US20100009662A1 - Delaying interaction with points of interest discovered based on directional device information - Google Patents
Delaying interaction with points of interest discovered based on directional device information Download PDFInfo
- Publication number
- US20100009662A1 US20100009662A1 US12/437,863 US43786309A US2010009662A1 US 20100009662 A1 US20100009662 A1 US 20100009662A1 US 43786309 A US43786309 A US 43786309A US 2010009662 A1 US2010009662 A1 US 2010009662A1
- Authority
- US
- United States
- Prior art keywords
- information
- interest
- user
- pois
- interaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/017—Gesture based interaction, e.g. based on a set of recognized hand gestures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/20—Instruments for performing navigational calculations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/26—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
- G01C21/34—Route searching; Route guidance
- G01C21/36—Input/output arrangements for on-board computers
- G01C21/3664—Details of the user input interface, e.g. buttons, knobs or sliders, including those provided on a touch screen; remote controllers; input using gestures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/38—Electronic maps specially adapted for navigation; Updating thereof
- G01C21/3804—Creation or updating of map data
- G01C21/3807—Creation or updating of map data characterised by the type of data
- G01C21/3811—Point data, e.g. Point of Interest [POI]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/1613—Constructional details or arrangements for portable computers
- G06F1/1626—Constructional details or arrangements for portable computers with a single-body enclosure integrating a flat display, e.g. Personal Digital Assistants [PDAs]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/1613—Constructional details or arrangements for portable computers
- G06F1/1633—Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
- G06F1/1684—Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675
- G06F1/1694—Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675 the I/O peripheral being a single or a set of motion sensors for pointer control or gesture input obtained by sensing movements of the portable computer
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/048—Interaction techniques based on graphical user interfaces [GUI]
- G06F3/0487—Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
- G06F3/0488—Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
- G06F3/04883—Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures for inputting data by handwriting, e.g. gesture or text
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/02—Services making use of location information
- H04W4/021—Services related to particular areas, e.g. point of interest [POI] services, venue services or geofences
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/02—Services making use of location information
- H04W4/023—Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/02—Services making use of location information
- H04W4/025—Services making use of location information using location based information parameters
- H04W4/026—Services making use of location information using location based information parameters using orientation information, e.g. compass
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/20—Services signaling; Auxiliary data signalling, i.e. transmitting data via a non-traffic channel
- H04W4/21—Services signaling; Auxiliary data signalling, i.e. transmitting data via a non-traffic channel for social networking applications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2200/00—Indexing scheme relating to G06F1/04 - G06F1/32
- G06F2200/16—Indexing scheme relating to G06F1/16 - G06F1/18
- G06F2200/163—Indexing scheme relating to constructional details of the computer
- G06F2200/1637—Sensing arrangement for detection of housing movement or orientation, e.g. for controlling scrolling or cursor movement on the display of an handheld computer
Definitions
- the subject disclosure relates to the provision of direction-based services based on direction information and/or other information, such as location information, of a device and to designating points of interest discovered with the device for later interaction.
- mobile devices such as portable laptops, PDAs, mobile phones, navigation devices, and the like have been equipped with location based services, such as global positioning system (GPS) systems, WiFi, cell tower triangulation, etc. that can determine and record a position of mobile devices.
- location based services such as global positioning system (GPS) systems, WiFi, cell tower triangulation, etc.
- GPS systems use triangulation of signals received from various satellites placed in orbit around Earth to determine device position.
- map-based services have emerged from the inclusion of such location based systems that help users of these devices to be found on a map and to facilitate point to point navigation in real-time and search for locations near a point on a map.
- navigation and search scenarios are currently limited to displaying relatively static information about endpoints and navigation routes. While some of these devices with location based navigation or search capabilities allow update of the bulk data representing endpoint information via a network, e.g., when connected to a networked portable computer (PC) or laptop, such data again becomes fixed in time. Accordingly, it would be desirable to provide a set of richer experiences for users than conventional experiences predicated on location and conventional processing of static bulk data representing potential endpoints of interest.
- PC networked portable computer
- POIs points of interest
- location information may not always have the time to interact with the POIs, or to sift through irrelevant information such as POIs away from which a user is moving.
- the device may not have the capabilities to support a full user experience to engage the user with, e.g., due to limited hardware, such as a limited keypad, screen space, etc.
- Mobile endpoints can include a positional component for receiving positional information as a function of a location of the portable electronic device, a directional component that outputs direction information as a function of an orientation of the portable electronic device and a processing engine that processes the positional information and the direction information to determine a subset of points of interest relative to the portable electronic device as a function of the positional information and/or the direction information.
- Devices or endpoints can include compass(es), e.g., magnetic or gyroscopic, to determine a direction and location based systems for determining location, e.g., GPS.
- compass(es) e.g., magnetic or gyroscopic
- devices or endpoints can also include component(s) for determining speed and/or acceleration information for processing by the engine, e.g., to aid in the determination of gestures made with the device.
- a variety of service(s) can be provided on top of user identification or interaction with specific object(s) of interest. For instance, when a user points at a particular item at a particular location or place, this creates an opportunity for anyone having an interest in that particular item to communicate with the user regarding that item or related items at a point in time when the user's focus is on the particular item.
- User context for the interaction can also be taken into account to supplement the provision of one or more interactive direction based services.
- a variety of embodiments of a device provisioned for direction-based location services interact with items discovered through direction-based location services and then designate such items for later interaction, e.g., according to pre-defined criteria that define explicitly or implicitly when the later interaction will occur.
- Device users are thus provided with relevant content about endpoints at relevant times, which may not be the time of initial contact with the POI.
- FIG. 1 is a block diagram of a non-limiting architecture for mobile device delayed interaction scenarios in accordance with one or more embodiments
- FIG. 2 is a block diagram of another non-limiting architecture for mobile device delayed interaction scenarios
- FIG. 3 is a flow diagram of a non-limiting process for marking points of interest for later interaction
- FIG. 4 is a flow diagram of a non-limiting process for designating points of interest for later interaction
- FIG. 5 is a block diagram of a device illustrating a specific apparatus for marking points of interest for delayed interaction in connection with direction based services
- FIG. 6 is a flow diagram of a non-limiting process for designating points of interest associated with a given place for later interaction
- FIG. 7 is a block diagram of an exemplary device architecture for device that supports direction based services in accordance with one or more embodiments
- FIG. 8 illustrates an exemplary sequence for delayed interaction with POIs at a location as a future advertising source
- FIG. 9 is a block diagram illustrating a non-limiting implementation in which POIs are scanned based on encoding information
- FIG. 10 is a block diagram illustrating market players in an overall advertising model established based on interest in satisfying the delayed interactions defined according to one or more embodiments herein;
- FIG. 11 is a block diagram illustrating a variety of ways in which user intent can be inferred or implied with respect to points of interest;
- FIGS. 12 and 13 illustrate representative scenarios where a delayed interaction facilitates a better timing for a transaction regarding a given item of interest
- FIG. 14 is a block diagram illustrating the formation of motion vectors for use in connection with location based services
- FIG. 15 , FIG. 16 and FIG. 17 illustrate aspects of algorithms for determining intersection endpoints with a pointing direction of a device
- FIG. 18 represents a generic user interface for a mobile device for representing points of interest based on pointing information
- FIG. 19 represents some exemplary, non-limiting alternatives for user interfaces for representing point of interest information
- FIG. 20 represents some exemplary, non-limiting fields or user interface windows for displaying static and dynamic information about a given point of interest
- FIG. 21 illustrates a sample overlay user interface for overlaying point of interest information over a camera view of a mobile device
- FIG. 22 illustrates a process for predicting points of interest and aging out old points of interest in a region-based algorithm
- FIG. 23 illustrates a first process for a device upon receiving a location and direction event
- FIG. 24 illustrates a second process for a device upon receiving a location and direction event
- FIG. 25 is a block diagram representing an exemplary non-limiting networked environment in which embodiment(s) may be implemented.
- FIG. 26 is a block diagram representing an exemplary non-limiting computing system or operating environment in which aspects of embodiment(s) may be implemented.
- current location services systems and services e.g., GPS, cell triangulation, P2P location service, such as Bluetooth, WiFi, etc.
- P2P location service such as Bluetooth, WiFi, etc.
- various embodiments of a portable device are provided that enable users to point a device in a direction, determine a set of system points of interest based on the direction pointed to by the device, but then also defer interaction with a point of interest of the set to a point later in time, enabling a rich set of scenarios empowering users of direction-based services to receive relevant information at optimal times.
- Such direction-based services can be offered as part of cloud services.
- a non-limiting device provisioned for direction based services includes an engine for analyzing location information (e.g., GPS), direction information such as compass information (e.g., North, West, South, East), and optionally movement information (e.g., accelerometer information) to allow a platform for pointing to and thereby finding objects of interest in a user's environment.
- location information e.g., GPS
- direction information such as compass information (e.g., North, West, South, East)
- movement information e.g., accelerometer information
- a variety of scenarios are contemplated based on a user finding information of interest about objects of interests, such as restaurants, or other items around an individual, or persons, places or events of interest nearby a user and tailoring information to that user (e.g., coupons, advertisements), however at a time later than the finding.
- an interested party e.g., the device user and/or the publishers of content associated with a POI
- PC personal computer
- a user might pass a theater and want to go to one of the shows playing at the theater; however, the user might want to wait to reach home so she can ask her husband about availability and consult a rich Web based interface associated with the POI that clearly illustrates when the show is playing, how to buy tickets, etc.
- the user with a simple designation of the POI for later interaction along with an explicit or implicit time for the future interaction, can ensure that the POI and its relevance to the user re-surface at a better time. This is in contrast to today where a user must remember to consult the web site when the user reaches home, or the user must try to figure out such information with small writing rendered by limited touch screens and input, or with limited time or network connectivity.
- the content providers i.e., those wishing to convey information about the POI or information related to the POI, such as advertisements also benefit from the later interaction because they too can publish more content, and gather more information from the user, as well as update their content prior to publishing and also take more time to tailor the content to the user.
- both users and POI content providers alike benefit from the capability of users marking certain POIs for later interaction.
- a user marks a POI for later interaction, and additionally associates other information with the POI, e.g., in order to form lists. For instance, a user can designate a restaurant they walk by at lunch and mark it with a category such as “restaurant that I would like to try for dinner sometime.” Thus, when the user later returns to the POI through some explicit or implicit route, the user has the chance to view the list of restaurants to try for dinner. This also implicitly sets information about when the delayed interaction should occur based on context.
- Delayed interaction can be defined according to a variety of different criterion, e.g., explicit user choice, a pre-set amount of time (e.g., 10 hours later), or a pre-set time (e.g., 6 pm), etc.
- any criterion or combination of criteria with respect to the POI e.g., “device comes within 2 blocks of the POI and the time is between 5 pm and 9 pm,” can be a set of criteria for notifying or reminding the user of the existence of the POI.
- Other information such as device location, direction information, path information for walking to the POI can be provided as input to the delay criterion as well.
- a restaurant that is not open for lunch as a user walks by, but is open for dinner, the restaurant finds a way to become relevant to the user again at a later time through the process of delayed interaction.
- a user can explicitly request to view any of the POIs with which the user interacted with in the past, and this view can be with the same user device that discovered the POIs, e.g., notifications can be received at a later time or this can be with an entirely different form factor.
- the user can interact with the delayed set of POIs via a web site and associated storage and intelligence engine that aggregates POIs interacted with by the user, and keeps track of which POIs a user still wants to interact with, and under what delayed conditions.
- a user can carry out a unique gesture that marks POIs based on direction and motion information (e.g., accelerometer information) available on the device, such that the user can easily repeat the unique gesture to mark other objects for later review.
- direction and motion information e.g., accelerometer information
- Such unique gestures can be pre-defined for the device or pre-defined by the user. For example, with a arm, elbow and/or wrist movement(s) defining a gesture, the gesture can be used to simultaneously target and mark an object or set of objects for later interaction, e.g., via the Web.
- a method for using a device provisioned for pointing based services comprises receiving direction information associated with a pointed to direction of the device. Next, points of interest are identified within an area defined by the direction according to an intersection test. Next, points of interest (POIs) can be marked by the user to delay interaction with the marked POIs, e.g., to a later time when the user again interacts with the pointing based services. Thus, a way to mark POIs for later interaction is provided, or a way that sets reminders or notifications regarding the POIs to interact with them later.
- POIs points of interest
- one non-limiting example is a delayed typing scenario.
- a delayed typing scenario may be appropriate since the user may not have the time or enough of a keypad, or screen to learn about particular real estate of interest. For instance, typing on a mobile device might be inconvenient.
- a user via the service, a user can point at a point of interest, and with a gesture, or other input, mark the point of interest for later action. Then, when the user reaches a PC, a reminder to interact with the point of interest is present and the user can type with a full keyboard.
- one or more embodiments described herein provide the ability to identify endpoints with pointing interactions of direction based location services, and delay interaction to a more convenient moment or situation. For example, delayed editing of dynamic information about a point of interest is enabled by marking the location, and then later adding some information about the point of interest for use by the direction based services. For instance, a user does not always have time to manipulate or upload pictures, audio, automatic annotations, etc. with respect to a given point of interest at a time of creation. In such circumstances, a user can defer certain actions regarding a point of interest to a future time, e.g., create a reminder to the user as to why they wanted to add a particular point of interest for delayed interaction.
- leveraging digital compasses and location services to provide direction and location information enables a next-generation of direction or pointer based location search services, scan services, discoverability services, etc., where the digital compass and GPS can be used to point at objects of interest, thus defining the entry point for one or more data transactions between the device and one or more third party devices providing service(s) for the objects of interest at which the device is pointed.
- a user can defer the entry point for the one or more data transactions to a later time.
- Using a digital compass, e.g., solid state, magnetic, sun/moon based, etc. on a mobile endpoint facilitates point and upload scenarios, point and synchronize geographical information to a Web service, cloud services or another endpoint.
- a device can hone in on, interact with, or otherwise transact with, a specific object or specific objects of interest by way of location and direction of the device, creating a new advertising model not previously known.
- a user interacts with a particular product on a shelf at a retail store in connection with a direction based service, this creates an opportunity for anyone having an interest in the particular product to engage the user, e.g., communicate some information to that user. Any context that can be discerned from the user's actions and interactions can also be taken into account when acting on the opportunity.
- a market is created for the future opportunity represented by the delay information, and in aggregate, can be predictive of early trends happening with products and services.
- users can interact with the endpoints in a host of context sensitive ways to provide or update information associated with endpoints of interest, or to receive beneficial information or instruments (e.g., coupons, offers, etc.) from entities associated with the endpoints of interest, and any of such actions can be deferred to a later or better time with one or more embodiments.
- beneficial information or instruments e.g., coupons, offers, etc.
- location services it can be determined that a user's device is physically inside an actual store, or near a window display of a store. Coupling that to the user's interacting with an object of interest with direction information to enable direction-based services results in a new opportunity to take action based on the interaction with specific items.
- a portable electronic device having a positional component for receiving position information as a function of a location of the portable electronic device; and at least one processor configured to process the position information to determine identifier(s) of points of interest associated with the location of the portable electronic device and based on intent information determined for the portable electronic device and the identifier(s), a set of delay criterion are set for later interaction with the given points of interest represented by the identifier(s).
- a device can include a directional component that outputs direction information as a function of an orientation of the portable electronic device and that facilitates determining an intent of the device.
- the directional component can optionally be a digital compass that outputs the direction information.
- the device can determine a subset of items of interest relative to candidate items of interest within a 3-D space as a function of the positional information or the direction information.
- the device can request delayed content based on a selection of an item of interest and the identifier(s).
- the request for the delayed content can be based on a scan of an encoding associated with an item of interest and the identifier(s).
- the request for delayed content can be based on a keyword received as input by the device and the identifier(s).
- the request for delayed content can be based on the intent information and the identifier(s) from at least one network service.
- the request for delayed content can also be automatic, or made by other explicit or implicit request by the user.
- a content package can be received based on the request for the delayed content from the network service.
- the device can optionally include a display or sound devices, such as speakers, to display or render some or all of the graphical (e.g., text, icon, image data, video data, etc.) and/or audio content of the content package.
- An initial interacting can include orientating the device toward some item(s) of interest and determining direction information associated with the orientation of the device from which a subset of the item(s) of interest are identified. For instance, interacting can include pointing the device in a direction defining a pointing line generally towards items of interest in the place(s) and determining a set of candidate items of interest as a subset of items of interest that substantially intersect with the pointing line, and enabling the selection of one or more items from the set of candidate items.
- a method for a device provisioned for direction based services comprises determining direction information associated with a pointed to direction relative to a pre-defined orientation of the device and identifying POIs within an area defined as a function of the pointed to direction including determining which of a set of POIs intersect with the area.
- information corresponding to the POIs identified within the area is displayed, e.g., on a map or list, and POIs identified within the area can be designated for a delayed interaction at a later time.
- IDs associated with the designated POIs are transmitted to a network service enabling information about the designated POIs to be exposed at the later time, e.g., from a different form factor device.
- the designation of POIs for later interaction can include explicit input with respect to the designated one or more POIs, such as one or more of a gesture input, a keyword input, an audio input, a video camera input or a touchscreen input with respect to the one or more POIs.
- the designation of POIs for later interaction can include implicit input with respect to the designated one or more POIs including making inferences about the delayed interaction at the later time based on a context of present interaction.
- the displaying of POI information can be made on a topographical map visually representing at least the area defined as a function of a pointed to direction and graphical indications of the POIs can be displayed within the area at corresponding locations on the topographical map view.
- the POIs can also be represented in a filtered list view, e.g., filtered by restaurants in the area.
- the designating of POIs can include designating pre-defined criteria explicitly or implicitly defining the delay of the delayed interaction.
- the designating can include marking one or more POIs with touchscreen input relating to the one or more designated POIs, tagging the one or more POIs with tag information defining the delayed interaction, or other ways to designate POIs for later interaction.
- a portable electronic device in another embodiment, includes a positional component for receiving position information as a function of a location of the portable electronic device and a directional component that outputs direction information as a function of an orientation of the portable electronic device.
- the device includes a processor configured to process the position information and the direction information to determine identifiers or IDs of POIs within a pre-defined geographical area of the device, interact with a selected ID, receive information about the POI corresponding to the selected identifier, and receive input regarding the selected ID defining a future interaction.
- a pointer structure is provided on the device that visually indicates the orientation of the portable electronic device based upon which the directional component outputs the direction information. For example, this could be a triangular structure that comes to a point to show a primary orientation of the device. This could also be indicated on the display of the device during provision of direction based services.
- the position information and the direction information determine a pointing line and a set of candidate points of interest are determined as a subset of points of interest that substantially intersect with a function based on the pointing line.
- An intersection test for determining subsets of points of interest can include defining an arc based on an angle with respect to a pointing line, defining a cone based on an angle with respect to the pointing line, or a line function defining a rectangular space oriented along the pointing line (2-D or 3-D depending on the application).
- a speaker can render audio content if a condition upon which the future interaction is predicated occurs.
- the directional component can be a digital compass that outputs the direction information.
- a method comprises determining a place in which a portable device is located based on location information determined for the device and identifying a subset of items of interest in the place including determining an orientation of the device based on direction information of the device and determining the subset of items of interest in the place as a function of the orientation.
- input with respect to an item of the subset of items is received as well as input defining a delayed interaction with the item or place.
- the delayed interaction can include receiving a notification when a characteristic of the item meets a pre-defined condition, such as when a price of the item meets a target price condition, thereby initiating the delayed interaction.
- a characteristic of the item meets a pre-defined condition, such as when a price of the item meets a target price condition.
