US3593718A - Physiologically controlled cardiac pacer - Google Patents
Physiologically controlled cardiac pacer Download PDFInfo
- Publication number
- US3593718A US3593718A US653056A US3593718DA US3593718A US 3593718 A US3593718 A US 3593718A US 653056 A US653056 A US 653056A US 3593718D A US3593718D A US 3593718DA US 3593718 A US3593718 A US 3593718A
- Authority
- US
- United States
- Prior art keywords
- output
- source
- pacer
- frequency
- constant current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/362—Heart stimulators
- A61N1/365—Heart stimulators controlled by a physiological parameter, e.g. heart potential
- A61N1/36514—Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by a physiological quantity other than heart potential, e.g. blood pressure
- A61N1/36521—Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by a physiological quantity other than heart potential, e.g. blood pressure the parameter being derived from measurement of an electrical impedance
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/362—Heart stimulators
- A61N1/365—Heart stimulators controlled by a physiological parameter, e.g. heart potential
- A61N1/368—Heart stimulators controlled by a physiological parameter, e.g. heart potential comprising more than one electrode co-operating with different heart regions
Definitions
- P-wave synchronous pacers function by detecting and amplifying the electrocardiographic p-wave and stimulating the ventricles via a delay mechanism. In this manner, heart rate is accommodated to the variations of the SA node.
- Radio frequency cardiac stimulation provides a method free of the discomforts and dangers of long term, externally applied cardiac stimulation.
- This technique consists of transmitting electrical energy to the heart through radio waves via a two megacycle frequency generator and a transmitter antenna coil to a small receiving coil. Heart rate is externally controlled by the patient.
- the inductive coupled pacer consists of a pulse generator, attached by a flexible lead to an external primary coil that is strapped to the skin over the implanted secondary coil, the ends of which are the myocardial electrodes.
- the pulse in the primary coil produces a pulse in the secondary coil by simple electromagnetic induction. Heart rate is externally controlled by the patient.
- Artificial pacers are not self-regulatory. They are therapeutically applied to patients with disturbances of the conducting system.
- the origin of the conduction block may be from congenital heart disease, congenital AV block, surgical, or acquired nonsurgical block.
- the conduction system may thus be interrupted in myocarditis, endocarditis, coronary ischemia, tumor, sclerosis of the cardiac skeleton, fatty infiltration, uremia, and hemochromatosis,
- drugs are given to cause complete AV block. Under the influence of such drugs atrial fibrillation may occur. This would be disastrous for a p-wave synchrony pacer (an amplifier failure would give the same result).
- a second limitation of present cardiac pacers arises from their inability to insure atrioventricular synchrony. It is a consequence of the artificial pacer that the need for atrioventricular synchronization arises.
- the procedure of applying the pacer does not include the excision of the sinoauricular node, thereby creating two cardiac pacers: the auricular, i.e., the SA node; and the ventricular, i.e., the artificial pacer. There is no guarantee that these pacers will beat in proper synchronization with one another.
- a third limitation is concerned with automatically adjusting the intensity of stimulation to compensate for growths of fibrotic tissue around the myocardial electrodes.
- respiration as the controlling factor and for this purpose employ an impedance pneumograph.
- the waveform is converted into DC voltage which in turn fires a DC/pulse rate oscillator.
- the pulses are fed to either one constant current source which is connected to an electrode implanted in the ventricle of the heart or to two constant current sources, one connected to an electrode implanted in the atrium of the heart and the other delay-connected to the ventricle so that the atrium pulse is always ahead of the ventricle pulse.
- novel features ofthis invention include the enslavement of the cardiac frequency to a different physiological parame ter, the stimulation of both the atrium and the ventricle, the use with such dual stimulation of a delay which varies in accordance with atrial frequency, the use of a constant current source for stimulating the heart, and the use of the combination of an impedance/voltage converter, frequency/DC converter and DC/pulse rate oscillator.
- This invention is applicable to a pacer for a so-called artifcial heart as well as a natural heart.
- cardiac pacer as used in the appended claims is intended to include an artificial heart.
- FIG. I is a schematic block diagram illustrating the invention.
- FIG. 2 is a graph of normal heart rate as a function of respiration rate.
- FIG. 3 is a graph of heart rate as a function of atrioventricular delay.
- FIG. 4 is a circuit diagram of one example of this invention.
- FIG. 5 is a circuit diagram of a constant current source.
- Electrodes are placed on the chest and connected to an impedance/voltage converter 11.
- impedance/voltage converters are described in the book by .I. J. Nybor, Electrical Impedance Plethysmog raphy," the article, Quantitative Evaluation of the Impedance Spirometry in Man,” by Baker, Geddes, and Hoff in American Journal of Medical Electronics," April-June 1965, pp. 73-77, and the article, The Measurement of Physiological Events by Impedance Change,” by Geddes and Hoff in Proceedings of the San Diego Symposium for Biomedical Engineering," 1963, pp. l15l22.
- the output wave is then fed to a frequency/DC converter 112 to yield a DC voltage response to frequency.
- a frequency/DC converter is described on pages 660-662 of the book, Electronic and Radio Engineering," by F. E. Terman, 4th edition, McGraw-Hill, 1955.
- This DC voltage is then fed to a DC/pulse rate oscillator 13.
- An example of a DC/pulse rate oscillator is described in the article, A Two-Transistor Analog to Frequency Converter," by .l. L. Krasner, Electronic Design," Nov., I964, and also in block 1130f the circuit illustrated in FIG. 4 in the drawings.
- the frequency of pulses produced by oscillator 13 is dependent on the input DC voltage.
- the pulses are used in two ways with a constant current source to send impulses to the heart.
- the pulses are fed to a constant current source 17 to send impulses to an electrode implanted in the ventricle of the heart.
- a constant current source is illustrated in FIG. 5.
- the pulses are fed to two branches, one being a constant current source 14 whose impulses are sent to an electrode imbedded in the atrium of the heart.
- the other branch consists of a variable delay 115 before permitting the pulses to feed the constant current source 16 whose output is connected to an electrode imbedded in the ventricle of the heart.
- This latter arrangement provides atrioventricular synchronization. Pulse shape is controlled by block 18 as shown in FIG. 4. As shown in FIG.
- the required delay for proper synchronization varies according to the heart rate.
- the atrial rate may exceed but never be less than the ventricular rate.
- the atria when not fibrillating, must be in phase with the ventricles according to the graph of atrioventricular delay versus heart rate shown in FIG. 3.
- Synchrony is obtained by designing the artificial pacer to set a pace slightly in excess of that pace the normal SA node would set. in this manner, the pacer artificially takes over the regulation of the atrium, i.e. increases the slope of the curve shown in FIG. 2.
- the ventricles are stimulated by a variable delay mechanism (consistent with FIG. 3) which operates by changing the temporal relation between two pulse generators, regulated by the same physiological parameters, as a function of their frequencies. (See block in FIG. 4) ln the case of atrial fibrillation, artificial atrial control is biologically overridden. Also, the atrial rate can never be less than the ventricular rate.
- the pacer is so designed that its frequency output can not be slowed below a selected output, as for example 60 pulses per minute, or increased above a selected maximum, as for example 160 pulses per minute.
- a relaxation oscillator can be used whose frequency increases as a linear function of voltage.
- pacer is used in the title, abstract, specification and claims as the full equivalent of the generic term pacemaker to indicate a device for stimulating the heart with an alternating current to steady the heart or to reestablish the rhythm of an arrested heart, as defined in Websters Third New International Dictionary (Unabridged Copyright 1966).
- Pacemaker is a registered trademark for one form of such device.
- Claim 1 wherein a constant current source connects said oscillator to said pacer.
- said pacer includes a first constant current source whose output is adapted for connection to the atrium, a second constant current source whose output is adapted for connection to the ventricle, and a second means for delaying the output of the second source with respect to the output of said first source.
- Claim 4 wherein said second means provides a delay which is a function of artificially stimulated atrial frequency.
- said pacer comprises a first output adapted for connection to the atrium, a second output adapted for connection to the ventricle, and a second means for delaying the second output with respect to the first output.
- Claim 6 wherein said second means provides a delay which is a function of artificially stimulated atrial frequency.
- Claim 1 wherein said combination comprises an impedance/voltage converter, the output of which is fed to a frequency/DC converter, whose output voltage is fed to a DC/pulsc rate oscillator, which branches into two constant current sources; the output of one said source being adapted for connection to the atrium, the output of the second said source being adapted for connection to the ventricle; second means being provided for delaying the output of said second source with respect to the output of said first source.
- Claim 8 wherein said second means provides a delay which is a function of artificially stimulated atrial frequency.
- a cardiac pacer which includes two constant current sources, one whose output is adapted for connection to the atrium and a second whose output is adapted for connection to the ventricle; means being provided for delaying the output of said second source with respect to the output of said first source.
- Claim 10 wherein said means provides a delay which is a function of artificially stimulated atrial frequency.
Landscapes
- Health & Medical Sciences (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Physiology (AREA)
- Engineering & Computer Science (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Hematology (AREA)
- Electrotherapy Devices (AREA)
Abstract
A cardiac pacer is described which uses a physiological function such as breathing rate, to vary the production of electronic pulses which are fed to a constant current source connected to the ventricle. A constant source compensates for the fibrotic growths that often occur around the electrodes implanted in the heart. In another variation, the pulses are fed to two separate constant current sources, one connected to the atrium and the other, with delay, to the ventricle.
Description
United States Patent 1 swam 3,358,690 12/1967 Cohen Jerome L. Krasner Woburn;
Paul Nardella, Stougton, both of, Mass. 653,056
July 13, 1967 July 20, 197i Biocybernetics, Ilnc.
Walertown, Mass.
