US3731681A - Implantable indusion pump - Google Patents
Implantable indusion pump Download PDFInfo
- Publication number
- US3731681A US3731681A US00217879A US3731681DA US3731681A US 3731681 A US3731681 A US 3731681A US 00217879 A US00217879 A US 00217879A US 3731681D A US3731681D A US 3731681DA US 3731681 A US3731681 A US 3731681A
- Authority
- US
- United States
- Prior art keywords
- pump
- chamber
- bellows
- housing
- vapor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001802 infusion Methods 0.000 claims abstract description 34
- 239000007788 liquid Substances 0.000 claims abstract description 16
- 238000002347 injection Methods 0.000 claims abstract description 12
- 239000007924 injection Substances 0.000 claims abstract description 12
- 238000007789 sealing Methods 0.000 claims abstract description 12
- 239000012530 fluid Substances 0.000 claims description 21
- 238000002513 implantation Methods 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 5
- 238000004891 communication Methods 0.000 claims description 4
- 230000001105 regulatory effect Effects 0.000 claims description 3
- 230000001276 controlling effect Effects 0.000 claims description 2
- 239000000126 substance Substances 0.000 abstract description 10
- 230000016507 interphase Effects 0.000 abstract description 5
- 239000003814 drug Substances 0.000 abstract description 4
- 229940079593 drug Drugs 0.000 abstract description 4
- 239000000243 solution Substances 0.000 abstract description 2
- 210000002445 nipple Anatomy 0.000 description 9
- 239000000463 material Substances 0.000 description 6
- QMMFVYPAHWMCMS-UHFFFAOYSA-N Dimethyl sulfide Chemical compound CSC QMMFVYPAHWMCMS-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- WFPZPJSADLPSON-UHFFFAOYSA-N dinitrogen tetraoxide Chemical compound [O-][N+](=O)[N+]([O-])=O WFPZPJSADLPSON-UHFFFAOYSA-N 0.000 description 2
- DNJIEGIFACGWOD-UHFFFAOYSA-N ethanethiol Chemical compound CCS DNJIEGIFACGWOD-UHFFFAOYSA-N 0.000 description 2
- LELOWRISYMNNSU-UHFFFAOYSA-N hydrogen cyanide Chemical compound N#C LELOWRISYMNNSU-UHFFFAOYSA-N 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- QWTDNUCVQCZILF-UHFFFAOYSA-N isopentane Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 2
- 210000003205 muscle Anatomy 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 229920000260 silastic Polymers 0.000 description 2
- PGOHTUIFYSHAQG-LJSDBVFPSA-N (2S)-6-amino-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-4-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-5-amino-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S,3R)-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S,3R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-5-amino-2-[[(2S)-1-[(2S,3R)-2-[[(2S)-2-[[(2S)-2-[[(2R)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-1-[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-amino-4-methylsulfanylbutanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-5-carbamimidamidopentanoyl]amino]propanoyl]pyrrolidine-2-carbonyl]amino]-3-methylbutanoyl]amino]-4-methylpentanoyl]amino]-4-methylpentanoyl]amino]acetyl]amino]-3-hydroxypropanoyl]amino]-4-methylpentanoyl]amino]-3-sulfanylpropanoyl]amino]-4-methylsulfanylbutanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-hydroxybutanoyl]pyrrolidine-2-carbonyl]amino]-5-oxopentanoyl]amino]-3-hydroxypropanoyl]amino]-3-hydroxypropanoyl]amino]-3-(1H-imidazol-5-yl)propanoyl]amino]-4-methylpentanoyl]amino]-3-hydroxybutanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-5-carbamimidamidopentanoyl]amino]-5-oxopentanoyl]amino]-3-hydroxybutanoyl]amino]-3-hydroxypropanoyl]amino]-3-carboxypropanoyl]amino]-3-hydroxypropanoyl]amino]-5-oxopentanoyl]amino]-5-oxopentanoyl]amino]-3-phenylpropanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-methylbutanoyl]amino]-4-methylpentanoyl]amino]-4-oxobutanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-4-carboxybutanoyl]amino]-5-oxopentanoyl]amino]hexanoic acid Chemical compound CSCC[C@H](N)C(=O)N[C@@H](Cc1c[nH]c2ccccc12)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N1CCC[C@H]1C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](Cc1cnc[nH]1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](Cc1c[nH]c2ccccc12)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](Cc1ccccc1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](Cc1c[nH]c2ccccc12)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCCN)C(O)=O PGOHTUIFYSHAQG-LJSDBVFPSA-N 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 206010053567 Coagulopathies Diseases 0.000 description 1
- 101100229963 Drosophila melanogaster grau gene Proteins 0.000 description 1
- 101000635799 Homo sapiens Run domain Beclin-1-interacting and cysteine-rich domain-containing protein Proteins 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 102100030852 Run domain Beclin-1-interacting and cysteine-rich domain-containing protein Human genes 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 102000002262 Thromboplastin Human genes 0.000 description 1
- 108010000499 Thromboplastin Proteins 0.000 description 1
- 239000003524 antilipemic agent Substances 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 230000000973 chemotherapeutic effect Effects 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 230000035602 clotting Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 210000003191 femoral vein Anatomy 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 229960004692 perflenapent Drugs 0.000 description 1
- NJCBUSHGCBERSK-UHFFFAOYSA-N perfluoropentane Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F NJCBUSHGCBERSK-UHFFFAOYSA-N 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000005381 potential energy Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- CZDYPVPMEAXLPK-UHFFFAOYSA-N tetramethylsilane Chemical compound C[Si](C)(C)C CZDYPVPMEAXLPK-UHFFFAOYSA-N 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 229940124549 vasodilator Drugs 0.000 description 1
- 239000003071 vasodilator agent Substances 0.000 description 1
- 210000001631 vena cava inferior Anatomy 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/14—Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
- A61M5/142—Pressure infusion, e.g. using pumps
- A61M5/14244—Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body
- A61M5/14276—Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body specially adapted for implantation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/14—Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
- A61M5/141—Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor with capillaries for restricting fluid flow
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/14—Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
- A61M5/168—Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
- A61M5/16877—Adjusting flow; Devices for setting a flow rate
Definitions
- ABSTRACT An implantable pump for infusing drugs or other chemicals or solutions into the body at a uniform slow flow rate.
- the pump comprises a housing divided into two chambers separated by a bellows, diaphragm or other pressure-communicating interphase.
- a volatile liquid partially filling one chamber provides 9 constant pressure energy source to act upon the interphase to force liquid infusate from the other chamber through a capillary tube or other flow-regulating resistance element to the infusion site.
- the infusate chamber is closed as by means of a self puncture sealing refill stopper.
- the pump is implanted with the refill stopper disposed under the skin and the pump is refilled periodically by injection through the skin.
- This invention is directed to a permanently implantable self-recycling low-flow constant rate multi-purpose infusion pump of simple design.
- the pump is percutaneously refillable. It operates without any kind of intrinsic or extrinsic electrical power source. It can function independently of Vascular pressure to provide continuous uniform rate infusion. Drugs or other chemical substances or fluids can be infused intravenously, intra-arterially or into a body cavity or tissue at a constant volume slow flow delivery rate. It may be used for such purposes as continuous heparinization, artificial pancreas insulin injection, chemotherapeutic organ infusion, anti-hyperlipidemic agent infusion, regional vasodilator infusion, and the like.
- the pump of the present invention utilizes a recycling chemical vapor-liquid constant pressure energy source, avoiding the disadvantages of any electrically powered pump, whether operated from an external or internal power pack, atomic powered pump, magnetic powered pump, or the like.
- the present pump utilizes the pressure used to fill the inner chamber as the kinetic energy source for restoring the potential energy to the chemical pump. Operation of the pump depends upon the physical concept that a vapor in equilibrium with its liquid phase exerts a constant vapor pressure at a given temperature, regardless of volume.
- FIG. 1 is a perspective view of the implantable infusion pump, partly broken away and partly in section, and showing the components in exploded relation;
- FIG. 2 is a top plan fiew of the pump
- FIG. 3 is a bottom plan view
- FIG. 4 is a transverse sectional view, on a slightly enlarged scale, of the assembled pump.
- the infusion pump comprises an outer cylindrical housing, indicated generally at 10, and having a cylindrical side wall 11, circular bottom wall 12 and annular top wall 13.
- a shallow cup-like member, indicated generally at 14, of lesser diameter than housing 10, is fitted into the space within annular housing top wall 13.
- Cup-like member 14 is open at the top and includes a cylindrical side wall 15, generally circular bottom wall 16 and outwardly extending annular flange 17. The elements of housing and cup-like member 14 are formed and secured together in liquid-tight vapor-tight junctions.
- a bellows indicated generally at 18, and comprised of a stack of plurality of concentric flat annular rings 19, a circular bottom wall 20, an annular top wall 21 and a cylindrical mouth or lip 22 is positioned within housing 10.
- Lip 22 is secured to the inner periphery of top wall 21 and to flange 17 of cup-like member 14 in liquid-tight vapor-tight relation.
- Adjacent rings 19 are secured together alternately at their inner and outer peripheries, the bottom-most ring is secured to the outer periphery of bottom wall 20 and the topmost ring is secured to the outer periphery of top wall 21, all in liquid-tight vapor-tight relation, in the usual manner to form an expandable-contractible bellows structure.
- the annular space between the housing wall and the cup-like member provides a recess into which the bellows may be collapsed.
- Bellows 18 divides the interior of housing 10 into an outer chamber 23 and inner chamber 24 of varying volume. As chamber 23 becomes larger through contraction of the bellows, chamber 24 becomes smaller, and vice versa.
- Housing bottom wall 12 is provided with a screw-threaded fitting 25 defining a central inlet port or aperture to chamber 23 to receive a threaded plug 26.
- the head 27 of screw plug 26 is provided with a transverse slot 28 on its outer surface to facilitate closing of the opening, and an annular channel on its inner surface to receive a resilient O-ring 29 to form a liquid-tight vapor-tight seal.
- the bottom wall 16 of cup-like member 14 is provided with a central aperture and annular fitting 30 internally threaded to receive one end 32 of nipple 31.
- the central portion of nipple 31 is of greater diameter than threaded portion 32, and is desirably hexagonal or other polygonal shape.
- Its bottom surface is provided with an annular groove or channel to receive an O-ring 33 adapted to be compressed against the upper surface of fitting 30 to form a liquid-tight seal.
- nipple 31 The upper portion 34 of nipple 31 is of somewhat greater diameter than the lower portion 32 and is exterv nally threaded to receive an internally threaded knurled cap 35 having a central top opening 36.
- a longitudinal passage 37 extends through nipple 31.
- the upper end of passage 37 receives a plug or stopper 38 formed of elastic self puncture-sealing material, which serves as an entry port to chamber 24.
- Stopper 38 has an outwardly flanged top 39 which engages the upper end of nipple 31, the stopper being secured by knurled ring 35 in liquid-tight relation.
- the fitting enclosing passage 37 may also be elongated, or bent, as in the case where the pump itself would lie some distance under the skin, i.e. in a body cavity, between two muscle planes, etc.
- the liquid-tight closure apparatus, 35-39 would necessarily lie at the end of this extension directly underneath the skin for percutaneous refilling ease.
- This closure apparatus is not limited to a puncture-sealing rubber stopper as shown, but may be replaced by any displaceable selfsealing mechanism, such as a ball valve.
- top, bottom, etc. are relative and refer only to positions as shown in the drawings. These relationships may vary in use when the pump is implanted in the body with the opening 36 of cap 35 and stopper 38 accessible under the skin for injection of refills of the drug or other chemical to be infused.
- a thin small-diameter flexible capillary tube 40 (preferably within a larger protective tube) is secured in a radial discharge passage in the body of nipple 31 so as to be in direct fluid communication with the longitudinal passage through the nipple and with chamber 24 to serve as a discharge therefrom.
- Tube 40 serves primarily as the pressure-drop flow regulator (e.g. may be replaced by a porous plug or other flow regulating device) and is of variable length and diameter. It is coiled around nipple 31 and fits within cup-like member 14.
- Tubing 40 extends to the infusion site where the infused material is dispensed from its opposite end.
- This capillary is preferably enclosed in a larger polyethylene or Silastic cannula to facilitate placement.
- the capillary tubing 40 serves a two-fold function, as a flow-regulating resistance element and a discharge port into the site of infusion.
- This may be replaced by a combination of any two devices accomplishing the same end; for example, the resistance element may be a porous metal plug or other filter, or any other type of flow regulator, in direct fluid communication with the infusion site by means of a conduit, such as a catheter or cannula.
- these resistance elements may number more than one, as in the case of more than one site of infusion.
- Bellows 18 is one form of liquid-tight, vapor-tight, pressure-communicating interphase means which can be used to separate the two chambers of the pump.
- the chambers may be separated by a resilient diaphragm which is compatible with the substances within the chambers; or the second chamber may be formed, in part at least, from a flexible bladder which is compatible with the materials and capable of expanding and contracting under influence of the infusate and vapor-producing material in the first chamber, and the like.
- a vapor in equilibrium with its liquid phase exerts a constant vapor pressure at 'a given temperature regardless of volume.
- the outer pump chamber 23 at its minimum volume is partially filled with a stable volatile liquid that exerts a vapor pressure of greater than one atmosphere at physiological temperatures (approximately 37 C) to form the vapor-liquid mixture of the chemical power source.
- Volatile liquids among the members of this very large group of compounds include: Perfluoro pentane, Tetramethyl silane, Ethyl ether, Methyl formate, Ethanethiol, Dimethyl sulfide, Ethylamine, 2-Methyl butane, Hydrocyanic acid, Trichlorofluro methane, and Nitrogen tetroxide.
- the inner chamber 24 contains the displaceable infusate.
- the most readily adjustable parameters are the length and diameter of the capillary and the viscosity of the infusate.
- Refills of infusate are injected into the inner chamber through the self-sealing stopper 38. The pressure generated by this injection is sufficient to recycle the pump by condensing the volatile vapor phase within outer chamber 23.
- One or more spacer members 41 are desirably provided on the inside of bellows bottom wall (or cup bottom wall 16) to prevent wall members 20 and 16 from becoming adhered through surface tension of the infusate.
- a filter is installed on both the inlet and outflow sides of the pump to reduce the possibility of particulate contamination.
- the pump is constructed of materials non-toxic to the host animal and compatible with both the infusate and the chemical power source. Stainless steel is a desirable material for forming the housing, bellows, fittings, etc. All exposed parts of the pump are covered with Silastic, Teflon, or similar material, compatible with body fluids and well-known for the coating of devices to be implanted within the body.
- In-vitro tests in an incubator at 37 C have shown a high degree of constancy in infusion rates at adjusted levels of extremely low flow over various time increments.
- Representative mean adjusted flow rates i stan dard error for different time periods include: 0.078 t 0.0017 mil/hr for a 39 hour period; 0.101 rt 0.00035 ml/hr for an 82 hour trail; 0.183 t 0.0073 ml/hr for a 68 hour trial; 0.363 $00046 ml/hr for a 43 hour trial; 0.373 i 0.013 ml/hr for a 44 hour trial; and 0.613 t 0.020 ml/hr for a 13 hour trial.
- the capacity of a unit in which the housing 10 measures about 2% by 7 cm. is approximately 20 mil. This means that low flow may be maintained over 10 days before refilling is necessary.