- One way of identifying and designating an item for delayed interaction can be with a scan input from scanning or imaging a bar code associated with the item of interest.
- FIG. 1 is a block diagram illustrating some concepts of one or more embodiments for enabling delayed interaction with endpoints in a direction based location system.
- the device provides POI information 100 from pointing with the device, i.e., the device identifies nearby POIs of particular interest to a user. This can be done explicitly 102 or implicitly 104 .
- the device associates criteria for delay 110 with the POIs. This too can be done explicitly 112 or implicitly 114 .
- the POI information 100 and delay information 110 are transmitted to direction based services 120 , which enables a whole host of scenarios 130 for later interaction with the POIs 100 according to the criteria 110 being satisfied.
- FIG. 2 is an exemplary non-limiting diagram of an architecture for achieving one or more embodiments described herein.
- location information 200 can be input to a Layer 2 with various services 210 , including web services 212 , cloud services 214 , other data services 216 , etc.
- Any of services 210 can have input to a set of brick and mortar store databases in Layer 3 , such as data store(s) 220 , 222 , 224 , etc. or set of online or electronic retailer databases in Layer 4 , such as data store(s) 230 , 232 , 234 , etc.
- user intent 204 coupled with a place of the device can be utilized by one or more services 210 to retrieve and deliver custom content 240 to the device based on the intent and place of the device, but at a later time according to a set of explicit or implicit criteria.
- FIG. 3 is a flow diagram of a scenario where a user delays interaction with a point of interest.
- a user points a pointer device in one or more directions to define scope of endpoints.
- the user receives an indication of one or more endpoints within scope in response from a network service.
- the user marks endpoint(s) for later interaction or viewing.
- the user reconnects to the service, e.g., from a PC, the user can receive reminders about marked endpoints.
- Other ways for triggering the interaction can be employed at 330 as described elsewhere herein.
- the user can follow through with interaction/viewing at 340 , as desired.
- FIG. 4 is a flow diagram illustrating an exemplary process for designating POIs for delayed interaction in connection with direction based services.
- direction information is determined from a pointed to direction relative to a pre-defined orientation.
- POIs are identified within an area defined as a function of the pointed to direction and it is determined which POIs intersect the area and are within scope of a given user experience.
- information corresponding to the POIs identified within the area is displayed, e.g., on a map or in a list.
- the POI(s) identified within the area are designated for a delayed interaction at a later time.
- the information e.g., ID information
- the information e.g., ID information
- FIG. 5 illustrates an exemplary non-limiting device 500 including processor(s) 510 having a position engine or subsystem 520 for determining a location of the device 500 and a direction engine or subsystem 530 for determining a direction or orientation of the device 500 . Then, by interacting with local application(s) 540 and/or service(s) 570 , content can be delivered to the device, which is tailored to device intent and a place in which the device is present.
- the tailored content can be rendered by graphic subsystem or display/UI 550 or audio subsystem 560 .
- point structure 590 is included, e.g., a triangular piece that points along an orientation line 595 upon which directional calculations are based.
- orientation line 595 can be indicated by graphics subsystem display/UI 550 with or without point structure 590 .
- various embodiments herein enable delayed POI ID information 580 to and from services 570 so that the delayed interactions can occur in the future as assisted by services 570 .
- FIG. 6 is a flow diagram illustrating a process for delaying interaction with respect to a specific item within an identified place.
- a place at which a portable device is located is determined based on location information of the device.
- an orientation of the device is determined based on direction information of the device and a subset of items of interest are identified in the place as a function of the orientation.
- an item of the subset of items can be selected and a delayed interaction with the item (or place) is thereby enabled by direction based services.
- FIG. 7 illustrates a mobile computing device 100 according to an embodiment.
- a set of services 760 that support delayed interaction with points of interest can be built based on location information 722 and direction information 732 collected by a mobile device, such as a phone.
- location information 722 can be recorded by a location subsystem 720 such as a GPS subsystem communicating with GPS satellites 740 .
- Direction or pointing information 732 can be collected by a direction subsystem 730 , such as a compass, e.g., gyroscopic, magnetic, digital compass, etc.
- movement information 712 can be gathered by the device 700 , e.g., via tower triangulation algorithms, and/or acceleration of the device 700 can be measured as well, e.g., with an accelerometer.
- the collective information 750 can be used to gain a sense of not only where the device 700 is located in relation to other potential points of interest tracked or known by the overall set of services 760 , but also what direction the user is pointing the device 700 , so that the services 760 can appreciate at whom or what the user is pointing the device 700 .
- a gesture subsystem 770 can optionally be included, which can be predicated on any one or more of the motion information 712 , location information 722 or direction information 732 .
- direction information 732 and location information 722 can be used to define a set of unique gestures, but also motion information 712 (such as speed and acceleration) can be used to define a more sophisticated set of gestures.
- FIG. 7 thus illustrates a gesture subsystem 770 can optionally be included in a device 700 .
- a variety of algorithms could be adopted for a gesture subsystem 770 . For instance, a simple click-event when in the “pointing mode” for the device 700 can result in determining a set of points of interest for the user. Another gesture on top of that pointing gesture with respect to a POI can result in delaying interaction with that POI.
- a device can include a variety of spatial and map components and intelligence engines to determine intersections for directional arcs (or cones in 3-D). For instance, objects of interest could be represented with exact boundaries, approximated with spheres, subshells (stores in a mall) of a greater shell (mall), hierarchically arranged, etc. Dynamically generated bounding boxes can also be implemented work, i.e., any technique can be used to obtain boundary information for use in an intersection algorithm. Thus, such boundaries can be implicitly or explicitly defined for the POIs.
- a device can include an intersection component that interprets pointing information relative to a set of potential points of interest.
- the engine can perform such intersections knowing what the resolution of the measuring instruments are on the device, such as a given resolution of a GPS system.
- Such techniques can include taking into account how far a user is from a plane of objects of interest, such as items on a shelf or wall, the size of the item of interest and how that is defined, as well as the resolution of location instrumentation, such as the GPS system.
- the device can also optionally include an altimeter, or any other device that gives altitude information, such as measuring radar or sonar bounce from the floor.
- the altitude information can supplement existing location information for certain specialized services where points of interest vary significantly at different altitudes. It is noted that GPS itself has some information about altitude in its encoding.
- FIG. 8 is a block diagram illustrating an exemplary non-limiting exchange between a device 800 and service 810 .
- a service 810 which includes data related to the location of the device, a given POI, and information about delaying the interaction.
- the service 810 gets all offers for the POI 815 and/or at 820 , gets the offers for the given location.
- the service 810 may get updated content associated with the location 830 along with an optional branded user interface at 835 .
- an updated content package is created and delivered to the device 800 at 845 .
- the device can undergo a check for the device at 850 .
- the delayed or future interaction can take place at 855 .
- the content providers or owners can be billed at 860 .
- FIG. 9 illustrates a general block diagram for an optional encoding technique for POI information.
- various pieces of static and dynamic information 902 , 904 , 906 , 908 , 910 , etc. for a POI which are normally represented in UI 900 of the device, can also be encoded as an image or a bar code 920 , or some other device readable compact encoding.
- a user can scan an item of interest, and coupled with presence in a physical store, a request 915 can be made to a service 940 with a key representing the scanned item and information representing the place, whereby the service 940 determines content 925 to return to the device 900 based on the scanned item and the place.
- delay criterion 925 specify how to delay the interaction with the scanned item.
- QR Quick Response
- decompression allows users to take pictures of a QR code and process its contents where information has been encoded into a sticker/printout for display outside of a business (e.g., in the form of a copyrighted URL).
- the code need not be a QR code, but could be any code that can be read or scanned or processed to determine its underlying content.
- a visual representation a picture can be taken and processed, or with the bar code, the device can scan it.
- RF identification technology could also be used.
- any encoded image format can be used, like a bar code, only one example of which is a QR code.
- this enables a query for POI information via a QR code or other encoding.
- the user scans or images the code with a device 930 , and then transmits the code to the service, which translates the code into static and dynamically updated user information for display as a UI 900 (or other user interface representation) so that the user can query about a POI merely by pointing at it.
- a URL for the POI can also be encoded in a format such as a QR code.
- the user can point the device at a QR code, and decode a given image with the QR code.
- FIG. 10 illustrates at a high level, via a block diagram, a beneficial advertising model enabled by a direction/location based services with delayed interaction with endpoints as described in one or more embodiments herein.
- scanned items 1000 for delay, or pointed to items 1000 for delay, or any other action taken with respect to items 1000 for delay can be sent as information 1005 to a service 1010 that brokers interested third parties 1020 or 1030 who wish to advertise given the place and particular items 1000 .
- third parties 1020 or 1030 third parties may be misleading because third parties can include parties related to a retail establishment where the device is currently located
- This opportunity to provide content in a delayed manner enables services 1010 to notify 1015 parties 1020 interested in the delayed interaction.
- This beneficial information provided to third parties 1020 or 1030 about potential delayed interactions with particular POIs and places is therefore an opportunity to monetize the transaction back to those who benefit from a resulting transaction or advertising opportunity.
- FIG. 11 is a block diagram illustrating a vast wealth of actions and interactions that can help define intent/context 1120 to delay for a given POI and location at which the device is present.
- text 1100 may be received by the device, a product search query 1102 local to the store, bar code scan 1104 , image scan 1106 , explicit designation of a product (e.g., by pointing at a product, or taking an image of the product and performing image recognition) 1108 , price compare request 1110 , gesture input 1112 , other interaction 1114 , etc. can all be taken into account in discerning intent of the device at a given place, along with direction information 1150 .
- FIG. 12 is a flow diagram of an exemplary non-limiting process for using a device and services as described herein.
- a place where a portable device is located is determined based on position information.
- the device interacts with an item of interest in the place via direction based services.
- a desired characteristic for the item of interest is indicated.
- results regarding the item of interest are received later when the characteristic is satisfied.
- updated content about the item of interest can be provided.
- FIG. 13 is a flow diagram of a non-limiting scenario for the process of FIG. 12 .
- a place where the portable device is located is determined based on position information.
- the device interacts with an item of interest in the place via direction based location services as described elsewhere herein.
- the user identifies a target price for the item of interest.
- results respecting the item of interest are delivered later when the price drops, e.g., 2 months later.
- the content about the item of interest can be updated on an ongoing basis or at the time of delivery of the delayed content (e.g., new or updated advertisement, recent user reviews, etc.).
- a broad range of scenarios can be enabled by a device that can take location and direction information about the device and build a service on top of that information. For example, by using an accelerometer in coordination with an on board digital compass, an application running on a mobile device updates what each endpoint is “looking at” or pointed towards, attempting hit detection on potential points of interest to either produce real-time information for the device or to allow the user to select a range, or using the GPS, a location on a map, and set information such as “Starbucks—10% off cappuccinos today” or “The Alamo—site of . . . ” for others to discover.
- One or more accelerometers can also be used to perform the function of determining direction information for each endpoint as well. As described herein, these techniques can become more granular to particular items within a Starbucks, such as “blueberry cheesecake” on display in the counter, enabling a new type of sale opportunity.
- a general device for accomplishing this includes a processing engine to resolve a line of sight vector sent from a mobile endpoint and a system to aggregate that data as a platform, enabling a host of new scenarios predicated on the pointing information known for the device.
- the act of pointing with a device, such as the user's mobile phone thus becomes a powerful vehicle for users to discover and interact with points of interest around the individual in a way that is tailored for the individual. Synchronization of data can also be performed to facilitate roaming and sharing of POV data and contacts among different users of the same service.
- 2-dimensional (2D), 3-dimensional (3D) or N-dimensional directional-based search, discovery, and interactivity services are enabled for endpoints in the system of potential interest to the user.
- the pointing information and corresponding algorithms depend upon the assets available in a device for producing the pointing or directional information.
- the pointing information can be one or more vectors.
- a vector or set of vectors can have a “width” or “arc” associated with the vector for any margin of error associated with the pointing of the device.
- a panning angle can be defined by a user with at least two pointing actions to encompass a set of points of interest, e.g., those that span a certain angle defined by a panning gesture by the user.
- a portable electronic device includes a positional component for receiving positional information as a function of a location of the portable electronic device, a directional component that outputs direction information as a function of an orientation of the portable electronic device and a location based engine that processes the positional information and the direction information to determine a subset of points of interest relative to the portable electronic device as a function of at least the positional information and the direction information.
- the positional component can be a positional GPS component for receiving GPS data as the positional information.
- the directional component can be a magnetic compass and/or a gyroscopic compass that outputs the direction information.
- the device can include acceleration component(s), such as accelerometer(s), that outputs acceleration information associated with movement of the portable electronic device. The use of a separate sensor can also be used to further compensate for tilt and altitude adjustment calculations.
- the device includes a cache memory for dynamically storing a subset of endpoints of interest that are relevant to the portable electronic device and at least one interface to a network service for transmitting the positional information and the direction information to the network service.
- the device dynamically receives in the cache memory an updated subset of endpoints that are potentially relevant to the portable electronic device.
- the subset of endpoints can be updated as a function of endpoints of interest within a pre-defined distance substantially along a vector defined by the orientation of the portable electronic device.
- the subset of endpoints can be updated as a function of endpoints of interest relevant to a current context of the portable electronic device.
- the device can include a set of Representational State Transfer (REST)-based application programming interfaces (APIs), or other stateless set of APIs, so that the device can communicate with the service over different networks, e.g., Wi-Fi, a GPRS network, etc. or communicate with other users of the service, e.g., Bluetooth.
- REST Representational State Transfer
- APIs application programming interfaces
- the embodiments are in no way limited to a REST based implementation, but rather any other state or stateful protocol could be used to obtain information from the service to the devices.
- implementations of direction based services and devices are not dependent on REST based implementations, but could also be performed with REST, simple object access protocol (SOAP), really simple syndication (RSS), etc.
- SOAP simple object access protocol
- RSS really simple syndication
- the directional component outputs direction information including compass information based on calibrated and compensated heading/directionality information.
- the directional component can also include direction information indicating upward or downward tilt information associated with a current upward or downward tilt of the portable electronic device, so that the services can detect when a user is pointing upwards or downwards with the device in addition to a certain direction.
- the height of the vectors itself can also be taken into account to distinguish between an event of pointing with a device from the top of a building (likely pointing to other buildings, bridges, landmarks, etc.) and the same event from the bottom of the building (likely pointing to a shop at ground level), or towards a ceiling or floor to differentiate among shelves in a supermarket.
- a 3-axis magnetic field sensor can also be used to implement a compass to obtain tilt readings.
- Secondary sensors such as altimeters or pressure readers, can also be included in a mobile device and used to detect a height of the device, e.g., what floor a device is on in a parking lot or floor of a department store (changing the associated map/floorplan data).
- a device includes a compass with a planar view of the world (e.g., 2-axis compass)
- the inclusion of one or more accelerometers in the device can be used to supplement the motion vector measured for a device as a virtual third component of the motion vector, e.g., to provide measurements regarding a third degree of freedom. This option may be deployed where the provision of a 3-axis compass is too expensive, or otherwise unavailable.
- any type of compass, or combination of compasses can be used according to the sensitivity or degree of directional information for a given application or set of services.
- electromagnetic compass(es), digital compass(es), SW, etc., or any combination of compass(es) are all contemplated for a device in order to interact with POIs.
- any one or more of the compass(es) can include support for 1, 2 or 3 axes.
- a gesturing component can also be included in the device to determine a current gesture of a user of the portable electronic device from a set of pre-defined gestures.
- gestures can include zoom in, zoom out, panning to define an arc, all to help filter over potential subsets of points of interest for the user.
- web services can effectively resolve vector coordinates sent from mobile endpoints into ⁇ x,y,z> or other coordinates using location data, such as GPS data, as well as configurable, synchronized POV information similar to that found in a GPS system in an automobile.
- location data such as GPS data
- any of the embodiments can be applied similarly in any motor vehicle device.
- One non-limiting use is also facilitation of endpoint discovery for synchronization of data of interest to or from the user from or to the endpoint.
- a device 1400 employing the direction based location based services 1402 as described herein in a variety of embodiments herein include a way to discern between near objects, such as POI 1414 and far objects, such as POI 1416 .
- near objects such as POI 1414
- far objects such as POI 1416
- the service can determine a general distance associated with a motion vector.
- a motion vector 1406 will implicate POI 1414 , but not POI 1416 , and the opposite would be true for motion vector 1408 .
- a device 1400 includes an algorithm for discerning items substantially along a direction at which the device is pointing, and those not substantially along a direction at which the device is pointing.
- motion vector 1404 might implicate POI 1412 , without a specific panning gesture that encompassed more directions/vectors, POIs 1414 and 1416 would likely not be within the scope of points of interest defined by motion vector 1404 .
- the distance or reach of a vector can also be tuned by a user, e.g., via a slider control or other control, to quickly expand or contract the scope of endpoints encompassed by a given “pointing” interaction with the device.
- the determination of at what or whom the user is pointing is performed by calculating an absolute “Look” vector, within a suitable margin of error, by a reading from an accelerometer's tilt and a reading from the magnetic compass. Then, an intersection of endpoints determines an initial scope, which can be further refined depending on the particular service employed, i.e., any additional filter. For instance, for an apartment search service, endpoints falling within the look vector that are not apartments ready for lease, can be pre-filtered.
- the engine can also compensate for, or begin the look vector, where the user is by establish positioning ( ⁇ 15 feet) through an A-GPS stack (or other location based or GPS subsystem including those with assistance strategies) and also compensate for any significant movement/acceleration of the device, where such information is available.
- a device can include a client side cache of potentially relevant points of interest, which, based on the user's movement history can be dynamically updated.
- the context such as geography, speed, etc. of the user can be factored in when updating. For instance, if a user's velocity is 2 miles an hour, the user may be walking and interested in updates at a city block by city block level, or at a lower level granularity if they are walking in the countryside. Similarly, if a user is moving on a highway at 60 miles per hour, the block-by-block updates of information are no longer desirable, but rather a granularity can be provided and predictively cached on the device that makes sense for the speed of the vehicle.
- the location becomes the road on which the automobile is travelling, and the particular items are the places and things that are passed on the roadside much like products in a particular retail store on a shelf or in a display.
- the pointing based services thus creates a virtual “billboard” opportunity for items of interest generally along a user's automobile path. Proximity to location can lead to an impulse buy, e.g., a user might stop by a museum they are passing and pointing at with their device, if offered a discount on admission.
- gyroscopic or magnetic compasses can provide directional information.
- a REST based architecture enables data communications to occur over different networks, such as Wi-Fi and GPRS architectures.
- REST based APIs can be used, though any stateless messaging can be used that does not require a long keep alive for communicated data/messages. This way, since networks can go down with GPRS antennae, seamless switching can occur to Wi-Fi or Bluetooth networks to continue according to the pointing based services enabled by the embodiments described herein.
- a device as provided herein can include a file system to interact with a local cache, store updates for synchronization to the service, exchange information by Bluetooth with other users of the service, etc. Accordingly, operating from a local cache, at least the data in the local cache is still relevant at a time of disconnection, and thus, the user can still interact with the data. Finally, the device can synchronize according to any updates made at a time of re-connection to a network, or to another device that has more up to date GPS data, POI data, etc.
- a switching architecture can be adopted for the device to perform a quick transition from connectivity from one networked system (e.g., cell phone towers) to another computer network (e.g., Wi-Fi) to a local network (e.g., mesh network of Bluetooth connected devices).