Inventors Appl. No. Filed Patented Assignee PHYSIOLOGICALLY CONTROLLED CARDIAC PACER 11 Claims, 5 Drawing Figs.
US. Cl 128/419 P Int. Cl A6ln 1/36 Field of Search 128/419- References Cited UNITED STATES PATENTS lMPEDANC LTAGE 3,433,228 3/l969 Keller,Jr
OTHER REFERENCES Myers et 21]., AMERICAN JOURNAL OF MEDICAL ELECTRONICS ()ct.-Dec., 1964, pp. 233-236 (copy in 128/419 P) Primary Examiner william E Kamm Attorney-Joseph Zallen FREQUENCY FREQUENCY CONVERTER CONSTANT CURRENT SOURCE CONVERTER /PULSE CONSTANT CURRENT SOURCE r RATIE OSCILLATOR DELAY PAIENTEU JULBO m1 SHEET 2 OF 2 I50msec 60msec A-V DELAY [0 VENTRICLE CONSTANT CURRENT TO ATRIUM EONSTANT CURRENT [FIG 4 PHYSIOLOGICALLY CONTROLLED CARDIAC PACER BACKGROUND OF INVENTION One may enumerate cardiac pacer classes in many ways depending upon the context of the point the author is trying to make. For this reason we choose to categorize pacers into the following classes: p-wave synchronous pacers, RF pacers and inductive-coupled pacers.
P-wave synchronous pacers function by detecting and amplifying the electrocardiographic p-wave and stimulating the ventricles via a delay mechanism. In this manner, heart rate is accommodated to the variations of the SA node.
Radio frequency cardiac stimulation provides a method free of the discomforts and dangers of long term, externally applied cardiac stimulation. This technique consists of transmitting electrical energy to the heart through radio waves via a two megacycle frequency generator and a transmitter antenna coil to a small receiving coil. Heart rate is externally controlled by the patient.
The inductive coupled pacer consists of a pulse generator, attached by a flexible lead to an external primary coil that is strapped to the skin over the implanted secondary coil, the ends of which are the myocardial electrodes. The pulse in the primary coil produces a pulse in the secondary coil by simple electromagnetic induction. Heart rate is externally controlled by the patient.
Artificial pacers are not self-regulatory. They are therapeutically applied to patients with disturbances of the conducting system. The origin of the conduction block may be from congenital heart disease, congenital AV block, surgical, or acquired nonsurgical block. In the latter case, the conduction system may thus be interrupted in myocarditis, endocarditis, coronary ischemia, tumor, sclerosis of the cardiac skeleton, fatty infiltration, uremia, and hemochromatosis, After the application of the artificial pacer, drugs are given to cause complete AV block. Under the influence of such drugs atrial fibrillation may occur. This would be disastrous for a p-wave synchrony pacer (an amplifier failure would give the same result).
A second limitation of present cardiac pacers arises from their inability to insure atrioventricular synchrony. It is a consequence of the artificial pacer that the need for atrioventricular synchronization arises. The procedure of applying the pacer does not include the excision of the sinoauricular node, thereby creating two cardiac pacers: the auricular, i.e., the SA node; and the ventricular, i.e., the artificial pacer. There is no guarantee that these pacers will beat in proper synchronization with one another.
A third limitation is concerned with automatically adjusting the intensity of stimulation to compensate for growths of fibrotic tissue around the myocardial electrodes.
SUMMARY OF INVENTION We have found that if the pacer frequency is controlled by one of several interrelated physiological functions, the heart rate will be accommodated to the needs of the organism. Such interrelated functions can be described as follows:
a. Vasoconstriction, tachycardia, increase in respiratory minute volume and increase in skeletal muscle tone.
b. Vasodilation, bradycardia, decrease in respiratory minute volume and decrease in skeletal muscle tone.
In either group, when one reaction is stimulated, it is followed by the occurrence of the other three reactions. For example, when an individual changes from the lying to the standing position, the venous return is reduced and a drop in arterial pressure occurs. The organism compensates by vasoconstriction (in both, arteries and veins) and by an increase of the heart rate. This reaction is always accompanied by an increase in respiratory minute volume and an increase in skeletal muscle tone. The opposite happens when an individual changes from the standing to the lying position. The resulting increase in blood pressure is compensated for by Vasodilation,
and simultaneously by bradycardia, decrease in respiratory minute volume and decrease in skeletal muscle tone. Similar reactions are observed during muscular exercise: Vasocon striction, tachycardia, increase in muscular tone.
We have found it preferable to use respiration as the controlling factor and for this purpose employ an impedance pneumograph. The waveform is converted into DC voltage which in turn fires a DC/pulse rate oscillator. The pulses are fed to either one constant current source which is connected to an electrode implanted in the ventricle of the heart or to two constant current sources, one connected to an electrode implanted in the atrium of the heart and the other delay-connected to the ventricle so that the atrium pulse is always ahead of the ventricle pulse.
The novel features ofthis invention include the enslavement of the cardiac frequency to a different physiological parame ter, the stimulation of both the atrium and the ventricle, the use with such dual stimulation of a delay which varies in accordance with atrial frequency, the use of a constant current source for stimulating the heart, and the use of the combination of an impedance/voltage converter, frequency/DC converter and DC/pulse rate oscillator.
This invention is applicable to a pacer for a so-called artifcial heart as well as a natural heart. The term cardiac pacer as used in the appended claims is intended to include an artificial heart.
BRIEF DESCRIPTION OF DRAWINGS FIG. I is a schematic block diagram illustrating the invention.
FIG. 2 is a graph of normal heart rate as a function of respiration rate.
FIG. 3 is a graph of heart rate as a function of atrioventricular delay.
FIG. 4 is a circuit diagram of one example of this invention.
FIG. 5 is a circuit diagram ofa constant current source.
SPECIFIC EXAMPLE OF INVENTION As illustrated in FIGS. 1 and 4, electrodes are placed on the chest and connected to an impedance/voltage converter 11. Examples of impedance/voltage converters are described in the book by .I. J. Nybor, Electrical Impedance Plethysmog raphy," the article, Quantitative Evaluation of the Impedance Spirometry in Man," by Baker, Geddes, and Hoff in American Journal of Medical Electronics," April-June 1965, pp. 73-77, and the article, The Measurement of Physiological Events by Impedance Change," by Geddes and Hoff in Proceedings of the San Diego Symposium for Biomedical Engineering," 1963, pp. l15l22. The output wave is then fed to a frequency/DC converter 112 to yield a DC voltage response to frequency. An example of a frequency/DC converter is described on pages 660-662 of the book, Electronic and Radio Engineering," by F. E. Terman, 4th edition, McGraw-Hill, 1955. This DC voltage is then fed to a DC/pulse rate oscillator 13. An example ofa DC/pulse rate oscillator is described in the article, A Two-Transistor Analog to Frequency Converter," by .l. L. Krasner, Electronic Design," Nov., I964, and also in block 1130f the circuit illustrated in FIG. 4 in the drawings. The frequency of pulses produced by oscillator 13 is dependent on the input DC voltage. The pulses are used in two ways with a constant current source to send impulses to the heart.
In one method illustrated by the dotted line in FIG. ll, the pulses are fed to a constant current source 17 to send impulses to an electrode implanted in the ventricle of the heart. An example of such a constant current source is illustrated in FIG. 5. In the other arrangement, delineated by the solid lines of FIG. I, the pulses are fed to two branches, one being a constant current source 14 whose impulses are sent to an electrode imbedded in the atrium of the heart. The other branch consists of a variable delay 115 before permitting the pulses to feed the constant current source 16 whose output is connected to an electrode imbedded in the ventricle of the heart. This latter arrangement provides atrioventricular synchronization. Pulse shape is controlled by block 18 as shown in FIG. 4. As shown in FIG. 3, the required delay for proper synchronization varies according to the heart rate. The atrial rate may exceed but never be less than the ventricular rate. However, the atria, when not fibrillating, must be in phase with the ventricles according to the graph of atrioventricular delay versus heart rate shown in FIG. 3.
Synchrony is obtained by designing the artificial pacer to set a pace slightly in excess of that pace the normal SA node would set. in this manner, the pacer artificially takes over the regulation of the atrium, i.e. increases the slope of the curve shown in FIG. 2. The ventricles are stimulated by a variable delay mechanism (consistent with FIG. 3) which operates by changing the temporal relation between two pulse generators, regulated by the same physiological parameters, as a function of their frequencies. (See block in FIG. 4) ln the case of atrial fibrillation, artificial atrial control is biologically overridden. Also, the atrial rate can never be less than the ventricular rate.
We have determined that there is no apparent difference between normal heart rate and pulse frequency response when the subject lies, sits, or stands, or does light muscular exercise. There is, however, significant difference between heart rate and pacer frequency response during hyperpnoea, and heavy muscular exercise, as well as during application of pressure on the carotid sinuses (carotid sinus reflex). Accordingly, the pacer is so designed that its frequency output can not be slowed below a selected output, as for example 60 pulses per minute, or increased above a selected maximum, as for example 160 pulses per minute. For this purpose a relaxation oscillator can be used whose frequency increases as a linear function of voltage. Thus, if only positive or ground signals are applied, the pacer will not fire at less than the relaxation frequency. The result is that extreme bradycardia is avoided.
The term pacer" is used in the title, abstract, specification and claims as the full equivalent of the generic term pacemaker to indicate a device for stimulating the heart with an alternating current to steady the heart or to reestablish the rhythm of an arrested heart, as defined in Websters Third New International Dictionary (Unabridged Copyright 1966). The term Pacemaker" is a registered trademark for one form of such device.