- An infusion pump for implantation in a living body comprising:
- At least one outlet conduit located at a second position on the housing adjacent to but spaced from said inlet conduit communicating with the second chamber and for leading to an infusion site in the body
- E. means in the first chamber for moving the dividing means to reduce the volume of the second chamber so that a fluid in the second chamber may be forced through the outlet conduit
- An infusion pump for implantation in a living body comprising:
- the bellows B. a metal bellows within the housing, the bellows 1. having a closed end wall,
- An infusion pump for implantation in a living body comprising:
- a liquid-tight, vapor-tight, pressure-communicating metal bellows separating the chambers, said bellows having an open mouth at one end and closed wall at the other end, the mouth of the bellows being secured in liquid-tight, vapor-tight relation, the first chamber being provided with an inlet means and lying between the inside walls of the housing and the bellows and the second chamber lying within the bellows,
- a pump according to claim 10 further characterized in that:
- A. a recessed, cup-like member is disposed in one end of the housing extending within the mouth of the bellows,
- an aperture is provided in the cup-like member with a fitting therein having a channel in communication with the second chamber, and
- the bellows is collapsible into an annular space between the cup-like member and the housing wall.
- the penetrable closure means is an elastic member
- annular retainer having a central aperture is securedto the external end of the fitting in engagement with the elastic member.
- the housing and the fitting having contours conforming generally to the contours of the implantation site in the body
- a conduit is connected to the discharge port for conducting infusate from the bellows to an infusion site in the body.
- conduit is a length of capillary tubing.
- said method comprising the steps of:
Landscapes
- Health & Medical Sciences (AREA)
- Vascular Medicine (AREA)
- Engineering & Computer Science (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Hematology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Infusion, Injection, And Reservoir Apparatuses (AREA)
- Media Introduction/Drainage Providing Device (AREA)
Abstract
An implantable pump for infusing drugs or other chemicals or solutions into the body at a uniform slow flow rate. The pump comprises a housing divided into two chambers separated by a bellows, diaphragm or other pressure-communicating interphase. A volatile liquid partially filling one chamber provides 9 constant pressure energy source to act upon the interphase to force liquid infusate from the other chamber through a capillary tube or other flow-regulating resistance element to the infusion site. The infusate chamber is closed as by means of a self puncture sealing refill stopper. The pump is implanted with the refill stopper disposed under the skin and the pump is refilled periodically by injection through the skin.
Description
United States Patent 1 Blackshear et al.
[ 1 May 8,1973
[54] IMPLANTABLE INDUSION PUMP [7 5] Inventors: Perry J. Blackshear, Mahtomedi; Frank D. Dorman, St. Paul; Perry L. Blackshear, Jr., Mahtomedi; Henry Buchwald, Edina; Richard L. Varco, St. Paul, all of Minn.
[73] Assignee: The Regents of the University of Minnesota, Minneapolis, Minn.
3,048,171 8/1962 Grau ..128/214.2
3,023,750 3/1962 Baron.....
2,876,768 3/1959 Schultz...
2,815,152 12/1957 Mills ..222/386.5
FOREIGN PATENTS OR APPLICATIONS 196,550 3/1958 Austria ..128/214 F 664,419 8/1938 Germany ..222/386.5 960,535 6/1964 Great Britain ..128/2l4 F Primary Examiner--Aldrich F. Medbery Attorney-L. Paul Burd et al.
[57] ABSTRACT An implantable pump for infusing drugs or other chemicals or solutions into the body at a uniform slow flow rate. The pump comprises a housing divided into two chambers separated by a bellows, diaphragm or other pressure-communicating interphase. A volatile liquid partially filling one chamber provides 9 constant pressure energy source to act upon the interphase to force liquid infusate from the other chamber through a capillary tube or other flow-regulating resistance element to the infusion site. The infusate chamber is closed as by means of a self puncture sealing refill stopper. The pump is implanted with the refill stopper disposed under the skin and the pump is refilled periodically by injection through the skin.
17 Claims, 4 Drawing Figures abandoned.
[52] US. Cl. ..128/214 F, 128/260, 222/3865, 3/1 [51] Int. Cl. ..A6lm 05/00 [58] Field of Search ..l28/214 R, 214 F, l28/2l4.2, 216, 1 R, 260; 222/3865; 3/1
[56] References Cited UNITED STATES PATENTS 3,583,387 6/1971 Garner ..l28/1 R 3,527,220 9/1970 3,468,308 9/1969 3,310,051 3/1967 PATENTED HAY 8 I975 SHEET 1 [IF 2 IMPLANTABLE INDUSION PUMP This application is a continuation of application, Ser. No. 38,356, filed May l8, 1970, and now abandoned.
The invention described herein was made in the course of work under a grant or award from the Department of Health, Education and Welfare.
This invention is directed to a permanently implantable self-recycling low-flow constant rate multi-purpose infusion pump of simple design. The pump is percutaneously refillable. It operates without any kind of intrinsic or extrinsic electrical power source. It can function independently of Vascular pressure to provide continuous uniform rate infusion. Drugs or other chemical substances or fluids can be infused intravenously, intra-arterially or into a body cavity or tissue at a constant volume slow flow delivery rate. It may be used for such purposes as continuous heparinization, artificial pancreas insulin injection, chemotherapeutic organ infusion, anti-hyperlipidemic agent infusion, regional vasodilator infusion, and the like.
Previous methods of infusion have required external connections and tubing. No completely permanently implantable infusion pump with percutaneous refilling access has been known. The pump of the present invention utilizes a recycling chemical vapor-liquid constant pressure energy source, avoiding the disadvantages of any electrically powered pump, whether operated from an external or internal power pack, atomic powered pump, magnetic powered pump, or the like. The present pump utilizes the pressure used to fill the inner chamber as the kinetic energy source for restoring the potential energy to the chemical pump. Operation of the pump depends upon the physical concept that a vapor in equilibrium with its liquid phase exerts a constant vapor pressure at a given temperature, regardless of volume.
The invention is illustrated in the accompanying drawings in which the corresponding parts are identified by the same numerals and in which:
FIG. 1 is a perspective view of the implantable infusion pump, partly broken away and partly in section, and showing the components in exploded relation;
FIG. 2 is a top plan fiew of the pump;
FIG. 3 is a bottom plan view; and
FIG. 4 is a transverse sectional view, on a slightly enlarged scale, of the assembled pump.
Referring now to the drawings, the infusion pump according to the present invention comprises an outer cylindrical housing, indicated generally at 10, and having a cylindrical side wall 11, circular bottom wall 12 and annular top wall 13. A shallow cup-like member, indicated generally at 14, of lesser diameter than housing 10,is fitted into the space within annular housing top wall 13. Cup-like member 14 is open at the top and includes a cylindrical side wall 15, generally circular bottom wall 16 and outwardly extending annular flange 17. The elements of housing and cup-like member 14 are formed and secured together in liquid-tight vapor-tight junctions.
A bellows, indicated generally at 18, and comprised of a stack of plurality of concentric flat annular rings 19, a circular bottom wall 20, an annular top wall 21 and a cylindrical mouth or lip 22 is positioned within housing 10. Lip 22 is secured to the inner periphery of top wall 21 and to flange 17 of cup-like member 14 in liquid-tight vapor-tight relation. Adjacent rings 19 are secured together alternately at their inner and outer peripheries, the bottom-most ring is secured to the outer periphery of bottom wall 20 and the topmost ring is secured to the outer periphery of top wall 21, all in liquid-tight vapor-tight relation, in the usual manner to form an expandable-contractible bellows structure. The annular space between the housing wall and the cup-like member provides a recess into which the bellows may be collapsed.
Bellows 18 divides the interior of housing 10 into an outer chamber 23 and inner chamber 24 of varying volume. As chamber 23 becomes larger through contraction of the bellows, chamber 24 becomes smaller, and vice versa. Housing bottom wall 12 is provided with a screw-threaded fitting 25 defining a central inlet port or aperture to chamber 23 to receive a threaded plug 26. The head 27 of screw plug 26 is provided with a transverse slot 28 on its outer surface to facilitate closing of the opening, and an annular channel on its inner surface to receive a resilient O-ring 29 to form a liquid-tight vapor-tight seal.
The bottom wall 16 of cup-like member 14 is provided with a central aperture and annular fitting 30 internally threaded to receive one end 32 of nipple 31. The central portion of nipple 31 is of greater diameter than threaded portion 32, and is desirably hexagonal or other polygonal shape. Its bottom surface is provided with an annular groove or channel to receive an O-ring 33 adapted to be compressed against the upper surface of fitting 30 to form a liquid-tight seal.
The upper portion 34 of nipple 31 is of somewhat greater diameter than the lower portion 32 and is exterv nally threaded to receive an internally threaded knurled cap 35 having a central top opening 36. A longitudinal passage 37 extends through nipple 31. The upper end of passage 37 receives a plug or stopper 38 formed of elastic self puncture-sealing material, which serves as an entry port to chamber 24. Stopper 38 has an outwardly flanged top 39 which engages the upper end of nipple 31, the stopper being secured by knurled ring 35 in liquid-tight relation.
The fitting enclosing passage 37 may also be elongated, or bent, as in the case where the pump itself would lie some distance under the skin, i.e. in a body cavity, between two muscle planes, etc. The liquid-tight closure apparatus, 35-39, would necessarily lie at the end of this extension directly underneath the skin for percutaneous refilling ease. This closure apparatus is not limited to a puncture-sealing rubber stopper as shown, but may be replaced by any displaceable selfsealing mechanism, such as a ball valve.
The expressions upper, lower," top, bottom, etc. are relative and refer only to positions as shown in the drawings. These relationships may vary in use when the pump is implanted in the body with the opening 36 of cap 35 and stopper 38 accessible under the skin for injection of refills of the drug or other chemical to be infused.
One end of a thin small-diameter flexible capillary tube 40 (preferably within a larger protective tube) is secured in a radial discharge passage in the body of nipple 31 so as to be in direct fluid communication with the longitudinal passage through the nipple and with chamber 24 to serve as a discharge therefrom. Tube 40 serves primarily as the pressure-drop flow regulator (e.g. may be replaced by a porous plug or other flow regulating device) and is of variable length and diameter. It is coiled around nipple 31 and fits within cup-like member 14. Tubing 40 extends to the infusion site where the infused material is dispensed from its opposite end. This capillary is preferably enclosed in a larger polyethylene or Silastic cannula to facilitate placement.
The capillary tubing 40 serves a two-fold function, as a flow-regulating resistance element and a discharge port into the site of infusion. This may be replaced by a combination of any two devices accomplishing the same end; for example, the resistance element may be a porous metal plug or other filter, or any other type of flow regulator, in direct fluid communication with the infusion site by means of a conduit, such as a catheter or cannula. Also, these resistance elements may number more than one, as in the case of more than one site of infusion.
A vapor in equilibrium with its liquid phase exerts a constant vapor pressure at 'a given temperature regardless of volume. The outer pump chamber 23 at its minimum volume is partially filled with a stable volatile liquid that exerts a vapor pressure of greater than one atmosphere at physiological temperatures (approximately 37 C) to form the vapor-liquid mixture of the chemical power source. Volatile liquids among the members of this very large group of compounds include: Perfluoro pentane, Tetramethyl silane, Ethyl ether, Methyl formate, Ethanethiol, Dimethyl sulfide, Ethylamine, 2-Methyl butane, Hydrocyanic acid, Trichlorofluro methane, and Nitrogen tetroxide. These compounds, of course, should be compatible with the substance serving as the enclosure for chamber 23. The inner chamber 24 contains the displaceable infusate. The flow rate of the infusate is varied through the use of the capillary tubing 40 for the pressure drop, which is governed by the equation: Q (1rD AP)/l28p.L, where Q flow in m1/sec., D diameter in cm., p. viscosity in poise, A P=pressure in dynes/cm, and L= length in cm. The most readily adjustable parameters are the length and diameter of the capillary and the viscosity of the infusate. Refills of infusate are injected into the inner chamber through the self-sealing stopper 38. The pressure generated by this injection is sufficient to recycle the pump by condensing the volatile vapor phase within outer chamber 23.
One or more spacer members 41 are desirably provided on the inside of bellows bottom wall (or cup bottom wall 16) to prevent wall members 20 and 16 from becoming adhered through surface tension of the infusate. Desirably a filter is installed on both the inlet and outflow sides of the pump to reduce the possibility of particulate contamination. The pump is constructed of materials non-toxic to the host animal and compatible with both the infusate and the chemical power source. Stainless steel is a desirable material for forming the housing, bellows, fittings, etc. All exposed parts of the pump are covered with Silastic, Teflon, or similar material, compatible with body fluids and well-known for the coating of devices to be implanted within the body.
In-vitro tests in an incubator at 37 C have shown a high degree of constancy in infusion rates at adjusted levels of extremely low flow over various time increments. Representative mean adjusted flow rates i stan dard error for different time periods include: 0.078 t 0.0017 mil/hr for a 39 hour period; 0.101 rt 0.00035 ml/hr for an 82 hour trail; 0.183 t 0.0073 ml/hr for a 68 hour trial; 0.363 $00046 ml/hr for a 43 hour trial; 0.373 i 0.013 ml/hr for a 44 hour trial; and 0.613 t 0.020 ml/hr for a 13 hour trial. The capacity of a unit in which the housing 10 measures about 2% by 7 cm. is approximately 20 mil. This means that low flow may be maintained over 10 days before refilling is necessary.
In-vivo trials in dogs, utilizing chronic heparinization as the measureable parameter, have confirmed in-vitro pump specifications. The pump is placed beneath the external oblique muscle with the delivery catheter threaded into the inferior vena cava through the femoral vein and the refill nipple or stopper is placed subcutaneously to be readily accessible to percutaneous needle injection. Constant infusion flows have been maintained so that the daily Lee White clotting times and activated partial thromboplastin times have remained at twice control values.
It is apparent that many modifications and variations of this invention is hereinbefore set forth may be made without departing from the spirit and scope thereof.
The specific embodiments described are given by way of example only and the invention is limited only by the terms of the appended claims.
We claim:
1. An infusion pump for implantation in a living body comprising:
A. a housing,
B. means for dividing the housing into first and second fluid-tight chambers, the dividing means being movable relative to the housing so as to vary the volumes of the chambers in a reciprocal manner,
C. an inlet conduit located at a first position on the housing leading to the second chamber,
D. at least one outlet conduit located at a second position on the housing adjacent to but spaced from said inlet conduit communicating with the second chamber and for leading to an infusion site in the body,
E. means in the first chamber for moving the dividing means to reduce the volume of the second chamber so that a fluid in the second chamber may be forced through the outlet conduit, and
F. a self-sealing, penetrable member in said inlet conduit, said member being unobstructed so that the pump can be implanted in the body with the unobstructed penetrable member situated adjacent a surface area of the body whereby the second chamber can be refilled with fluid periodically by injection through the skin.
2. The pump defined in claim 1 wherein the moving means is comprised of a volatile fluid in the first chamber which exerts a sufficient vapor pressure at physiological temperatures to more the dividing means and force the contents of the second chamber through the outlet conduit.