- one networked system e.g., cell phone towers
- another computer network e.g., Wi-Fi
- a local network e.g., mesh network of Bluetooth connected devices
- a device can include a windowing stack in order to overlay different windows, or provide different windows of information regarding a point of interest (e.g., hours and phone number window versus interactive customer feedback window). Audio can be rendered or handled as input by the device. For instance, voice input can be handled by the service to explicitly point without the need for a physical movement of the device. For instance, a user could say into a device “what is this product right in front of me?
- FIG. 15 One non-limiting way for determining a set of points of interest is illustrated in FIG. 15 .
- a device 1500 is pointed (e.g., point and click) in a direction D 1 , which according to the device or service parameters, implicitly defines an area within arc 1510 and distance 1520 that encompasses POI 1530 , but does not encompass POI 1532 .
- Such an algorithm will also need to determine any edge case POIs, i.e., whether POIs such as POI 1534 are within the scope of pointing in direction D 1 , where the POI only partially falls within the area defined by arc 1510 and distance 1520 .
- a device 1600 pointed in direction D 1 may include zoomed in view which includes points of interest within distance 1620 and arc 1610 , or a medium zoomed view representing points of interest between distance 1620 and 1622 , or a zoomed out view representing points of interest beyond distance 1622 .
- zoom zones correspond to POIs 1630 , 1632 and 1634 , respectively. More or less zones can be considered depending upon a variety of factors, the service, user preference, etc.
- a user can input a first direction via a click, and then a second direction after moving the device via a second click, which in effect defines an arc 1710 for objects of interest in the system as illustrated in FIG. 17 .
- an arc 1710 is implicitly defined.
- the area of interest implicitly includes a search of points of object within a distance 1720 , which can be zoomed in and out, or selected by the service based on a known granularity of interest, selected by the user, etc.
- the first direction can be defined upon a click-and-hold button event, or other engage-and-hold user interface element, and the second direction can be defined upon release of the button.
- two consecutive clicks corresponding to the two different directions D 1 and D 2 can also be implemented.
- zooming in or out could also represent a change in terms of granularity, or size, or hierarchy of objects.
- a first pointing gesture with the device may result in a shopping mall appearing, but with another gesture, a user could carry out a recognizable gesture to gain or lose a level of hierarchical granularity with the points of interest on display. For instance, after such gesture, the points of interest could be zoomed in to the level of the stores at the shopping mall and what they are currently offering.
- any of the embodiments herein can define a set of gestures that serve to help the user interact with a set of services built on the pointing platform, to help users easily gain information about points of information in their environment.
- a device is ground level, the user is outside, and the device is “pointed” up towards the top of buildings, the granularity of information about points of interest sought by the user (building level) is different than if the user was pointing at the first floor shops of the building (shops level), even where the same compass direction is implicated.
- a downward tilt at the street level would implicate information about different points of interest that if the user of the device pointed with relatively no tilt at the Statue of Liberty (landmark/building level of granularity).
- one or more web or cloud services can analyze the vector information to determine at what or whom the user is looking/pointing.
- the service can then provide additional information such as ads, specials, updates, menus, happy hour choices, etc., depending on the endpoint selected, the context of the service, the location (urban or rural), the time (night or day), etc.
- additional information such as ads, specials, updates, menus, happy hour choices, etc., depending on the endpoint selected, the context of the service, the location (urban or rural), the time (night or day), etc.
- the direction based pointing services are implemented in connection with a pair of glasses, headband, etc. having a corresponding display means that acts in concert with the user's looking to highlight or overlay features of interest around the user.
- a mobile device 1800 can display the objects via representation 1802 according to a variety of user experiences tailored to the service at issue. For instance, a virtual camera experience can be provided, where POI graphics or information can be positioned relative to one another to simulate an imaging experience. A variety of other user interface experiences can be provided based on the pointing direction as well.
- UI 1900 and 1902 illustrate navigation of hierarchical POI information.
- level 1 categories may include category 1 , category 2 , category 3 , category 4 and category 5 , but if a user selects around the categories with a thumb-wheel, up-down control, or the like, and chooses one such as category 2 . Then, subcategory 1 , subcategory 2 , subcategory 3 and subcategory 4 are displayed as subcategories of category 2 .
- subcategory 4 perhaps few enough POIs, such as buildings 1900 and 1910 are found in the subcategory in order to display on a 2D map UI 1904 along the pointing direction, or alternatively as a 3D virtual map view 1906 along the pointing direction.
- UI 2000 can have one or more of any of the following representative areas.
- UI 2000 can include a static POI image 2002 such as a trademark of a store, or a picture of a person.
- UI 2000 can also include other media, and a static POI information portion 2004 for information that tends not to change such as restaurant hours, menu, contact information, etc.
- UI 2000 can include an information section for dynamic information to be pushed to the user for the POI, e.g., coupons, advertisements, offers, sales, etc.
- a dynamic interactive information are 2008 can be included where the user can fill out a survey, provide feedback to the POI owner, request the POI to contact the user, make a reservation, buy tickets, etc.
- UI 2000 also can include a representation of the direction information output by the compass for reference purposes. Further, UI 2000 can include other third party static or dynamic content in area 2012 .
- a synchronization process can bring either the client or service, respectively, up to date.
- an ecosystem is enabled where a user can point at an object or point of interest, gain information about it that is likely to be relevant to the user, interact with the information concerning the point of interest, and add value to services ecosystem where the user interacts.
- the system thus advantageously supports both static and dynamic content.
- Other user interfaces can be considered such as left-right, or up-down arrangements for navigating categories or a special set of soft-keys can be adaptively provided.
- a representative non-limiting overlay UI 2100 is shown having 3 POIs POI 1 , POI 2 and POI 3 .
- the POIs are overlaid over actual image data being real time viewed on the device via an LCD screen or like display.
- the actual image data can be of products on a shelf or other display or exhibit in a store.
- the lens becomes the pointer, and the POI information can be overlaid intelligently for discovery of endpoints of interest.
- a similar embodiment can be imagined even without a camera, such as a UI in which 3-D objects are virtually represented based on real geometries known for the objects relative to the user.
- the device UI can be implemented consistent with a camera, or a virtual camera, view for intuitive use of such devices.
- the pointer mechanism of the device could also switch based on whether the user was currently in live view mode for the camera or not.
- real time image processing could discern an object of interest and based on image signatures, overlay POI information over such image in a similar manner to the above embodiments.
- a variety of gestures can be employed to zoom in zoom out, perform tilt detection for looking down or up, or panning across a field of view to obtain a range of POIs associated with the panning scope.
- a number or maximum number of desired endpoints delivered as results can be configured. How to filter can also be configured, e.g., 5 most likely, 5 closest, 5 closest to 100 feet away, 5 within category or sub-category, alphabetical order, etc.
- a cone or other cross section across physical space is defined as a scope of possible points of interest.
- the width or deepness of this cone or cross section can be configurable by the user to control the accuracy of the pointing, e.g., narrow or wide radius of points and how far out to search.
- a variety of storage techniques such as relational storage techniques can be used.
- Virtual Earth data can be used for mapping and aggregation of POI data can occur from third parties such as Tele Atlas, NavTeq, etc.
- businesses not in the POI database will want to be discovered and thus, the service provides a similar, but far superior from a spatial relevance standpoint, Yellow Pages experiences where businesses will desire to have their additional information, such as menus, price sheets, coupons, pictures, virtual tours, etc. accessible via the system.
- a synchronization platform or framework can keep the roaming caches in sync, thereby capturing what users are looking at and efficiently processing changes. Or, where a user goes offline, local changes can be recorded, and when the user goes back online, such local changes can be synchronized to the network or service store. Also, since the users are in effect pulling information they care about in the here and in the now through the act of pointing with the device, the system generates high cost per thousand impression (CPM) rates as compared to other forms of demographic targeting. Moreover, the system drives impulse buys, since the user may not be physically present in a store, but the user may be near the object, and by being nearby and pointing at the store, information about a sale concerning the object can be sent to the user.
- CPM cost per thousand impression
- a distance to project out the pointing vector can be explicit, configurable, contextual, etc.
- the various embodiments described herein can employ any algorithm for distinguishing among boundaries of the endpoints, such as boundary boxes, or rectangles, triangles, circles, etc.
- a default radius e.g. 150 feet could be selected, and such value can be configured or be context sensitive to the service provided.
- On-line real estate sites can be leveraged for existing POI information. Since different POI databases may track different information at different granularities, a way of normalizing the POI data according to one convention or standard can also be implemented so that the residential real estate location data of Zillow can be integrated with GPS information from Starbucks of all the Starbucks by country.
- Similar techniques can be implemented in a moving vehicle client that includes GPS, compass, accelerometer, etc.
- points of interest e.g., gas stations
- different subsets of points of interest can be determined for the user based not only on distance, but actual time it may take to get to the point of interest.
- a gas station may be 100 yards to the right off the highway, the car may have already passed the corresponding exit, and thus more useful information to provide is what gas station will take the least amount of time to drive from a current location based on direction/location so as to provide predictive points of interest that are up ahead on the road, and not already aged points of interest that would require turning around from one's destination in order to get to them.
- the device can have an extension slot that accommodates direction information from an external directional device, such as a compass.
- an external directional device such as a compass.
- laptops or other portable electronic devices such devices can be outfitted with a card or board with a slot for a compass.
- any of the services described herein can make web service calls as part of the pointing and retrieval of endpoint process, as mentioned, one advantageous feature of a user's locality in real space is that it is inherently more limited than a general Internet search for information. As a result, a limited amount of data can be predictively maintained on a user's device in cache memory and properly aged out as data becomes stale.
- predictive caching and aging 2200 is conceptually illustrated by FIG. 22 in which a user's present location 2202 is discerned.
- the local cache still includes age out candidate location 2210 , but as the velocity of the user indicates the user will be at predicted locations 2204 and 2206 in the future, these regions of POIs are downloaded to the mobile device. Accordingly, as the user travels to predicted location 2206 , it starts to be clear that the user no longer needs the data from the age out candidate location 2210 , which can then be removed, or flagged for removal when storage is challenged.
- new point of interest can be added by a service or by a user. Update is thus performed continuously or substantially continuously based on updated travel, velocity, speed, etc.
- a user can add a new point of interest in the region, add info to a local cache, and then upload to the zone.
- the number of worldwide POIs is practically limitless, however only a small number of POIs will be relevant to a user at a given time.
- a cube of data can be taken to the device, the user can go offline such that when the user reconnects, the device is intelligent to figure out what has changed, been weighted, etc., so that the device can synchronize with the network services and expose the user's changes for other people.
- the predictive algorithms again depend on what the user is interested in finding, what service the user may be using, the context of the user, etc. They can also be based on velocity, direction, time, etc. For instance, if it is nighttime, assumptions based on demographics or preferences may lead the device to return information about nightclubs or all night diners. Or, instead of giving directions as driving directions that calculate distances as absolute distances, i.e., as the crow flies, a device can take road curves into account since instantaneous pointing information on roads can be collected and handled by a corresponding service when giving driving directions. Or, as another alternative, the direction one is heading on a road, such as a highway with a concrete divider, is relevant to the directions that a navigation system should give. Where a U-turn is unavailable and user passes an exit with a point of interest, for instance, directions should take this into account and consider the heading of the vehicle.
- Any device can include the embodiments described herein, including MP3 players, such as a Zune device, GPS navigation devices, bike computers, sunglass/visor systems, motor vehicles, mobile phones, laptops, PDA, etc.
- MP3 players such as a Zune device, GPS navigation devices, bike computers, sunglass/visor systems, motor vehicles, mobile phones, laptops, PDA, etc.
- One way to obtain the service applications is to message to a service to obtain the application, e.g., by text messaging to service, or getting a client download link.
- Another vehicle for enabling the service is to provide it natively in the operating system or applications of a mobile devices. Since a hardware abstraction layer accommodates different methods for collecting position, direction, acceleration information, the same platform can be used on any device regardless of the precise underlying hardware.
- the device can begin further communicating via another network. For instance, a device has two channels, and a user gets on a bus, but no longer have GPRS or GPS activity. Nonetheless the user is able to get the information the device needs from some other channel. Just because a tower, or satellites are down, does not mean that the device cannot connect through an alternative channel, e.g., the bus's GPS location information via Bluetooth.
- a representative device can include, as described variously herein, client Side Storage for housing and providing fast access to cached POI data in the current region including associated dynamically updated or static information, such as annotations, coupons from businesses, etc. This includes usage data tracking and storage.
- regional data can be a cached subset of the larger service data, always updated based on the region in which the client is roaming.
- POI data could include as a non-limiting example, the following information:
- blob v structured information blob for storage and media; structured for tags, annotations, etc.
- a device can also include usage data and preferences to hold settings as well as usage data such as coupons “activated,” waypoints, businesses encountered per day, other users encountered, etc. to be analyzed by the cloud services for business intelligence analysis and reporting.
- a device can also include a continuous update mechanism, which is a service that maintains the client's cached copy of a current region updated with the latest.
- a continuous update mechanism which is a service that maintains the client's cached copy of a current region updated with the latest.
- this can be achieved with a ping-to-pull model that pre-fetches and swaps out the client's cached region using travel direction and speed to facilitate roaming among different regions.
- This is effectively a paging mechanism for upcoming POIs.
- This also includes sending a new or modified POI for the region (with annotations+coupons), sending a new or modified annotation for the POIs (with coupons), or sending a new or modified coupon for the POI.
- a device can also include a Hardware Abstraction Layer (HAL) having components responsible for abstracting the way the client communicates with the measuring instruments, e.g., the GPS driver for positioning and LOS accuracy (e.g., open eGPS), magnetic compass for heading and rotational information (e.g., gyroscopic), one or more accelerometers for gestured input and tilt (achieves 3D positional algorithms, assuming gyroscopic compass).
- HAL Hardware Abstraction Layer
- a device can also include methods/interfaces to make REST calls via GPRS/Wi-Fi and a file system and storage for storing and retrieving the application data and settings.
- a device can also include user input and methods to map input to the virtual keys.
- user input is to have softkeys as follows, though it is to be understood a great variety of user inputs can be used to achieve interaction with the user interfaces of the pointing based services.
- SK up/down //Up and down on choices SK right, SK ok/confirm: //Choose an option or drill down/next SK left, SK cancel/back, //Go back to a previous window, cancel Exit / Incoming Call events //Exit the app or minimize
- a representative device can include a graphics and windowing stack to render the client side UI, as well as an audio stack to play sounds/alerts.
- such a device may also include spatial and math computational components including a set of APIs to perform 3D collision testing between subdivided surfaces such as spherical shells (e.g., a simple hit testing model to adopt and boundary definitions for POIs), rotate points, and cull as appropriate from conic sections.
- spherical shells e.g., a simple hit testing model to adopt and boundary definitions for POIs
- rotate points e.g., rotate points, and cull as appropriate from conic sections.
- FIGS. 23 and 24 illustrate two processes for a device when location (e.g., GPS) and direction (e.g., compass) events occur.
- location e.g., GPS
- direction e.g., compass
- FIG. 23 upon the occurrence of a location or direction event, at 2300 , it is determined whether predictive caching should be initiated for a next region to which a user is travelling. At 2310 , if so, then the next region of data can be pre-fetched. At 2320 , old regional data no longer of relevance can be aged out.
- any usage data can be uploaded to the service framework for business intelligence, input to an advertisement engine, etc.
- FIG. 24 represents another process for filtering potential POIs after a pointing event.
- a group of POIs are determined that pass an intersection algorithm for the direction of pointing of the device.
- POIs in the group can be represented in some fashion on a UI, e.g., full view if only 1 POI, categorized view, 2-D map view, 3-D perspective view, or user images if other users, etc.
- the possibilities for representation are limitless; the embodiments described herein are intuitive based on the general notion of pointing based direction services.
- static content is determined and any dynamic content is acquired via synchronization. When new data becomes available, it is downloaded to stay up to date.
- POI information is filtered further by user specific information (e.g., if it is the user's first time at the store, returning customer, loyalty program member, live baseball game offer for team clothing discounts, etc.).
- static and dynamic content that is up to date is rendered for the POI. In addition, updates and/or interaction with POI information is allowed which can be synced back to the service.
- the various embodiments of methods and devices for pointing based services and related embodiments described herein can be implemented in connection with any computer or other client or server device, which can be deployed as part of a computer network or in a distributed computing environment, and can be connected to any kind of data store.
- the various embodiments described herein can be implemented in any computer system or environment having any number of memory or storage units, and any number of applications and processes occurring across any number of storage units. This includes, but is not limited to, an environment with server computers and client computers deployed in a network environment or a distributed computing environment, having remote or local storage.
- FIG. 25 provides a non-limiting schematic diagram of an exemplary networked or distributed computing environment.
- the distributed computing environment comprises computing objects 2510 , 2512 , etc. and computing objects or devices 2520 , 2522 , 2524 , 2526 , 2528 , etc., which may include programs, methods, data stores, programmable logic, etc., as represented by applications 2530 , 2532 , 2534 , 2536 , 2538 .
- objects 2510 , 2512 , etc. and computing objects or devices 2520 , 2522 , 2524 , 2526 , 2528 , etc. may comprise different devices, such as PDAs, audio/video devices, mobile phones, MP3 players, laptops, etc.
- Each object 2510 , 2512 , etc. and computing objects or devices 2520 , 2522 , 2524 , 2526 , 2528 , etc. can communicate with one or more other objects 2510 , 2512 , etc. and computing objects or devices 2520 , 2522 , 2524 , 2526 , 2528 , etc. by way of the communications network 2540 , either directly or indirectly.
- network 2540 may comprise other computing objects and computing devices that provide services to the system of FIG. 25 , and/or may represent multiple interconnected networks, which are not shown.
- an application such as applications 2530 , 2532 , 2534 , 2536 , 2538 , that might make use of an API, or other object, software, firmware and/or hardware, suitable for communication with or implementation of the delayed interaction model as provided in accordance with various embodiments.
- computing systems can be connected together by wired or wireless systems, by local networks or widely distributed networks.
- networks are coupled to the Internet, which provides an infrastructure for widely distributed computing and encompasses many different networks, though any network infrastructure can be used for exemplary communications made incident to the techniques as described in various embodiments.
- a host of network topologies and network infrastructures such as client/server, peer-to-peer, hub and spoke, or hybrid architectures, can be utilized.
- a client/server architecture particularly a networked system
- a client is usually a computer that accesses shared network resources provided by another computer, e.g., a server.
- computers 2520 , 2522 , 2524 , 2526 , 2528 , etc. can be thought of as clients and computers 2510 , 2512 , etc. can be thought of as servers where servers 2510 , 2512 , etc.
- any computer can be considered a client, a server, or both, depending on the circumstances. Any of these computing devices may be processing data, or requesting services or tasks that may implicate the delayed interaction model and related techniques as described herein for one or more embodiments.
- a server is typically a remote computer system accessible over a remote or local network, such as the Internet or wireless network infrastructures.
- the client process may be active in a first computer system, and the server process may be active in a second computer system, communicating with one another over a communications medium, thus providing distributed functionality and allowing multiple clients to take advantage of the information-gathering capabilities of the server.
- Any software objects utilized pursuant to the direction based services can be provided standalone, or distributed across multiple computing devices or objects.
- the servers 2510 , 2512 , etc. can be Web servers with which the clients 2520 , 2522 , 2524 , 2526 , 2528 , etc. communicate via any of a number of known protocols, such as the hypertext transfer protocol (HTTP).
- Servers 2510 , 2512 , etc. may also serve as clients 2520 , 2522 , 2524 , 2526 , 2528 , etc., as may be characteristic of a distributed computing environment.
- any of the embodiments can partly be implemented via an operating system, for use by a developer of services for a device or object, and/or included within application software that operates in connection with the operable component(s).
