corporation | Thermal barrier coating compositions, processes for applying same and articles coated with same |
US20100047075A1 (en) * | 2006-01-10 | 2010-02-25 | United Technologies Corporation | Thermal Barrier Coating Compositions, Processes for Applying Same and Articles Coated with Same |
US20090308733A1 (en) * | 2006-01-10 | 2009-12-17 | United Technologies Corporation | Thermal Barrier Coating Compositions, Processes for Applying Same and Articles Coated with Same |
US7455913B2 (en) | 2006-01-10 | 2008-11-25 | United Technologies Corporation | Thermal barrier coating compositions, processes for applying same and articles coated with same |
US7622195B2 (en) | 2006-01-10 | 2009-11-24 | United Technologies Corporation | Thermal barrier coating compositions, processes for applying same and articles coated with same |
US7910225B2 (en) | 2006-02-13 | 2011-03-22 | Praxair S.T. Technology, Inc. | Low thermal expansion bondcoats for thermal barrier coatings |
US20080032105A1 (en) * | 2006-02-13 | 2008-02-07 | Taylor Thomas A | Low thermal expansion bondcoats for thermal barrier coatings |
US20070190354A1 (en) * | 2006-02-13 | 2007-08-16 | Taylor Thomas A | Low thermal expansion bondcoats for thermal barrier coatings |
US20070187005A1 (en) * | 2006-02-13 | 2007-08-16 | Taylor Thomas A | Alloy powders and coating compositions containing same |
EP1829984A1 (en) | 2006-03-01 | 2007-09-05 | United Technologies Corporation | High Density Thermal Barrier Coating |
US20070207328A1 (en) * | 2006-03-01 | 2007-09-06 | United Technologies Corporation | High density thermal barrier coating |
US20070231589A1 (en) * | 2006-04-04 | 2007-10-04 | United Technologies Corporation | Thermal barrier coatings and processes for applying same |
US8007899B2 (en) | 2006-10-05 | 2011-08-30 | United Technologies Corporation | Segmented abradable coatings and process(es) for applying the same |
US20100098923A1 (en) * | 2006-10-05 | 2010-04-22 | United Technologies Corporation | Segmented abradable coatings and process (ES) for applying the same |
US20100196663A1 (en) * | 2006-10-05 | 2010-08-05 | United Technologies Corporation | Segmented Abradable Coatings and Process(es) for Applying the Same |
EP1939326A2 (en) | 2006-12-22 | 2008-07-02 | United Technologies Corporation | Process for preventing the formation of secondary reaction zone in susceptible articles, and articles manufactured using same |
US20100260613A1 (en) * | 2006-12-22 | 2010-10-14 | United Technologies Corporation | Process for preventing the formation of secondary reaction zone in susceptible articles, and articles manufactured using same |
US20080199722A1 (en) * | 2007-02-16 | 2008-08-21 | Prasad Shrikrishna Apte | Thermal spray coatings and applications therefor |
US7883784B2 (en) * | 2007-02-16 | 2011-02-08 | Praxair S. T. Technology, Inc. | Thermal spray coatings and applications therefor |
US7879457B2 (en) * | 2007-02-16 | 2011-02-01 | Praxair S. T. Technology, Inc. | Thermal spray coatings and applications therefor |
US20080199684A1 (en) * | 2007-02-16 | 2008-08-21 | Prasad Shrikrisnna Apte | Thermal spray coatings and applications therefor |
EP2014786A1 (en) | 2007-07-11 | 2009-01-14 | United Technologies Corporation | Process for controlling fatigue debit of a coated article |
US20100151230A1 (en) * | 2007-07-11 | 2010-06-17 | United Technologies Corporation | Process for controlling fatigue debit of a coated article |
US8808852B2 (en) | 2007-07-11 | 2014-08-19 | United Technologies Corporation | Process for controlling fatigue debit of a coated article |
US9926629B2 (en) | 2007-10-09 | 2018-03-27 | Man Diesel & Turbo Se | Hot gas-guided component of a turbomachine |
US20100159149A1 (en) * | 2008-12-24 | 2010-06-24 | United Technologies Corporation | Apparatus for reducing stress when applying coatings, processes for applying the same and their coated articles |