3. The pump defined in claim 2 and further includ- A. an entry port to the chamber from the outside of the housing, and
B. a fluid-tight closure for the entry port.
4. The pump defined in claim 1 and'further including fluid flow regulating means in the outlet conduit.
5. An infusion pump for implantation in a living body comprising:
A. a housing including an inlet means,
B. a metal bellows within the housing, the bellows 1. having a closed end wall,
2. being sealed with respect to the interior of the housing, and
3. being compressible in response to pressure exerted on the ouside of the end wall,
C. an inlet conduit leading to the interior of the bellows from the outside of the housing,
C. an outlet conduit communicating with the interior of the bellows for conducting fluid from the interior of the bellows to an infusion site in the body, and
E. a self-sealing, penetrable member in the inlet conduit, said penetrable member being unobstructed so that the pump can be implanted in the body with the unobstructed member situated adjacent a surface area of the body whereby the bellows can be refilled with fluid periodically by injection through the skin.
6. The pump defined in claim 5 and further including a volatile liquid in the housing outside the bellows which exerts a sufficient vapor pressure at physiological temperatures to compress the bellows and force the bellows contents through the outlet conduit.
7. The pump defined in claim 5 and further including means for controlling the rate of flow of fluid through the outlet conduit.
8. The pump defined in claim 5 wherein the penetrable member is comprised of a penetrable self-sealing stopper.
9. The pump defined in claim 5 and further including means for limiting the extent to which the bellows can be compressed in response to the pressure exerted on its end wall.
10. An infusion pump for implantation in a living body comprising:
A. a housing,
B. first and second chambers within the housing,
C. a liquid-tight, vapor-tight, pressure-communicating metal bellows separating the chambers, said bellows having an open mouth at one end and closed wall at the other end, the mouth of the bellows being secured in liquid-tight, vapor-tight relation, the first chamber being provided with an inlet means and lying between the inside walls of the housing and the bellows and the second chamber lying within the bellows,
D. an entry port into the second chamber and liquidtight closure means therefor, the closure means being penetrable from the outside of a living body after implantation therein by injection through the skin,and
E. at least one discharge port from the second chamber spaced from but adjacent to said entry port.
11. A pump according to claim 10 further characterized in that:
A. a recessed, cup-like member is disposed in one end of the housing extending within the mouth of the bellows,
B. an aperture is provided in the cup-like member with a fitting therein having a channel in communication with the second chamber, and
C. the bellows is collapsible into an annular space between the cup-like member and the housing wall.
12. The pump according to claim 10 and further characterized in that:
A. the penetrable closure means is an elastic member, and
B. an annular retainer having a central aperture is securedto the external end of the fitting in engagement with the elastic member.
13. The pump according to claim 12 and further characterized in that:
A. the housing and the fitting having contours conforming generally to the contours of the implantation site in the body, and
B. a conduit is connected to the discharge port for conducting infusate from the bellows to an infusion site in the body.
14. The pump according to claim 13 wherein the conduit is a length of capillary tubing.
15. The pump according to claim 10 and further characterized in that the first chamber is partially filled with a stable, volatile liquid that exerts a vapor pressure of greater than 1 atmosphere at physiological temperatures, whereby the pump is self-powered through body warmth.
16. The method of infusing liquids into a living boby, said method comprising:
A. implanting a self-powered pump according to claim 15 in a living body, with the closure means to the entry port of the second chamber of the pump underlying and facing the skin,
B. connecting the discharge port to at least one infusion site in the body,
C. injecting infusate through the skin of the body and through the closure means to fill the second chamber thereby condensing the vapor within the first chamber to charge the power source, and
D. expanding the vapor in the first chamber through body wannth to gradually collapse the second chamber to expel the infusate in the second chamber through the discharge port to the infusion site.
17. The method of infusing fluids into a living body,
said method comprising the steps of:
A. charging the power cell of a vapor pressure pump with a stable, volatile liquid that exerts an appreciable vapor pressure at physiological temperatures,
B. forming a self-sealing, penetrable member in the discharge port of the pump,
C. implanting the pump in the body so that the penetrable member underlies the skin,
7 8 D. expanding the pressure-exerting vapor in the through the penetrable member periodically to power cell through body warmth to pump infusate refill the pu p WiKh infusate at the Same time, through the discharge port toaninfusion site in the condense Pressure-611mg Vapor so as to body, and recharge the power cell. E. injecting additional fluid through the skin and
Claims (19)
1. An infusion pump for implantation in a living body comprising: A. a housing, B. means for dividing the housing into first and second fluidtight chambers, the dividing means being movable relative to the housing so as to vary the volumes of the chambers in a reciprocal manner, C. an inlet conduit located at a first position on the housing leading to the second chamber, D. at least one outlet conduit located at a second position on the housing adjacent to but spaced from said inlet conduit communicating with the second chamber and for leading to an infusion site in the body, E. means in the first chamber for moving the dividing means to reduce the volume of the second chamber so that a fluid in the second chamber may be forced through the outlet conduit, and F. a self-sealing, penetrable member in said inlet conduit, said member being unobstructed so that the pump can be implanted in the body with the unobstructed penetrable member situated adjacent a surface area of the body whereby the second chamber can be refilled with fluid periodically by injection through the skin.
2. The pump defined in claim 1 wherein the moving means is comprised of a volatile fluid in the first chamber which exerts a sufficient vapor pressure at physiological temperatures to more the dividing means and force the contents of the second chamber through the outlet conduit.
2. being sealed with respect to the interior of the housing, and
3. The pump defined in claim 2 and further including: A. an entry port to the chamber from the outside of the housing, and B. a fluid-tight closure for the entry port.
3. being compressible in response to pressure exerted on the ouside of the end wall, C. an inlet conduit leading to the interior of the bellows from the outside of the housing, C. an outlet conduit communicating with the interior of the bellows for conducting fluid from the interior of the bellows to an infusion site in the body, and E. a self-sealing, penetrable member in the inlet conduit, said penetrable member being unobstructed so that the pump can be implanted in the body with the unobstructed member situated adjacent a surface area of the body whereby the bellows can be refilled with fluid periodically by injection through the skin.
4. The pump defined in claim 1 and further including fluid flow regulating means in the outlet conduit.
5. An infusion pump for implantation in a living body comprising: A. a housing including an inlet means, B. a metal bellows within the housing, the bellows
6. The pump defined in claim 5 and further including a volatile liquid in the housing outside the bellows which exerts a sufficient vapor pressure at physiological temperatures to compress the bellows and force the bellows contents through the outlet conduit.
7. The pump defined in claim 5 and further including means for controlling the rate of flow of fluid through the outlet conduit.
8. The pump defined in claim 5 wherein the penetrable member is comprised of a penetrable self-sealing stopper.
9. The pump defined in claim 5 and further including means for limiting the extent to which the bellows can be compressed in response to the pressure exerted on its end wall.
10. An infusion pump for implantation in a living body comprising: A. a housing, B. first and second chambers within the housing, C. a liquid-tight, vapor-tight, pressure-communicating metal bellows separating the chambers, said bellows having an open mouth at one end and closed wall at the other end, the mouth of the bellows being secured in liquid-tight, vapor-tight relation, the first chamber being provided with an inlet means and lying between the inside walls of the housing and the bellows and the second chamber lying within the bellows, D. an entry port into the second chamber and liquid-tight closure means therefor, the closure means being penetrable from the outside of a living body after implantation therein by injection through the skin, and E. at least one discharge port from the second chamber spaced from but adjacent to said entry port.
11. A pump according to claim 10 further characterized in that: A. a recessed, cup-like member is disposed in one end of the housing extending within the mouth of the bellows, B. an aperture is provided in the cup-like member with a fitting therein having a channel in communication with the second chamber, and C. the bellows is collapsible into an annular space between the cup-like member and the housing wall.
12. The pump according to claim 10 and further characterized in that: A. the penetrable closure means is an elastic member, and B. an annular retainer having a central aperture is secured to the external end of the fitting in engagement with the elastic member.
13. The pump according to claim 12 and further characterized in that: A. the housing and the fitting having contours conforming generally to the contours of the implantation site in the body, and B. a conduit is connected to the discharge port for conducting infusate from the bellows to an infusion site in the body.
14. The pump according to claim 13 wherein the conduit is a length of capillary tubing.
15. The pump according to claim 10 and further characterized in that the first chamber is partially filled with a stable, volatile liquid that exerts a vapor pressure of greater than 1 atmosphere at physiological temperatures, whereby the pump is self-powered through body warmth.
16. The method of infusing liquids into a living boby, said method comprising: A. implanting a self-powered pump according to claim 15 in a living body, with the closure means to the entry port of the second chamber of the pump underlyIng and facing the skin, B. connecting the discharge port to at least one infusion site in the body, C. injecting infusate through the skin of the body and through the closure means to fill the second chamber thereby condensing the vapor within the first chamber to charge the power source, and D. expanding the vapor in the first chamber through body warmth to gradually collapse the second chamber to expel the infusate in the second chamber through the discharge port to the infusion site.
17. The method of infusing fluids into a living body, said method comprising the steps of: A. charging the power cell of a vapor pressure pump with a stable, volatile liquid that exerts an appreciable vapor pressure at physiological temperatures, B. forming a self-sealing, penetrable member in the discharge port of the pump, C. implanting the pump in the body so that the penetrable member underlies the skin, D. expanding the pressure-exerting vapor in the power cell through body warmth to pump infusate through the discharge port to an infusion site in the body, and E. injecting additional fluid through the skin and through the penetrable member periodically to refill the pump with infusate and, at the same time, condense the pressure-exerting vapor so as to recharge the power cell.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US3835670A | 1970-05-18 | 1970-05-18 | |
US21787972A | 1972-01-14 | 1972-01-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3731681A true US3731681A (en) | 1973-05-08 |
Family
ID=34138116
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00217879A Expired - Lifetime US3731681A (en) | 1970-05-18 | 1972-01-14 | Implantable indusion pump |
Country Status (1)
Country | Link |
---|---|
US (1) | US3731681A (en) |
Cited By (191)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3797492A (en) * | 1972-12-27 | 1974-03-19 | Alza Corp | Device for dispensing product with directional guidance member |
US3923060A (en) * | 1974-04-23 | 1975-12-02 | Jr Everett H Ellinwood | Apparatus and method for implanted self-powered medication dispensing having timing and evaluator means |
US3951147A (en) * | 1975-04-07 | 1976-04-20 | Metal Bellows Company | Implantable infusate pump |
US3971376A (en) * | 1973-02-26 | 1976-07-27 | Ceskoslovenska Akademie Ved | Method and apparatus for introducing fluids into the body |
US4003379A (en) * | 1974-04-23 | 1977-01-18 | Ellinwood Jr Everett H | Apparatus and method for implanted self-powered medication dispensing |
US4013074A (en) * | 1974-06-21 | 1977-03-22 | Siposs George G | Implantable medication-dispensing device |