- Software may be described in the general context of computer-executable instructions, such as program modules, being executed by one or more computers, such as client workstations, servers or other devices.
- client workstations such as client workstations, servers or other devices.
- network interactions may be practiced with a variety of computer system configurations and protocols.
- FIG. 26 thus illustrates an example of a suitable computing system environment 2600 in which one or more of the embodiments may be implemented, although as made clear above, the computing system environment 2600 is only one example of a suitable computing environment and is not intended to suggest any limitation as to the scope of use or functionality of any of the embodiments. Neither should the computing environment 2600 be interpreted as having any dependency or requirement relating to any one or combination of components illustrated in the exemplary operating environment 2600 .
- an exemplary remote device for implementing one or more embodiments herein can include a general purpose computing device in the form of a handheld computer 2610 .
- Components of handheld computer 2610 may include, but are not limited to, a processing unit 2620 , a system memory 2630 , and a system bus 2621 that couples various system components including the system memory to the processing unit 2620 .
- Computer 2610 typically includes a variety of computer readable media and can be any available media that can be accessed by computer 2610 .
- the system memory 2630 may include computer storage media in the form of volatile and/or nonvolatile memory such as read only memory (ROM) and/or random access memory (RAM).
- ROM read only memory
- RAM random access memory
- memory 2630 may also include an operating system, application programs, other program modules, and program data.
- a user may enter commands and information into the computer 2610 through input devices 2640
- a monitor or other type of display device is also connected to the system bus 2621 via an interface, such as output interface 2650 .
- computers may also include other peripheral output devices such as speakers and a printer, which may be connected through output interface 2650 .
- the computer 2610 may operate in a networked or distributed environment using logical connections to one or more other remote computers, such as remote computer 2670 .
- the remote computer 2670 may be a personal computer, a server, a router, a network PC, a peer device or other common network node, or any other remote media consumption or transmission device, and may include any or all of the elements described above relative to the computer 2610 .
- the logical connections depicted in FIG. 26 include a network 2671 , such local area network (LAN) or a wide area network (WAN), but may also include other networks/buses.
- LAN local area network
- WAN wide area network
- Such networking environments are commonplace in homes, offices, enterprise-wide computer networks, intranets and the Internet.
- Embodiments may be contemplated from the standpoint of an API (or other software object), as well as from a software or hardware object that provides pointing platform services in accordance with one or more of the described embodiments.
- Various implementations and embodiments described herein may have aspects that are wholly in hardware, partly in hardware and partly in software, as well as in software.
- exemplary is used herein to mean serving as an example, instance, or illustration.
- the subject matter disclosed herein is not limited by such examples.
- any aspect or design described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects or designs, nor is it meant to preclude equivalent exemplary structures and techniques known to those of ordinary skill in the art.
- the terms “includes,” “has,” “contains,” and other similar words are used in either the detailed description or the claims, for the avoidance of doubt, such terms are intended to be inclusive in a manner similar to the term “comprising” as an open transition word without precluding any additional or other elements.
- a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
- a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
- an application running on computer and the computer can be a component.
- One or more components may reside within a process and/or thread of execution and a component may be localized on one computer and/or distributed between two or more computers.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Human Computer Interaction (AREA)
- Computer Hardware Design (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Business, Economics & Management (AREA)
- Automation & Control Theory (AREA)
- Strategic Management (AREA)
- Accounting & Taxation (AREA)
- Development Economics (AREA)
- Finance (AREA)
- Entrepreneurship & Innovation (AREA)
- Game Theory and Decision Science (AREA)
- Economics (AREA)
- Marketing (AREA)
- General Business, Economics & Management (AREA)
- User Interface Of Digital Computer (AREA)
- Information Transfer Between Computers (AREA)
- Navigation (AREA)
Abstract
With the addition of directional information in the environment, a variety of service(s) can be provided on top of user identification or interaction with specific object(s) of interest by pointing at the objects. Sometimes either the device user and/or the publishers of content associated with a POI with which a user interacts will wish to delay the interaction with the POI and associated content. For such scenarios, items discovered through direction-based location services can be designated for later interaction, e.g., according to pre-defined criteria that define explicitly or implicitly when the later interaction will occur. Device users are thus provided with relevant content about endpoints of direction based services at relevant times, which may not be the time of initial contact with the POI.
Description
- This application claims priority to U.S. Provisional Application Ser. No. 61/074,415, filed on Jun. 20, 2008, entitled “MOBILE COMPUTING SERVICES BASED ON DEVICES WITH DYNAMIC DIRECTION INFORMATION,” and U.S. Provisional Application Ser. No. 61/074,590, filed on Jun. 20, 2008, entitled “MOBILE COMPUTING SERVICES BASED ON DEVICES WITH DYNAMIC DIRECTION INFORMATION,” the entirety of which are incorporated herein by reference.
- The subject disclosure relates to the provision of direction-based services based on direction information and/or other information, such as location information, of a device and to designating points of interest discovered with the device for later interaction.
- By way of background concerning some conventional systems, mobile devices, such as portable laptops, PDAs, mobile phones, navigation devices, and the like have been equipped with location based services, such as global positioning system (GPS) systems, WiFi, cell tower triangulation, etc. that can determine and record a position of mobile devices. For instance, GPS systems use triangulation of signals received from various satellites placed in orbit around Earth to determine device position. A variety of map-based services have emerged from the inclusion of such location based systems that help users of these devices to be found on a map and to facilitate point to point navigation in real-time and search for locations near a point on a map.
- However, such navigation and search scenarios are currently limited to displaying relatively static information about endpoints and navigation routes. While some of these devices with location based navigation or search capabilities allow update of the bulk data representing endpoint information via a network, e.g., when connected to a networked portable computer (PC) or laptop, such data again becomes fixed in time. Accordingly, it would be desirable to provide a set of richer experiences for users than conventional experiences predicated on location and conventional processing of static bulk data representing potential endpoints of interest.
- Another problem is that a user on the go being informed of nearby points of interest (POIs) based on location information may not always have the time to interact with the POIs, or to sift through irrelevant information such as POIs away from which a user is moving. Moreover, even if the user does have time, the device may not have the capabilities to support a full user experience to engage the user with, e.g., due to limited hardware, such as a limited keypad, screen space, etc.
- The above-described deficiencies of today's location based systems and devices are merely intended to provide an overview of some of the problems of conventional systems, and are not intended to be exhaustive. Other problems with the state of the art and corresponding benefits of some of the various non-limiting embodiments may become further apparent upon review of the following detailed description.
- A simplified summary is provided herein to help enable a basic or general understanding of various aspects of exemplary, non-limiting embodiments that follow in the more detailed description and the accompanying drawings. This summary is not intended, however, as an extensive or exhaustive overview. Instead, the sole purpose of this summary is to present some concepts related to some exemplary non-limiting embodiments in a simplified form as a prelude to the more detailed description of the various embodiments that follow.
- Direction based pointing services are provided for portable devices or mobile endpoints. Mobile endpoints can include a positional component for receiving positional information as a function of a location of the portable electronic device, a directional component that outputs direction information as a function of an orientation of the portable electronic device and a processing engine that processes the positional information and the direction information to determine a subset of points of interest relative to the portable electronic device as a function of the positional information and/or the direction information.
- Devices or endpoints can include compass(es), e.g., magnetic or gyroscopic, to determine a direction and location based systems for determining location, e.g., GPS. To supplement the positional information and/or the direction information, devices or endpoints can also include component(s) for determining speed and/or acceleration information for processing by the engine, e.g., to aid in the determination of gestures made with the device.
- With the addition of directional information in the environment, a variety of service(s) can be provided on top of user identification or interaction with specific object(s) of interest. For instance, when a user points at a particular item at a particular location or place, this creates an opportunity for anyone having an interest in that particular item to communicate with the user regarding that item or related items at a point in time when the user's focus is on the particular item. User context for the interaction can also be taken into account to supplement the provision of one or more interactive direction based services.
- Moreover, sometimes either the device user and/or the publishers of content associated with a POI with which a user interacts, will wish to delay the interaction with the POI and associated content. For such scenarios, a variety of embodiments of a device provisioned for direction-based location services interact with items discovered through direction-based location services and then designate such items for later interaction, e.g., according to pre-defined criteria that define explicitly or implicitly when the later interaction will occur. Device users are thus provided with relevant content about endpoints at relevant times, which may not be the time of initial contact with the POI.
- These and other embodiments are described in more detail below.
- Various non-limiting embodiments are further described with reference to the accompanying drawings in which:
-
FIG. 1 is a block diagram of a non-limiting architecture for mobile device delayed interaction scenarios in accordance with one or more embodiments; -
FIG. 2 is a block diagram of another non-limiting architecture for mobile device delayed interaction scenarios; -
FIG. 3 is a flow diagram of a non-limiting process for marking points of interest for later interaction; -
FIG. 4 is a flow diagram of a non-limiting process for designating points of interest for later interaction; -
FIG. 5 is a block diagram of a device illustrating a specific apparatus for marking points of interest for delayed interaction in connection with direction based services; -
FIG. 6 is a flow diagram of a non-limiting process for designating points of interest associated with a given place for later interaction; -
FIG. 7 is a block diagram of an exemplary device architecture for device that supports direction based services in accordance with one or more embodiments; -
FIG. 8 illustrates an exemplary sequence for delayed interaction with POIs at a location as a future advertising source; -
FIG. 9 is a block diagram illustrating a non-limiting implementation in which POIs are scanned based on encoding information; -
FIG. 10 is a block diagram illustrating market players in an overall advertising model established based on interest in satisfying the delayed interactions defined according to one or more embodiments herein; -
FIG. 11 is a block diagram illustrating a variety of ways in which user intent can be inferred or implied with respect to points of interest; -
FIGS. 12 and 13 illustrate representative scenarios where a delayed interaction facilitates a better timing for a transaction regarding a given item of interest; -
FIG. 14 is a block diagram illustrating the formation of motion vectors for use in connection with location based services; -
FIG. 15 ,FIG. 16 andFIG. 17 illustrate aspects of algorithms for determining intersection endpoints with a pointing direction of a device; -
FIG. 18 represents a generic user interface for a mobile device for representing points of interest based on pointing information; -
FIG. 19 represents some exemplary, non-limiting alternatives for user interfaces for representing point of interest information; -
FIG. 20 represents some exemplary, non-limiting fields or user interface windows for displaying static and dynamic information about a given point of interest; -
FIG. 21 illustrates a sample overlay user interface for overlaying point of interest information over a camera view of a mobile device; -
FIG. 22 illustrates a process for predicting points of interest and aging out old points of interest in a region-based algorithm; -
FIG. 23 illustrates a first process for a device upon receiving a location and direction event; -
FIG. 24 illustrates a second process for a device upon receiving a location and direction event; -
FIG. 25 is a block diagram representing an exemplary non-limiting networked environment in which embodiment(s) may be implemented; and -
FIG. 26 is a block diagram representing an exemplary non-limiting computing system or operating environment in which aspects of embodiment(s) may be implemented. - As discussed in the background, among other things, current location services systems and services, e.g., GPS, cell triangulation, P2P location service, such as Bluetooth, WiFi, etc., tend to be based on the location of the device only, and tend to provide static experiences that are not tailored to a user because the data about endpoints of interest is relatively static, or fixed in time.
- At least partly in consideration of these deficiencies of conventional location based services, various embodiments of a portable device are provided that enable users to point a device in a direction, determine a set of system points of interest based on the direction pointed to by the device, but then also defer interaction with a point of interest of the set to a point later in time, enabling a rich set of scenarios empowering users of direction-based services to receive relevant information at optimal times. Such direction-based services can be offered as part of cloud services.
- While each of the various embodiments herein are presented independently, e.g., as part of the sequence of respective Figures, one can appreciate that a portable device and/or associated network services, as described, can incorporate or combine two or more of any of the embodiments. Given that each of the various embodiments improve the overall services ecosystem in which users wish to operate, together a synergy results from combining different benefits. Accordingly, the combination of different embodiments described below shall be considered herein to represent a host of further alternate embodiments.
- A non-limiting device provisioned for direction based services includes an engine for analyzing location information (e.g., GPS), direction information such as compass information (e.g., North, West, South, East), and optionally movement information (e.g., accelerometer information) to allow a platform for pointing to and thereby finding objects of interest in a user's environment. A variety of scenarios are contemplated based on a user finding information of interest about objects of interests, such as restaurants, or other items around an individual, or persons, places or events of interest nearby a user and tailoring information to that user (e.g., coupons, advertisements), however at a time later than the finding.
- Accordingly, as part of various non-limiting embodiments and example scenarios discussed in more detail below, effective ways are provided to point in a direction, identify points of interest within scope of the pointed to direction, and to interact later with one or more of the points of interest by marking such POIs for later interaction in connection with the provision of direction-based services.
- In this regard, sometimes an interested party, e.g., the device user and/or the publishers of content associated with a POI, will wish to delay interaction with respect to the POI or supplement a present interaction with respect to the POI with a later interaction. This could be for a variety of explicit or implicit reasons, which can be input or discerned by the device based on context. For instance, a user with limited screen space may wish to designate certain POIs for later interaction when the user can view information about the POI via a personal computer (PC) and a larger display.
- For a non-limiting example scenario to demonstrate a benefit of delaying interaction, a user might pass a theater and want to go to one of the shows playing at the theater; however, the user might want to wait to reach home so she can ask her husband about availability and consult a rich Web based interface associated with the POI that clearly illustrates when the show is playing, how to buy tickets, etc. Thus, the user, with a simple designation of the POI for later interaction along with an explicit or implicit time for the future interaction, can ensure that the POI and its relevance to the user re-surface at a better time. This is in contrast to today where a user must remember to consult the web site when the user reaches home, or the user must try to figure out such information with small writing rendered by limited touch screens and input, or with limited time or network connectivity.
- Moreover, the content providers, i.e., those wishing to convey information about the POI or information related to the POI, such as advertisements also benefit from the later interaction because they too can publish more content, and gather more information from the user, as well as update their content prior to publishing and also take more time to tailor the content to the user. Thus, both users and POI content providers alike benefit from the capability of users marking certain POIs for later interaction.
- In another embodiment, a user marks a POI for later interaction, and additionally associates other information with the POI, e.g., in order to form lists. For instance, a user can designate a restaurant they walk by at lunch and mark it with a category such as “restaurant that I would like to try for dinner sometime.” Thus, when the user later returns to the POI through some explicit or implicit route, the user has the chance to view the list of restaurants to try for dinner. This also implicitly sets information about when the delayed interaction should occur based on context.
- Delayed interaction can be defined according to a variety of different criterion, e.g., explicit user choice, a pre-set amount of time (e.g., 10 hours later), or a pre-set time (e.g., 6 pm), etc. In this regard, any criterion or combination of criteria with respect to the POI, e.g., “device comes within 2 blocks of the POI and the time is between 5 pm and 9 pm,” can be a set of criteria for notifying or reminding the user of the existence of the POI. Other information, such as device location, direction information, path information for walking to the POI can be provided as input to the delay criterion as well. In the above example, a restaurant that is not open for lunch as a user walks by, but is open for dinner, the restaurant finds a way to become relevant to the user again at a later time through the process of delayed interaction.
- At any time, a user can explicitly request to view any of the POIs with which the user interacted with in the past, and this view can be with the same user device that discovered the POIs, e.g., notifications can be received at a later time or this can be with an entirely different form factor. For instance, the user can interact with the delayed set of POIs via a web site and associated storage and intelligence engine that aggregates POIs interacted with by the user, and keeps track of which POIs a user still wants to interact with, and under what delayed conditions.
- Due to the nature of user desire for a POI to in effect “go away until later,” for efficient operation, a user under certain circumstances will want to quickly and easily “mark” a point of interest for later review so as to waste a minimal amount of current time and energy. Accordingly, in one embodiment, a user can carry out a unique gesture that marks POIs based on direction and motion information (e.g., accelerometer information) available on the device, such that the user can easily repeat the unique gesture to mark other objects for later review. Such unique gestures can be pre-defined for the device or pre-defined by the user. For example, with a arm, elbow and/or wrist movement(s) defining a gesture, the gesture can be used to simultaneously target and mark an object or set of objects for later interaction, e.g., via the Web.
- In one embodiment, a method for using a device provisioned for pointing based services comprises receiving direction information associated with a pointed to direction of the device. Next, points of interest are identified within an area defined by the direction according to an intersection test. Next, points of interest (POIs) can be marked by the user to delay interaction with the marked POIs, e.g., to a later time when the user again interacts with the pointing based services. Thus, a way to mark POIs for later interaction is provided, or a way that sets reminders or notifications regarding the POIs to interact with them later.
- For instance, one non-limiting example is a delayed typing scenario. For instance, as a user drives or walks by some real estate, a delayed typing scenario may be appropriate since the user may not have the time or enough of a keypad, or screen to learn about particular real estate of interest. For instance, typing on a mobile device might be inconvenient. Thus, via the service, a user can point at a point of interest, and with a gesture, or other input, mark the point of interest for later action. Then, when the user reaches a PC, a reminder to interact with the point of interest is present and the user can type with a full keyboard.
- Details of various other exemplary, non-limiting embodiments are provided below.
- Delayed Interaction with Endpoints of Direction Based Services
- As mentioned, one or more embodiments described herein provide the ability to identify endpoints with pointing interactions of direction based location services, and delay interaction to a more convenient moment or situation. For example, delayed editing of dynamic information about a point of interest is enabled by marking the location, and then later adding some information about the point of interest for use by the direction based services. For instance, a user does not always have time to manipulate or upload pictures, audio, automatic annotations, etc. with respect to a given point of interest at a time of creation. In such circumstances, a user can defer certain actions regarding a point of interest to a future time, e.g., create a reminder to the user as to why they wanted to add a particular point of interest for delayed interaction.
- In this regard, leveraging digital compasses and location services to provide direction and location information enables a next-generation of direction or pointer based location search services, scan services, discoverability services, etc., where the digital compass and GPS can be used to point at objects of interest, thus defining the entry point for one or more data transactions between the device and one or more third party devices providing service(s) for the objects of interest at which the device is pointed. In the case of one or more embodiments described herein, a user can defer the entry point for the one or more data transactions to a later time. Using a digital compass, e.g., solid state, magnetic, sun/moon based, etc. on a mobile endpoint facilitates point and upload scenarios, point and synchronize geographical information to a Web service, cloud services or another endpoint.
- As reflected in various embodiments, a device is provided that can hone in on, interact with, or otherwise transact with, a specific object or specific objects of interest by way of location and direction of the device, creating a new advertising model not previously known. As an example, when a user interacts with a particular product on a shelf at a retail store in connection with a direction based service, this creates an opportunity for anyone having an interest in the particular product to engage the user, e.g., communicate some information to that user. Any context that can be discerned from the user's actions and interactions can also be taken into account when acting on the opportunity. In the case of introducing a delay with respect to the opportunity by deferring interaction to a later time, a market is created for the future opportunity represented by the delay information, and in aggregate, can be predictive of early trends happening with products and services.
- In this regard, users can interact with the endpoints in a host of context sensitive ways to provide or update information associated with endpoints of interest, or to receive beneficial information or instruments (e.g., coupons, offers, etc.) from entities associated with the endpoints of interest, and any of such actions can be deferred to a later or better time with one or more embodiments. With location services, it can be determined that a user's device is physically inside an actual store, or near a window display of a store. Coupling that to the user's interacting with an object of interest with direction information to enable direction-based services results in a new opportunity to take action based on the interaction with specific items.