We claim:
1. The combination ofa first means responsive to a separate but normally heart-related physiological function and a cardiac pacer, said means controlling the output frequency of said pacer and comprising in series an impedance/voltage converter, a frequency/DC converter, and a DC/pulse rate oscillalOf.
2. Claim 1 wherein said function is respiration.
3. Claim 1 wherein a constant current source connects said oscillator to said pacer.
4. Claim 1 wherein said pacer includes a first constant current source whose output is adapted for connection to the atrium, a second constant current source whose output is adapted for connection to the ventricle, and a second means for delaying the output of the second source with respect to the output of said first source.
5. Claim 4, wherein said second means provides a delay which is a function of artificially stimulated atrial frequency.
6. Claim 1 wherein said pacer comprises a first output adapted for connection to the atrium, a second output adapted for connection to the ventricle, and a second means for delaying the second output with respect to the first output.
7. Claim 6 wherein said second means provides a delay which is a function of artificially stimulated atrial frequency.
8. Claim 1 wherein said combination comprises an impedance/voltage converter, the output of which is fed to a frequency/DC converter, whose output voltage is fed to a DC/pulsc rate oscillator, which branches into two constant current sources; the output of one said source being adapted for connection to the atrium, the output of the second said source being adapted for connection to the ventricle; second means being provided for delaying the output of said second source with respect to the output of said first source.
9. Claim 8 wherein said second means provides a delay which is a function of artificially stimulated atrial frequency.
10. A cardiac pacer which includes two constant current sources, one whose output is adapted for connection to the atrium and a second whose output is adapted for connection to the ventricle; means being provided for delaying the output of said second source with respect to the output of said first source.
11. Claim 10, wherein said means provides a delay which is a function of artificially stimulated atrial frequency.
Claims (11)
1. The combination of a first means responsive to a separate but normally heart-related physiological function and a cardiac pacer, said means controlling the output frequency of said pacer and Comprising in series an impedance/voltage converter, a frequency/DC converter, and a DC/pulse rate oscillator.
2. Claim 1 wherein said function is respiration.
3. Claim 1 wherein a constant current source connects said oscillator to said pacer.
4. Claim 1 wherein said pacer includes a first constant current source whose output is adapted for connection to the atrium, a second constant current source whose output is adapted for connection to the ventricle, and a second means for delaying the output of the second source with respect to the output of said first source.
5. Claim 4, wherein said second means provides a delay which is a function of artificially stimulated atrial frequency.
6. Claim 1 wherein said pacer comprises a first output adapted for connection to the atrium, a second output adapted for connection to the ventricle, and a second means for delaying the second output with respect to the first output.
7. Claim 6 wherein said second means provides a delay which is a function of artificially stimulated atrial frequency.
8. Claim 1 wherein said combination comprises an impedance/voltage converter, the output of which is fed to a frequency/DC converter, whose output voltage is fed to a DC/pulse rate oscillator, which branches into two constant current sources; the output of one said source being adapted for connection to the atrium, the output of the second said source being adapted for connection to the ventricle; second means being provided for delaying the output of said second source with respect to the output of said first source.
9. Claim 8 wherein said second means provides a delay which is a function of artificially stimulated atrial frequency.
10. A cardiac pacer which includes two constant current sources, one whose output is adapted for connection to the atrium and a second whose output is adapted for connection to the ventricle; means being provided for delaying the output of said second source with respect to the output of said first source.
11. Claim 10, wherein said means provides a delay which is a function of artificially stimulated atrial frequency.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US65305667A | 1967-07-13 | 1967-07-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3593718A true US3593718A (en) | 1971-07-20 |
Family
ID=24619321
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US653056A Expired - Lifetime US3593718A (en) | 1967-07-13 | 1967-07-13 | Physiologically controlled cardiac pacer |
Country Status (1)
Country | Link |
---|---|
US (1) | US3593718A (en) |
Cited By (123)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3709229A (en) * | 1969-03-26 | 1973-01-09 | American Optical Corp | Free-running atrial and demand ventricular pacer |
US3716059A (en) * | 1970-08-24 | 1973-02-13 | Cardiac Resuscitator Corp | Cardiac resuscitator |
DE2252312A1 (en) * | 1971-11-19 | 1973-05-30 | American Optical Corp | PACEMAKER WITH NEEDS ADAPTATION |
US3746005A (en) * | 1968-04-11 | 1973-07-17 | American Optical Corp | Constant energy heartbeat stimulating apparatus with pulse width control |
FR2162392A1 (en) * | 1971-12-06 | 1973-07-20 | American Optical Corp | |
US3747604A (en) * | 1969-12-15 | 1973-07-24 | American Optical Corp | Atrial and ventricular demand pacer with separate atrial and ventricular beat detectors |
US3773051A (en) * | 1972-03-01 | 1973-11-20 | Research Corp | Method and apparatus for stimulation of body tissue |
US3794045A (en) * | 1971-12-06 | 1974-02-26 | American Optical Corp | Passive hysteresis circuit demand pacer |
US3845773A (en) * | 1972-07-07 | 1974-11-05 | Ass Rech Et D Entraide Cardiol | Cardiac stimulators |
US3882851A (en) * | 1971-10-20 | 1975-05-13 | Systron Donner Corp | Impedance plethysmograph |
DE2613463A1 (en) * | 1975-04-24 | 1976-11-04 | Pacer Snc | PACEMAKER |
US4088138A (en) * | 1974-01-02 | 1978-05-09 | Cardiac Resuscitator Corp. | Cardiac resuscitator and monitoring apparatus |
DE2809091A1 (en) * | 1977-03-03 | 1978-09-07 | Bozal Gonzalez Jose L | PACEMAKER |
US4114627A (en) * | 1976-12-14 | 1978-09-19 | American Hospital Supply Corporation | Cardiac pacer system and method with capture verification signal |
US4140132A (en) * | 1978-03-23 | 1979-02-20 | Dahl Joseph D | Variable rate timer for a cardiac pacemaker |
US4144891A (en) * | 1977-04-20 | 1979-03-20 | Medtronic, Inc. | Heart stimulator lead set |
US4165750A (en) * | 1978-03-18 | 1979-08-28 | Aleev Leonid S | Bioelectrically controlled electric stimulator of human muscles |
US4202339A (en) * | 1977-04-21 | 1980-05-13 | Alexander Wirtzfeld | Cardiac pacemaker |
US4228803A (en) * | 1978-06-23 | 1980-10-21 | Credit Du Nord International N.V. | Physiologically adaptive cardiac pacemaker |
USRE30750E (en) * | 1972-05-15 | 1981-09-29 | Cardiac Resuscitator Corporation | Cardiac resuscitator and monitoring apparatus |
US4305396A (en) * | 1979-04-16 | 1981-12-15 | Vitatron Medical B.V. | Rate adaptive pacemaker and method of cardiac pacing |
US4397316A (en) * | 1979-03-30 | 1983-08-09 | Medtronic, Inc. | Rate and A-V delay generator for heart pacemaker |
EP0089014A2 (en) * | 1982-03-16 | 1983-09-21 | Gianni Plicchi | Physiological implantable cardiac pacemaker in which the stimulation rate is regulated by the respiration rate of the patient |
EP0096464A1 (en) * | 1982-05-19 | 1983-12-21 | Purdue Research Foundation | Exercise responsive cardiac pacemaker |
US4527568A (en) * | 1983-12-27 | 1985-07-09 | Vitafin N.V. | Dual chamber pacer with alternative rate adaptive means and method |
EP0151689A2 (en) * | 1984-02-07 | 1985-08-21 | SCHIAPPARELLI MEDTRONIC S.p.A. | Minute ventilation dependent rate responsive pacer |
US4543954A (en) * | 1982-05-19 | 1985-10-01 | Purdue Research Foundation | Exercise responsive cardiac pacemaker |
US4543955A (en) * | 1983-08-01 | 1985-10-01 | Cordis Corporation | System for controlling body implantable action device |