US4056095A (en) * | 1975-04-04 | 1977-11-01 | Agence Nationale De Valorisation De La Recherche (Anvar) | Control device for medical and surgical uses |
US4077405A (en) * | 1975-03-26 | 1978-03-07 | Siemens Aktiengesellschaft | Apparatus for infusing liquids into human or animal bodies |
US4191181A (en) * | 1976-11-15 | 1980-03-04 | Siemens Aktiengesellschaft | Apparatus for infusion of liquids |
WO1980001755A1 (en) * | 1979-02-28 | 1980-09-04 | Andros Inc | Implantable infusion device |
US4222374A (en) * | 1978-06-16 | 1980-09-16 | Metal Bellows Corporation | Septum locating apparatus |
WO1980002377A1 (en) * | 1979-05-03 | 1980-11-13 | Univ Minnesota | Implantable drug infusion regulator |
US4237881A (en) * | 1978-12-26 | 1980-12-09 | Anatros Corporation | Device for the intravenous or enteric infusion of liquids into the human body at a predetermined constant rate |
WO1981000209A1 (en) * | 1979-07-13 | 1981-02-05 | Univ Minnesota | Magnetically controlled drug infusion system |
US4284502A (en) * | 1977-09-01 | 1981-08-18 | Basf Aktiengesellschaft | Apparatus for treating uremic patients |
US4306553A (en) * | 1980-07-22 | 1981-12-22 | The Regents Of The University Of Minnesota | Method of maintaining the fluidity of hormone solutions for parenteral administration |
US4373527A (en) * | 1979-04-27 | 1983-02-15 | The Johns Hopkins University | Implantable, programmable medication infusion system |
EP0091621A1 (en) * | 1982-04-05 | 1983-10-19 | Milliken Research Corporation | Low flow constant rate pump |
DE3321472A1 (en) * | 1982-06-14 | 1983-12-15 | Infusaid Corp., Norwood, Mass. | IMPLANTABLE INFUSION DEVICE |
DE3333977A1 (en) * | 1982-09-20 | 1984-03-22 | Infusaid Corp., Norwood, Mass. | INFUSION PUMP |
US4439181A (en) * | 1981-01-26 | 1984-03-27 | Regents Of The University Of Minnesota | Polyol-hormone mixture for use in chronic parenteral hormone administration |
US4443218A (en) * | 1982-09-09 | 1984-04-17 | Infusaid Corporation | Programmable implantable infusate pump |
US4552561A (en) * | 1982-12-23 | 1985-11-12 | Alza Corporation | Body mounted pump housing and pump assembly employing the same |
US4559931A (en) * | 1983-03-21 | 1985-12-24 | Fischell Robert | Manually actuated fully implantable penile erection device |
EP0168675A1 (en) * | 1984-06-21 | 1986-01-22 | David R. Fischell | Finger actuated medication infusion system |
US4581018A (en) * | 1983-02-08 | 1986-04-08 | Novacor Medical Corporation | Implantable infusion device |
US4596242A (en) * | 1983-08-26 | 1986-06-24 | Fischell Robert | Method and apparatus for achieving penile erection in a human male |
EP0189940A2 (en) * | 1985-02-01 | 1986-08-06 | Consolidated Controls Corporation | Implantable medication infusion device |
US4655765A (en) * | 1984-06-01 | 1987-04-07 | Parker Hannifin Corporation | Fitting with prestressed septum |
US4657536A (en) * | 1979-04-13 | 1987-04-14 | Regents Of The University Of Minnesota | Check valve catheter |
US4666430A (en) * | 1984-12-05 | 1987-05-19 | I-Flow Corporation | Infusion pump |
US4673391A (en) * | 1983-05-31 | 1987-06-16 | Koichi Sakurai | Non-contact controlled micropump |
WO1987004629A1 (en) * | 1986-02-03 | 1987-08-13 | University Of Minnesota | Pressure regulated implantable infusion pump |
WO1987004631A1 (en) * | 1986-02-03 | 1987-08-13 | University Of Minnesota | Spring driven infusion pump |
US4697622A (en) * | 1984-06-01 | 1987-10-06 | Parker Hannifin Corporation | Passive filling device |
US4705503A (en) * | 1986-02-03 | 1987-11-10 | Regents Of The University Of Minnesota | Metabolite sensor including a chemical concentration sensitive flow controller for a drug delivery system |
US4772263A (en) * | 1986-02-03 | 1988-09-20 | Regents Of The University Of Minnesota | Spring driven infusion pump |
US4820273A (en) * | 1988-03-01 | 1989-04-11 | Eaton Corporation | Implantable medication infusion device and bolus generator therefor |
US4943560A (en) * | 1988-04-06 | 1990-07-24 | Regents Of The University Of Minnesota | Solvent system for chronic vascular infusion of hydrophobic drugs |
US4955861A (en) * | 1988-04-21 | 1990-09-11 | Therex Corp. | Dual access infusion and monitoring system |
US4969873A (en) * | 1988-06-23 | 1990-11-13 | Annemarie Schlogl Gesellschaft m.b.H. & Co., KG | Device for dispensing active substances to a patient |
US4978338A (en) * | 1988-04-21 | 1990-12-18 | Therex Corp. | Implantable infusion apparatus |
EP0409511A1 (en) * | 1989-07-18 | 1991-01-23 | Infusaid Inc. | Adjustable flow regulator for use in an implantable drug infusion system |
US5041107A (en) * | 1989-10-06 | 1991-08-20 | Cardiac Pacemakers, Inc. | Electrically controllable, non-occluding, body implantable drug delivery system |
AU625000B2 (en) * | 1989-09-26 | 1992-06-25 | Arrow Interventional, Inc. | Pressure regulator for implantable pump |
DE3390255C2 (en) * | 1982-11-04 | 1992-06-25 | Univ Johns Hopkins | Implanted medication infusion appts. with pulsatile pump |
WO1993000945A1 (en) * | 1991-07-08 | 1993-01-21 | Infusaid, Inc. | Implantable drug infusion reservoir |
WO1993025262A1 (en) | 1992-06-16 | 1993-12-23 | Infusaid, Inc. | Dual access catheter for implantable pump system |
DE4225524A1 (en) * | 1992-08-01 | 1994-02-10 | Fresenius Ag | Implantable device |
US5306257A (en) * | 1992-05-04 | 1994-04-26 | Prime Medical Products, Inc. | Drug infuser |
US5328460A (en) * | 1991-06-21 | 1994-07-12 | Pacesetter Infusion, Ltd. | Implantable medication infusion pump including self-contained acoustic fault detection apparatus |
DE4432991C1 (en) * | 1994-09-16 | 1995-10-26 | Fresenius Ag | Infusion pump for dispensing medicines into human body |
DE4436540A1 (en) * | 1994-10-13 | 1996-04-25 | Fresenius Ag | Continuous dosing system for administering medication |
EP0569480B1 (en) * | 1991-01-30 | 1996-06-26 | Strato/Infusaid Inc. | Flow regulator |
US5551849A (en) * | 1994-04-29 | 1996-09-03 | Medtronic, Inc. | Medication delivery device and method of construction |
US5730730A (en) * | 1995-09-29 | 1998-03-24 | Darling, Jr.; Phillip H. | Liquid flow rate control device |
US5769823A (en) * | 1995-03-23 | 1998-06-23 | Tricumed Gmbh | Implantable infusion pump |
US5911716A (en) * | 1992-01-24 | 1999-06-15 | I-Flow Corporation | Platen pump |
US6152898A (en) * | 1999-04-30 | 2000-11-28 | Medtronic, Inc. | Overfill protection systems for implantable drug delivery devices |
US6203523B1 (en) * | 1998-02-02 | 2001-03-20 | Medtronic Inc | Implantable drug infusion device having a flow regulator |
US6210368B1 (en) * | 1998-04-30 | 2001-04-03 | Medtronic, Inc. | Reservoir volume sensors |
US6213986B1 (en) | 1995-09-29 | 2001-04-10 | Appro Healthcare, Inc. | Liquid flow rate control device |
US6251098B1 (en) | 1992-01-24 | 2001-06-26 | I-Flow, Corp. | Fluid container for use with platen pump |
US6280416B1 (en) | 1999-02-19 | 2001-08-28 | Minimed Inc. | Constant flow medication infusion pump |
US6283943B1 (en) * | 1999-02-19 | 2001-09-04 | Minimed Inc. | Negative pressure pump |
US6358239B1 (en) | 1992-01-24 | 2002-03-19 | I-Flow Corporation | Platen pump |
WO2002070047A1 (en) | 2001-03-01 | 2002-09-12 | Advanced Neuromodulation Systems, Inc. | Non-constant pressure infusion pump |
US6485462B1 (en) | 1997-08-27 | 2002-11-26 | Science Incorporated | Fluid delivery device with heat activated energy source |
US20030078560A1 (en) * | 2001-09-07 | 2003-04-24 | Miller Michael E. | Method and system for non-vascular sensor implantation |
US20030208184A1 (en) * | 2000-01-11 | 2003-11-06 | Paul Burke | Implantable, refillable infusion device and spetum replacement kit |
US6666845B2 (en) | 2001-01-04 | 2003-12-23 | Advanced Neuromodulation Systems, Inc. | Implantable infusion pump |
US6679832B1 (en) | 1998-04-03 | 2004-01-20 | Hashem Sultan | Implantable device for treating impotence by delivering a vasodilator agent to the erectile bodies of the penis |
US20040064133A1 (en) * | 2002-09-27 | 2004-04-01 | Medtronic-Minimed | Implantable sensor method and system |
US20040068224A1 (en) * | 2002-10-02 | 2004-04-08 | Couvillon Lucien Alfred | Electroactive polymer actuated medication infusion pumps |
US20040082908A1 (en) * | 2001-01-30 | 2004-04-29 | Whitehurst Todd K. | Microminiature infusion pump |
DE10259910A1 (en) * | 2002-12-20 | 2004-07-01 | A.M.I. Agency For Medical Innovations Gmbh | Pump implant for medical purposes, comprising guide mechanism for precise motion of soft housing and integrated components |
US20050033232A1 (en) * | 2003-08-05 | 2005-02-10 | Kriesel Marshall S. | Infusion apparatus with modulated flow control |
US20050033233A1 (en) * | 2003-08-04 | 2005-02-10 | Kriesel Marshall S. | Infusion apparatus with constant force spring energy source |
US20050038387A1 (en) * | 2003-08-04 | 2005-02-17 | Kriesel Marshall S. | Multichannel fluid delivery device |
US20050090866A1 (en) * | 2001-10-23 | 2005-04-28 | Medtronic Minimed, Inc. | Method and system for non-vascular sensor implantation |
US20050113886A1 (en) * | 2003-11-24 | 2005-05-26 | Fischell David R. | Implantable medical system with long range telemetry |
US20050113892A1 (en) * | 2003-11-26 | 2005-05-26 | Sproul Michael E. | Surgical tool with an electroactive polymer for use in a body |
US20050187515A1 (en) * | 2004-02-19 | 2005-08-25 | Advanced Neuromodulation Systems, Inc. | Reduced size programmable drug pump |
US20050263615A1 (en) * | 2004-05-26 | 2005-12-01 | Kriesel Marshall S | Fluid delivery apparatus with adjustable flow rate control |
US20050273083A1 (en) * | 2003-03-27 | 2005-12-08 | Lebel Ronald J | Implantable medication delivery device using pressure regulator |
US20050277882A1 (en) * | 2004-05-26 | 2005-12-15 | Kriesel Marshall S | Infusion apparatus |
US20050277883A1 (en) * | 2004-05-26 | 2005-12-15 | Kriesel Marshall S | Fluid delivery device |
US20050277884A1 (en) * | 2004-05-26 | 2005-12-15 | Kriesel Marshall S | Fluid delivery apparatus with bellows reservoir |
US20060064138A1 (en) * | 2004-04-30 | 2006-03-23 | Francisco Velasco | Method of treating mood disorders and/or anxiety disorders by brain stimulation |
US7022107B1 (en) | 1999-09-22 | 2006-04-04 | Advanced Infusion, Inc. | Infusion pump with pressure regulator |
US20060178572A1 (en) * | 2001-04-27 | 2006-08-10 | March Wayne F | Apparatus for measuring blood glucose concentrations |
US20060195057A1 (en) * | 2005-02-18 | 2006-08-31 | Kriesel Marshall S | Fluid delivery apparatus with vial fill |
US20060196552A1 (en) * | 2005-02-17 | 2006-09-07 | Kriesel Marshall S | Distal rate control device |
US20060206052A1 (en) * | 2005-02-15 | 2006-09-14 | Kriesel Marshall S | Fluid delivery and mixing apparatus with flow rate control |
US20060212090A1 (en) * | 2005-03-01 | 2006-09-21 | Functional Neuroscience Inc. | Method of treating cognitive disorders using neuromodulation |
US20060212091A1 (en) * | 2005-03-01 | 2006-09-21 | Functional Neuroscience Inc. | Method of treating depression, mood disorders and anxiety disorders using neuromodulation |
US20070005115A1 (en) * | 2003-06-19 | 2007-01-04 | Lozano Andres M | Method of treating depression, mood disorders and anxiety disorders using neuromodulation |
US20070020182A1 (en) * | 2003-06-27 | 2007-01-25 | Geddes Chris D | Quaternary nitrogen heterocyclic compounds for detecting aqueous monosaccharides in physiological fluids |
US20070055308A1 (en) * | 2005-09-06 | 2007-03-08 | Haller Matthew I | Ultracapacitor powered implantable pulse generator with dedicated power supply |
US20070106280A1 (en) * | 2005-10-31 | 2007-05-10 | Thierry Utard | Implantable pump with reservoir level detector |
US20070156090A1 (en) * | 2004-05-26 | 2007-07-05 | Kriesel Marshall S | Fluid delivery apparatus |
US20070219501A1 (en) * | 2006-03-15 | 2007-09-20 | Kriesel Marshall S | Fluid dispensing apparatus |
US20070233019A1 (en) * | 2005-11-02 | 2007-10-04 | Potencia Medical Ag | Implantable infusion devices and methods |
US20070255262A1 (en) * | 2006-04-27 | 2007-11-01 | Haase James M | Infusion device with positive pressure elastic bladder reservoir |
US20080009835A1 (en) * | 2005-02-17 | 2008-01-10 | Kriesel Marshall S | Fluid dispensing apparatus with flow rate control |
US20080027376A1 (en) * | 2006-07-31 | 2008-01-31 | Kriesel Marshall S | Fluid dispensing device with additive |
US20080215029A1 (en) * | 1993-01-22 | 2008-09-04 | I-Flow Corporation | Platen pump |
US20080243077A1 (en) * | 2007-04-02 | 2008-10-02 | Bivin Donald B | Fluid dispenser with uniformly collapsible reservoir |
US20080249381A1 (en) * | 2004-06-14 | 2008-10-09 | Eyesense Ag | Combined Apparatus For Measuring the Blood Glucose Level From an Ocular Fluid |
US20080319385A1 (en) * | 2007-06-25 | 2008-12-25 | Kriesel Marshall S | Fluid dispenser with additive sub-system |
US20090024083A1 (en) * | 2007-06-25 | 2009-01-22 | Kriesel Marshall S | Fluid dispenser with additive sub-system |
US20090054725A1 (en) * | 2000-02-10 | 2009-02-26 | Obtech Medical Ag | Mechanical impotence treatment apparatus |
US20090149898A1 (en) * | 2007-12-07 | 2009-06-11 | Northstar Neuroscience, Inc. | Systems and Methods for Providing Targeted Neural Stimulation Therapy to Address Neurological Disorders, Including Neuropyschiatric and Neuropyschological Disorders |
US20090157005A1 (en) * | 2003-04-23 | 2009-06-18 | Gonnelli Robert R | Hydraulically actuated pump for long duration medicament administration |
US20090188897A1 (en) * | 2005-10-31 | 2009-07-30 | Philippe Margairaz | Method of Making a Metal Bellows Assembly Having an Intermediate Plate |
US20090240215A1 (en) * | 2007-12-20 | 2009-09-24 | Mark Humayun | Apparatus and methods for delivering therapeutic agents |
US20090240232A1 (en) * | 2006-03-30 | 2009-09-24 | Vakerutas,Llc | Multi-cartridge fluid delivery device |
US20090306595A1 (en) * | 2008-05-08 | 2009-12-10 | Jason Shih | Implantable drug-delivery devices, and apparatus and methods for filling the devices |