- In one embodiment, a portable electronic device is provided having a positional component for receiving position information as a function of a location of the portable electronic device; and at least one processor configured to process the position information to determine identifier(s) of points of interest associated with the location of the portable electronic device and based on intent information determined for the portable electronic device and the identifier(s), a set of delay criterion are set for later interaction with the given points of interest represented by the identifier(s).
- As mentioned, a device can include a directional component that outputs direction information as a function of an orientation of the portable electronic device and that facilitates determining an intent of the device. The directional component can optionally be a digital compass that outputs the direction information. The device can determine a subset of items of interest relative to candidate items of interest within a 3-D space as a function of the positional information or the direction information.
- The device can request delayed content based on a selection of an item of interest and the identifier(s). The request for the delayed content can be based on a scan of an encoding associated with an item of interest and the identifier(s). The request for delayed content can be based on a keyword received as input by the device and the identifier(s). The request for delayed content can be based on the intent information and the identifier(s) from at least one network service. The request for delayed content can also be automatic, or made by other explicit or implicit request by the user.
- At a later time, and potentially from a different device, a content package can be received based on the request for the delayed content from the network service. The device can optionally include a display or sound devices, such as speakers, to display or render some or all of the graphical (e.g., text, icon, image data, video data, etc.) and/or audio content of the content package.
- An initial interacting can include orientating the device toward some item(s) of interest and determining direction information associated with the orientation of the device from which a subset of the item(s) of interest are identified. For instance, interacting can include pointing the device in a direction defining a pointing line generally towards items of interest in the place(s) and determining a set of candidate items of interest as a subset of items of interest that substantially intersect with the pointing line, and enabling the selection of one or more items from the set of candidate items.
- In one embodiment, a method for a device provisioned for direction based services comprises determining direction information associated with a pointed to direction relative to a pre-defined orientation of the device and identifying POIs within an area defined as a function of the pointed to direction including determining which of a set of POIs intersect with the area. Next, information corresponding to the POIs identified within the area is displayed, e.g., on a map or list, and POIs identified within the area can be designated for a delayed interaction at a later time. In one embodiment, IDs associated with the designated POIs are transmitted to a network service enabling information about the designated POIs to be exposed at the later time, e.g., from a different form factor device.
- The designation of POIs for later interaction can include explicit input with respect to the designated one or more POIs, such as one or more of a gesture input, a keyword input, an audio input, a video camera input or a touchscreen input with respect to the one or more POIs. The designation of POIs for later interaction can include implicit input with respect to the designated one or more POIs including making inferences about the delayed interaction at the later time based on a context of present interaction.
- The displaying of POI information can be made on a topographical map visually representing at least the area defined as a function of a pointed to direction and graphical indications of the POIs can be displayed within the area at corresponding locations on the topographical map view. The POIs can also be represented in a filtered list view, e.g., filtered by restaurants in the area. The designating of POIs can include designating pre-defined criteria explicitly or implicitly defining the delay of the delayed interaction. The designating can include marking one or more POIs with touchscreen input relating to the one or more designated POIs, tagging the one or more POIs with tag information defining the delayed interaction, or other ways to designate POIs for later interaction.
- In another embodiment, a portable electronic device includes a positional component for receiving position information as a function of a location of the portable electronic device and a directional component that outputs direction information as a function of an orientation of the portable electronic device. In addition, the device includes a processor configured to process the position information and the direction information to determine identifiers or IDs of POIs within a pre-defined geographical area of the device, interact with a selected ID, receive information about the POI corresponding to the selected identifier, and receive input regarding the selected ID defining a future interaction.
- Information about the selected ID defining the future interaction is transmitted along with the point of interest to a network service. In one embodiment, a pointer structure is provided on the device that visually indicates the orientation of the portable electronic device based upon which the directional component outputs the direction information. For example, this could be a triangular structure that comes to a point to show a primary orientation of the device. This could also be indicated on the display of the device during provision of direction based services.
- In one embodiment, the position information and the direction information determine a pointing line and a set of candidate points of interest are determined as a subset of points of interest that substantially intersect with a function based on the pointing line. An intersection test for determining subsets of points of interest can include defining an arc based on an angle with respect to a pointing line, defining a cone based on an angle with respect to the pointing line, or a line function defining a rectangular space oriented along the pointing line (2-D or 3-D depending on the application). A speaker can render audio content if a condition upon which the future interaction is predicated occurs. The directional component can be a digital compass that outputs the direction information.
- In another embodiment, a method comprises determining a place in which a portable device is located based on location information determined for the device and identifying a subset of items of interest in the place including determining an orientation of the device based on direction information of the device and determining the subset of items of interest in the place as a function of the orientation. Next, input with respect to an item of the subset of items is received as well as input defining a delayed interaction with the item or place.
- The delayed interaction can include receiving a notification when a characteristic of the item meets a pre-defined condition, such as when a price of the item meets a target price condition, thereby initiating the delayed interaction. One way of identifying and designating an item for delayed interaction can be with a scan input from scanning or imaging a bar code associated with the item of interest.
-
FIG. 1 is a block diagram illustrating some concepts of one or more embodiments for enabling delayed interaction with endpoints in a direction based location system. In this regard, two main things are specified by the device participating in direction basedservices 120. First, the device providesPOI information 100 from pointing with the device, i.e., the device identifies nearby POIs of particular interest to a user. This can be done explicitly 102 or implicitly 104. Also, the device associates criteria fordelay 110 with the POIs. This too can be done explicitly 112 or implicitly 114. Together, thePOI information 100 and delayinformation 110 are transmitted to direction basedservices 120, which enables a whole host ofscenarios 130 for later interaction with thePOIs 100 according to thecriteria 110 being satisfied. -
FIG. 2 is an exemplary non-limiting diagram of an architecture for achieving one or more embodiments described herein. At the device layer Layer1 for specifying delayed POI information,location information 200,direction information 202 and user intent information 204 can be input to a Layer2 withvarious services 210, includingweb services 212,cloud services 214,other data services 216, etc. Any ofservices 210 can have input to a set of brick and mortar store databases in Layer3, such as data store(s) 220, 222, 224, etc. or set of online or electronic retailer databases in Layer4, such as data store(s) 230, 232, 234, etc. In this regard, user intent 204 coupled with a place of the device can be utilized by one ormore services 210 to retrieve and delivercustom content 240 to the device based on the intent and place of the device, but at a later time according to a set of explicit or implicit criteria. -
FIG. 3 is a flow diagram of a scenario where a user delays interaction with a point of interest. At 300, a user points a pointer device in one or more directions to define scope of endpoints. At 310, the user receives an indication of one or more endpoints within scope in response from a network service. At 320, the user marks endpoint(s) for later interaction or viewing. At 330, when the user reconnects to the service, e.g., from a PC, the user can receive reminders about marked endpoints. Other ways for triggering the interaction can be employed at 330 as described elsewhere herein. The user can follow through with interaction/viewing at 340, as desired. -
FIG. 4 is a flow diagram illustrating an exemplary process for designating POIs for delayed interaction in connection with direction based services. At 400, direction information is determined from a pointed to direction relative to a pre-defined orientation. At 410, POIs are identified within an area defined as a function of the pointed to direction and it is determined which POIs intersect the area and are within scope of a given user experience. At 420, information corresponding to the POIs identified within the area is displayed, e.g., on a map or in a list. At 430, the POI(s) identified within the area are designated for a delayed interaction at a later time. At 440, the information (e.g., ID information) associated with the POIs designated for later interaction is transmitted to a network service enabling later interactions. -
FIG. 5 illustrates an exemplary non-limiting device 500 including processor(s) 510 having a position engine orsubsystem 520 for determining a location of the device 500 and a direction engine or subsystem 530 for determining a direction or orientation of the device 500. Then, by interacting with local application(s) 540 and/or service(s) 570, content can be delivered to the device, which is tailored to device intent and a place in which the device is present. The tailored content can be rendered by graphic subsystem or display/UI 550 oraudio subsystem 560. In one non-limiting embodiment, point structure 590 is included, e.g., a triangular piece that points along an orientation line 595 upon which directional calculations are based. Similarly, the orientation line 595 can be indicated by graphics subsystem display/UI 550 with or without point structure 590. In this regard, various embodiments herein enable delayedPOI ID information 580 to and fromservices 570 so that the delayed interactions can occur in the future as assisted byservices 570. -
FIG. 6 is a flow diagram illustrating a process for delaying interaction with respect to a specific item within an identified place. At 600, a place at which a portable device is located is determined based on location information of the device. At 610, an orientation of the device is determined based on direction information of the device and a subset of items of interest are identified in the place as a function of the orientation. At 620, an item of the subset of items can be selected and a delayed interaction with the item (or place) is thereby enabled by direction based services. -
FIG. 7 illustrates amobile computing device 100 according to an embodiment. In this regard, a set ofservices 760 that support delayed interaction with points of interest can be built based onlocation information 722 anddirection information 732 collected by a mobile device, such as a phone. For instance,location information 722 can be recorded by alocation subsystem 720 such as a GPS subsystem communicating withGPS satellites 740. Direction orpointing information 732 can be collected by adirection subsystem 730, such as a compass, e.g., gyroscopic, magnetic, digital compass, etc. In addition, optionally,movement information 712 can be gathered by thedevice 700, e.g., via tower triangulation algorithms, and/or acceleration of thedevice 700 can be measured as well, e.g., with an accelerometer. The collective information 750 can be used to gain a sense of not only where thedevice 700 is located in relation to other potential points of interest tracked or known by the overall set ofservices 760, but also what direction the user is pointing thedevice 700, so that theservices 760 can appreciate at whom or what the user is pointing thedevice 700. - In addition, a
gesture subsystem 770 can optionally be included, which can be predicated on any one or more of themotion information 712,location information 722 ordirection information 732. In this regard, not only candirection information 732 andlocation information 722 be used to define a set of unique gestures, but also motion information 712 (such as speed and acceleration) can be used to define a more sophisticated set of gestures. -
FIG. 7 thus illustrates agesture subsystem 770 can optionally be included in adevice 700. In this regard, one can appreciate that a variety of algorithms could be adopted for agesture subsystem 770. For instance, a simple click-event when in the “pointing mode” for thedevice 700 can result in determining a set of points of interest for the user. Another gesture on top of that pointing gesture with respect to a POI can result in delaying interaction with that POI. - In this regard, a device can include a variety of spatial and map components and intelligence engines to determine intersections for directional arcs (or cones in 3-D). For instance, objects of interest could be represented with exact boundaries, approximated with spheres, subshells (stores in a mall) of a greater shell (mall), hierarchically arranged, etc. Dynamically generated bounding boxes can also be implemented work, i.e., any technique can be used to obtain boundary information for use in an intersection algorithm. Thus, such boundaries can be implicitly or explicitly defined for the POIs.
- Thus, a device can include an intersection component that interprets pointing information relative to a set of potential points of interest. The engine can perform such intersections knowing what the resolution of the measuring instruments are on the device, such as a given resolution of a GPS system. Such techniques can include taking into account how far a user is from a plane of objects of interest, such as items on a shelf or wall, the size of the item of interest and how that is defined, as well as the resolution of location instrumentation, such as the GPS system. The device can also optionally include an altimeter, or any other device that gives altitude information, such as measuring radar or sonar bounce from the floor. The altitude information can supplement existing location information for certain specialized services where points of interest vary significantly at different altitudes. It is noted that GPS itself has some information about altitude in its encoding.
-
FIG. 8 is a block diagram illustrating an exemplary non-limiting exchange between adevice 800 andservice 810. Afterstart 802, an example request for illustrative purpose is made by adevice 800 to aservice 810, which includes data related to the location of the device, a given POI, and information about delaying the interaction. For instance, then, at 815, theservice 810 gets all offers for thePOI 815 and/or at 820, gets the offers for the given location. At 825, or earlier, it is determined if the delay criteria have been met for the given POI, if so, theservice 810 may get updated content associated with the location 830 along with an optional branded user interface at 835. At 840, assuming the delay criteria have been met, an updated content package is created and delivered to thedevice 800 at 845. The device can undergo a check for the device at 850. The delayed or future interaction can take place at 855. Optionally, based on an advertising model, the content providers or owners can be billed at 860. -
FIG. 9 illustrates a general block diagram for an optional encoding technique for POI information. In this regard, various pieces of static anddynamic information UI 900 of the device, can also be encoded as an image or abar code 920, or some other device readable compact encoding. Then, a user can scan an item of interest, and coupled with presence in a physical store, arequest 915 can be made to aservice 940 with a key representing the scanned item and information representing the place, whereby theservice 940 determinescontent 925 to return to thedevice 900 based on the scanned item and the place. In addition,delay criterion 925 specify how to delay the interaction with the scanned item. - For instance, in an optional Quick Response (QR) support embodiment, decompression allows users to take pictures of a QR code and process its contents where information has been encoded into a sticker/printout for display outside of a business (e.g., in the form of a copyrighted URL). The code need not be a QR code, but could be any code that can be read or scanned or processed to determine its underlying content. For instance, with a visual representation, a picture can be taken and processed, or with the bar code, the device can scan it. RF identification technology could also be used. For the avoidance of doubt, any encoded image format can be used, like a bar code, only one example of which is a QR code.
- In effect, this enables a query for POI information via a QR code or other encoding. The user scans or images the code with a
device 930, and then transmits the code to the service, which translates the code into static and dynamically updated user information for display as a UI 900 (or other user interface representation) so that the user can query about a POI merely by pointing at it. A URL for the POI can also be encoded in a format such as a QR code. In one non-limiting embodiment, the user can point the device at a QR code, and decode a given image with the QR code. -
FIG. 10 illustrates at a high level, via a block diagram, a beneficial advertising model enabled by a direction/location based services with delayed interaction with endpoints as described in one or more embodiments herein. For instance, scanneditems 1000 for delay, or pointed toitems 1000 for delay, or any other action taken with respect toitems 1000 for delay can be sent asinformation 1005 to aservice 1010 that brokers interestedthird parties particular items 1000. Accordingly, suchthird parties 1020 or 1030 (third parties may be misleading because third parties can include parties related to a retail establishment where the device is currently located) can provide content as part ofinteractions 1025 or 1035 as part of a push or pull experience from the user perspective. This opportunity to provide content in a delayed manner enablesservices 1010 to notify 1015parties 1020 interested in the delayed interaction. This beneficial information provided tothird parties -
FIG. 11 is a block diagram illustrating a vast wealth of actions and interactions that can help define intent/context 1120 to delay for a given POI and location at which the device is present. For instance,text 1100 may be received by the device, aproduct search query 1102 local to the store,bar code scan 1104,image scan 1106, explicit designation of a product (e.g., by pointing at a product, or taking an image of the product and performing image recognition) 1108, price comparerequest 1110,gesture input 1112,other interaction 1114, etc. can all be taken into account in discerning intent of the device at a given place, along withdirection information 1150. This combined withlocation information 1140 for discerning the place in which the device is in results inadvertising opportunities 1130 for a whole host of third party advertising transactions for delayed delivery to the device. -
FIG. 12 is a flow diagram of an exemplary non-limiting process for using a device and services as described herein. At 1200, a place where a portable device is located is determined based on position information. At 1210, the device interacts with an item of interest in the place via direction based services. At 1220, a desired characteristic for the item of interest is indicated. At 1230, results regarding the item of interest are received later when the characteristic is satisfied. At 1240, updated content about the item of interest can be provided. -
FIG. 13 is a flow diagram of a non-limiting scenario for the process ofFIG. 12 . At 1300, a place where the portable device is located is determined based on position information. At 1310, the device interacts with an item of interest in the place via direction based location services as described elsewhere herein. At 1320, the user identifies a target price for the item of interest. At 1330, results respecting the item of interest are delivered later when the price drops, e.g., 2 months later. At 1340, the content about the item of interest can be updated on an ongoing basis or at the time of delivery of the delayed content (e.g., new or updated advertisement, recent user reviews, etc.). - The following description contains supplemental context regarding potential non-limiting pointing devices, architectures and associated services to further aid in understanding one or more of the above embodiments. Any one or more of any additional features described in this section can be accommodated in any one or more of the embodiments described above with respect to delayed direction based services at a particular location for given POI(s). While such combinations of embodiments or features are possible, for the avoidance of doubt, no embodiments set forth in the subject disclosure should be considered limiting on any other embodiments described herein.
- As mentioned, a broad range of scenarios can be enabled by a device that can take location and direction information about the device and build a service on top of that information. For example, by using an accelerometer in coordination with an on board digital compass, an application running on a mobile device updates what each endpoint is “looking at” or pointed towards, attempting hit detection on potential points of interest to either produce real-time information for the device or to allow the user to select a range, or using the GPS, a location on a map, and set information such as “Starbucks—10% off cappuccinos today” or “The Alamo—site of . . . ” for others to discover. One or more accelerometers can also be used to perform the function of determining direction information for each endpoint as well. As described herein, these techniques can become more granular to particular items within a Starbucks, such as “blueberry cheesecake” on display in the counter, enabling a new type of sale opportunity.
- Accordingly, a general device for accomplishing this includes a processing engine to resolve a line of sight vector sent from a mobile endpoint and a system to aggregate that data as a platform, enabling a host of new scenarios predicated on the pointing information known for the device. The act of pointing with a device, such as the user's mobile phone, thus becomes a powerful vehicle for users to discover and interact with points of interest around the individual in a way that is tailored for the individual. Synchronization of data can also be performed to facilitate roaming and sharing of POV data and contacts among different users of the same service.
- In a variety of embodiments described herein, 2-dimensional (2D), 3-dimensional (3D) or N-dimensional directional-based search, discovery, and interactivity services are enabled for endpoints in the system of potential interest to the user.
- The pointing information and corresponding algorithms depend upon the assets available in a device for producing the pointing or directional information. The pointing information, however produced according to an underlying set of measurement components, and interpreted by a processing engine, can be one or more vectors. A vector or set of vectors can have a “width” or “arc” associated with the vector for any margin of error associated with the pointing of the device. A panning angle can be defined by a user with at least two pointing actions to encompass a set of points of interest, e.g., those that span a certain angle defined by a panning gesture by the user.
- In one non-limiting embodiment, a portable electronic device includes a positional component for receiving positional information as a function of a location of the portable electronic device, a directional component that outputs direction information as a function of an orientation of the portable electronic device and a location based engine that processes the positional information and the direction information to determine a subset of points of interest relative to the portable electronic device as a function of at least the positional information and the direction information.
- The positional component can be a positional GPS component for receiving GPS data as the positional information. The directional component can be a magnetic compass and/or a gyroscopic compass that outputs the direction information. The device can include acceleration component(s), such as accelerometer(s), that outputs acceleration information associated with movement of the portable electronic device. The use of a separate sensor can also be used to further compensate for tilt and altitude adjustment calculations.
- In one embodiment, the device includes a cache memory for dynamically storing a subset of endpoints of interest that are relevant to the portable electronic device and at least one interface to a network service for transmitting the positional information and the direction information to the network service. In return, based on real-time changes to the positional information and direction/pointing information, the device dynamically receives in the cache memory an updated subset of endpoints that are potentially relevant to the portable electronic device.
- For instance, the subset of endpoints can be updated as a function of endpoints of interest within a pre-defined distance substantially along a vector defined by the orientation of the portable electronic device. Alternatively or in addition, the subset of endpoints can be updated as a function of endpoints of interest relevant to a current context of the portable electronic device. In this regard, the device can include a set of Representational State Transfer (REST)-based application programming interfaces (APIs), or other stateless set of APIs, so that the device can communicate with the service over different networks, e.g., Wi-Fi, a GPRS network, etc. or communicate with other users of the service, e.g., Bluetooth. For the avoidance of doubt, the embodiments are in no way limited to a REST based implementation, but rather any other state or stateful protocol could be used to obtain information from the service to the devices. For the avoidance of doubt, implementations of direction based services and devices are not dependent on REST based implementations, but could also be performed with REST, simple object access protocol (SOAP), really simple syndication (RSS), etc.