US4545380A (en) * | 1984-04-16 | 1985-10-08 | Cordis Corporation | Method and apparatus for setting and changing parameters or functions of an implanted device |
WO1986000234A1 (en) * | 1984-06-21 | 1986-01-16 | Medtronic, Inc. | Process and apparatus for diaphragmic stimulation |
US4566456A (en) * | 1984-10-18 | 1986-01-28 | Cordis Corporation | Apparatus and method for adjusting heart/pacer rate relative to right ventricular systolic pressure to obtain a required cardiac output |
DE3428975A1 (en) * | 1984-08-06 | 1986-02-13 | Michael S. 8113 Kochel Lampadius | BREATH-CONTROLLED HEART PACEMAKER |
US4576183A (en) * | 1983-09-21 | 1986-03-18 | Gianni Plicchi | Electronic circuit for monitoring respiratory parameter for controlling operation of implantable medical device |
EP0218007A1 (en) * | 1985-10-04 | 1987-04-15 | Siemens Aktiengesellschaft | Heart pace maker |
US4697591A (en) * | 1986-06-16 | 1987-10-06 | Siemens Aktiengesellschaft | Cardiac pacer for pacing a human heart and pacing method |
US4702253A (en) * | 1985-10-15 | 1987-10-27 | Telectronics N.V. | Metabolic-demand pacemaker and method of using the same to determine minute volume |
US4712555A (en) * | 1984-10-19 | 1987-12-15 | Siemens-Elema Ab | Physiologically responsive pacemaker and method of adjusting the pacing interval thereof |
EP0249819A1 (en) | 1986-06-16 | 1987-12-23 | Pacesetter AB | Cardiac pacer for pacing a human heart |
EP0249824A1 (en) | 1986-06-16 | 1987-12-23 | Pacesetter AB | A cardiac pacer for pacing a heart |
US4726383A (en) * | 1982-05-19 | 1988-02-23 | Purdue Research Foundation | Exercise-responsive cardiac pacemaker lead |
US4730389A (en) * | 1986-08-15 | 1988-03-15 | Medtronic, Inc. | Method for fabrication of an implantable hermetic transparent container |
US4757815A (en) * | 1985-12-20 | 1988-07-19 | Siemens Aktiengesellschaft | Heart pacemaker |
US4771780A (en) * | 1987-01-15 | 1988-09-20 | Siemens-Pacesetter, Inc. | Rate-responsive pacemaker having digital motion sensor |
US4791931A (en) * | 1987-08-13 | 1988-12-20 | Pacesetter Infusion, Ltd. | Demand pacemaker using an artificial baroreceptor reflex |
US4791935A (en) * | 1986-08-15 | 1988-12-20 | Medtronic, Inc. | Oxygen sensing pacemaker |
US4807629A (en) * | 1986-08-15 | 1989-02-28 | Medtronic, Inc. | Oxygen sensing pacemaker |
US4813421A (en) * | 1986-08-15 | 1989-03-21 | Medtronic, Inc. | Oxygen sensing pacemaker |
US4858611A (en) * | 1987-06-03 | 1989-08-22 | Dimed, Inc. | Sensing system and method for sensing minute ventilation |
US4860751A (en) * | 1985-02-04 | 1989-08-29 | Cordis Corporation | Activity sensor for pacemaker control |
US4884576A (en) * | 1987-09-28 | 1989-12-05 | Eckhard Alt | Self adjusting rate responsive cardiac pacemaker and method |
US4903701A (en) * | 1987-06-05 | 1990-02-27 | Medtronic, Inc. | Oxygen sensing pacemaker |
US4907593A (en) * | 1987-05-21 | 1990-03-13 | Biocontrol Technology, Inc. | Adaptation of heart pacing to physical activity |
US4940053A (en) * | 1989-01-25 | 1990-07-10 | Siemens-Pacesetter, Inc. | Energy controlled rate-responsive pacemaker having automatically adjustable control parameters |
DE3914680A1 (en) * | 1989-05-03 | 1990-11-08 | Alt Eckhard | HEART PACEMAKER |
US5010893A (en) * | 1987-01-15 | 1991-04-30 | Siemens-Pacesetter, Inc. | Motion sensor for implanted medical device |
US5036849A (en) * | 1990-04-04 | 1991-08-06 | Cardiac Pacemakers, Inc. | Variable rate cardiac pacer |
US5040534A (en) * | 1989-01-25 | 1991-08-20 | Siemens-Pacesetter, Inc. | Microprocessor controlled rate-responsive pacemaker having automatic rate response threshold adjustment |
US5040535A (en) * | 1989-01-25 | 1991-08-20 | Siemens-Pacesetter, Inc. | Average amplitude controlled rate-responsive pacemaker having automatically adjustable control parameters |
US5081988A (en) * | 1982-05-19 | 1992-01-21 | Purdue Research Foundation | Exercise responive cardiac pacemaker |
US5137019A (en) * | 1990-03-08 | 1992-08-11 | Cardiac Pacemakers, Inc. | Variation in cardiac chamber volume or pressure as a controlling parameter |
US5164898A (en) * | 1988-06-10 | 1992-11-17 | Ricoh Company, Ltd. | System for determining hazardous substance exposure rate from concentration measurement and heart rate data |
US5235976A (en) * | 1991-12-13 | 1993-08-17 | Cardiac Pacemakers, Inc. | Method and apparatus for managing and monitoring cardiac rhythm using active time as the controlling parameter |
US5282840A (en) * | 1992-03-26 | 1994-02-01 | Medtronic, Inc. | Multiple frequency impedance measurement system |
US5284136A (en) * | 1990-04-04 | 1994-02-08 | Cardiac Pacemakers, Inc. | Dual indifferent electrode pacemaker |
WO1994008657A1 (en) * | 1992-10-20 | 1994-04-28 | Noel Desmond Gray | A heart pacemaker |
US5330510A (en) * | 1991-12-31 | 1994-07-19 | Ela Medical | Pacemaker with patient effort-controlled frequency |
WO1995016484A1 (en) * | 1993-12-15 | 1995-06-22 | Temple University - Of The Commonwealth System Of Higher Education | Process and apparatus for controlling helium/oxygen |
US5480441A (en) * | 1994-03-30 | 1996-01-02 | Medtronic, Inc. | Rate-responsive heart pacemaker |
US5522860A (en) * | 1993-12-31 | 1996-06-04 | Ela Medical S.A. | Control of an active implantable medical device |
WO1996036395A1 (en) * | 1995-05-19 | 1996-11-21 | Medtronic, Inc. | Respiratory muscle electromyographic rate responsive pacemaker |
US5800470A (en) * | 1994-01-07 | 1998-09-01 | Medtronic, Inc. | Respiratory muscle electromyographic rate responsive pacemaker |
US5919210A (en) * | 1997-04-10 | 1999-07-06 | Pharmatarget, Inc. | Device and method for detection and treatment of syncope |
US5935153A (en) * | 1996-11-21 | 1999-08-10 | Ela Medical S.A. | Active implantable medical device enslaved to a signal of acceleration |
US5954757A (en) * | 1991-05-17 | 1999-09-21 | Gray; Noel Desmond | Heart pacemaker |
US6044300A (en) * | 1991-05-17 | 2000-03-28 | Gray; Noel Desmond | Heart pacemaker |
EP1078650A1 (en) | 1999-08-20 | 2001-02-28 | BIOTRONIK Mess- und Therapiegeräte GmbH & Co Ingenieurbüro Berlin | Rate adaptive pacemaker |
US6405738B1 (en) * | 1999-10-22 | 2002-06-18 | Ultrafryer Systems, Inc. | Spray cleaning apparatus for deep fryer |
US20020165586A1 (en) * | 2000-10-26 | 2002-11-07 | Medtronic, Inc. | Closed-loop neuromodulation for prevention and treatment of cardiac conditions |
US20030114889A1 (en) * | 2000-07-14 | 2003-06-19 | Cardiac Pacemakers, Inc. | Method and apparatuses for monitoring hemodynamic activities using an intracardiac impedance-derived parameter |
US20040215263A1 (en) * | 2003-04-23 | 2004-10-28 | Nathalie Virag | Detection of vasovagal syncope |
US20040260348A1 (en) * | 2003-06-19 | 2004-12-23 | Bakken Earl E. | Method and apparatus for temporarily varying a parameter in an implantable medical device |
US20050004610A1 (en) * | 2003-07-02 | 2005-01-06 | Jaeho Kim | Cardiac cycle synchronized sampling of impedance signal |
US20050096704A1 (en) * | 2003-10-29 | 2005-05-05 | Scott Freeberg | Cross-checking of transthoracic impedence and acceleration signals |
US6952610B2 (en) * | 2000-09-18 | 2005-10-04 | Cameron Health, Inc. | Current waveforms for anti-tachycardia pacing for a subcutaneous implantable cardioverter- defibrillator |
US20050275494A1 (en) * | 2004-05-25 | 2005-12-15 | Morteza Gharib | In-line actuator for electromagnetic operation |
US7092757B2 (en) | 2002-07-12 | 2006-08-15 | Cardiac Pacemakers, Inc. | Minute ventilation sensor with dynamically adjusted excitation current |
US7101339B2 (en) | 2002-12-13 | 2006-09-05 | Cardiac Pacemakers, Inc. | Respiration signal measurement apparatus, systems, and methods |
US20080177350A1 (en) * | 2000-09-27 | 2008-07-24 | Cvrx, Inc. | Expandable Stimulation Electrode with Integrated Pressure Sensor and Methods Related Thereto |
US20090275854A1 (en) * | 2008-04-30 | 2009-11-05 | Zielinski Todd M | System and method of monitoring physiologic parameters based on complex impedance waveform morphology |
US20090276025A1 (en) * | 2008-04-30 | 2009-11-05 | Medtronic, Inc. | Techniques for placing medical leads for electrical stimulation of nerve tissue |
US20090275855A1 (en) * | 2008-04-30 | 2009-11-05 | Zielinski Todd M | Multi-frequency impedance monitoring system |
US7628757B1 (en) | 2005-05-25 | 2009-12-08 | Pacesetter, Inc. | System and method for impedance-based detection of pulmonary edema and reduced respiration using an implantable medical system |