US20090306585A1 (en) * | 2008-05-08 | 2009-12-10 | Changlin Pang | Implantable pumps and cannulas therefor |
US20090306594A1 (en) * | 2008-05-08 | 2009-12-10 | Changlin Pang | Drug-delivery pumps and methods of manufacture |
EP2138198A1 (en) | 2008-06-27 | 2009-12-30 | Codman Neuro Sciences Sarl | Fluidic capillary chip for regulating drug flow rates of infusion pumps |
US7658196B2 (en) | 2005-02-24 | 2010-02-09 | Ethicon Endo-Surgery, Inc. | System and method for determining implanted device orientation |
US20100145139A1 (en) * | 2000-02-10 | 2010-06-10 | Obtech Medical Ag | Controlled urinary incontinence treatment |
US20100174339A1 (en) * | 2004-09-27 | 2010-07-08 | Pyles Stephen T | Method of using spinal cord stimulation to treat gastrointestinal and/or eating disorders or conditions |
US20100204748A1 (en) * | 2006-10-31 | 2010-08-12 | Lozano Andres M | Identifying areas of the brain by examining the neuronal signals |
US7775215B2 (en) | 2005-02-24 | 2010-08-17 | Ethicon Endo-Surgery, Inc. | System and method for determining implanted device positioning and obtaining pressure data |
US7775966B2 (en) | 2005-02-24 | 2010-08-17 | Ethicon Endo-Surgery, Inc. | Non-invasive pressure measurement in a fluid adjustable restrictive device |
WO2010120817A2 (en) | 2009-04-13 | 2010-10-21 | The Board Of Regents Of The University Of Texas System | Nanochanneled device and related methods |
US7828772B2 (en) | 2006-03-15 | 2010-11-09 | Bioquiddity, Inc. | Fluid dispensing device |
US7844342B2 (en) | 2008-02-07 | 2010-11-30 | Ethicon Endo-Surgery, Inc. | Powering implantable restriction systems using light |
US20100305550A1 (en) * | 2006-03-14 | 2010-12-02 | Ellis Meng | Mems device and method for delivery of therapeutic agents |
US20110040143A1 (en) * | 2000-02-11 | 2011-02-17 | Obtech Medical Ag | Impotence treatment apparatus with energy transforming means |
US7927270B2 (en) | 2005-02-24 | 2011-04-19 | Ethicon Endo-Surgery, Inc. | External mechanical pressure sensor for gastric band pressure measurements |
US7931582B2 (en) | 2000-02-11 | 2011-04-26 | Obtech Medical Ag | Controlled impotence treatment |
US20110171325A1 (en) * | 2006-08-30 | 2011-07-14 | Andres Lozano | Systems and Methods for Treating Pain Using Brain Stimulation |
US20110202032A1 (en) * | 2008-05-08 | 2011-08-18 | Jason Shih | Drug-delivery pumps with dynamic, adaptive control |
US8016745B2 (en) | 2005-02-24 | 2011-09-13 | Ethicon Endo-Surgery, Inc. | Monitoring of a food intake restriction device |
US8016744B2 (en) | 2005-02-24 | 2011-09-13 | Ethicon Endo-Surgery, Inc. | External pressure-based gastric band adjustment system and method |
US8034065B2 (en) | 2008-02-26 | 2011-10-11 | Ethicon Endo-Surgery, Inc. | Controlling pressure in adjustable restriction devices |
US20110251516A1 (en) * | 2010-04-13 | 2011-10-13 | Thomas Doerr | Implant and applicator |
US8057492B2 (en) | 2008-02-12 | 2011-11-15 | Ethicon Endo-Surgery, Inc. | Automatically adjusting band system with MEMS pump |
US8057435B2 (en) | 2006-07-31 | 2011-11-15 | Kriesel Joshua W | Fluid dispenser |
US8066629B2 (en) | 2005-02-24 | 2011-11-29 | Ethicon Endo-Surgery, Inc. | Apparatus for adjustment and sensing of gastric band pressure |
US8096938B2 (en) | 1999-08-12 | 2012-01-17 | Obtech Medical Ag | Controlled anal incontinence disease treatment |
US8096939B2 (en) | 2000-02-10 | 2012-01-17 | Obtech Medical Ag | Urinary incontinence treatment with wireless energy supply |
US8100870B2 (en) | 2007-12-14 | 2012-01-24 | Ethicon Endo-Surgery, Inc. | Adjustable height gastric restriction devices and methods |
US8114345B2 (en) | 2008-02-08 | 2012-02-14 | Ethicon Endo-Surgery, Inc. | System and method of sterilizing an implantable medical device |
US8126558B2 (en) | 2000-02-14 | 2012-02-28 | Obtech Medical Ag | Controlled penile prosthesis |
US8142452B2 (en) | 2007-12-27 | 2012-03-27 | Ethicon Endo-Surgery, Inc. | Controlling pressure in adjustable restriction devices |
US8152710B2 (en) | 2006-04-06 | 2012-04-10 | Ethicon Endo-Surgery, Inc. | Physiological parameter analysis for an implantable restriction device and a data logger |
US8187162B2 (en) | 2008-03-06 | 2012-05-29 | Ethicon Endo-Surgery, Inc. | Reorientation port |
US8187163B2 (en) | 2007-12-10 | 2012-05-29 | Ethicon Endo-Surgery, Inc. | Methods for implanting a gastric restriction device |
US8192350B2 (en) | 2008-01-28 | 2012-06-05 | Ethicon Endo-Surgery, Inc. | Methods and devices for measuring impedance in a gastric restriction system |
US8221439B2 (en) | 2008-02-07 | 2012-07-17 | Ethicon Endo-Surgery, Inc. | Powering implantable restriction systems using kinetic motion |
US8233995B2 (en) | 2008-03-06 | 2012-07-31 | Ethicon Endo-Surgery, Inc. | System and method of aligning an implantable antenna |
US8313423B2 (en) | 2000-02-14 | 2012-11-20 | Peter Forsell | Hydraulic anal incontinence treatment |
US8337389B2 (en) | 2008-01-28 | 2012-12-25 | Ethicon Endo-Surgery, Inc. | Methods and devices for diagnosing performance of a gastric restriction system |
US8377079B2 (en) | 2007-12-27 | 2013-02-19 | Ethicon Endo-Surgery, Inc. | Constant force mechanisms for regulating restriction devices |
US8509894B2 (en) | 2008-10-10 | 2013-08-13 | Milux Holding Sa | Heart help device, system, and method |
US8506550B2 (en) | 2001-09-07 | 2013-08-13 | Medtronic Minimed, Inc. | Method and system for non-vascular sensor implantation |
US8545384B2 (en) | 1999-08-12 | 2013-10-01 | Obtech Medical Ag | Anal incontinence disease treatment with controlled wireless energy supply |
US8591395B2 (en) | 2008-01-28 | 2013-11-26 | Ethicon Endo-Surgery, Inc. | Gastric restriction device data handling devices and methods |
US8591532B2 (en) | 2008-02-12 | 2013-11-26 | Ethicon Endo-Sugery, Inc. | Automatically adjusting band system |
US8600510B2 (en) | 2008-10-10 | 2013-12-03 | Milux Holding Sa | Apparatus, system and operation method for the treatment of female sexual dysfunction |
US8632510B2 (en) | 2008-11-14 | 2014-01-21 | The Board Of Regents Of The University Of Texas System | Nanochanneled device and related methods |
US8636809B2 (en) | 2008-01-29 | 2014-01-28 | Milux Holding Sa | Device for treating obesity |
US8678997B2 (en) | 2000-02-14 | 2014-03-25 | Obtech Medical Ag | Male impotence prosthesis apparatus with wireless energy supply |
US8696745B2 (en) | 2008-10-10 | 2014-04-15 | Kirk Promotion Ltd. | Heart help device, system, and method |
US8734318B2 (en) | 2000-02-11 | 2014-05-27 | Obtech Medical Ag | Mechanical anal incontinence |
US8764627B2 (en) | 2000-02-14 | 2014-07-01 | Obtech Medical Ag | Penile prosthesis |
US8870742B2 (en) | 2006-04-06 | 2014-10-28 | Ethicon Endo-Surgery, Inc. | GUI for an implantable restriction device and a data logger |
US8874215B2 (en) | 2008-10-10 | 2014-10-28 | Peter Forsell | System, an apparatus, and a method for treating a sexual dysfunctional female patient |
US8961448B2 (en) | 2008-01-28 | 2015-02-24 | Peter Forsell | Implantable drainage device |
US9089636B2 (en) | 2004-07-02 | 2015-07-28 | Valeritas, Inc. | Methods and devices for delivering GLP-1 and uses thereof |
US20150374964A1 (en) * | 2014-06-26 | 2015-12-31 | Kristien Johanna Maria Verhoeven | Treatment of the Ear |
US9295773B2 (en) | 2010-11-09 | 2016-03-29 | Frank Prosl | Hemodialysis access system |
US9333297B2 (en) | 2008-05-08 | 2016-05-10 | Minipumps, Llc | Drug-delivery pump with intelligent control |
WO2017027791A1 (en) | 2015-08-13 | 2017-02-16 | Medtronic, Inc. | Leak reduction during implantable infusion device refill |
US9603997B2 (en) | 2011-03-14 | 2017-03-28 | Minipumps, Llc | Implantable drug pumps and refill devices therefor |
US9610444B2 (en) | 2013-03-15 | 2017-04-04 | Pacesetter, Inc. | Erythropoeitin production by electrical stimulation |
US9901687B2 (en) | 2008-01-03 | 2018-02-27 | University Of Southern California | Implantable drug-delivery devices, and apparatus and methods for refilling the devices |
US9919099B2 (en) | 2011-03-14 | 2018-03-20 | Minipumps, Llc | Implantable drug pumps and refill devices therefor |
US9949812B2 (en) | 2009-07-17 | 2018-04-24 | Peter Forsell | Vaginal operation method for the treatment of anal incontinence in women |
US10219898B2 (en) | 2008-10-10 | 2019-03-05 | Peter Forsell | Artificial valve |
US10286146B2 (en) | 2011-03-14 | 2019-05-14 | Minipumps, Llc | Implantable drug pumps and refill devices therefor |
US10722696B2 (en) | 2010-05-19 | 2020-07-28 | Nanomedical Systems, Inc. | Nano-scale coatings and related methods suitable for in-vivo use |
US10952836B2 (en) | 2009-07-17 | 2021-03-23 | Peter Forsell | Vaginal operation method for the treatment of urinary incontinence in women |
US11123171B2 (en) | 2008-10-10 | 2021-09-21 | Peter Forsell | Fastening means for implantable medical control assembly |
US20210378811A1 (en) * | 2008-10-10 | 2021-12-09 | Peter Forsell | Fastening means for implantable medical control assembly |
US11286921B2 (en) * | 2006-02-09 | 2022-03-29 | Deka Products Limited Partnership | Adhesive and peripheral systems and methods for medical devices |
US12161832B2 (en) | 2021-03-01 | 2024-12-10 | Deka Products Limited Partnership | Medical agent dispensing systems, methods, and apparatuses |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE664419C (en) * | 1938-08-26 | Wilhelm Gillet | Closed container for storing liquids that are sensitive to atmospheric influences | |
US2815152A (en) * | 1949-10-07 | 1957-12-03 | Lindley E Mills | Dispensing package and method |
AT196550B (en) * | 1956-01-13 | 1958-03-25 | Friedrich Dr Schuerer-Waldheim | Device for blood transfusions and infusions |
US2876768A (en) * | 1952-12-26 | 1959-03-10 | Howard C Schultz | Pressure-vacuum clysis unit |
US3023750A (en) * | 1959-03-04 | 1962-03-06 | Howard C Baron | Self-generating pressure device for infusion administration systems |
US3048171A (en) * | 1958-11-03 | 1962-08-07 | Bio Physical Res Inc | Intravenous injection device |
GB960535A (en) * | 1962-03-08 | 1964-06-10 | Cornelius Co | Improvements in the dispensing of carbonated beverages |
US3310051A (en) * | 1963-12-10 | 1967-03-21 | Rudolf R Schulte | Surgical reservoir for implantation beneath the skin |
US3468308A (en) * | 1966-01-17 | 1969-09-23 | Howard R Bierman | Pressure infusion device for ambulatory patients with pressure control means |
US3527220A (en) * | 1968-06-28 | 1970-09-08 | Fairchild Hiller Corp | Implantable drug administrator |
US3583387A (en) * | 1968-12-20 | 1971-06-08 | John T Garner | Pressure absorbing appliance for treating hydrocephalus |
-
1972
- 1972-01-14 US US00217879A patent/US3731681A/en not_active Expired - Lifetime
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE664419C (en) * | 1938-08-26 | Wilhelm Gillet | Closed container for storing liquids that are sensitive to atmospheric influences | |
US2815152A (en) * | 1949-10-07 | 1957-12-03 | Lindley E Mills | Dispensing package and method |
US2876768A (en) * | 1952-12-26 | 1959-03-10 | Howard C Schultz | Pressure-vacuum clysis unit |
AT196550B (en) * | 1956-01-13 | 1958-03-25 | Friedrich Dr Schuerer-Waldheim | Device for blood transfusions and infusions |
US3048171A (en) * | 1958-11-03 | 1962-08-07 | Bio Physical Res Inc | Intravenous injection device |
US3023750A (en) * | 1959-03-04 | 1962-03-06 | Howard C Baron | Self-generating pressure device for infusion administration systems |
GB960535A (en) * | 1962-03-08 | 1964-06-10 | Cornelius Co | Improvements in the dispensing of carbonated beverages |
US3310051A (en) * | 1963-12-10 | 1967-03-21 | Rudolf R Schulte | Surgical reservoir for implantation beneath the skin |
US3468308A (en) * | 1966-01-17 | 1969-09-23 | Howard R Bierman | Pressure infusion device for ambulatory patients with pressure control means |
US3527220A (en) * | 1968-06-28 | 1970-09-08 | Fairchild Hiller Corp | Implantable drug administrator |
US3583387A (en) * | 1968-12-20 | 1971-06-08 | John T Garner | Pressure absorbing appliance for treating hydrocephalus |
Cited By (336)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3797492A (en) * | 1972-12-27 | 1974-03-19 | Alza Corp | Device for dispensing product with directional guidance member |
US3971376A (en) * | 1973-02-26 | 1976-07-27 | Ceskoslovenska Akademie Ved | Method and apparatus for introducing fluids into the body |
US3923060A (en) * | 1974-04-23 | 1975-12-02 | Jr Everett H Ellinwood | Apparatus and method for implanted self-powered medication dispensing having timing and evaluator means |
US4003379A (en) * | 1974-04-23 | 1977-01-18 | Ellinwood Jr Everett H | Apparatus and method for implanted self-powered medication dispensing |
US4013074A (en) * | 1974-06-21 | 1977-03-22 | Siposs George G | Implantable medication-dispensing device |
US4077405A (en) * | 1975-03-26 | 1978-03-07 | Siemens Aktiengesellschaft | Apparatus for infusing liquids into human or animal bodies |
US4056095A (en) * | 1975-04-04 | 1977-11-01 | Agence Nationale De Valorisation De La Recherche (Anvar) | Control device for medical and surgical uses |
DE2604113A1 (en) * | 1975-04-07 | 1976-10-28 | Metal Bellows Co | INFUSION PUMP |
US3951147A (en) * | 1975-04-07 | 1976-04-20 | Metal Bellows Company | Implantable infusate pump |
US4191181A (en) * | 1976-11-15 | 1980-03-04 | Siemens Aktiengesellschaft | Apparatus for infusion of liquids |
US4284502A (en) * | 1977-09-01 | 1981-08-18 | Basf Aktiengesellschaft | Apparatus for treating uremic patients |
US4222374A (en) * | 1978-06-16 | 1980-09-16 | Metal Bellows Corporation | Septum locating apparatus |
US4237881A (en) * | 1978-12-26 | 1980-12-09 | Anatros Corporation | Device for the intravenous or enteric infusion of liquids into the human body at a predetermined constant rate |
WO1980001755A1 (en) * | 1979-02-28 | 1980-09-04 | Andros Inc | Implantable infusion device |
JPS56500241A (en) * | 1979-02-28 | 1981-03-05 | ||
US4265241A (en) * | 1979-02-28 | 1981-05-05 | Andros Incorporated | Implantable infusion device |