- The directional component outputs direction information including compass information based on calibrated and compensated heading/directionality information. The directional component can also include direction information indicating upward or downward tilt information associated with a current upward or downward tilt of the portable electronic device, so that the services can detect when a user is pointing upwards or downwards with the device in addition to a certain direction. The height of the vectors itself can also be taken into account to distinguish between an event of pointing with a device from the top of a building (likely pointing to other buildings, bridges, landmarks, etc.) and the same event from the bottom of the building (likely pointing to a shop at ground level), or towards a ceiling or floor to differentiate among shelves in a supermarket. A 3-axis magnetic field sensor can also be used to implement a compass to obtain tilt readings.
- Secondary sensors, such as altimeters or pressure readers, can also be included in a mobile device and used to detect a height of the device, e.g., what floor a device is on in a parking lot or floor of a department store (changing the associated map/floorplan data). Where a device includes a compass with a planar view of the world (e.g., 2-axis compass), the inclusion of one or more accelerometers in the device can be used to supplement the motion vector measured for a device as a virtual third component of the motion vector, e.g., to provide measurements regarding a third degree of freedom. This option may be deployed where the provision of a 3-axis compass is too expensive, or otherwise unavailable. In this regard, any type of compass, or combination of compasses can be used according to the sensitivity or degree of directional information for a given application or set of services. Thus, electromagnetic compass(es), digital compass(es), SW, etc., or any combination of compass(es) are all contemplated for a device in order to interact with POIs. Moreover, any one or more of the compass(es) can include support for 1, 2 or 3 axes.
- In this respect, a gesturing component can also be included in the device to determine a current gesture of a user of the portable electronic device from a set of pre-defined gestures. For example, gestures can include zoom in, zoom out, panning to define an arc, all to help filter over potential subsets of points of interest for the user.
- For instance, web services can effectively resolve vector coordinates sent from mobile endpoints into <x,y,z> or other coordinates using location data, such as GPS data, as well as configurable, synchronized POV information similar to that found in a GPS system in an automobile. In this regard, any of the embodiments can be applied similarly in any motor vehicle device. One non-limiting use is also facilitation of endpoint discovery for synchronization of data of interest to or from the user from or to the endpoint.
- Among other algorithms for interpreting position/motion/direction information, as shown in
FIG. 14 , adevice 1400 employing the direction based location basedservices 1402 as described herein in a variety of embodiments herein include a way to discern between near objects, such asPOI 1414 and far objects, such as POI 1416. Depending on the context of usage, the time, the user's past, the device state, the speed of the device, the nature of the POIs, etc., the service can determine a general distance associated with a motion vector. Thus, amotion vector 1406 will implicatePOI 1414, but not POI 1416, and the opposite would be true formotion vector 1408. - In addition, a
device 1400 includes an algorithm for discerning items substantially along a direction at which the device is pointing, and those not substantially along a direction at which the device is pointing. In this respect, whilemotion vector 1404 might implicatePOI 1412, without a specific panning gesture that encompassed more directions/vectors, POIs 1414 and 1416 would likely not be within the scope of points of interest defined bymotion vector 1404. The distance or reach of a vector can also be tuned by a user, e.g., via a slider control or other control, to quickly expand or contract the scope of endpoints encompassed by a given “pointing” interaction with the device. - In one non-limiting embodiment, the determination of at what or whom the user is pointing is performed by calculating an absolute “Look” vector, within a suitable margin of error, by a reading from an accelerometer's tilt and a reading from the magnetic compass. Then, an intersection of endpoints determines an initial scope, which can be further refined depending on the particular service employed, i.e., any additional filter. For instance, for an apartment search service, endpoints falling within the look vector that are not apartments ready for lease, can be pre-filtered.
- In addition to the look vector determination, the engine can also compensate for, or begin the look vector, where the user is by establish positioning (˜15 feet) through an A-GPS stack (or other location based or GPS subsystem including those with assistance strategies) and also compensate for any significant movement/acceleration of the device, where such information is available.
- As mentioned, in another aspect, a device can include a client side cache of potentially relevant points of interest, which, based on the user's movement history can be dynamically updated. The context, such as geography, speed, etc. of the user can be factored in when updating. For instance, if a user's velocity is 2 miles an hour, the user may be walking and interested in updates at a city block by city block level, or at a lower level granularity if they are walking in the countryside. Similarly, if a user is moving on a highway at 60 miles per hour, the block-by-block updates of information are no longer desirable, but rather a granularity can be provided and predictively cached on the device that makes sense for the speed of the vehicle.
- In an automobile context, the location becomes the road on which the automobile is travelling, and the particular items are the places and things that are passed on the roadside much like products in a particular retail store on a shelf or in a display. The pointing based services thus creates a virtual “billboard” opportunity for items of interest generally along a user's automobile path. Proximity to location can lead to an impulse buy, e.g., a user might stop by a museum they are passing and pointing at with their device, if offered a discount on admission.
- In various alternative embodiments, gyroscopic or magnetic compasses can provide directional information. A REST based architecture enables data communications to occur over different networks, such as Wi-Fi and GPRS architectures. REST based APIs can be used, though any stateless messaging can be used that does not require a long keep alive for communicated data/messages. This way, since networks can go down with GPRS antennae, seamless switching can occur to Wi-Fi or Bluetooth networks to continue according to the pointing based services enabled by the embodiments described herein.
- A device as provided herein according to one or more embodiments can include a file system to interact with a local cache, store updates for synchronization to the service, exchange information by Bluetooth with other users of the service, etc. Accordingly, operating from a local cache, at least the data in the local cache is still relevant at a time of disconnection, and thus, the user can still interact with the data. Finally, the device can synchronize according to any updates made at a time of re-connection to a network, or to another device that has more up to date GPS data, POI data, etc. In this regard, a switching architecture can be adopted for the device to perform a quick transition from connectivity from one networked system (e.g., cell phone towers) to another computer network (e.g., Wi-Fi) to a local network (e.g., mesh network of Bluetooth connected devices).
- With respect to user input, a set of soft keys, touch keys, etc. can be provided to facilitate in the directional-based pointing services provided herein. A device can include a windowing stack in order to overlay different windows, or provide different windows of information regarding a point of interest (e.g., hours and phone number window versus interactive customer feedback window). Audio can be rendered or handled as input by the device. For instance, voice input can be handled by the service to explicitly point without the need for a physical movement of the device. For instance, a user could say into a device “what is this product right in front of me? No, not that one, the one above it” and have the device transmit current direction/movement information to a service, which in turn intelligently, or iteratively, determines what particular item of interest the user is pointing at, and returns a host of relevant information about the item.
- One non-limiting way for determining a set of points of interest is illustrated in
FIG. 15 . InFIG. 15 , adevice 1500 is pointed (e.g., point and click) in a direction D1, which according to the device or service parameters, implicitly defines an area withinarc 1510 anddistance 1520 that encompassesPOI 1530, but does not encompassPOI 1532. Such an algorithm will also need to determine any edge case POIs, i.e., whether POIs such asPOI 1534 are within the scope of pointing in direction D1, where the POI only partially falls within the area defined byarc 1510 anddistance 1520. - Other gestures that can be of interest in for a gesturing subsystem include recognizing a user's gesture for zoom in or zoom out. Zoom in/zoom out can be done in terms of distance like
FIG. 16 . InFIG. 16 , adevice 1600 pointed in direction D1 may include zoomed in view which includes points of interest withindistance 1620 andarc 1610, or a medium zoomed view representing points of interest betweendistance distance 1622. These zoom zones correspond toPOIs - For another non-limiting example, with location information and direction information, a user can input a first direction via a click, and then a second direction after moving the device via a second click, which in effect defines an
arc 1710 for objects of interest in the system as illustrated inFIG. 17 . For instance, via first pointing act by the user at time t1 in direction D1 and a second pointing act at time t2 by the user in direction D2, anarc 1710 is implicitly defined. The area of interest implicitly includes a search of points of object within adistance 1720, which can be zoomed in and out, or selected by the service based on a known granularity of interest, selected by the user, etc. This can be accomplished with a variety of forms of input to define the two directions. For instance, the first direction can be defined upon a click-and-hold button event, or other engage-and-hold user interface element, and the second direction can be defined upon release of the button. Similarly, two consecutive clicks corresponding to the two different directions D1 and D2 can also be implemented. - Also, instead of focusing on real distance, zooming in or out could also represent a change in terms of granularity, or size, or hierarchy of objects. For example, a first pointing gesture with the device may result in a shopping mall appearing, but with another gesture, a user could carry out a recognizable gesture to gain or lose a level of hierarchical granularity with the points of interest on display. For instance, after such gesture, the points of interest could be zoomed in to the level of the stores at the shopping mall and what they are currently offering.
- In addition, a variety of even richer behaviors and gestures can be recognized when acceleration of the device in various axes can be discerned. Panning, arm extension/retraction, swirling of the device, backhand tennis swings, breaststroke arm action, golf swing motions could all signify something unique in terms of the behavior of the pointing device, and this is to just name a few motions that could be implemented in practice. Thus, any of the embodiments herein can define a set of gestures that serve to help the user interact with a set of services built on the pointing platform, to help users easily gain information about points of information in their environment.
- Furthermore, with relatively accurate upward and downward tilt of the device, in addition to directional information such as calibrated and compensated heading/directional information, other services can be enabled. Typically, if a device is ground level, the user is outside, and the device is “pointed” up towards the top of buildings, the granularity of information about points of interest sought by the user (building level) is different than if the user was pointing at the first floor shops of the building (shops level), even where the same compass direction is implicated. Similarly, where a user is at the top of a landmark such as the Empire State building, a downward tilt at the street level (street level granularity) would implicate information about different points of interest that if the user of the device pointed with relatively no tilt at the Statue of Liberty (landmark/building level of granularity).
- Also, when a device is moving in a car, it may appear that direction is changing as the user maintains a pointing action on a single location, but the user is still pointing at the same thing due to displacement. Thus, thus time varying location can be factored into the mathematics and engine of resolving at what the user is pointing with the device to compensate for the user experience based upon which all items are relative.
- Accordingly, armed with the device's position, one or more web or cloud services can analyze the vector information to determine at what or whom the user is looking/pointing. The service can then provide additional information such as ads, specials, updates, menus, happy hour choices, etc., depending on the endpoint selected, the context of the service, the location (urban or rural), the time (night or day), etc. As a result, instead of a blank contextless Internet search, a form of real-time visual search for users in real 3-D environments is provided.
- In one non-limiting embodiment, the direction based pointing services are implemented in connection with a pair of glasses, headband, etc. having a corresponding display means that acts in concert with the user's looking to highlight or overlay features of interest around the user.
- As shown in
FIG. 18 , once a set of objects is determined from the pointing information according to a variety of contexts of a variety of services, amobile device 1800 can display the objects viarepresentation 1802 according to a variety of user experiences tailored to the service at issue. For instance, a virtual camera experience can be provided, where POI graphics or information can be positioned relative to one another to simulate an imaging experience. A variety of other user interface experiences can be provided based on the pointing direction as well. - For instance, a set of different choices are shown in
FIG. 19 . UI 1900 and 1902 illustrate navigation of hierarchical POI information. For instance, level1 categories may include category1, category2, category3, category4 and category5, but if a user selects around the categories with a thumb-wheel, up-down control, or the like, and chooses one such as category2. Then, subcategory1, subcategory2, subcategory3 and subcategory4 are displayed as subcategories of category2. Then, if the user selects, for instance, subcategory4, perhaps few enough POIs, such as buildings 1900 and 1910 are found in the subcategory in order to display on a 2D map UI 1904 along the pointing direction, or alternatively as a 3D virtual map view 1906 along the pointing direction. - Once a single POI is implicated or selected, then a full screen view for the single POI can be displayed, such as the
exemplary UI 2000.UI 2000 can have one or more of any of the following representative areas.UI 2000 can include astatic POI image 2002 such as a trademark of a store, or a picture of a person.UI 2000 can also include other media, and a staticPOI information portion 2004 for information that tends not to change such as restaurant hours, menu, contact information, etc. In addition,UI 2000 can include an information section for dynamic information to be pushed to the user for the POI, e.g., coupons, advertisements, offers, sales, etc. In addition, a dynamic interactive information are 2008 can be included where the user can fill out a survey, provide feedback to the POI owner, request the POI to contact the user, make a reservation, buy tickets, etc.UI 2000 also can include a representation of the direction information output by the compass for reference purposes. Further,UI 2000 can include other third party static or dynamic content inarea 2012. - When things change from the perspective of either the service or the client, a synchronization process can bring either the client or service, respectively, up to date. In this way, an ecosystem is enabled where a user can point at an object or point of interest, gain information about it that is likely to be relevant to the user, interact with the information concerning the point of interest, and add value to services ecosystem where the user interacts. The system thus advantageously supports both static and dynamic content.
- Other user interfaces can be considered such as left-right, or up-down arrangements for navigating categories or a special set of soft-keys can be adaptively provided.
- Where a device includes a camera, in one embodiment shown in
FIG. 21 , a representativenon-limiting overlay UI 2100 is shown having 3 POIs POI1, POI2 and POI3. The POIs are overlaid over actual image data being real time viewed on the device via an LCD screen or like display. The actual image data can be of products on a shelf or other display or exhibit in a store. Thus, as the user aims the camera around his or her environment, the lens becomes the pointer, and the POI information can be overlaid intelligently for discovery of endpoints of interest. Moreover, a similar embodiment can be imagined even without a camera, such as a UI in which 3-D objects are virtually represented based on real geometries known for the objects relative to the user. - Thus, the device UI can be implemented consistent with a camera, or a virtual camera, view for intuitive use of such devices. The pointer mechanism of the device could also switch based on whether the user was currently in live view mode for the camera or not. Moreover, assuming sufficient processing power and storage, real time image processing could discern an object of interest and based on image signatures, overlay POI information over such image in a similar manner to the above embodiments. In this regard, with the device provided herein, a variety of gestures can be employed to zoom in zoom out, perform tilt detection for looking down or up, or panning across a field of view to obtain a range of POIs associated with the panning scope.
- With respect to a representative set of user settings, a number or maximum number of desired endpoints delivered as results can be configured. How to filter can also be configured, e.g., 5 most likely, 5 closest, 5 closest to 100 feet away, 5 within category or sub-category, alphabetical order, etc. In each case, based on a pointing direction, implicitly a cone or other cross section across physical space is defined as a scope of possible points of interest. In this regard, the width or deepness of this cone or cross section can be configurable by the user to control the accuracy of the pointing, e.g., narrow or wide radius of points and how far out to search.
- To support processing of vector information and aggregating POI databases from third parties, a variety of storage techniques, such as relational storage techniques can be used. For instance, Virtual Earth data can be used for mapping and aggregation of POI data can occur from third parties such as Tele Atlas, NavTeq, etc. In this regard, businesses not in the POI database will want to be discovered and thus, the service provides a similar, but far superior from a spatial relevance standpoint, Yellow Pages experiences where businesses will desire to have their additional information, such as menus, price sheets, coupons, pictures, virtual tours, etc. accessible via the system.
- In addition, a synchronization platform or framework can keep the roaming caches in sync, thereby capturing what users are looking at and efficiently processing changes. Or, where a user goes offline, local changes can be recorded, and when the user goes back online, such local changes can be synchronized to the network or service store. Also, since the users are in effect pulling information they care about in the here and in the now through the act of pointing with the device, the system generates high cost per thousand impression (CPM) rates as compared to other forms of demographic targeting. Moreover, the system drives impulse buys, since the user may not be physically present in a store, but the user may be near the object, and by being nearby and pointing at the store, information about a sale concerning the object can be sent to the user.
- As mentioned, different location subsystems, such as tower triangulation, GPS, A-GPS, E-GPS, etc. have different tolerances. For instance, with GPS, tolerances can be achieved to about 10 meters. With A-GPS, tolerances can be tightened to about 12 feet. In turn, with E-GPS, tolerance may be a different error margin still. Compensating for the different tolerances is part of the interpretation engine for determining intersection of a pointing vector and a set of points of interest. In addition, as shown in
FIGS. 4-6 , a distance to project out the pointing vector can be explicit, configurable, contextual, etc. - In this regard, the various embodiments described herein can employ any algorithm for distinguishing among boundaries of the endpoints, such as boundary boxes, or rectangles, triangles, circles, etc. As a default radius, e.g., 150 feet could be selected, and such value can be configured or be context sensitive to the service provided. On-line real estate sites can be leveraged for existing POI information. Since different POI databases may track different information at different granularities, a way of normalizing the POI data according to one convention or standard can also be implemented so that the residential real estate location data of Zillow can be integrated with GPS information from Starbucks of all the Starbucks by country.
- In addition, similar techniques can be implemented in a moving vehicle client that includes GPS, compass, accelerometer, etc. By filtering based on scenarios (e.g., I need gas), different subsets of points of interest (e.g., gas stations) can be determined for the user based not only on distance, but actual time it may take to get to the point of interest. In this regard, while a gas station may be 100 yards to the right off the highway, the car may have already passed the corresponding exit, and thus more useful information to provide is what gas station will take the least amount of time to drive from a current location based on direction/location so as to provide predictive points of interest that are up ahead on the road, and not already aged points of interest that would require turning around from one's destination in order to get to them.
- For existing motor vehicle navigation devices, or other conventional portable GPS navigation devices, where a device does not natively include directional means such as a compass, the device can have an extension slot that accommodates direction information from an external directional device, such as a compass. Similarly, for laptops or other portable electronic devices, such devices can be outfitted with a card or board with a slot for a compass. While any of the services described herein can make web service calls as part of the pointing and retrieval of endpoint process, as mentioned, one advantageous feature of a user's locality in real space is that it is inherently more limited than a general Internet search for information. As a result, a limited amount of data can be predictively maintained on a user's device in cache memory and properly aged out as data becomes stale.
- While there are a variety of implementations, and ways to sub-divide regions, whether overlapping or not, predictive caching and aging 2200 is conceptually illustrated by
FIG. 22 in which a user's present location 2202 is discerned. At this point, the local cache still includes age out candidate location 2210, but as the velocity of the user indicates the user will be at predictedlocations 2204 and 2206 in the future, these regions of POIs are downloaded to the mobile device. Accordingly, as the user travels to predictedlocation 2206, it starts to be clear that the user no longer needs the data from the age out candidate location 2210, which can then be removed, or flagged for removal when storage is challenged. - Accordingly, using the regional data cache, callbacks and an update mechanism that is updated dynamically based on movement, new point of interest can be added by a service or by a user. Update is thus performed continuously or substantially continuously based on updated travel, velocity, speed, etc. In this regard, a user can add a new point of interest in the region, add info to a local cache, and then upload to the zone. To appreciate the problem, the number of worldwide POIs is practically limitless, however only a small number of POIs will be relevant to a user at a given time. Thus, predictively, a cube of data can be taken to the device, the user can go offline such that when the user reconnects, the device is intelligent to figure out what has changed, been weighted, etc., so that the device can synchronize with the network services and expose the user's changes for other people.
- The predictive algorithms again depend on what the user is interested in finding, what service the user may be using, the context of the user, etc. They can also be based on velocity, direction, time, etc. For instance, if it is nighttime, assumptions based on demographics or preferences may lead the device to return information about nightclubs or all night diners. Or, instead of giving directions as driving directions that calculate distances as absolute distances, i.e., as the crow flies, a device can take road curves into account since instantaneous pointing information on roads can be collected and handled by a corresponding service when giving driving directions. Or, as another alternative, the direction one is heading on a road, such as a highway with a concrete divider, is relevant to the directions that a navigation system should give. Where a U-turn is unavailable and user passes an exit with a point of interest, for instance, directions should take this into account and consider the heading of the vehicle.