US20100114198A1 (en) * | 2008-10-31 | 2010-05-06 | Medtronic, Inc. | Implantable medical device crosstalk evaluation and mitigation |
US20100114199A1 (en) * | 2008-10-31 | 2010-05-06 | Medtronic, Inc. | Implantable medical device crosstalk evaluation and mitigation |
US20100114201A1 (en) * | 2008-10-31 | 2010-05-06 | Medtronic, Inc. | Implantable medical device crosstalk evaluation and mitigation |
US20100114208A1 (en) * | 2008-10-31 | 2010-05-06 | Medtronic, Inc. | Implantable medical device crosstalk evaluation and mitigation |
US20100114202A1 (en) * | 2008-10-31 | 2010-05-06 | Medtronic, Inc. | Implantable medical device crosstalk evaluation and mitigation |
US20100114211A1 (en) * | 2008-10-31 | 2010-05-06 | Medtronic, Inc. | Shunt-current reduction techniques for an implantable therapy system |
US20100114217A1 (en) * | 2008-10-31 | 2010-05-06 | Medtronic, Inc. | Therapy system including cardiac rhythm therapy and neurostimulation capabilities |
US20100113958A1 (en) * | 2008-11-06 | 2010-05-06 | Cyrille Casset | Active Implantable Medical Device Integrating Spirometric Means for Diagnosing Lung Diseases |
US20100114205A1 (en) * | 2008-10-31 | 2010-05-06 | Medtronic, Inc. | Shunt-current reduction housing for an implantable therapy system |
US20100114200A1 (en) * | 2008-10-31 | 2010-05-06 | Medtronic, Inc. | Implantable medical device crosstalk evaluation and mitigation |
US20100114224A1 (en) * | 2008-10-31 | 2010-05-06 | Medtronic, Inc. | Implantable medical device crosstalk evaluation and mitigation |
US20100114197A1 (en) * | 2008-10-31 | 2010-05-06 | Medtronic, Inc. | Implantable medical device crosstalk evaluation and mitigation |
US20100138340A1 (en) * | 2002-09-19 | 2010-06-03 | John Earl Shirey | System and apparatus for transaction fraud processing |
US7813812B2 (en) | 2000-09-27 | 2010-10-12 | Cvrx, Inc. | Baroreflex stimulator with integrated pressure sensor |
US7840271B2 (en) | 2000-09-27 | 2010-11-23 | Cvrx, Inc. | Stimulus regimens for cardiovascular reflex control |
US7949400B2 (en) | 2000-09-27 | 2011-05-24 | Cvrx, Inc. | Devices and methods for cardiovascular reflex control via coupled electrodes |
US8209011B2 (en) | 2002-12-30 | 2012-06-26 | Cardiac Pacemakers, Inc. | Automatically configurable minute ventilation sensor |
US8452394B2 (en) | 2008-10-31 | 2013-05-28 | Medtronic, Inc. | Implantable medical device crosstalk evaluation and mitigation |
US8498698B2 (en) | 2008-10-31 | 2013-07-30 | Medtronic, Inc. | Isolation of sensing and stimulation circuitry |
US8560060B2 (en) | 2008-10-31 | 2013-10-15 | Medtronic, Inc. | Isolation of sensing and stimulation circuitry |
US8606359B2 (en) | 2000-09-27 | 2013-12-10 | Cvrx, Inc. | System and method for sustained baroreflex stimulation |
US8688210B2 (en) | 2008-10-31 | 2014-04-01 | Medtronic, Inc. | Implantable medical device crosstalk evaluation and mitigation |
US8706217B2 (en) | 2000-09-18 | 2014-04-22 | Cameron Health | Cardioverter-defibrillator having a focused shocking area and orientation thereof |
US8718760B2 (en) | 2000-09-18 | 2014-05-06 | Cameron Health Inc. | Subcutaneous implantable cardioverter-defibrillator placement methods |
US8750989B2 (en) | 2001-11-21 | 2014-06-10 | Cameron Health, Inc. | Apparatus and method for identifying atrial arrhythmia by far-field sensing |
US8831720B2 (en) | 2000-09-18 | 2014-09-09 | Cameron Health, Inc. | Method of implanting and using a subcutaneous defibrillator |
US20140299159A1 (en) * | 2011-10-18 | 2014-10-09 | Peter Helm | Cooking appliance with a pan and a method for cleaning the pan |
US9125655B2 (en) | 2010-07-16 | 2015-09-08 | California Institute Of Technology | Correction and optimization of wave reflection in blood vessels |
US9144683B2 (en) | 2000-09-18 | 2015-09-29 | Cameron Health, Inc. | Post-shock treatment in a subcutaneous device |
US9656009B2 (en) | 2007-07-11 | 2017-05-23 | California Institute Of Technology | Cardiac assist system using helical arrangement of contractile bands and helically-twisting cardiac assist device |
US12128238B2 (en) | 2019-09-10 | 2024-10-29 | Ceryx Medical Limited | Pacemaker device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3358690A (en) * | 1964-11-18 | 1967-12-19 | Marvin M Cohen | Heart stimulator utilizing a pressuresensitive semiconductor |
US3433228A (en) * | 1966-05-06 | 1969-03-18 | Cordis Corp | Multimode cardiac pacer |
-
1967
- 1967-07-13 US US653056A patent/US3593718A/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3358690A (en) * | 1964-11-18 | 1967-12-19 | Marvin M Cohen | Heart stimulator utilizing a pressuresensitive semiconductor |
US3433228A (en) * | 1966-05-06 | 1969-03-18 | Cordis Corp | Multimode cardiac pacer |
Non-Patent Citations (1)
Title |
---|
Myers et al., AMERICAN JOURNAL OF MEDICAL ELECTRONICS Oct.-Dec., 1964, pp. 233 236 (copy in 128/419 P) * |
Cited By (202)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3746005A (en) * | 1968-04-11 | 1973-07-17 | American Optical Corp | Constant energy heartbeat stimulating apparatus with pulse width control |
US3709229A (en) * | 1969-03-26 | 1973-01-09 | American Optical Corp | Free-running atrial and demand ventricular pacer |
US3747604A (en) * | 1969-12-15 | 1973-07-24 | American Optical Corp | Atrial and ventricular demand pacer with separate atrial and ventricular beat detectors |
US3716059A (en) * | 1970-08-24 | 1973-02-13 | Cardiac Resuscitator Corp | Cardiac resuscitator |
US3882851A (en) * | 1971-10-20 | 1975-05-13 | Systron Donner Corp | Impedance plethysmograph |
US3807410A (en) * | 1971-11-19 | 1974-04-30 | American Optical Corp | Adaptive demand pacer |
DE2252312A1 (en) * | 1971-11-19 | 1973-05-30 | American Optical Corp | PACEMAKER WITH NEEDS ADAPTATION |
US3783878A (en) * | 1971-12-06 | 1974-01-08 | American Optical Corp | Atrial and ventricular pacer having independent rate and av delay controls |
US3794045A (en) * | 1971-12-06 | 1974-02-26 | American Optical Corp | Passive hysteresis circuit demand pacer |
FR2162392A1 (en) * | 1971-12-06 | 1973-07-20 | American Optical Corp | |
US3773051A (en) * | 1972-03-01 | 1973-11-20 | Research Corp | Method and apparatus for stimulation of body tissue |
USRE30750E (en) * | 1972-05-15 | 1981-09-29 | Cardiac Resuscitator Corporation | Cardiac resuscitator and monitoring apparatus |
US3845773A (en) * | 1972-07-07 | 1974-11-05 | Ass Rech Et D Entraide Cardiol | Cardiac stimulators |
US4088138A (en) * | 1974-01-02 | 1978-05-09 | Cardiac Resuscitator Corp. | Cardiac resuscitator and monitoring apparatus |
DE2613463A1 (en) * | 1975-04-24 | 1976-11-04 | Pacer Snc | PACEMAKER |
US4009721A (en) * | 1975-04-24 | 1977-03-01 | Pacer S.N.C. Of Cerchiai Vanna & C. | Artificial pacemaker |
FR2308352A1 (en) * | 1975-04-24 | 1976-11-19 | Pacer Snc De Cerchiai Vanna Et | PERFECTED ARTIFICIAL HEART STIMULATOR |
US4114627A (en) * | 1976-12-14 | 1978-09-19 | American Hospital Supply Corporation | Cardiac pacer system and method with capture verification signal |
DE2809091A1 (en) * | 1977-03-03 | 1978-09-07 | Bozal Gonzalez Jose L | PACEMAKER |
US4201219A (en) * | 1977-03-03 | 1980-05-06 | Bozal Gonzalez Jose L | Cardiac pace-maker |
US4144891A (en) * | 1977-04-20 | 1979-03-20 | Medtronic, Inc. | Heart stimulator lead set |
US4202339A (en) * | 1977-04-21 | 1980-05-13 | Alexander Wirtzfeld | Cardiac pacemaker |
US4165750A (en) * | 1978-03-18 | 1979-08-28 | Aleev Leonid S | Bioelectrically controlled electric stimulator of human muscles |
US4140132A (en) * | 1978-03-23 | 1979-02-20 | Dahl Joseph D | Variable rate timer for a cardiac pacemaker |
US4228803A (en) * | 1978-06-23 | 1980-10-21 | Credit Du Nord International N.V. | Physiologically adaptive cardiac pacemaker |
US4397316A (en) * | 1979-03-30 | 1983-08-09 | Medtronic, Inc. | Rate and A-V delay generator for heart pacemaker |
US4305396A (en) * | 1979-04-16 | 1981-12-15 | Vitatron Medical B.V. | Rate adaptive pacemaker and method of cardiac pacing |
EP0089014A2 (en) * | 1982-03-16 | 1983-09-21 | Gianni Plicchi | Physiological implantable cardiac pacemaker in which the stimulation rate is regulated by the respiration rate of the patient |
EP0089014A3 (en) * | 1982-03-16 | 1984-12-05 | Gianni Plicchi | Physiological implantable cardiac pacemaker in which the stimulation rate is regulated by the respiration rate of the patient |
US4567892A (en) * | 1982-03-16 | 1986-02-04 | Gianni Plicchi | Implantable cardiac pacemaker |