US4657536A (en) * | 1979-04-13 | 1987-04-14 | Regents Of The University Of Minnesota | Check valve catheter |
US4373527A (en) * | 1979-04-27 | 1983-02-15 | The Johns Hopkins University | Implantable, programmable medication infusion system |
DE3247232A1 (en) * | 1979-04-27 | 1984-07-05 | The Johns Hopkins University, Baltimore, Md. | INFUSION SYSTEM FOR MEDICAL SUPPLY |
US4299220A (en) * | 1979-05-03 | 1981-11-10 | The Regents Of The University Of Minnesota | Implantable drug infusion regulator |
WO1980002377A1 (en) * | 1979-05-03 | 1980-11-13 | Univ Minnesota | Implantable drug infusion regulator |
WO1981000209A1 (en) * | 1979-07-13 | 1981-02-05 | Univ Minnesota | Magnetically controlled drug infusion system |
US4306553A (en) * | 1980-07-22 | 1981-12-22 | The Regents Of The University Of Minnesota | Method of maintaining the fluidity of hormone solutions for parenteral administration |
US4439181A (en) * | 1981-01-26 | 1984-03-27 | Regents Of The University Of Minnesota | Polyol-hormone mixture for use in chronic parenteral hormone administration |
EP0091621A1 (en) * | 1982-04-05 | 1983-10-19 | Milliken Research Corporation | Low flow constant rate pump |
DE3321472A1 (en) * | 1982-06-14 | 1983-12-15 | Infusaid Corp., Norwood, Mass. | IMPLANTABLE INFUSION DEVICE |
US4443218A (en) * | 1982-09-09 | 1984-04-17 | Infusaid Corporation | Programmable implantable infusate pump |
DE3333977A1 (en) * | 1982-09-20 | 1984-03-22 | Infusaid Corp., Norwood, Mass. | INFUSION PUMP |
US4447224A (en) * | 1982-09-20 | 1984-05-08 | Infusaid Corporation | Variable flow implantable infusion apparatus |
DE3390255C3 (en) * | 1982-11-04 | 1998-08-20 | Univ Johns Hopkins | Infusion device |
DE3390255C2 (en) * | 1982-11-04 | 1992-06-25 | Univ Johns Hopkins | Implanted medication infusion appts. with pulsatile pump |
US4552561A (en) * | 1982-12-23 | 1985-11-12 | Alza Corporation | Body mounted pump housing and pump assembly employing the same |
US4581018A (en) * | 1983-02-08 | 1986-04-08 | Novacor Medical Corporation | Implantable infusion device |
US4559931A (en) * | 1983-03-21 | 1985-12-24 | Fischell Robert | Manually actuated fully implantable penile erection device |
US4673391A (en) * | 1983-05-31 | 1987-06-16 | Koichi Sakurai | Non-contact controlled micropump |
US4596242A (en) * | 1983-08-26 | 1986-06-24 | Fischell Robert | Method and apparatus for achieving penile erection in a human male |
US4655765A (en) * | 1984-06-01 | 1987-04-07 | Parker Hannifin Corporation | Fitting with prestressed septum |
US4697622A (en) * | 1984-06-01 | 1987-10-06 | Parker Hannifin Corporation | Passive filling device |
EP0168675A1 (en) * | 1984-06-21 | 1986-01-22 | David R. Fischell | Finger actuated medication infusion system |
US4699615A (en) * | 1984-06-21 | 1987-10-13 | Fischell David R | Finger actuated medication infusion system |
US4666430A (en) * | 1984-12-05 | 1987-05-19 | I-Flow Corporation | Infusion pump |
EP0189940A3 (en) * | 1985-02-01 | 1988-05-25 | Consolidated Controls Corporation | Implantable medication infusion device |
US4626244A (en) * | 1985-02-01 | 1986-12-02 | Consolidated Controls Corporation | Implantable medication infusion device |
EP0189940A2 (en) * | 1985-02-01 | 1986-08-06 | Consolidated Controls Corporation | Implantable medication infusion device |
WO1987004631A1 (en) * | 1986-02-03 | 1987-08-13 | University Of Minnesota | Spring driven infusion pump |
US4718893A (en) * | 1986-02-03 | 1988-01-12 | University Of Minnesota | Pressure regulated implantable infusion pump |
US4772263A (en) * | 1986-02-03 | 1988-09-20 | Regents Of The University Of Minnesota | Spring driven infusion pump |
US4705503A (en) * | 1986-02-03 | 1987-11-10 | Regents Of The University Of Minnesota | Metabolite sensor including a chemical concentration sensitive flow controller for a drug delivery system |
WO1987004629A1 (en) * | 1986-02-03 | 1987-08-13 | University Of Minnesota | Pressure regulated implantable infusion pump |
US4820273A (en) * | 1988-03-01 | 1989-04-11 | Eaton Corporation | Implantable medication infusion device and bolus generator therefor |
US4943560A (en) * | 1988-04-06 | 1990-07-24 | Regents Of The University Of Minnesota | Solvent system for chronic vascular infusion of hydrophobic drugs |
US4955861A (en) * | 1988-04-21 | 1990-09-11 | Therex Corp. | Dual access infusion and monitoring system |
EP0612535A1 (en) * | 1988-04-21 | 1994-08-31 | Therex Corporation | Implantable infusion apparatus |
US4978338A (en) * | 1988-04-21 | 1990-12-18 | Therex Corp. | Implantable infusion apparatus |
US4969873A (en) * | 1988-06-23 | 1990-11-13 | Annemarie Schlogl Gesellschaft m.b.H. & Co., KG | Device for dispensing active substances to a patient |
EP0409511A1 (en) * | 1989-07-18 | 1991-01-23 | Infusaid Inc. | Adjustable flow regulator for use in an implantable drug infusion system |
AU625000B2 (en) * | 1989-09-26 | 1992-06-25 | Arrow Interventional, Inc. | Pressure regulator for implantable pump |
US5041107A (en) * | 1989-10-06 | 1991-08-20 | Cardiac Pacemakers, Inc. | Electrically controllable, non-occluding, body implantable drug delivery system |
EP0569480B1 (en) * | 1991-01-30 | 1996-06-26 | Strato/Infusaid Inc. | Flow regulator |
US5328460A (en) * | 1991-06-21 | 1994-07-12 | Pacesetter Infusion, Ltd. | Implantable medication infusion pump including self-contained acoustic fault detection apparatus |
WO1993000945A1 (en) * | 1991-07-08 | 1993-01-21 | Infusaid, Inc. | Implantable drug infusion reservoir |
US7083068B2 (en) | 1992-01-24 | 2006-08-01 | I-Flow Corporation | Platen pump |
US6358239B1 (en) | 1992-01-24 | 2002-03-19 | I-Flow Corporation | Platen pump |
US6871759B2 (en) | 1992-01-24 | 2005-03-29 | I-Flow Corporation | Platen pump |
US6251098B1 (en) | 1992-01-24 | 2001-06-26 | I-Flow, Corp. | Fluid container for use with platen pump |
US20050211725A1 (en) * | 1992-01-24 | 2005-09-29 | Rake Kenneth W | Platen pump |
US5911716A (en) * | 1992-01-24 | 1999-06-15 | I-Flow Corporation | Platen pump |
US20040108333A1 (en) * | 1992-01-24 | 2004-06-10 | Rake Kenneth W. | Platen pump |
US7337922B2 (en) | 1992-01-24 | 2008-03-04 | I-Flow Corporation | Platen pump |
US5306257A (en) * | 1992-05-04 | 1994-04-26 | Prime Medical Products, Inc. | Drug infuser |
WO1993025262A1 (en) | 1992-06-16 | 1993-12-23 | Infusaid, Inc. | Dual access catheter for implantable pump system |
US5336194A (en) * | 1992-08-01 | 1994-08-09 | Fresenius Ag | Implantable apparatus |
DE4225524A1 (en) * | 1992-08-01 | 1994-02-10 | Fresenius Ag | Implantable device |
US20080215029A1 (en) * | 1993-01-22 | 2008-09-04 | I-Flow Corporation | Platen pump |
US5551849A (en) * | 1994-04-29 | 1996-09-03 | Medtronic, Inc. | Medication delivery device and method of construction |
EP0701831A1 (en) | 1994-09-16 | 1996-03-20 | Fresenius AG | Implantable infusion pump |
DE4432991C1 (en) * | 1994-09-16 | 1995-10-26 | Fresenius Ag | Infusion pump for dispensing medicines into human body |
DE4436540A1 (en) * | 1994-10-13 | 1996-04-25 | Fresenius Ag | Continuous dosing system for administering medication |
US5769823A (en) * | 1995-03-23 | 1998-06-23 | Tricumed Gmbh | Implantable infusion pump |
US6213986B1 (en) | 1995-09-29 | 2001-04-10 | Appro Healthcare, Inc. | Liquid flow rate control device |
US5730730A (en) * | 1995-09-29 | 1998-03-24 | Darling, Jr.; Phillip H. | Liquid flow rate control device |
US6485462B1 (en) | 1997-08-27 | 2002-11-26 | Science Incorporated | Fluid delivery device with heat activated energy source |
US6203523B1 (en) * | 1998-02-02 | 2001-03-20 | Medtronic Inc | Implantable drug infusion device having a flow regulator |
US6878135B1 (en) | 1998-02-02 | 2005-04-12 | Medtronic, Inc. | Implantable drug infusion device having a flow regulator |
US6679832B1 (en) | 1998-04-03 | 2004-01-20 | Hashem Sultan | Implantable device for treating impotence by delivering a vasodilator agent to the erectile bodies of the penis |
US6542350B1 (en) | 1998-04-30 | 2003-04-01 | Medtronic, Inc. | Reservoir volume sensors |
US6210368B1 (en) * | 1998-04-30 | 2001-04-03 | Medtronic, Inc. | Reservoir volume sensors |
US6280416B1 (en) | 1999-02-19 | 2001-08-28 | Minimed Inc. | Constant flow medication infusion pump |
US6283943B1 (en) * | 1999-02-19 | 2001-09-04 | Minimed Inc. | Negative pressure pump |
US6152898A (en) * | 1999-04-30 | 2000-11-28 | Medtronic, Inc. | Overfill protection systems for implantable drug delivery devices |
US8096938B2 (en) | 1999-08-12 | 2012-01-17 | Obtech Medical Ag | Controlled anal incontinence disease treatment |
US8545384B2 (en) | 1999-08-12 | 2013-10-01 | Obtech Medical Ag | Anal incontinence disease treatment with controlled wireless energy supply |
US7022107B1 (en) | 1999-09-22 | 2006-04-04 | Advanced Infusion, Inc. | Infusion pump with pressure regulator |
US20040249363A1 (en) * | 2000-01-11 | 2004-12-09 | Bard Access Systems, Inc. | Implantable, refillable infusion device and septum replacement kit |
US6764472B1 (en) | 2000-01-11 | 2004-07-20 | Bard Access Systems, Inc. | Implantable refillable infusion device |
US7108686B2 (en) | 2000-01-11 | 2006-09-19 | Bard Access Systems, Inc. | Implantable, refillable infusion device and septum replacement kit |
US20030208184A1 (en) * | 2000-01-11 | 2003-11-06 | Paul Burke | Implantable, refillable infusion device and spetum replacement kit |
US20100145139A1 (en) * | 2000-02-10 | 2010-06-10 | Obtech Medical Ag | Controlled urinary incontinence treatment |
US20090054725A1 (en) * | 2000-02-10 | 2009-02-26 | Obtech Medical Ag | Mechanical impotence treatment apparatus |
US8602966B2 (en) | 2000-02-10 | 2013-12-10 | Obtech Medical, AG | Mechanical impotence treatment apparatus |
US8096939B2 (en) | 2000-02-10 | 2012-01-17 | Obtech Medical Ag | Urinary incontinence treatment with wireless energy supply |
US8287444B2 (en) | 2000-02-10 | 2012-10-16 | Obtech Medical Ag | Mechanical impotence treatment apparatus |
US8556796B2 (en) | 2000-02-10 | 2013-10-15 | Obtech Medical Ag | Controlled urinary incontinence treatment |
US8290594B2 (en) | 2000-02-11 | 2012-10-16 | Obtech Medical Ag | Impotence treatment apparatus with energy transforming means |
US20110040143A1 (en) * | 2000-02-11 | 2011-02-17 | Obtech Medical Ag | Impotence treatment apparatus with energy transforming means |
US7931582B2 (en) | 2000-02-11 | 2011-04-26 | Obtech Medical Ag | Controlled impotence treatment |
US20110184230A1 (en) * | 2000-02-11 | 2011-07-28 | Obtech Medical Ag | Controlled impotence treatment |
US8734318B2 (en) | 2000-02-11 | 2014-05-27 | Obtech Medical Ag | Mechanical anal incontinence |
US9655724B2 (en) | 2000-02-11 | 2017-05-23 | Peter Forsell | Controlled impotence treatment |
US8313423B2 (en) | 2000-02-14 | 2012-11-20 | Peter Forsell | Hydraulic anal incontinence treatment |
US8764627B2 (en) | 2000-02-14 | 2014-07-01 | Obtech Medical Ag | Penile prosthesis |
US8126558B2 (en) | 2000-02-14 | 2012-02-28 | Obtech Medical Ag | Controlled penile prosthesis |
US8678997B2 (en) | 2000-02-14 | 2014-03-25 | Obtech Medical Ag | Male impotence prosthesis apparatus with wireless energy supply |
US20040065615A1 (en) * | 2001-01-04 | 2004-04-08 | Advanced Neuromodulation Systems, Inc. | Implantable infusion pump |
US6666845B2 (en) | 2001-01-04 | 2003-12-23 | Advanced Neuromodulation Systems, Inc. | Implantable infusion pump |
US7776029B2 (en) | 2001-01-30 | 2010-08-17 | The Alfred E. Mann Foundation For Scientific Research | Microminiature infusion pump |
US20040082908A1 (en) * | 2001-01-30 | 2004-04-29 | Whitehurst Todd K. | Microminiature infusion pump |
US7338464B2 (en) | 2001-03-01 | 2008-03-04 | Advanced Neuromodulation Systems, Inc. | Non-constant pressure infusion pump |
US20080125702A1 (en) * | 2001-03-01 | 2008-05-29 | Advanced Neuromodulation Systems, Inc. | Non-constant pressure infusion pump |
WO2002070047A1 (en) | 2001-03-01 | 2002-09-12 | Advanced Neuromodulation Systems, Inc. | Non-constant pressure infusion pump |
US20040153029A1 (en) * | 2001-03-01 | 2004-08-05 | Advanced Neuromodulation Systems, Inc. | Non-constant pressure infusion pump |
US6620151B2 (en) | 2001-03-01 | 2003-09-16 | Advanced Neuromodulation Systems, Inc. | Non-constant pressure infusion pump |
US20060178572A1 (en) * | 2001-04-27 | 2006-08-10 | March Wayne F | Apparatus for measuring blood glucose concentrations |
US7653424B2 (en) | 2001-04-27 | 2010-01-26 | Eyesense Ag | Apparatus for measuring blood glucose concentrations |
US20100185066A1 (en) * | 2001-04-27 | 2010-07-22 | Eyesense Ag | Apparatus for measuring blood glucose concentrations |
US20030078560A1 (en) * | 2001-09-07 | 2003-04-24 | Miller Michael E. | Method and system for non-vascular sensor implantation |
US8506550B2 (en) | 2001-09-07 | 2013-08-13 | Medtronic Minimed, Inc. | Method and system for non-vascular sensor implantation |
US7025760B2 (en) * | 2001-09-07 | 2006-04-11 | Medtronic Minimed, Inc. | Method and system for non-vascular sensor implantation |
US20050090866A1 (en) * | 2001-10-23 | 2005-04-28 | Medtronic Minimed, Inc. | Method and system for non-vascular sensor implantation |
US8465466B2 (en) | 2001-10-23 | 2013-06-18 | Medtronic Minimed, Inc | Method and system for non-vascular sensor implantation |
US20040064133A1 (en) * | 2002-09-27 | 2004-04-01 | Medtronic-Minimed | Implantable sensor method and system |
US20090030297A1 (en) * | 2002-09-27 | 2009-01-29 | Medtronic Minimed, Inc. | Implantable sensor method and system |
US8292808B2 (en) | 2002-09-27 | 2012-10-23 | Medtronic Minimed, Inc. | Implantable sensor method and system |
US7736309B2 (en) | 2002-09-27 | 2010-06-15 | Medtronic Minimed, Inc. | Implantable sensor method and system |
US20050065500A1 (en) * | 2002-10-02 | 2005-03-24 | Couvillon Lucien Alfred | Electroactive polymer actuated medication infusion pumps |
US20040068224A1 (en) * | 2002-10-02 | 2004-04-08 | Couvillon Lucien Alfred | Electroactive polymer actuated medication infusion pumps |