- Any device can include the embodiments described herein, including MP3 players, such as a Zune device, GPS navigation devices, bike computers, sunglass/visor systems, motor vehicles, mobile phones, laptops, PDA, etc.
- One way to obtain the service applications, assuming the underlying measuring instruments to participate in the real-time gathering of directional information, is to message to a service to obtain the application, e.g., by text messaging to service, or getting a client download link. Another vehicle for enabling the service is to provide it natively in the operating system or applications of a mobile devices. Since a hardware abstraction layer accommodates different methods for collecting position, direction, acceleration information, the same platform can be used on any device regardless of the precise underlying hardware.
- In another aspect of any of the embodiments described herein, because stateless messaging is employed, if communications drop with one network, the device can begin further communicating via another network. For instance, a device has two channels, and a user gets on a bus, but no longer have GPRS or GPS activity. Nonetheless the user is able to get the information the device needs from some other channel. Just because a tower, or satellites are down, does not mean that the device cannot connect through an alternative channel, e.g., the bus's GPS location information via Bluetooth.
- With respect to exemplary mobile client architectures, a representative device can include, as described variously herein, client Side Storage for housing and providing fast access to cached POI data in the current region including associated dynamically updated or static information, such as annotations, coupons from businesses, etc. This includes usage data tracking and storage. In addition, regional data can be a cached subset of the larger service data, always updated based on the region in which the client is roaming. For instance, POI data could include as a non-limiting example, the following information:
-
POI coordinates and data //{−70.26322, 43.65412, “STARBUCK'S”} Localized annotations //Menu, prices, hours of operation, etc Coupons and ads //Classes of coupons (new user, returning, etc) - Support for different kinds of information (e.g., blob v structured information (blob for storage and media; structured for tags, annotations, etc.)
- A device can also include usage data and preferences to hold settings as well as usage data such as coupons “activated,” waypoints, businesses encountered per day, other users encountered, etc. to be analyzed by the cloud services for business intelligence analysis and reporting.
- A device can also include a continuous update mechanism, which is a service that maintains the client's cached copy of a current region updated with the latest. Among other ways, this can be achieved with a ping-to-pull model that pre-fetches and swaps out the client's cached region using travel direction and speed to facilitate roaming among different regions. This is effectively a paging mechanism for upcoming POIs. This also includes sending a new or modified POI for the region (with annotations+coupons), sending a new or modified annotation for the POIs (with coupons), or sending a new or modified coupon for the POI.
- A device can also include a Hardware Abstraction Layer (HAL) having components responsible for abstracting the way the client communicates with the measuring instruments, e.g., the GPS driver for positioning and LOS accuracy (e.g., open eGPS), magnetic compass for heading and rotational information (e.g., gyroscopic), one or more accelerometers for gestured input and tilt (achieves 3D positional algorithms, assuming gyroscopic compass).
- As described earlier, a device can also include methods/interfaces to make REST calls via GPRS/Wi-Fi and a file system and storage for storing and retrieving the application data and settings.
- A device can also include user input and methods to map input to the virtual keys. For instance, one non-limiting way to accomplish user input is to have softkeys as follows, though it is to be understood a great variety of user inputs can be used to achieve interaction with the user interfaces of the pointing based services.
-
SK up/down: //Up and down on choices SK right, SK ok/confirm: //Choose an option or drill down/next SK left, SK cancel/back, //Go back to a previous window, cancel Exit / Incoming Call events //Exit the app or minimize - In addition, a representative device can include a graphics and windowing stack to render the client side UI, as well as an audio stack to play sounds/alerts.
- As mentioned, such a device may also include spatial and math computational components including a set of APIs to perform 3D collision testing between subdivided surfaces such as spherical shells (e.g., a simple hit testing model to adopt and boundary definitions for POIs), rotate points, and cull as appropriate from conic sections.
- As described in various embodiments herein,
FIGS. 23 and 24 illustrate two processes for a device when location (e.g., GPS) and direction (e.g., compass) events occur. InFIG. 23 , upon the occurrence of a location or direction event, at 2300, it is determined whether predictive caching should be initiated for a next region to which a user is travelling. At 2310, if so, then the next region of data can be pre-fetched. At 2320, old regional data no longer of relevance can be aged out. At 2330, any usage data can be uploaded to the service framework for business intelligence, input to an advertisement engine, etc. -
FIG. 24 represents another process for filtering potential POIs after a pointing event. Upon the detection of a location and direction event, at 2400, for POIs in the device's local cache, a group of POIs are determined that pass an intersection algorithm for the direction of pointing of the device. At 2410, POIs in the group can be represented in some fashion on a UI, e.g., full view if only 1 POI, categorized view, 2-D map view, 3-D perspective view, or user images if other users, etc. The possibilities for representation are limitless; the embodiments described herein are intuitive based on the general notion of pointing based direction services. - At 2420, upon selection of a POI, static content is determined and any dynamic content is acquired via synchronization. When new data becomes available, it is downloaded to stay up to date. At 2430, POI information is filtered further by user specific information (e.g., if it is the user's first time at the store, returning customer, loyalty program member, live baseball game offer for team clothing discounts, etc.). At 2440, static and dynamic content that is up to date is rendered for the POI. In addition, updates and/or interaction with POI information is allowed which can be synced back to the service.
- One of ordinary skill in the art can appreciate that the various embodiments of methods and devices for pointing based services and related embodiments described herein can be implemented in connection with any computer or other client or server device, which can be deployed as part of a computer network or in a distributed computing environment, and can be connected to any kind of data store. In this regard, the various embodiments described herein can be implemented in any computer system or environment having any number of memory or storage units, and any number of applications and processes occurring across any number of storage units. This includes, but is not limited to, an environment with server computers and client computers deployed in a network environment or a distributed computing environment, having remote or local storage.
-
FIG. 25 provides a non-limiting schematic diagram of an exemplary networked or distributed computing environment. The distributed computing environment comprises computingobjects devices applications objects devices - Each
object devices other objects devices communications network 2540, either directly or indirectly. Even though illustrated as a single element inFIG. 25 ,network 2540 may comprise other computing objects and computing devices that provide services to the system ofFIG. 25 , and/or may represent multiple interconnected networks, which are not shown. Eachobject applications - There are a variety of systems, components, and network configurations that support distributed computing environments. For example, computing systems can be connected together by wired or wireless systems, by local networks or widely distributed networks. Currently, many networks are coupled to the Internet, which provides an infrastructure for widely distributed computing and encompasses many different networks, though any network infrastructure can be used for exemplary communications made incident to the techniques as described in various embodiments.
- Thus, a host of network topologies and network infrastructures, such as client/server, peer-to-peer, hub and spoke, or hybrid architectures, can be utilized. In a client/server architecture, particularly a networked system, a client is usually a computer that accesses shared network resources provided by another computer, e.g., a server. In the illustration of
FIG. 25 , as a non-limiting example,computers computers servers client computers client computers - A server is typically a remote computer system accessible over a remote or local network, such as the Internet or wireless network infrastructures. The client process may be active in a first computer system, and the server process may be active in a second computer system, communicating with one another over a communications medium, thus providing distributed functionality and allowing multiple clients to take advantage of the information-gathering capabilities of the server. Any software objects utilized pursuant to the direction based services can be provided standalone, or distributed across multiple computing devices or objects.
- In a network environment in which the communications network/
bus 2540 is the Internet, for example, theservers clients Servers clients - As mentioned, various embodiments described herein apply to any device wherein it may be desirable to perform pointing based services, and delay interactions with points of interest. It should be understood, therefore, that handheld, portable and other computing devices and computing objects of all kinds are contemplated for use in connection with the various embodiments described herein, i.e., anywhere that a device may request pointing based services. Accordingly, the below general purpose remote computer described below in
FIG. 26 is but one example, and the embodiments of the subject disclosure may be implemented with any client having network/bus interoperability and interaction. - Although not required, any of the embodiments can partly be implemented via an operating system, for use by a developer of services for a device or object, and/or included within application software that operates in connection with the operable component(s). Software may be described in the general context of computer-executable instructions, such as program modules, being executed by one or more computers, such as client workstations, servers or other devices. Those skilled in the art will appreciate that network interactions may be practiced with a variety of computer system configurations and protocols.
-
FIG. 26 thus illustrates an example of a suitablecomputing system environment 2600 in which one or more of the embodiments may be implemented, although as made clear above, thecomputing system environment 2600 is only one example of a suitable computing environment and is not intended to suggest any limitation as to the scope of use or functionality of any of the embodiments. Neither should thecomputing environment 2600 be interpreted as having any dependency or requirement relating to any one or combination of components illustrated in theexemplary operating environment 2600. - With reference to
FIG. 26 , an exemplary remote device for implementing one or more embodiments herein can include a general purpose computing device in the form of ahandheld computer 2610. Components ofhandheld computer 2610 may include, but are not limited to, aprocessing unit 2620, asystem memory 2630, and a system bus 2621 that couples various system components including the system memory to theprocessing unit 2620. -
Computer 2610 typically includes a variety of computer readable media and can be any available media that can be accessed bycomputer 2610. Thesystem memory 2630 may include computer storage media in the form of volatile and/or nonvolatile memory such as read only memory (ROM) and/or random access memory (RAM). By way of example, and not limitation,memory 2630 may also include an operating system, application programs, other program modules, and program data. - A user may enter commands and information into the
computer 2610 through input devices 2640 A monitor or other type of display device is also connected to the system bus 2621 via an interface, such asoutput interface 2650. In addition to a monitor, computers may also include other peripheral output devices such as speakers and a printer, which may be connected throughoutput interface 2650. - The
computer 2610 may operate in a networked or distributed environment using logical connections to one or more other remote computers, such asremote computer 2670. Theremote computer 2670 may be a personal computer, a server, a router, a network PC, a peer device or other common network node, or any other remote media consumption or transmission device, and may include any or all of the elements described above relative to thecomputer 2610. The logical connections depicted inFIG. 26 include anetwork 2671, such local area network (LAN) or a wide area network (WAN), but may also include other networks/buses. Such networking environments are commonplace in homes, offices, enterprise-wide computer networks, intranets and the Internet. - As mentioned above, while exemplary embodiments have been described in connection with various computing devices, networks and advertising architectures, the underlying concepts may be applied to any network system and any computing device or system in which it is desirable to derive information about surrounding points of interest.
- There are multiple ways of implementing one or more of the embodiments described herein, e.g., an appropriate API, tool kit, driver code, operating system, control, standalone or downloadable software object, etc. which enables applications and services to use the pointing based services. Embodiments may be contemplated from the standpoint of an API (or other software object), as well as from a software or hardware object that provides pointing platform services in accordance with one or more of the described embodiments. Various implementations and embodiments described herein may have aspects that are wholly in hardware, partly in hardware and partly in software, as well as in software.
- The word “exemplary” is used herein to mean serving as an example, instance, or illustration. For the avoidance of doubt, the subject matter disclosed herein is not limited by such examples. In addition, any aspect or design described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects or designs, nor is it meant to preclude equivalent exemplary structures and techniques known to those of ordinary skill in the art. Furthermore, to the extent that the terms “includes,” “has,” “contains,” and other similar words are used in either the detailed description or the claims, for the avoidance of doubt, such terms are intended to be inclusive in a manner similar to the term “comprising” as an open transition word without precluding any additional or other elements.
- As mentioned, the various techniques described herein may be implemented in connection with hardware or software or, where appropriate, with a combination of both. As used herein, the terms “component,” “system” and the like are likewise intended to refer to a computer-related entity, either hardware, a combination of hardware and software, software, or software in execution. For example, a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer. By way of illustration, both an application running on computer and the computer can be a component. One or more components may reside within a process and/or thread of execution and a component may be localized on one computer and/or distributed between two or more computers.
- The aforementioned systems have been described with respect to interaction between several components. It can be appreciated that such systems and components can include those components or specified sub-components, some of the specified components or sub-components, and/or additional components, and according to various permutations and combinations of the foregoing. Sub-components can also be implemented as components communicatively coupled to other components rather than included within parent components (hierarchical). Additionally, it should be noted that one or more components may be combined into a single component providing aggregate functionality or divided into several separate sub-components, and any one or more middle layers, such as a management layer, may be provided to communicatively couple to such sub-components in order to provide integrated functionality. Any components described herein may also interact with one or more other components not specifically described herein but generally known by those of skill in the art.
- In view of the exemplary systems described supra, methodologies that may be implemented in accordance with the disclosed subject matter will be better appreciated with reference to the flowcharts of the various figures. While for purposes of simplicity of explanation, the methodologies are shown and described as a series of blocks, it is to be understood and appreciated that the claimed subject matter is not limited by the order of the blocks, as some blocks may occur in different orders and/or concurrently with other blocks from what is depicted and described herein. Where non-sequential, or branched, flow is illustrated via flowchart, it can be appreciated that various other branches, flow paths, and orders of the blocks, may be implemented which achieve the same or a similar result. Moreover, not all illustrated blocks may be required to implement the methodologies described hereinafter.
- While the various embodiments have been described in connection with the preferred embodiments of the various figures, it is to be understood that other similar embodiments may be used or modifications and additions may be made to the described embodiment for performing the same function without deviating therefrom. Still further, one or more aspects of the above described embodiments may be implemented in or across a plurality of processing chips or devices, and storage may similarly be effected across a plurality of devices. Therefore, the present invention should not be limited to any single embodiment, but rather should be construed in breadth and scope in accordance with the appended claims.
Claims (21)
1. A method for a device provisioned for direction based services, comprising:
determining direction information associated with at least one pointed to direction relative to a pre-defined orientation of the device;
identifying points of interest (POIs) within an area defined as a function of the at least one pointed to direction including determining which of a set of POIs intersect the area;
displaying information corresponding to the POIs intersecting the area; and
designating one or more of the POIs intersecting the area for a delayed interaction at a later time.
2. The method of claim 1 , further comprising:
transmitting at least one identifier associated with the designated POIs to a network service enabling information about the designated POIs to be exposed at the later time.
3. The method of claim 2 , wherein the transmitting includes transmitting the at least one identifier associated with the designated POIs to the network service enabling information about the designated POIs to be exposed at the later time according to a different device form factor than a form factor of the device.
4. The method of claim 1 , wherein the designating includes receiving explicit input with respect to the designated one or more POIs including receiving at least one of a gesture input, a keyword input, an audio input, a video camera input or a touchscreen input with respect to the one or more POIs.
5. The method of claim 1 , wherein the designating includes receiving implicit input with respect to the designated one or more POIs including inferring the delayed interaction at the later time based on a context of present interaction.
6. The method of claim 1 , wherein the displaying includes displaying a topographical map view visually representing at least the area defined as a function of the at least one pointed to direction and displaying graphical indications of the POIs within the area at generally corresponding locations on the topographical map view.
7. The method of claim 1 , wherein the displaying information includes displaying information about the POIs in a filtered list view.
8. The method of claim 1 , wherein the designating includes designating at least one pre-defined criterion explicitly or implicitly defining the delay of the delayed interaction to the later time.
9. The method of claim 1 , wherein the designating includes marking the one or more POIs including receiving touchscreen input relating to the one or more designated POIs.
10. The method of claim 1 , wherein the designating includes tagging the one or more POIs with tag information defining the delayed interaction.
11. A portable electronic device, comprising:
a positional component for receiving position information as a function of a location of the portable electronic device;
a directional component that outputs direction information as a function of an orientation of the portable electronic device; and
at least one processor configured to process the position information and the direction information to determine at least one identifier of at least one point of interest within a pre-defined geographical scope of the device, to interact with a selected identifier of the at least one identifier, to receive information about the point of interest corresponding to the selected identifier, and to receive input regarding the selected identifier that defines a future interaction with the point of interest corresponding to the selected identifier.
12. The device of claim 11 , wherein the at least one processor is further configured to transmit information about the selected identifier defining the future interaction with the point of interest to at least one network service.
13. The device of claim 11 , further comprising:
a pointer that visually indicates the orientation of the portable electronic device based upon which the directional component outputs the direction information.
14. The device of claim 11 , further comprising:
at least one audio device for rendering audio content if a condition upon which the future interaction is predicated occurs.
15. The device of claim 11 , wherein the directional component is a digital compass that outputs the direction information.
16. The method of claim 11 , wherein the at least one processor is configured to process the position information and the direction information to determine a pointing line and to determine a set of candidate points of interest as a subset of points of interest that substantially intersect with a function based on the pointing line.
17. The method of claim 16 , wherein the at least one processor is configured to process the position information and the direction information to determine a pointing line and to determine a set of candidate points of interest as a subset of points of interest that substantially intersect with at least one of an arc function defining an arc based on an angle with respect to the pointing line, a conical function defining a cone based on an angle with respect to the pointing line, or a line function defining a rectangular space oriented along the pointing line.
18. A method, comprising:
determining a place in which a portable device is located based on location information determined for the device, the location information representing a position of the device;
identifying a subset of items of interest in the place including determining an orientation of the device based on direction information of the device and determining the subset of items of interest in the place as a function of the orientation; and
receiving input with respect to an item of the subset of items including receiving input defining a delayed interaction with the item or defining a delayed interaction with the place.
19. The method of claim 18 , wherein the receiving includes receiving a request for a notification when a characteristic of the item meets a pre-defined condition.
20. The method of claim 19 , wherein the receiving includes receiving a request for a notification when a price of the item meets a target price condition thereby initiating the delayed interaction.