EP0096464A1 (en) * | 1982-05-19 | 1983-12-21 | Purdue Research Foundation | Exercise responsive cardiac pacemaker |
US4436092A (en) | 1982-05-19 | 1984-03-13 | Purdue Research Foundation | Exercise responsive cardiac pacemaker |
US4543954A (en) * | 1982-05-19 | 1985-10-01 | Purdue Research Foundation | Exercise responsive cardiac pacemaker |
US4726383A (en) * | 1982-05-19 | 1988-02-23 | Purdue Research Foundation | Exercise-responsive cardiac pacemaker lead |
US5081988A (en) * | 1982-05-19 | 1992-01-21 | Purdue Research Foundation | Exercise responive cardiac pacemaker |
US4543955A (en) * | 1983-08-01 | 1985-10-01 | Cordis Corporation | System for controlling body implantable action device |
US4576183A (en) * | 1983-09-21 | 1986-03-18 | Gianni Plicchi | Electronic circuit for monitoring respiratory parameter for controlling operation of implantable medical device |
US4527568A (en) * | 1983-12-27 | 1985-07-09 | Vitafin N.V. | Dual chamber pacer with alternative rate adaptive means and method |
EP0147820A2 (en) * | 1983-12-27 | 1985-07-10 | Vitatron Medical B.V. | Dual chamber pacer with alternative rate adaptive means |
EP0147820A3 (en) * | 1983-12-27 | 1988-06-08 | Vitafin N.V. | Dual chamber pacer with alternative rate adaptive means and method |
EP0151689A2 (en) * | 1984-02-07 | 1985-08-21 | SCHIAPPARELLI MEDTRONIC S.p.A. | Minute ventilation dependent rate responsive pacer |
US4596251A (en) * | 1984-02-07 | 1986-06-24 | Gianni Plicchi | Minute ventilation dependent rate responsive pacer |
EP0151689A3 (en) * | 1984-02-07 | 1987-06-16 | Gianni Plicchi | Minute ventilation dependent rate responsive pacer |
US4545380A (en) * | 1984-04-16 | 1985-10-08 | Cordis Corporation | Method and apparatus for setting and changing parameters or functions of an implanted device |
WO1986000234A1 (en) * | 1984-06-21 | 1986-01-16 | Medtronic, Inc. | Process and apparatus for diaphragmic stimulation |
US4721110A (en) * | 1984-08-06 | 1988-01-26 | Lampadius Michael S | Respiration-controlled cardiac pacemaker |
DE3428975A1 (en) * | 1984-08-06 | 1986-02-13 | Michael S. 8113 Kochel Lampadius | BREATH-CONTROLLED HEART PACEMAKER |
US4566456A (en) * | 1984-10-18 | 1986-01-28 | Cordis Corporation | Apparatus and method for adjusting heart/pacer rate relative to right ventricular systolic pressure to obtain a required cardiac output |
US4712555A (en) * | 1984-10-19 | 1987-12-15 | Siemens-Elema Ab | Physiologically responsive pacemaker and method of adjusting the pacing interval thereof |
US4860751A (en) * | 1985-02-04 | 1989-08-29 | Cordis Corporation | Activity sensor for pacemaker control |
US4694830A (en) * | 1985-10-04 | 1987-09-22 | Siemens Aktiengesellschaft | Heart pacemaker with respiratory signal generation capability |
EP0218007A1 (en) * | 1985-10-04 | 1987-04-15 | Siemens Aktiengesellschaft | Heart pace maker |
US4702253A (en) * | 1985-10-15 | 1987-10-27 | Telectronics N.V. | Metabolic-demand pacemaker and method of using the same to determine minute volume |
US4757815A (en) * | 1985-12-20 | 1988-07-19 | Siemens Aktiengesellschaft | Heart pacemaker |
EP0249819A1 (en) | 1986-06-16 | 1987-12-23 | Pacesetter AB | Cardiac pacer for pacing a human heart |
US4730618A (en) * | 1986-06-16 | 1988-03-15 | Siemens Aktiengesellschaft | Cardiac pacer for pacing a human heart and pacing method |
US4790318A (en) * | 1986-06-16 | 1988-12-13 | Siemens Aktiengesellschaft | Cardiac pacer for pacing a human heart |
US4697591A (en) * | 1986-06-16 | 1987-10-06 | Siemens Aktiengesellschaft | Cardiac pacer for pacing a human heart and pacing method |
EP0249824A1 (en) | 1986-06-16 | 1987-12-23 | Pacesetter AB | A cardiac pacer for pacing a heart |
US4791935A (en) * | 1986-08-15 | 1988-12-20 | Medtronic, Inc. | Oxygen sensing pacemaker |
US4807629A (en) * | 1986-08-15 | 1989-02-28 | Medtronic, Inc. | Oxygen sensing pacemaker |
US4813421A (en) * | 1986-08-15 | 1989-03-21 | Medtronic, Inc. | Oxygen sensing pacemaker |
US4730389A (en) * | 1986-08-15 | 1988-03-15 | Medtronic, Inc. | Method for fabrication of an implantable hermetic transparent container |
US4771780A (en) * | 1987-01-15 | 1988-09-20 | Siemens-Pacesetter, Inc. | Rate-responsive pacemaker having digital motion sensor |
US5010893A (en) * | 1987-01-15 | 1991-04-30 | Siemens-Pacesetter, Inc. | Motion sensor for implanted medical device |
US4907593A (en) * | 1987-05-21 | 1990-03-13 | Biocontrol Technology, Inc. | Adaptation of heart pacing to physical activity |
US4858611A (en) * | 1987-06-03 | 1989-08-22 | Dimed, Inc. | Sensing system and method for sensing minute ventilation |
US4903701A (en) * | 1987-06-05 | 1990-02-27 | Medtronic, Inc. | Oxygen sensing pacemaker |
US4791931A (en) * | 1987-08-13 | 1988-12-20 | Pacesetter Infusion, Ltd. | Demand pacemaker using an artificial baroreceptor reflex |
US5003976A (en) * | 1987-09-28 | 1991-04-02 | Eckhard Alt | Cardiac and pulmonary physiological analysis via intracardiac measurements with a single sensor |
US4884576A (en) * | 1987-09-28 | 1989-12-05 | Eckhard Alt | Self adjusting rate responsive cardiac pacemaker and method |
US4919136A (en) * | 1987-09-28 | 1990-04-24 | Eckhard Alt | Ventilation controlled rate responsive cardiac pacemaker |
US5164898A (en) * | 1988-06-10 | 1992-11-17 | Ricoh Company, Ltd. | System for determining hazardous substance exposure rate from concentration measurement and heart rate data |
EP0426775A4 (en) * | 1989-01-25 | 1992-10-21 | Siemens Elema Ab | Automatically adjustable energy controlled rate-responsive pacemaker |
US4940053A (en) * | 1989-01-25 | 1990-07-10 | Siemens-Pacesetter, Inc. | Energy controlled rate-responsive pacemaker having automatically adjustable control parameters |
EP0426775A1 (en) * | 1989-01-25 | 1991-05-15 | Pacesetter, Inc. | Automatically adjustable energy controlled rate-responsive pacemaker |
US5040534A (en) * | 1989-01-25 | 1991-08-20 | Siemens-Pacesetter, Inc. | Microprocessor controlled rate-responsive pacemaker having automatic rate response threshold adjustment |
US5040535A (en) * | 1989-01-25 | 1991-08-20 | Siemens-Pacesetter, Inc. | Average amplitude controlled rate-responsive pacemaker having automatically adjustable control parameters |
DE3914680A1 (en) * | 1989-05-03 | 1990-11-08 | Alt Eckhard | HEART PACEMAKER |
US5137019A (en) * | 1990-03-08 | 1992-08-11 | Cardiac Pacemakers, Inc. | Variation in cardiac chamber volume or pressure as a controlling parameter |
US5391190A (en) * | 1990-03-08 | 1995-02-21 | Cardiac Pacemakers, Inc. | Variation in cardiac chamber volume or pressure as a controlling parameter |
US5284136A (en) * | 1990-04-04 | 1994-02-08 | Cardiac Pacemakers, Inc. | Dual indifferent electrode pacemaker |
US5036849A (en) * | 1990-04-04 | 1991-08-06 | Cardiac Pacemakers, Inc. | Variable rate cardiac pacer |
US5792208A (en) * | 1991-05-17 | 1998-08-11 | Gray; Noel Domond | Heart pacemaker |
US6044300A (en) * | 1991-05-17 | 2000-03-28 | Gray; Noel Desmond | Heart pacemaker |
US5954757A (en) * | 1991-05-17 | 1999-09-21 | Gray; Noel Desmond | Heart pacemaker |
US5235976A (en) * | 1991-12-13 | 1993-08-17 | Cardiac Pacemakers, Inc. | Method and apparatus for managing and monitoring cardiac rhythm using active time as the controlling parameter |
US5330510A (en) * | 1991-12-31 | 1994-07-19 | Ela Medical | Pacemaker with patient effort-controlled frequency |
US5282840A (en) * | 1992-03-26 | 1994-02-01 | Medtronic, Inc. | Multiple frequency impedance measurement system |
WO1994008657A1 (en) * | 1992-10-20 | 1994-04-28 | Noel Desmond Gray | A heart pacemaker |
US5674259A (en) * | 1992-10-20 | 1997-10-07 | Gray; Noel Desmond | Multi-focal leadless apical cardiac pacemaker |
US5429123A (en) * | 1993-12-15 | 1995-07-04 | Temple University - Of The Commonwealth System Of Higher Education | Process control and apparatus for ventilation procedures with helium and oxygen mixtures |
WO1995016484A1 (en) * | 1993-12-15 | 1995-06-22 | Temple University - Of The Commonwealth System Of Higher Education | Process and apparatus for controlling helium/oxygen |
US5522860A (en) * | 1993-12-31 | 1996-06-04 | Ela Medical S.A. | Control of an active implantable medical device |
US5800470A (en) * | 1994-01-07 | 1998-09-01 | Medtronic, Inc. | Respiratory muscle electromyographic rate responsive pacemaker |
US5480441A (en) * | 1994-03-30 | 1996-01-02 | Medtronic, Inc. | Rate-responsive heart pacemaker |