DE10259910A1 (en) * | 2002-12-20 | 2004-07-01 | A.M.I. Agency For Medical Innovations Gmbh | Pump implant for medical purposes, comprising guide mechanism for precise motion of soft housing and integrated components |
US7510552B2 (en) | 2003-03-27 | 2009-03-31 | Infusion Systems, Llc | Implantable medication delivery device using pressure regulator |
US20050273083A1 (en) * | 2003-03-27 | 2005-12-08 | Lebel Ronald J | Implantable medication delivery device using pressure regulator |
US20100217191A1 (en) * | 2003-04-23 | 2010-08-26 | Valeritas, Inc. | Hydraulically actuated pump for fluid administration |
US9511187B2 (en) | 2003-04-23 | 2016-12-06 | Valeritas, Inc. | Hydraulically actuated pump for fluid administration |
US10525194B2 (en) | 2003-04-23 | 2020-01-07 | Valeritas, Inc. | Hydraulically actuated pump for fluid administration |
US20090157005A1 (en) * | 2003-04-23 | 2009-06-18 | Gonnelli Robert R | Hydraulically actuated pump for long duration medicament administration |
US11642456B2 (en) | 2003-04-23 | 2023-05-09 | Mannkind Corporation | Hydraulically actuated pump for fluid administration |
US20090198185A1 (en) * | 2003-04-23 | 2009-08-06 | Gonnelli Robert R | Hydraulically actuated pump for long duration medicament administration |
US8070726B2 (en) | 2003-04-23 | 2011-12-06 | Valeritas, Inc. | Hydraulically actuated pump for long duration medicament administration |
US9072828B2 (en) | 2003-04-23 | 2015-07-07 | Valeritas, Inc. | Hydraulically actuated pump for long duration medicament administration |
US9125983B2 (en) | 2003-04-23 | 2015-09-08 | Valeritas, Inc. | Hydraulically actuated pump for fluid administration |
US20100114193A1 (en) * | 2003-06-19 | 2010-05-06 | Advanced Neuromodulation Systems, Inc. | Method of treating depression, mood disorders and anxiety disorders using neuromodulation |
US8467878B2 (en) | 2003-06-19 | 2013-06-18 | Advanced Neuromodulation Systems, Inc. | Method of treating depression, mood disorders and anxiety disorders using neuromodulation |
US8190264B2 (en) | 2003-06-19 | 2012-05-29 | Advanced Neuromodulation Systems, Inc. | Method of treating depression, mood disorders and anxiety disorders using neuromodulation |
US20070005115A1 (en) * | 2003-06-19 | 2007-01-04 | Lozano Andres M | Method of treating depression, mood disorders and anxiety disorders using neuromodulation |
EP2277588A2 (en) | 2003-06-19 | 2011-01-26 | Advanced Neuromodulation Systems, Inc. | Method of treating depression, mood disorders and anxiety disorders using neuromodulation |
US7653433B2 (en) | 2003-06-19 | 2010-01-26 | Advanced Neuromodulation Systems, Inc. | Method of treating depression, mood disorders and anxiety disorders using neuromodulation |
US7346395B2 (en) | 2003-06-19 | 2008-03-18 | Advanced Neuromodulation Systems, Inc. | Method of treating depression, mood disorders and anxiety disorders using neuromodulation |
US7718804B2 (en) | 2003-06-27 | 2010-05-18 | University Of Maryland Biotechnology Institute | Quaternary nitrogen heterocyclic compounds for detecting aqueous monosaccharides in physiological fluids |
US20070020182A1 (en) * | 2003-06-27 | 2007-01-25 | Geddes Chris D | Quaternary nitrogen heterocyclic compounds for detecting aqueous monosaccharides in physiological fluids |
US8569502B2 (en) | 2003-06-27 | 2013-10-29 | Chris Geddes | Quaternary nitrogen heterocyclic compounds for detecting aqueous monosaccharides in physiological fluids |
US20100297016A1 (en) * | 2003-06-27 | 2010-11-25 | Geddes Chris D | Quarternary nitrogen heterocyclic compounds for detecting aqueous monosaccharides in physiological fluids |
US8338602B2 (en) | 2003-06-27 | 2012-12-25 | University Of Maryland, Baltimore County | Quaternary nitrogen heterocyclic compounds for detecting aqueous monosaccharides in physiological fluids |
US7220244B2 (en) | 2003-08-04 | 2007-05-22 | Bioquiddity, Inc. | Infusion apparatus with constant force spring energy source |
US20080051701A1 (en) * | 2003-08-04 | 2008-02-28 | Kriesel Marshall S | Infusion apparatus with constant force spring energy source |
US7169128B2 (en) | 2003-08-04 | 2007-01-30 | Bioquiddity, Inc. | Multichannel fluid delivery device |
US20050038387A1 (en) * | 2003-08-04 | 2005-02-17 | Kriesel Marshall S. | Multichannel fluid delivery device |
US20050033233A1 (en) * | 2003-08-04 | 2005-02-10 | Kriesel Marshall S. | Infusion apparatus with constant force spring energy source |
US7789853B2 (en) | 2003-08-04 | 2010-09-07 | Bioquiddity, Inc. | Infusion apparatus with constant force spring energy source |
US20050033232A1 (en) * | 2003-08-05 | 2005-02-10 | Kriesel Marshall S. | Infusion apparatus with modulated flow control |
US20070100384A1 (en) * | 2003-11-24 | 2007-05-03 | Fischell David R | Implantable medical system with long range telemetry |
US20050113886A1 (en) * | 2003-11-24 | 2005-05-26 | Fischell David R. | Implantable medical system with long range telemetry |
US20050113892A1 (en) * | 2003-11-26 | 2005-05-26 | Sproul Michael E. | Surgical tool with an electroactive polymer for use in a body |
US20050187515A1 (en) * | 2004-02-19 | 2005-08-25 | Advanced Neuromodulation Systems, Inc. | Reduced size programmable drug pump |
US7313442B2 (en) | 2004-04-30 | 2007-12-25 | Advanced Neuromodulation Systems, Inc. | Method of treating mood disorders and/or anxiety disorders by brain stimulation |
US20060064138A1 (en) * | 2004-04-30 | 2006-03-23 | Francisco Velasco | Method of treating mood disorders and/or anxiety disorders by brain stimulation |
US7220245B2 (en) | 2004-05-26 | 2007-05-22 | Kriesel Marshall S | Infusion apparatus |
US20070156090A1 (en) * | 2004-05-26 | 2007-07-05 | Kriesel Marshall S | Fluid delivery apparatus |
US20050277884A1 (en) * | 2004-05-26 | 2005-12-15 | Kriesel Marshall S | Fluid delivery apparatus with bellows reservoir |
US20050277883A1 (en) * | 2004-05-26 | 2005-12-15 | Kriesel Marshall S | Fluid delivery device |
US20050263615A1 (en) * | 2004-05-26 | 2005-12-01 | Kriesel Marshall S | Fluid delivery apparatus with adjustable flow rate control |
US20050277882A1 (en) * | 2004-05-26 | 2005-12-15 | Kriesel Marshall S | Infusion apparatus |
US7470253B2 (en) | 2004-05-26 | 2008-12-30 | Bioquiddity, Inc. | Fluid delivery apparatus with adjustable flow rate control |
US20080249381A1 (en) * | 2004-06-14 | 2008-10-09 | Eyesense Ag | Combined Apparatus For Measuring the Blood Glucose Level From an Ocular Fluid |
US9089636B2 (en) | 2004-07-02 | 2015-07-28 | Valeritas, Inc. | Methods and devices for delivering GLP-1 and uses thereof |
US8073543B2 (en) | 2004-09-27 | 2011-12-06 | Stephen T. Pyles | Method of using spinal cord stimulation to treat gastrointestinal and/or eating disorders or conditions |
US8463385B2 (en) | 2004-09-27 | 2013-06-11 | Stephen T. Pyles | Method of using spinal cord stimulation to treat gastrointestinal and/or eating disorders or conditions |
US20100174339A1 (en) * | 2004-09-27 | 2010-07-08 | Pyles Stephen T | Method of using spinal cord stimulation to treat gastrointestinal and/or eating disorders or conditions |
US20060206052A1 (en) * | 2005-02-15 | 2006-09-14 | Kriesel Marshall S | Fluid delivery and mixing apparatus with flow rate control |
US7694938B2 (en) | 2005-02-17 | 2010-04-13 | Bioquiddity, Inc. | Distal rate control device |
US20060196552A1 (en) * | 2005-02-17 | 2006-09-07 | Kriesel Marshall S | Distal rate control device |
US20080009835A1 (en) * | 2005-02-17 | 2008-01-10 | Kriesel Marshall S | Fluid dispensing apparatus with flow rate control |
US7837653B2 (en) | 2005-02-18 | 2010-11-23 | Bioquiddity, Inc. | Fluid delivery apparatus with vial fill |
US20060195057A1 (en) * | 2005-02-18 | 2006-08-31 | Kriesel Marshall S | Fluid delivery apparatus with vial fill |
US8016745B2 (en) | 2005-02-24 | 2011-09-13 | Ethicon Endo-Surgery, Inc. | Monitoring of a food intake restriction device |
US7658196B2 (en) | 2005-02-24 | 2010-02-09 | Ethicon Endo-Surgery, Inc. | System and method for determining implanted device orientation |
US7927270B2 (en) | 2005-02-24 | 2011-04-19 | Ethicon Endo-Surgery, Inc. | External mechanical pressure sensor for gastric band pressure measurements |
US7775966B2 (en) | 2005-02-24 | 2010-08-17 | Ethicon Endo-Surgery, Inc. | Non-invasive pressure measurement in a fluid adjustable restrictive device |
US7775215B2 (en) | 2005-02-24 | 2010-08-17 | Ethicon Endo-Surgery, Inc. | System and method for determining implanted device positioning and obtaining pressure data |
US8066629B2 (en) | 2005-02-24 | 2011-11-29 | Ethicon Endo-Surgery, Inc. | Apparatus for adjustment and sensing of gastric band pressure |
US8016744B2 (en) | 2005-02-24 | 2011-09-13 | Ethicon Endo-Surgery, Inc. | External pressure-based gastric band adjustment system and method |
US20060212090A1 (en) * | 2005-03-01 | 2006-09-21 | Functional Neuroscience Inc. | Method of treating cognitive disorders using neuromodulation |
US20060212091A1 (en) * | 2005-03-01 | 2006-09-21 | Functional Neuroscience Inc. | Method of treating depression, mood disorders and anxiety disorders using neuromodulation |
US9931500B2 (en) | 2005-03-01 | 2018-04-03 | Andres M. Lozano | Method of treating depression, mood disorders and anxiety disorders using neuromodulation |
US8175717B2 (en) | 2005-09-06 | 2012-05-08 | Boston Scientific Neuromodulation Corporation | Ultracapacitor powered implantable pulse generator with dedicated power supply |
US20070055308A1 (en) * | 2005-09-06 | 2007-03-08 | Haller Matthew I | Ultracapacitor powered implantable pulse generator with dedicated power supply |
US20090188897A1 (en) * | 2005-10-31 | 2009-07-30 | Philippe Margairaz | Method of Making a Metal Bellows Assembly Having an Intermediate Plate |
US9446192B2 (en) | 2005-10-31 | 2016-09-20 | Codman Neuro Sciences Sarl | Implantable pump with reservoir level detector |
US8431855B2 (en) | 2005-10-31 | 2013-04-30 | Codman Neuro Sciences Sarl | Method of making a metal bellows assembly having an intermediate plate |
US8747391B2 (en) | 2005-10-31 | 2014-06-10 | Codman Neuro Sciences Sarl | Implantable pump with reservoir level detector |
US20070106280A1 (en) * | 2005-10-31 | 2007-05-10 | Thierry Utard | Implantable pump with reservoir level detector |
US7905878B2 (en) * | 2005-10-31 | 2011-03-15 | Codman & Shurtleff, Inc. | Implantable pump with reservoir level detector |
US20110060283A1 (en) * | 2005-10-31 | 2011-03-10 | Thierry Utard | Implantable pump with reservoir level detector |
US20070233019A1 (en) * | 2005-11-02 | 2007-10-04 | Potencia Medical Ag | Implantable infusion devices and methods |
US20170119961A1 (en) * | 2005-11-02 | 2017-05-04 | Peter Forsell | Implantable infusion devices and methods |
US9504785B2 (en) * | 2005-11-02 | 2016-11-29 | Peter Forsell | Implantable infusion devices and methods |
US11446432B2 (en) * | 2005-11-02 | 2022-09-20 | Peter Forsell | Implantable infusion devices and methods |
US20230014979A1 (en) * | 2005-11-02 | 2023-01-19 | Peter Forsell | Implantable infusion devices and methods |
US12151082B2 (en) * | 2005-11-02 | 2024-11-26 | Peter Forsell | Implantable infusion devices and methods |
US11286921B2 (en) * | 2006-02-09 | 2022-03-29 | Deka Products Limited Partnership | Adhesive and peripheral systems and methods for medical devices |
US8764708B2 (en) | 2006-03-14 | 2014-07-01 | The University Of Southern California | MEMS device and method for delivery of therapeutic agents |
US20110144619A1 (en) * | 2006-03-14 | 2011-06-16 | The University Of Southern California | Mems device and method for delivery of therapeutic agents |
US20110144617A1 (en) * | 2006-03-14 | 2011-06-16 | The University Of Southern California | Mems device and method for delivery of therapeutic agents |
US9693894B2 (en) | 2006-03-14 | 2017-07-04 | The University Of Southern California | MEMS device and method for delivery of therapeutic agents |
US8308686B2 (en) | 2006-03-14 | 2012-11-13 | The University Of Southern California | MEMS device and method for delivery of therapeutic agents |
US20100305550A1 (en) * | 2006-03-14 | 2010-12-02 | Ellis Meng | Mems device and method for delivery of therapeutic agents |
US7828772B2 (en) | 2006-03-15 | 2010-11-09 | Bioquiddity, Inc. | Fluid dispensing device |
US7993304B2 (en) | 2006-03-15 | 2011-08-09 | Bioquiddity, Inc. | Fluid dispensing apparatus |
US20070219501A1 (en) * | 2006-03-15 | 2007-09-20 | Kriesel Marshall S | Fluid dispensing apparatus |
US20110282284A1 (en) * | 2006-03-15 | 2011-11-17 | Kriesel Marshall S | Fluid dispensing apparatus |
US20110092904A1 (en) * | 2006-03-15 | 2011-04-21 | Kriesel Marshall S | Fluid dispensing device |
US8672885B2 (en) * | 2006-03-15 | 2014-03-18 | Marshall S. Kriesel | Fluid dispensing device |
US8361053B2 (en) | 2006-03-30 | 2013-01-29 | Valeritas, Inc. | Multi-cartridge fluid delivery device |
US9687599B2 (en) | 2006-03-30 | 2017-06-27 | Valeritas, Inc. | Multi-cartridge fluid delivery device |
US8821443B2 (en) | 2006-03-30 | 2014-09-02 | Valeritas, Inc. | Multi-cartridge fluid delivery device |
US20110137287A1 (en) * | 2006-03-30 | 2011-06-09 | Valeritas, Inc. | Multi-cartridge fluid delivery device |
US7914499B2 (en) | 2006-03-30 | 2011-03-29 | Valeritas, Inc. | Multi-cartridge fluid delivery device |
US10493199B2 (en) | 2006-03-30 | 2019-12-03 | Valeritas, Inc. | Multi-cartridge fluid delivery device |
US20090240232A1 (en) * | 2006-03-30 | 2009-09-24 | Vakerutas,Llc | Multi-cartridge fluid delivery device |
US8152710B2 (en) | 2006-04-06 | 2012-04-10 | Ethicon Endo-Surgery, Inc. | Physiological parameter analysis for an implantable restriction device and a data logger |
US8870742B2 (en) | 2006-04-06 | 2014-10-28 | Ethicon Endo-Surgery, Inc. | GUI for an implantable restriction device and a data logger |
US8221354B2 (en) | 2006-04-27 | 2012-07-17 | Medtronic, Inc. | Infusion device with positive pressure elastic bladder reservoir |
US20070255262A1 (en) * | 2006-04-27 | 2007-11-01 | Haase James M | Infusion device with positive pressure elastic bladder reservoir |