US8182881B2 (en) | 2008-12-24 | 2012-05-22 | United Technologies Corporation | Methods for reducing stress when applying coatings, processes for applying the same and their coated articles |
EP2204465A2 (en) | 2008-12-24 | 2010-07-07 | United Technologies Corporation | Apparatus for reducing stress when applying coatings, processes for applying the same and their coated articles |
US20120156054A1 (en) * | 2010-12-15 | 2012-06-21 | General Electric Company | Turbine component with near-surface cooling passage and process therefor |
US20160281514A1 (en) * | 2013-11-19 | 2016-09-29 | United Technologies Corporation | Article having variable composition coating |
US11261742B2 (en) * | 2013-11-19 | 2022-03-01 | Raytheon Technologies Corporation | Article having variable composition coating |
US11834963B2 (en) | 2013-11-19 | 2023-12-05 | Rtx Corporation | Article having variable composition coating |
CN103911581A (en) * | 2014-03-24 | 2014-07-09 | 燕山大学 | Preparation method of zirconia thermal barrier coating based on roller |
CN103911581B (en) * | 2014-03-24 | 2016-03-02 | 燕山大学 | A kind of preparation method of the Zirconium oxide heat barrier coating based on roll |
EP3118345A1 (en) | 2015-07-17 | 2017-01-18 | General Electric Technology GmbH | High temperature protective coating |
CN106521442A (en) * | 2016-11-24 | 2017-03-22 | 清华大学 | Amorphous hard wear-resistant corrosion-resistant coating with adjustable color and adjustable transparency and preparation method thereof |
WO2024036104A1 (en) | 2022-08-09 | 2024-02-15 | Praxair S.T. Technology, Inc. | High performance alumina-forming multi- element materials for high temperature applications |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3754903A (en) | High temperature oxidation resistant coating alloy | |
US3676085A (en) | Cobalt base coating for the superalloys | |
US4447503A (en) | Superalloy coating composition with high temperature oxidation resistance | |
US4313760A (en) | Superalloy coating composition | |
US5154885A (en) | Highly corrosion and/or oxidation-resistant protective coating containing rhenium | |
US4339509A (en) | Superalloy coating composition with oxidation and/or sulfidation resistance | |
US4034142A (en) | Superalloy base having a coating containing silicon for corrosion/oxidation protection | |
US3951642A (en) | Metallic coating powder containing Al and Hf | |
US5273712A (en) | Highly corrosion and/or oxidation-resistant protective coating containing rhenium | |
Mevrel et al. | Pack cementation processes | |
US3649225A (en) | Composite coating for the superalloys | |
US4145481A (en) | Process for producing elevated temperature corrosion resistant metal articles | |
US5316866A (en) | Strengthened protective coatings for superalloys | |
US5238752A (en) | Thermal barrier coating system with intermetallic overlay bond coat | |
US4198442A (en) | Method for producing elevated temperature corrosion resistant articles | |
US4419416A (en) | Overlay coatings for superalloys | |
US4615864A (en) | Superalloy coating composition with oxidation and/or sulfidation resistance | |
US5582635A (en) | High temperature-resistant corrosion protection coating for a component in particular a gas turbine component | |
USRE31339E (en) | Process for producing elevated temperature corrosion resistant metal articles | |
US6921586B2 (en) | Ni-Base superalloy having a coating system containing a diffusion barrier layer | |
US20080057339A1 (en) | High-temperature coatings and bulk alloys with pt metal modified gamma-ni + gamma'-ni3al alloys having hot-corrosion resistance | |
US5268238A (en) | Highly corrosion and/or oxidation-resistant protective coating containing rhenium applied to gas turbine component surface and method thereof | |
US4071638A (en) | Method of applying a metallic coating with improved resistance to high temperature to environmental conditions | |
US3764279A (en) | Protective alloy coating and method | |
CA2146503A1 (en) | High temperature coating for combustion turbines and aeroengines |