WO1996036395A1 (en) * | 1995-05-19 | 1996-11-21 | Medtronic, Inc. | Respiratory muscle electromyographic rate responsive pacemaker |
US5935153A (en) * | 1996-11-21 | 1999-08-10 | Ela Medical S.A. | Active implantable medical device enslaved to a signal of acceleration |
US5919210A (en) * | 1997-04-10 | 1999-07-06 | Pharmatarget, Inc. | Device and method for detection and treatment of syncope |
US6078834A (en) * | 1997-04-10 | 2000-06-20 | Pharmatarget, Inc. | Device and method for detection and treatment of syncope |
EP1078650A1 (en) | 1999-08-20 | 2001-02-28 | BIOTRONIK Mess- und Therapiegeräte GmbH & Co Ingenieurbüro Berlin | Rate adaptive pacemaker |
US6519494B1 (en) | 1999-08-20 | 2003-02-11 | Biotronik Mess-Und Therapiegeraete Gmbh & Co. Ingenieurbuero Berlin | Rate-adaptive cardiac pacemaker |
US6405738B1 (en) * | 1999-10-22 | 2002-06-18 | Ultrafryer Systems, Inc. | Spray cleaning apparatus for deep fryer |
US7062326B2 (en) | 2000-07-14 | 2006-06-13 | Cardiac Pacemakers, Inc. | Method and apparatuses for monitoring hemodynamic activities using an intracardiac impedance-derived parameter |
US20030114889A1 (en) * | 2000-07-14 | 2003-06-19 | Cardiac Pacemakers, Inc. | Method and apparatuses for monitoring hemodynamic activities using an intracardiac impedance-derived parameter |
US8412320B2 (en) | 2000-09-18 | 2013-04-02 | Cameron Health, Inc. | Nontransvenous and nonepicardial methods of cardiac treatment and stimulus |
US8706217B2 (en) | 2000-09-18 | 2014-04-22 | Cameron Health | Cardioverter-defibrillator having a focused shocking area and orientation thereof |
US8718760B2 (en) | 2000-09-18 | 2014-05-06 | Cameron Health Inc. | Subcutaneous implantable cardioverter-defibrillator placement methods |
US8831720B2 (en) | 2000-09-18 | 2014-09-09 | Cameron Health, Inc. | Method of implanting and using a subcutaneous defibrillator |
US9144683B2 (en) | 2000-09-18 | 2015-09-29 | Cameron Health, Inc. | Post-shock treatment in a subcutaneous device |
US6952610B2 (en) * | 2000-09-18 | 2005-10-04 | Cameron Health, Inc. | Current waveforms for anti-tachycardia pacing for a subcutaneous implantable cardioverter- defibrillator |
US20050277990A1 (en) * | 2000-09-18 | 2005-12-15 | Cameron Health, Inc. | Current waveforms for anti-tachycardia pacing for a subcutaneous implantable cardioverter-defibrillator |
US8583236B2 (en) | 2000-09-27 | 2013-11-12 | Cvrx, Inc. | Devices and methods for cardiovascular reflex control |
US8880190B2 (en) | 2000-09-27 | 2014-11-04 | Cvrx, Inc. | Electrode structures and methods for their use in cardiovascular reflex control |
US8606359B2 (en) | 2000-09-27 | 2013-12-10 | Cvrx, Inc. | System and method for sustained baroreflex stimulation |
US7813812B2 (en) | 2000-09-27 | 2010-10-12 | Cvrx, Inc. | Baroreflex stimulator with integrated pressure sensor |
US7840271B2 (en) | 2000-09-27 | 2010-11-23 | Cvrx, Inc. | Stimulus regimens for cardiovascular reflex control |
US8086314B1 (en) | 2000-09-27 | 2011-12-27 | Cvrx, Inc. | Devices and methods for cardiovascular reflex control |
US8712531B2 (en) | 2000-09-27 | 2014-04-29 | Cvrx, Inc. | Automatic baroreflex modulation responsive to adverse event |
US20080177350A1 (en) * | 2000-09-27 | 2008-07-24 | Cvrx, Inc. | Expandable Stimulation Electrode with Integrated Pressure Sensor and Methods Related Thereto |
US8718789B2 (en) | 2000-09-27 | 2014-05-06 | Cvrx, Inc. | Electrode structures and methods for their use in cardiovascular reflex control |
US9427583B2 (en) | 2000-09-27 | 2016-08-30 | Cvrx, Inc. | Electrode structures and methods for their use in cardiovascular reflex control |
US8060206B2 (en) | 2000-09-27 | 2011-11-15 | Cvrx, Inc. | Baroreflex modulation to gradually decrease blood pressure |
US7949400B2 (en) | 2000-09-27 | 2011-05-24 | Cvrx, Inc. | Devices and methods for cardiovascular reflex control via coupled electrodes |
US9044609B2 (en) | 2000-09-27 | 2015-06-02 | Cvrx, Inc. | Electrode structures and methods for their use in cardiovascular reflex control |
US8838246B2 (en) | 2000-09-27 | 2014-09-16 | Cvrx, Inc. | Devices and methods for cardiovascular reflex treatments |
US8290595B2 (en) | 2000-09-27 | 2012-10-16 | Cvrx, Inc. | Method and apparatus for stimulation of baroreceptors in pulmonary artery |
US7218964B2 (en) * | 2000-10-26 | 2007-05-15 | Medtronic, Inc. | Closed-loop neuromodulation for prevention and treatment of cardiac conditions |
US20020165586A1 (en) * | 2000-10-26 | 2002-11-07 | Medtronic, Inc. | Closed-loop neuromodulation for prevention and treatment of cardiac conditions |
US8750989B2 (en) | 2001-11-21 | 2014-06-10 | Cameron Health, Inc. | Apparatus and method for identifying atrial arrhythmia by far-field sensing |
US9993653B2 (en) | 2001-11-21 | 2018-06-12 | Cameron Health, Inc. | Apparatus and method for identifying atrial arrhythmia by far-field sensing |
US9522283B2 (en) | 2001-11-21 | 2016-12-20 | Cameron Health Inc. | Apparatus and method for identifying atrial arrhythmia by far-field sensing |
US9138589B2 (en) | 2001-11-21 | 2015-09-22 | Cameron Health, Inc. | Apparatus and method for identifying atrial arrhythmia by far-field sensing |
US7092757B2 (en) | 2002-07-12 | 2006-08-15 | Cardiac Pacemakers, Inc. | Minute ventilation sensor with dynamically adjusted excitation current |
US20100138340A1 (en) * | 2002-09-19 | 2010-06-03 | John Earl Shirey | System and apparatus for transaction fraud processing |
US7101339B2 (en) | 2002-12-13 | 2006-09-05 | Cardiac Pacemakers, Inc. | Respiration signal measurement apparatus, systems, and methods |
US8209011B2 (en) | 2002-12-30 | 2012-06-26 | Cardiac Pacemakers, Inc. | Automatically configurable minute ventilation sensor |
US8423142B2 (en) | 2002-12-30 | 2013-04-16 | Cardiac Pacemakers, Inc. | Cross-checking of transthoracic impedance and acceleration signals |
US7647106B2 (en) | 2003-04-23 | 2010-01-12 | Medtronic, Inc. | Detection of vasovagal syncope |
US20040215263A1 (en) * | 2003-04-23 | 2004-10-28 | Nathalie Virag | Detection of vasovagal syncope |
WO2004112897A1 (en) | 2003-06-19 | 2004-12-29 | Medtronic, Inc. | Method and apparatus for temporarily varying a parameter in an implantable medical device |
US20040260348A1 (en) * | 2003-06-19 | 2004-12-23 | Bakken Earl E. | Method and apparatus for temporarily varying a parameter in an implantable medical device |
US7133718B2 (en) | 2003-06-19 | 2006-11-07 | Medtronic, Inc. | Method and apparatus for temporarily varying a parameter in an implantable medical device |
US8306621B2 (en) | 2003-07-02 | 2012-11-06 | Cardiac Pacemakers, Inc. | Cardiac cycle synchronized sampling of impedance signal |
US8442633B2 (en) | 2003-07-02 | 2013-05-14 | Cardiac Pacemakers, Inc. | Cardiac cycle synchronized sampling of impedance signal |
US8688214B2 (en) | 2003-07-02 | 2014-04-01 | Cardiac Pacemakers. Inc. | Cardiac cycle synchronized sampling of impedance signal |
US20050004610A1 (en) * | 2003-07-02 | 2005-01-06 | Jaeho Kim | Cardiac cycle synchronized sampling of impedance signal |
US8880171B2 (en) | 2003-07-02 | 2014-11-04 | Cardiac Pacemakers, Inc. | Cardiac cycle synchronized sampling of impedance signal |
US7200440B2 (en) | 2003-07-02 | 2007-04-03 | Cardiac Pacemakers, Inc. | Cardiac cycle synchronized sampling of impedance signal |
US8050764B2 (en) | 2003-10-29 | 2011-11-01 | Cardiac Pacemakers, Inc. | Cross-checking of transthoracic impedance and acceleration signals |
US20050096704A1 (en) * | 2003-10-29 | 2005-05-05 | Scott Freeberg | Cross-checking of transthoracic impedence and acceleration signals |
US8197234B2 (en) * | 2004-05-25 | 2012-06-12 | California Institute Of Technology | In-line actuator for electromagnetic operation |
US20050275494A1 (en) * | 2004-05-25 | 2005-12-15 | Morteza Gharib | In-line actuator for electromagnetic operation |
US7628757B1 (en) | 2005-05-25 | 2009-12-08 | Pacesetter, Inc. | System and method for impedance-based detection of pulmonary edema and reduced respiration using an implantable medical system |
US9656009B2 (en) | 2007-07-11 | 2017-05-23 | California Institute Of Technology | Cardiac assist system using helical arrangement of contractile bands and helically-twisting cardiac assist device |
US20090275854A1 (en) * | 2008-04-30 | 2009-11-05 | Zielinski Todd M | System and method of monitoring physiologic parameters based on complex impedance waveform morphology |
US8315713B2 (en) | 2008-04-30 | 2012-11-20 | Medtronic, Inc. | Techniques for placing medical leads for electrical stimulation of nerve tissue |