US8292848B2 (en) | 2006-07-31 | 2012-10-23 | Bio Quiddity, Inc. | Fluid dispensing device with additive |
US20080027376A1 (en) * | 2006-07-31 | 2008-01-31 | Kriesel Marshall S | Fluid dispensing device with additive |
US8057435B2 (en) | 2006-07-31 | 2011-11-15 | Kriesel Joshua W | Fluid dispenser |
US8412337B2 (en) | 2006-08-30 | 2013-04-02 | Functional Neuroscience, Inc. | Systems and methods for treating pain using brain stimulation |
US8116877B2 (en) | 2006-08-30 | 2012-02-14 | Functional Neuroscience, Inc. | Systems and methods for treating pain using brain stimulation |
US20110171325A1 (en) * | 2006-08-30 | 2011-07-14 | Andres Lozano | Systems and Methods for Treating Pain Using Brain Stimulation |
US20100204748A1 (en) * | 2006-10-31 | 2010-08-12 | Lozano Andres M | Identifying areas of the brain by examining the neuronal signals |
US8280514B2 (en) | 2006-10-31 | 2012-10-02 | Advanced Neuromodulation Systems, Inc. | Identifying areas of the brain by examining the neuronal signals |
US8849392B2 (en) | 2006-10-31 | 2014-09-30 | Advanced Neuromodulation Systems, Inc. | Identifying areas of the brain by examining the neuronal signals |
US20080243077A1 (en) * | 2007-04-02 | 2008-10-02 | Bivin Donald B | Fluid dispenser with uniformly collapsible reservoir |
US8211059B2 (en) | 2007-06-25 | 2012-07-03 | Kriesel Marshall S | Fluid dispenser with additive sub-system |
US20090024083A1 (en) * | 2007-06-25 | 2009-01-22 | Kriesel Marshall S | Fluid dispenser with additive sub-system |
US20080319385A1 (en) * | 2007-06-25 | 2008-12-25 | Kriesel Marshall S | Fluid dispenser with additive sub-system |
US8538537B2 (en) | 2007-12-07 | 2013-09-17 | Advanced Neuromodulations Systems, Inc. | Systems and methods for providing targeted neural stimulation therapy to address neurological disorders, including neuropyschiatric and neuropyschological disorders |
US20090149898A1 (en) * | 2007-12-07 | 2009-06-11 | Northstar Neuroscience, Inc. | Systems and Methods for Providing Targeted Neural Stimulation Therapy to Address Neurological Disorders, Including Neuropyschiatric and Neuropyschological Disorders |
US8187163B2 (en) | 2007-12-10 | 2012-05-29 | Ethicon Endo-Surgery, Inc. | Methods for implanting a gastric restriction device |
US8100870B2 (en) | 2007-12-14 | 2012-01-24 | Ethicon Endo-Surgery, Inc. | Adjustable height gastric restriction devices and methods |
US9308124B2 (en) | 2007-12-20 | 2016-04-12 | University Of Southern California | Apparatus and methods for delivering therapeutic agents |
US9271866B2 (en) | 2007-12-20 | 2016-03-01 | University Of Southern California | Apparatus and methods for delivering therapeutic agents |
US10117774B2 (en) | 2007-12-20 | 2018-11-06 | University Of Southern California | Apparatus and methods for delivering therapeutic agents |
US20090240215A1 (en) * | 2007-12-20 | 2009-09-24 | Mark Humayun | Apparatus and methods for delivering therapeutic agents |
US8142452B2 (en) | 2007-12-27 | 2012-03-27 | Ethicon Endo-Surgery, Inc. | Controlling pressure in adjustable restriction devices |
US8377079B2 (en) | 2007-12-27 | 2013-02-19 | Ethicon Endo-Surgery, Inc. | Constant force mechanisms for regulating restriction devices |
US9901687B2 (en) | 2008-01-03 | 2018-02-27 | University Of Southern California | Implantable drug-delivery devices, and apparatus and methods for refilling the devices |
US8192350B2 (en) | 2008-01-28 | 2012-06-05 | Ethicon Endo-Surgery, Inc. | Methods and devices for measuring impedance in a gastric restriction system |
US20150157836A1 (en) * | 2008-01-28 | 2015-06-11 | Peter Mats Forsell | Implantable drainage device |
US8337389B2 (en) | 2008-01-28 | 2012-12-25 | Ethicon Endo-Surgery, Inc. | Methods and devices for diagnosing performance of a gastric restriction system |
US8591395B2 (en) | 2008-01-28 | 2013-11-26 | Ethicon Endo-Surgery, Inc. | Gastric restriction device data handling devices and methods |
US9694165B2 (en) * | 2008-01-28 | 2017-07-04 | Peter Mats Forsell | Implantable drainage device |
US8961448B2 (en) | 2008-01-28 | 2015-02-24 | Peter Forsell | Implantable drainage device |
US8636809B2 (en) | 2008-01-29 | 2014-01-28 | Milux Holding Sa | Device for treating obesity |
US9060771B2 (en) | 2008-01-29 | 2015-06-23 | Peter Forsell | Method and instrument for treating obesity |
US8221439B2 (en) | 2008-02-07 | 2012-07-17 | Ethicon Endo-Surgery, Inc. | Powering implantable restriction systems using kinetic motion |
US7844342B2 (en) | 2008-02-07 | 2010-11-30 | Ethicon Endo-Surgery, Inc. | Powering implantable restriction systems using light |
US8114345B2 (en) | 2008-02-08 | 2012-02-14 | Ethicon Endo-Surgery, Inc. | System and method of sterilizing an implantable medical device |
US8591532B2 (en) | 2008-02-12 | 2013-11-26 | Ethicon Endo-Sugery, Inc. | Automatically adjusting band system |
US8057492B2 (en) | 2008-02-12 | 2011-11-15 | Ethicon Endo-Surgery, Inc. | Automatically adjusting band system with MEMS pump |
US8034065B2 (en) | 2008-02-26 | 2011-10-11 | Ethicon Endo-Surgery, Inc. | Controlling pressure in adjustable restriction devices |
US8187162B2 (en) | 2008-03-06 | 2012-05-29 | Ethicon Endo-Surgery, Inc. | Reorientation port |
US8233995B2 (en) | 2008-03-06 | 2012-07-31 | Ethicon Endo-Surgery, Inc. | System and method of aligning an implantable antenna |
US9283322B2 (en) | 2008-05-08 | 2016-03-15 | Minipumps, Llc | Drug-delivery pump with dynamic, adaptive control |
CN103394142A (en) * | 2008-05-08 | 2013-11-20 | 迷你泵有限责任公司 | Implantable drug-delivery device, and apparatus and method for filling same |
US20090306594A1 (en) * | 2008-05-08 | 2009-12-10 | Changlin Pang | Drug-delivery pumps and methods of manufacture |
US9162024B2 (en) | 2008-05-08 | 2015-10-20 | Minipumps, Llc | Drug-delivery pumps and methods of manufacture |
US9199035B2 (en) | 2008-05-08 | 2015-12-01 | Minipumps, Llc. | Drug-delivery pumps with dynamic, adaptive control |
US20110202032A1 (en) * | 2008-05-08 | 2011-08-18 | Jason Shih | Drug-delivery pumps with dynamic, adaptive control |
US9107995B2 (en) | 2008-05-08 | 2015-08-18 | Minipumps, Llc | Drug-delivery pumps and methods of manufacture |
US20090306595A1 (en) * | 2008-05-08 | 2009-12-10 | Jason Shih | Implantable drug-delivery devices, and apparatus and methods for filling the devices |
US8348897B2 (en) * | 2008-05-08 | 2013-01-08 | Minipumps, Llc | Implantable drug-delivery devices, and apparatus and methods for filling the devices |
CN103349803A (en) * | 2008-05-08 | 2013-10-16 | 迷你泵有限责任公司 | Implantable drug-delivery devices, and apparatus and methods for filling the devices |
US9333297B2 (en) | 2008-05-08 | 2016-05-10 | Minipumps, Llc | Drug-delivery pump with intelligent control |
US9623174B2 (en) | 2008-05-08 | 2017-04-18 | Minipumps, Llc | Implantable pumps and cannulas therefor |
CN103394142B (en) * | 2008-05-08 | 2015-08-19 | 迷你泵有限责任公司 | Implantable drug delivery devices with for filling equipment and the method for this device |
US9987417B2 (en) | 2008-05-08 | 2018-06-05 | Minipumps, Llc | Implantable drug-delivery devices, and apparatus and methods for filling the devices |
US9050407B2 (en) | 2008-05-08 | 2015-06-09 | Minipumps, Llc | Implantable drug-delivery devices, and apparatus and methods for filling the devices |
US20090306585A1 (en) * | 2008-05-08 | 2009-12-10 | Changlin Pang | Implantable pumps and cannulas therefor |
US9861525B2 (en) | 2008-05-08 | 2018-01-09 | Minipumps, Llc | Drug-delivery pumps and methods of manufacture |
US9849238B2 (en) | 2008-05-08 | 2017-12-26 | Minipumps, Llc | Drug-delivery pump with intelligent control |
CN103349803B (en) * | 2008-05-08 | 2016-12-28 | 迷你泵有限责任公司 | Implantable drug delivery devices and equipment and the method for filling this device |
US20090326517A1 (en) * | 2008-06-27 | 2009-12-31 | Toralf Bork | Fluidic capillary chip for regulating drug flow rates of infusion pumps |
EP2138198A1 (en) | 2008-06-27 | 2009-12-30 | Codman Neuro Sciences Sarl | Fluidic capillary chip for regulating drug flow rates of infusion pumps |
US8696745B2 (en) | 2008-10-10 | 2014-04-15 | Kirk Promotion Ltd. | Heart help device, system, and method |
US8600510B2 (en) | 2008-10-10 | 2013-12-03 | Milux Holding Sa | Apparatus, system and operation method for the treatment of female sexual dysfunction |
US8509894B2 (en) | 2008-10-10 | 2013-08-13 | Milux Holding Sa | Heart help device, system, and method |
US20210378811A1 (en) * | 2008-10-10 | 2021-12-09 | Peter Forsell | Fastening means for implantable medical control assembly |
US11123171B2 (en) | 2008-10-10 | 2021-09-21 | Peter Forsell | Fastening means for implantable medical control assembly |
US10583234B2 (en) | 2008-10-10 | 2020-03-10 | Peter Forsell | Heart help device, system and method |
US8874215B2 (en) | 2008-10-10 | 2014-10-28 | Peter Forsell | System, an apparatus, and a method for treating a sexual dysfunctional female patient |
US9072907B2 (en) | 2008-10-10 | 2015-07-07 | Peter Forsell | Heart help device, system, and method |
US9526649B2 (en) | 2008-10-10 | 2016-12-27 | Peter Forsell | Method and instrument for treating obesity |
US10219898B2 (en) | 2008-10-10 | 2019-03-05 | Peter Forsell | Artificial valve |
US9370656B2 (en) | 2008-10-10 | 2016-06-21 | Peter Forsell | System, an apparatus, and a method for treating a sexual dysfunctional female patient |
US9526824B2 (en) | 2008-11-14 | 2016-12-27 | The Board Of Regents Of The University Of Texas System | Nanochanneled device and related methods |
US8632510B2 (en) | 2008-11-14 | 2014-01-21 | The Board Of Regents Of The University Of Texas System | Nanochanneled device and related methods |
US9005185B2 (en) | 2008-11-14 | 2015-04-14 | The Board Of Regents Of The University Of Texas System | Nanochanneled device and related methods |
EP2419091A2 (en) * | 2009-04-13 | 2012-02-22 | The Board of Regents of The University of Texas System | Nanochanneled device and related methods |
EP2419091A4 (en) * | 2009-04-13 | 2012-10-31 | Univ Texas | NANOCANAL DEVICE AND RELATED METHODS |
WO2010120817A2 (en) | 2009-04-13 | 2010-10-21 | The Board Of Regents Of The University Of Texas System | Nanochanneled device and related methods |
US9949812B2 (en) | 2009-07-17 | 2018-04-24 | Peter Forsell | Vaginal operation method for the treatment of anal incontinence in women |
US10952836B2 (en) | 2009-07-17 | 2021-03-23 | Peter Forsell | Vaginal operation method for the treatment of urinary incontinence in women |
US9462962B2 (en) * | 2010-04-13 | 2016-10-11 | Biotronik Se & Co. Kg | Implant and applicator |
US20110251516A1 (en) * | 2010-04-13 | 2011-10-13 | Thomas Doerr | Implant and applicator |
US10722696B2 (en) | 2010-05-19 | 2020-07-28 | Nanomedical Systems, Inc. | Nano-scale coatings and related methods suitable for in-vivo use |
US9295773B2 (en) | 2010-11-09 | 2016-03-29 | Frank Prosl | Hemodialysis access system |
US9603997B2 (en) | 2011-03-14 | 2017-03-28 | Minipumps, Llc | Implantable drug pumps and refill devices therefor |
US10286146B2 (en) | 2011-03-14 | 2019-05-14 | Minipumps, Llc | Implantable drug pumps and refill devices therefor |
US9919099B2 (en) | 2011-03-14 | 2018-03-20 | Minipumps, Llc | Implantable drug pumps and refill devices therefor |
US9610444B2 (en) | 2013-03-15 | 2017-04-04 | Pacesetter, Inc. | Erythropoeitin production by electrical stimulation |
US10201705B2 (en) | 2013-03-15 | 2019-02-12 | Pacesetter, Inc. | Erythropoeitin production by electrical stimulation |
US11213662B2 (en) | 2014-06-26 | 2022-01-04 | Cochlear Limited | Treatment of the ear |
US10406334B2 (en) | 2014-06-26 | 2019-09-10 | Cochler Limited | Treatment of the ear |
US9616207B2 (en) * | 2014-06-26 | 2017-04-11 | Cochlear Limited | Treatment of the ear |
US20150374964A1 (en) * | 2014-06-26 | 2015-12-31 | Kristien Johanna Maria Verhoeven | Treatment of the Ear |
US10525247B2 (en) | 2015-08-13 | 2020-01-07 | Medtronic, Inc. | Leak reduction during implantable infusion device refill |
WO2017027791A1 (en) | 2015-08-13 | 2017-02-16 | Medtronic, Inc. | Leak reduction during implantable infusion device refill |
US12161832B2 (en) | 2021-03-01 | 2024-12-10 | Deka Products Limited Partnership | Medical agent dispensing systems, methods, and apparatuses |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3731681A (en) | Implantable indusion pump | |
US4820273A (en) | Implantable medication infusion device and bolus generator therefor | |
EP0998317B1 (en) | Inlet port for a medication infusion pump | |
JP3127020B2 (en) | Pharmaceutical infusion pump, pressure reservoir and method of using the same | |
US4944659A (en) | Implantable piezoelectric pump system | |
US4191181A (en) | Apparatus for infusion of liquids | |
US4474575A (en) | Self-driven pump assembly and method of operation | |
US4781688A (en) | Dispensing device for a liquid medicament | |
US4468220A (en) | Low flow constant rate pump | |
US4505710A (en) | Implantable fluid dispensing system | |
US3951147A (en) | Implantable infusate pump | |
US6764472B1 (en) | Implantable refillable infusion device | |
US5176644A (en) | Medication infusion pump with improved liquid-vapor pressure reservoir | |
AU628054B2 (en) | Implantable infusion apparatus | |
US4258711A (en) | Infusion apparatus and method | |
US4772263A (en) | Spring driven infusion pump | |
US5514103A (en) | Medication infusion pump with improved pressure reservoir | |
US4193397A (en) | Infusion apparatus and method | |
GB1345764A (en) | Implantable infusion pump | |
US5445616A (en) | Medication delivery device and method of construction | |
US5551849A (en) | Medication delivery device and method of construction | |
GB2127179A (en) | Varibable flow implantable infusion apparatus | |
US4539004A (en) | Self-driven pump assembly and method of operation | |
WO1987004631A1 (en) | Spring driven infusion pump | |
US5135497A (en) | Large volume pressurized fluid dispenser |