US9642558B2 (en) | 2008-04-30 | 2017-05-09 | Medtronic, Inc. | Multi-frequency impedance monitoring system |
US9572982B2 (en) | 2008-04-30 | 2017-02-21 | Medtronic, Inc. | Techniques for placing medical leads for electrical stimulation of nerve tissue |
US9561369B2 (en) | 2008-04-30 | 2017-02-07 | Medtronic, Inc. | Techniques for placing medical leads for electrical stimulation of nerve tissue |
US8744565B2 (en) | 2008-04-30 | 2014-06-03 | Medtronic, Inc. | Multi-frequency impedance monitoring system |
US20090276025A1 (en) * | 2008-04-30 | 2009-11-05 | Medtronic, Inc. | Techniques for placing medical leads for electrical stimulation of nerve tissue |
US20090276022A1 (en) * | 2008-04-30 | 2009-11-05 | Medtronic , Inc. | Techniques for placing medical leads for electrical stimulation of nerve tissue |
US20090275996A1 (en) * | 2008-04-30 | 2009-11-05 | Medtronic, Inc. | Techniques for placing medical leads for electrical stimulation of nerve tissue |
US8532793B2 (en) | 2008-04-30 | 2013-09-10 | Medtronic, Inc. | Techniques for placing medical leads for electrical stimulation of nerve tissue |
US20090275956A1 (en) * | 2008-04-30 | 2009-11-05 | Medtronic, Inc. | Techniques for placing medical leads for electrical stimulation of nerve tissue |
US20090275855A1 (en) * | 2008-04-30 | 2009-11-05 | Zielinski Todd M | Multi-frequency impedance monitoring system |
US10537266B2 (en) | 2008-04-30 | 2020-01-21 | Medtronic, Inc. | Multi-frequency impedance monitoring system |
US8527045B2 (en) | 2008-10-31 | 2013-09-03 | Medtronic, Inc. | Therapy system including cardiac rhythm therapy and neurostimulation capabilities |
US8532779B2 (en) | 2008-10-31 | 2013-09-10 | Medtronic, Inc. | Implantable medical device crosstalk evaluation and mitigation |
US8688210B2 (en) | 2008-10-31 | 2014-04-01 | Medtronic, Inc. | Implantable medical device crosstalk evaluation and mitigation |
US20100114221A1 (en) * | 2008-10-31 | 2010-05-06 | Medtronic, Inc. | Therapy system including cardiac rhythm therapy and neurostimulation capabilities |
US20100114217A1 (en) * | 2008-10-31 | 2010-05-06 | Medtronic, Inc. | Therapy system including cardiac rhythm therapy and neurostimulation capabilities |
US20100114211A1 (en) * | 2008-10-31 | 2010-05-06 | Medtronic, Inc. | Shunt-current reduction techniques for an implantable therapy system |
US20100114202A1 (en) * | 2008-10-31 | 2010-05-06 | Medtronic, Inc. | Implantable medical device crosstalk evaluation and mitigation |
US20100114208A1 (en) * | 2008-10-31 | 2010-05-06 | Medtronic, Inc. | Implantable medical device crosstalk evaluation and mitigation |
US8260412B2 (en) | 2008-10-31 | 2012-09-04 | Medtronic, Inc. | Implantable medical device crosstalk evaluation and mitigation |
US20100114201A1 (en) * | 2008-10-31 | 2010-05-06 | Medtronic, Inc. | Implantable medical device crosstalk evaluation and mitigation |
US8774918B2 (en) | 2008-10-31 | 2014-07-08 | Medtronic, Inc. | Implantable medical device crosstalk evaluation and mitigation |
US20100114199A1 (en) * | 2008-10-31 | 2010-05-06 | Medtronic, Inc. | Implantable medical device crosstalk evaluation and mitigation |
US20100114198A1 (en) * | 2008-10-31 | 2010-05-06 | Medtronic, Inc. | Implantable medical device crosstalk evaluation and mitigation |
US8005539B2 (en) | 2008-10-31 | 2011-08-23 | Medtronic, Inc. | Implantable medical device crosstalk evaluation and mitigation |
US20100114205A1 (en) * | 2008-10-31 | 2010-05-06 | Medtronic, Inc. | Shunt-current reduction housing for an implantable therapy system |
US8560060B2 (en) | 2008-10-31 | 2013-10-15 | Medtronic, Inc. | Isolation of sensing and stimulation circuitry |
US9026206B2 (en) | 2008-10-31 | 2015-05-05 | Medtronic, Inc. | Therapy system including cardiac rhythm therapy and neurostimulation capabilities |
US8611996B2 (en) | 2008-10-31 | 2013-12-17 | Medtronic, Inc. | Implantable medical device crosstalk evaluation and mitigation |
US9775987B2 (en) | 2008-10-31 | 2017-10-03 | Medtronic, Inc. | Implantable medical device crosstalk evaluation and mitigation |
US8249708B2 (en) | 2008-10-31 | 2012-08-21 | Medtronic, Inc. | Implantable medical device crosstalk evaluation and mitigation |
US8498698B2 (en) | 2008-10-31 | 2013-07-30 | Medtronic, Inc. | Isolation of sensing and stimulation circuitry |
US9192769B2 (en) | 2008-10-31 | 2015-11-24 | Medtronic, Inc. | Shunt-current reduction techniques for an implantable therapy system |
US8473057B2 (en) | 2008-10-31 | 2013-06-25 | Medtronic, Inc. | Shunt-current reduction housing for an implantable therapy system |
US8452394B2 (en) | 2008-10-31 | 2013-05-28 | Medtronic, Inc. | Implantable medical device crosstalk evaluation and mitigation |
US20100114200A1 (en) * | 2008-10-31 | 2010-05-06 | Medtronic, Inc. | Implantable medical device crosstalk evaluation and mitigation |
US20100114224A1 (en) * | 2008-10-31 | 2010-05-06 | Medtronic, Inc. | Implantable medical device crosstalk evaluation and mitigation |
US9597505B2 (en) | 2008-10-31 | 2017-03-21 | Medtronic, Inc. | Implantable medical device crosstalk evaluation and mitigation |
US20100114197A1 (en) * | 2008-10-31 | 2010-05-06 | Medtronic, Inc. | Implantable medical device crosstalk evaluation and mitigation |
EP2184011A1 (en) * | 2008-11-06 | 2010-05-12 | Ela Medical | Medical device such as an implantable artificial heart, including spirometric means for diagnosing pulmonary pathologies |
US20100113958A1 (en) * | 2008-11-06 | 2010-05-06 | Cyrille Casset | Active Implantable Medical Device Integrating Spirometric Means for Diagnosing Lung Diseases |
US9125655B2 (en) | 2010-07-16 | 2015-09-08 | California Institute Of Technology | Correction and optimization of wave reflection in blood vessels |
US20140299159A1 (en) * | 2011-10-18 | 2014-10-09 | Peter Helm | Cooking appliance with a pan and a method for cleaning the pan |
US10589325B2 (en) * | 2011-10-18 | 2020-03-17 | MKN Maschinenfabrik Kurt Neubauer GmbH & Co. KG | Cooking appliance with a pan and a method for cleaning the pan |
US12128238B2 (en) | 2019-09-10 | 2024-10-29 | Ceryx Medical Limited | Pacemaker device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3593718A (en) | Physiologically controlled cardiac pacer | |
US5814086A (en) | Perex respiratory system stimulation upon tachycardia detection | |
Sowton | Artificial pacemaking and sinus rhythm | |
Lemberg et al. | Pacemaking on demand in AV block | |
ROSS JR et al. | Effects of changing heart rate in man by electrical stimulation of the right atrium: studies at rest, during exercise, and with isoproterenol | |
US4541417A (en) | Coronary augmenter | |
US5213098A (en) | Post-extrasystolic potentiation stimulation with physiologic sensor feedback | |
JP2620819B2 (en) | Cardiac ischemia control device | |
US5265601A (en) | Dual chamber cardiac pacing from a single electrode | |
EP0776678A1 (en) | System for administering transcutaneous cardiac pacing with transcutaneous electrical nerve stimuli | |
EP0862484B1 (en) | System for hemodynamic pacing in ventricular tachycardia | |
ZEFT et al. | Right atrial stimulation in the treatment of atrial flutter | |
Soloff et al. | The supernormal phase of ventricular excitation in man. Its bearing on the genesis of ventricular premature systoles, and a note on atrioventricular conduction | |
Castellanos Jr et al. | The Wedensky effect in the human heart | |
US3750644A (en) | Cardiac programmer for a coronary blood pump | |
US8214033B2 (en) | Interferential cardiac preconditioning and depolarization | |
Wiener et al. | Electrical induction of atrial fibrillation: An approach to intractable atrial tachycardia | |
Frommer | Studies on coupled pacing technique and some comments on paired electrical stimulation | |
Crystal et al. | Inhibition of discharge of an external demand pacemaker by an electric razor | |
McNally et al. | Medical and physiological considerations in the use of artificial cardiac pacing. Part II | |
CA2737053C (en) | Pacemaker with neurocardiogenic syncope detection and therapy utilizing minute ventilation input | |
Geddes et al. | The exercise-responsive cardiac pacemaker | |
WO2007075732A2 (en) | Multifunctional temporary intra or extra-cardia pacemaker without fluoroscopy guidance for operation | |
Voukydis et al. | A physiologically regulated cardiac pacemaker | |
SHEINER et al. | Coupled pacing and coupled pacing with concealed conduction: Report of a case describing a new observation |