21. The method of claim 18 , wherein the receiving input with respect to the item includes receiving scan input from scanning or imaging a bar code associated with the item of interest.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/437,863 US20100009662A1 (en) | 2008-06-20 | 2009-05-08 | Delaying interaction with points of interest discovered based on directional device information |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US7459008P | 2008-06-20 | 2008-06-20 | |
US7441508P | 2008-06-20 | 2008-06-20 | |
US12/437,863 US20100009662A1 (en) | 2008-06-20 | 2009-05-08 | Delaying interaction with points of interest discovered based on directional device information |
Publications (1)
Publication Number | Publication Date |
---|---|
US20100009662A1 true US20100009662A1 (en) | 2010-01-14 |
Family
ID=41432085
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/437,863 Abandoned US20100009662A1 (en) | 2008-06-20 | 2009-05-08 | Delaying interaction with points of interest discovered based on directional device information |
US12/437,857 Active 2029-12-04 US8467991B2 (en) | 2008-06-20 | 2009-05-08 | Data services based on gesture and location information of device |
US12/476,406 Abandoned US20100008255A1 (en) | 2008-06-20 | 2009-06-02 | Mesh network services for devices supporting dynamic direction information |
US13/908,737 Expired - Fee Related US8868374B2 (en) | 2008-06-20 | 2013-06-03 | Data services based on gesture and location information of device |
US14/453,312 Active 2030-06-26 US9703385B2 (en) | 2008-06-20 | 2014-08-06 | Data services based on gesture and location information of device |
US15/617,248 Active 2030-05-02 US10509477B2 (en) | 2008-06-20 | 2017-06-08 | Data services based on gesture and location information of device |
Family Applications After (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/437,857 Active 2029-12-04 US8467991B2 (en) | 2008-06-20 | 2009-05-08 | Data services based on gesture and location information of device |
US12/476,406 Abandoned US20100008255A1 (en) | 2008-06-20 | 2009-06-02 | Mesh network services for devices supporting dynamic direction information |
US13/908,737 Expired - Fee Related US8868374B2 (en) | 2008-06-20 | 2013-06-03 | Data services based on gesture and location information of device |
US14/453,312 Active 2030-06-26 US9703385B2 (en) | 2008-06-20 | 2014-08-06 | Data services based on gesture and location information of device |
US15/617,248 Active 2030-05-02 US10509477B2 (en) | 2008-06-20 | 2017-06-08 | Data services based on gesture and location information of device |
Country Status (1)
Country | Link |
---|---|
US (6) | US20100009662A1 (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090319348A1 (en) * | 2008-06-20 | 2009-12-24 | Microsoft Corporation | Mobile computing services based on devices with dynamic direction information |
US20090315775A1 (en) * | 2008-06-20 | 2009-12-24 | Microsoft Corporation | Mobile computing services based on devices with dynamic direction information |
US20090318168A1 (en) * | 2008-06-19 | 2009-12-24 | Microsoft Corporation | Data synchronization for devices supporting direction-based services |
US20090319181A1 (en) * | 2008-06-20 | 2009-12-24 | Microsoft Corporation | Data services based on gesture and location information of device |
US20090319175A1 (en) * | 2008-06-19 | 2009-12-24 | Microsoft Corporation | Mobile computing devices, architecture and user interfaces based on dynamic direction information |
US20100034104A1 (en) * | 2008-08-07 | 2010-02-11 | Samsung Electronics Co., Ltd | Delayable events in home network |
US20100041416A1 (en) * | 2006-10-18 | 2010-02-18 | Yoshihisa Manzen | Mobile communication terminal with gps function, positioning system, operation control method, and program |
US20100228612A1 (en) * | 2009-03-09 | 2010-09-09 | Microsoft Corporation | Device transaction model and services based on directional information of device |
US20100332324A1 (en) * | 2009-06-25 | 2010-12-30 | Microsoft Corporation | Portal services based on interactions with points of interest discovered via directional device information |
US20110217965A1 (en) * | 2010-03-03 | 2011-09-08 | Htc Corporation | Method, system and computer-readable medium for synchronizing spot information |
US20110218985A1 (en) * | 2010-03-05 | 2011-09-08 | The Dun & Bradstreet Corporation | Location-aware business data retrieval |
US20110265023A1 (en) * | 2010-04-21 | 2011-10-27 | Microsoft Corporation | Interactive Representation of Clustered Entities |
US20110316885A1 (en) * | 2010-06-23 | 2011-12-29 | Samsung Electronics Co., Ltd. | Method and apparatus for displaying image including position information |
US20120114178A1 (en) * | 2010-11-09 | 2012-05-10 | Juri Platonov | Vision system and method of analyzing an image |
US9043723B2 (en) | 2010-04-21 | 2015-05-26 | Microsoft Technology Licensing, Llc | Representation of overlapping visual entities |
WO2016117926A1 (en) * | 2015-01-20 | 2016-07-28 | 엘지전자(주) | Method for performing discovery in wireless communication system and device therefor |
US9661468B2 (en) | 2009-07-07 | 2017-05-23 | Microsoft Technology Licensing, Llc | System and method for converting gestures into digital graffiti |
US9983407B2 (en) | 2015-09-11 | 2018-05-29 | Honda Motor Co., Ltd. | Managing points of interest |
US11740775B1 (en) * | 2015-05-05 | 2023-08-29 | State Farm Mutual Automobile Insurance Company | Connecting users to entities based on recognized objects |
Families Citing this family (283)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8333655B2 (en) | 2008-07-11 | 2012-12-18 | Wms Gaming Inc. | Methods of receiving electronic wagers in a wagering game via a handheld electronic wager input device |
TW201013430A (en) | 2008-09-17 | 2010-04-01 | Ibm | Method and system for providing suggested tags associated with a target page for manipulation by a user |
US8645383B2 (en) | 2009-01-27 | 2014-02-04 | Stephen J. Brown | Content management system using sources of experience data and modules for quantification and visualization |
US20120111936A1 (en) * | 2009-01-27 | 2012-05-10 | Brown Stephen J | Semantic Note Taking System |
US20120122397A1 (en) | 2009-01-27 | 2012-05-17 | Brown Stephen J | Semantic Note Taking System |
US8930490B2 (en) | 2009-01-27 | 2015-01-06 | Apple Inc. | Lifestream annotation method and system |
US8818695B2 (en) | 2009-02-23 | 2014-08-26 | Hti Ip, L.L.C. | Method for reporting traffic conditions |
US8965670B2 (en) * | 2009-03-27 | 2015-02-24 | Hti Ip, L.L.C. | Method and system for automatically selecting and displaying traffic images |
US9460116B2 (en) * | 2009-04-17 | 2016-10-04 | Geomonkey, Inc. | Configurable groups of virtual walls providing proximity related privileges |
US20100268717A1 (en) * | 2009-04-17 | 2010-10-21 | Geomonkey, Inc. | Use of mobile devices for viewing and publishing location-based user information |
US9049543B2 (en) * | 2009-04-29 | 2015-06-02 | Blackberry Limited | Method and apparatus for location notification using location context information |
JP2010287059A (en) * | 2009-06-11 | 2010-12-24 | Sony Corp | Mobile terminal, server device, community generation system, display control method and program |
US8707200B2 (en) * | 2009-06-25 | 2014-04-22 | Autodesk, Inc. | Object browser with proximity sorting |
US10546332B2 (en) | 2010-09-21 | 2020-01-28 | Visa International Service Association | Systems and methods to program operations for interaction with users |
US9443253B2 (en) | 2009-07-27 | 2016-09-13 | Visa International Service Association | Systems and methods to provide and adjust offers |
US20110032145A1 (en) * | 2009-08-06 | 2011-02-10 | Motorola, Inc. | Method and System for Performing Gesture-Based Directed Search |
DE102009037835B4 (en) * | 2009-08-18 | 2012-12-06 | Metaio Gmbh | Method for displaying virtual information in a real environment |
US8611592B2 (en) * | 2009-08-26 | 2013-12-17 | Apple Inc. | Landmark identification using metadata |
KR101648339B1 (en) * | 2009-09-24 | 2016-08-17 | 삼성전자주식회사 | Apparatus and method for providing service using a sensor and image recognition in portable terminal |
JP4911389B2 (en) * | 2009-09-30 | 2012-04-04 | Necビッグローブ株式会社 | Information display system, server, terminal, and method |
US9001252B2 (en) * | 2009-11-02 | 2015-04-07 | Empire Technology Development Llc | Image matching to augment reality |
US8332232B2 (en) * | 2009-11-05 | 2012-12-11 | Opinionlab, Inc. | System and method for mobile interaction |
US9207765B2 (en) * | 2009-12-31 | 2015-12-08 | Microsoft Technology Licensing, Llc | Recognizing interactive media input |
JP5047393B2 (en) * | 2010-01-27 | 2012-10-10 | 楽天株式会社 | Server apparatus, information providing program, recording medium recording information providing program, information providing method, portable terminal device, terminal processing program, recording medium recording terminal processing program, and information providing system |
US20110276402A1 (en) * | 2010-02-11 | 2011-11-10 | Christopher Boone | Systems and methods for interactive merchandising using multipath contactless communications |
US20150309316A1 (en) | 2011-04-06 | 2015-10-29 | Microsoft Technology Licensing, Llc | Ar glasses with predictive control of external device based on event input |
US10180572B2 (en) | 2010-02-28 | 2019-01-15 | Microsoft Technology Licensing, Llc | AR glasses with event and user action control of external applications |
US9223134B2 (en) | 2010-02-28 | 2015-12-29 | Microsoft Technology Licensing, Llc | Optical imperfections in a light transmissive illumination system for see-through near-eye display glasses |
US9129295B2 (en) | 2010-02-28 | 2015-09-08 | Microsoft Technology Licensing, Llc | See-through near-eye display glasses with a fast response photochromic film system for quick transition from dark to clear |
US9229227B2 (en) | 2010-02-28 | 2016-01-05 | Microsoft Technology Licensing, Llc | See-through near-eye display glasses with a light transmissive wedge shaped illumination system |
US9285589B2 (en) | 2010-02-28 | 2016-03-15 | Microsoft Technology Licensing, Llc | AR glasses with event and sensor triggered control of AR eyepiece applications |
US9759917B2 (en) | 2010-02-28 | 2017-09-12 | Microsoft Technology Licensing, Llc | AR glasses with event and sensor triggered AR eyepiece interface to external devices |
US9128281B2 (en) | 2010-09-14 | 2015-09-08 | Microsoft Technology Licensing, Llc | Eyepiece with uniformly illuminated reflective display |
KR20130000401A (en) | 2010-02-28 | 2013-01-02 | 오스터하우트 그룹 인코포레이티드 | Local advertising content on an interactive head-mounted eyepiece |
US9341843B2 (en) | 2010-02-28 | 2016-05-17 | Microsoft Technology Licensing, Llc | See-through near-eye display glasses with a small scale image source |
US9097890B2 (en) | 2010-02-28 | 2015-08-04 | Microsoft Technology Licensing, Llc | Grating in a light transmissive illumination system for see-through near-eye display glasses |
US9366862B2 (en) | 2010-02-28 | 2016-06-14 | Microsoft Technology Licensing, Llc | System and method for delivering content to a group of see-through near eye display eyepieces |
US9134534B2 (en) | 2010-02-28 | 2015-09-15 | Microsoft Technology Licensing, Llc | See-through near-eye display glasses including a modular image source |
US20120249797A1 (en) | 2010-02-28 | 2012-10-04 | Osterhout Group, Inc. | Head-worn adaptive display |
US9091851B2 (en) | 2010-02-28 | 2015-07-28 | Microsoft Technology Licensing, Llc | Light control in head mounted displays |
US9097891B2 (en) | 2010-02-28 | 2015-08-04 | Microsoft Technology Licensing, Llc | See-through near-eye display glasses including an auto-brightness control for the display brightness based on the brightness in the environment |
US9182596B2 (en) | 2010-02-28 | 2015-11-10 | Microsoft Technology Licensing, Llc | See-through near-eye display glasses with the optical assembly including absorptive polarizers or anti-reflective coatings to reduce stray light |
US20120212406A1 (en) * | 2010-02-28 | 2012-08-23 | Osterhout Group, Inc. | Ar glasses with event and sensor triggered ar eyepiece command and control facility of the ar eyepiece |
US8543333B2 (en) * | 2010-03-03 | 2013-09-24 | Htc Corporation | Method, system, apparatus and computer-readable medium for browsing spot information |
US8341099B2 (en) * | 2010-03-12 | 2012-12-25 | Microsoft Corporation | Semantics update and adaptive interfaces in connection with information as a service |
US9697520B2 (en) | 2010-03-22 | 2017-07-04 | Visa U.S.A. Inc. | Merchant configured advertised incentives funded through statement credits |
EP2550578B1 (en) * | 2010-03-26 | 2017-08-16 | Hewlett Packard Development Company, L.P. | Method and apparatus for accessing a computer file when a user interacts with a physical object associated with the file |
US9541402B2 (en) * | 2010-03-31 | 2017-01-10 | Telenav, Inc. | Hybrid navigation system with location based services and method of operation thereof |
US9182498B2 (en) * | 2010-03-31 | 2015-11-10 | Telenav Inc. | Hybrid navigation system with non-network update and method of operation thereof |
US9152946B2 (en) * | 2010-05-21 | 2015-10-06 | Brokersavant Inc. | Apparatuses, methods and systems for a lead generating hub |
US8359274B2 (en) | 2010-06-04 | 2013-01-22 | Visa International Service Association | Systems and methods to provide messages in real-time with transaction processing |
EP2593886A4 (en) * | 2010-07-15 | 2016-01-20 | Virtual Beam Inc | Directional information search from a mobile device |
KR101719982B1 (en) * | 2010-07-19 | 2017-03-27 | 엘지전자 주식회사 | Mobile terminal and method for controlling the same |
US9972021B2 (en) | 2010-08-06 | 2018-05-15 | Visa International Service Association | Systems and methods to rank and select triggers for real-time offers |
US20120038668A1 (en) * | 2010-08-16 | 2012-02-16 | Lg Electronics Inc. | Method for display information and mobile terminal using the same |
US9426278B2 (en) * | 2010-09-01 | 2016-08-23 | Plantronics, Inc. | Location based mobile communications device auto-configuration |
US9727128B2 (en) * | 2010-09-02 | 2017-08-08 | Nokia Technologies Oy | Methods, apparatuses, and computer program products for enhancing activation of an augmented reality mode |
US9679299B2 (en) | 2010-09-03 | 2017-06-13 | Visa International Service Association | Systems and methods to provide real-time offers via a cooperative database |
KR20120024247A (en) | 2010-09-06 | 2012-03-14 | 삼성전자주식회사 | Method for operating a mobile device by recognizing a user gesture and the mobile device thereof |
US9477967B2 (en) | 2010-09-21 | 2016-10-25 | Visa International Service Association | Systems and methods to process an offer campaign based on ineligibility |
US10055745B2 (en) | 2010-09-21 | 2018-08-21 | Visa International Service Association | Systems and methods to modify interaction rules during run time |
KR101740435B1 (en) | 2010-10-18 | 2017-05-26 | 엘지전자 주식회사 | Mobile terminal and Method for managing object related information thererof |
US20120102437A1 (en) * | 2010-10-22 | 2012-04-26 | Microsoft Corporation | Notification Group Touch Gesture Dismissal Techniques |
US8698843B2 (en) | 2010-11-02 | 2014-04-15 | Google Inc. | Range of focus in an augmented reality application |
US9558502B2 (en) | 2010-11-04 | 2017-01-31 | Visa International Service Association | Systems and methods to reward user interactions |
EP2646901A4 (en) * | 2010-11-30 | 2014-09-24 | Nokia Corp | METHOD AND APPARATUS FOR PREDICTING AND PRE-EXTRACTING LOCATION INFORMATION |
US9736524B2 (en) | 2011-01-06 | 2017-08-15 | Veveo, Inc. | Methods of and systems for content search based on environment sampling |
US8291349B1 (en) * | 2011-01-19 | 2012-10-16 | Google Inc. | Gesture-based metadata display |
FR2971657A1 (en) * | 2011-02-11 | 2012-08-17 | Alcatel Lucent | DETERMINATION OF ACTIVE REAL OBJECTS FOR IMPLEMENTING A SOFTWARE APPLICATION |
US8601380B2 (en) | 2011-03-16 | 2013-12-03 | Nokia Corporation | Method and apparatus for displaying interactive preview information in a location-based user interface |
US20120254032A1 (en) * | 2011-03-29 | 2012-10-04 | Research In Motion Limited | Mobile wireless communications device configured to authorize transaction based upon movement sensor and associated methods |
EP2506201A1 (en) * | 2011-03-29 | 2012-10-03 | Research In Motion Limited | Mobile wireless communications device configured to authorize transaction based upon movement sensor and associated methods |
US9507498B2 (en) * | 2011-03-31 | 2016-11-29 | Nokia Technologies Oy | Method and apparatus for discovering similar content or search results |
US8825643B2 (en) * | 2011-04-02 | 2014-09-02 | Open Invention Network, Llc | System and method for filtering content based on gestures |
US8810598B2 (en) | 2011-04-08 | 2014-08-19 | Nant Holdings Ip, Llc | Interference based augmented reality hosting platforms |
US8843346B2 (en) * | 2011-05-13 | 2014-09-23 | Amazon Technologies, Inc. | Using spatial information with device interaction |
KR101878141B1 (en) * | 2011-05-30 | 2018-07-13 | 엘지전자 주식회사 | Mobile terminal and method for controlling thereof |
US20120313847A1 (en) * | 2011-06-09 | 2012-12-13 | Nokia Corporation | Method and apparatus for contextual gesture recognition |
US20130039535A1 (en) * | 2011-08-08 | 2013-02-14 | Cheng-Tsai Ho | Method and apparatus for reducing complexity of a computer vision system and applying related computer vision applications |
US9466075B2 (en) | 2011-09-20 | 2016-10-11 | Visa International Service Association | Systems and methods to process referrals in offer campaigns |
US8280414B1 (en) | 2011-09-26 | 2012-10-02 | Google Inc. | Map tile data pre-fetching based on mobile device generated event analysis |
WO2013128078A1 (en) * | 2012-02-29 | 2013-09-06 | Nokia Corporation | Method and apparatus for rendering items in a user interface |
US9514717B2 (en) | 2011-09-26 | 2016-12-06 | Nokia Technology Oy | Method and apparatus for rendering items in a user interface |
US8768249B2 (en) * | 2011-09-29 | 2014-07-01 | Qualcomm Innovation Center, Inc. | Mobile communication-device-controlled operations |
US10380617B2 (en) | 2011-09-29 | 2019-08-13 | Visa International Service Association | Systems and methods to provide a user interface to control an offer campaign |
US20130117130A1 (en) * | 2011-09-30 | 2013-05-09 | Matthew G. Dyor | Offering of occasions for commercial opportunities in a gesture-based user interface |
US20130085848A1 (en) * | 2011-09-30 | 2013-04-04 | Matthew G. Dyor | Gesture based search system |
US20130117105A1 (en) * | 2011-09-30 | 2013-05-09 | Matthew G. Dyor | Analyzing and distributing browsing futures in a gesture based user interface |
US20130085843A1 (en) * | 2011-09-30 | 2013-04-04 | Matthew G. Dyor | Gesture based navigation to auxiliary content |
US20130086499A1 (en) * | 2011-09-30 | 2013-04-04 | Matthew G. Dyor | Presenting auxiliary content in a gesture-based system |
US20130117111A1 (en) * | 2011-09-30 | 2013-05-09 | Matthew G. Dyor | Commercialization opportunities for informational searching in a gesture-based user interface |
US20130085847A1 (en) * | 2011-09-30 | 2013-04-04 | Matthew G. Dyor | Persistent gesturelets |
US20130085849A1 (en) * | 2011-09-30 | 2013-04-04 | Matthew G. Dyor | Presenting opportunities for commercialization in a gesture-based user interface |
GB2495699B (en) * | 2011-10-07 | 2019-03-27 | Samsung Electronics Co Ltd | Multimedia location-based sharing & multi-dimensional visualization |
US10290018B2 (en) | 2011-11-09 | 2019-05-14 | Visa International Service Association | Systems and methods to communicate with users via social networking sites |
US9275374B1 (en) | 2011-11-15 | 2016-03-01 | Google Inc. | Method and apparatus for pre-fetching place page data based upon analysis of user activities |
US9063951B1 (en) | 2011-11-16 | 2015-06-23 | Google Inc. | Pre-fetching map data based on a tile budget |
US8711181B1 (en) | 2011-11-16 | 2014-04-29 | Google Inc. | Pre-fetching map data using variable map tile radius |
DE112012004789T5 (en) * | 2011-11-16 | 2014-08-14 | Flextronics Ap, Llc | Configurable vehicle console |
US8886715B1 (en) | 2011-11-16 | 2014-11-11 | Google Inc. | Dynamically determining a tile budget when pre-fetching data in a client device |
EP2783340A4 (en) | 2011-11-21 | 2015-03-25 | Nant Holdings Ip Llc | Subscription bill service, systems and methods |
US9305107B2 (en) | 2011-12-08 | 2016-04-05 | Google Inc. | Method and apparatus for pre-fetching place page data for subsequent display on a mobile computing device |
US9197713B2 (en) | 2011-12-09 | 2015-11-24 | Google Inc. | Method and apparatus for pre-fetching remote resources for subsequent display on a mobile computing device |
US8803920B2 (en) | 2011-12-12 | 2014-08-12 | Google Inc. | Pre-fetching map tile data along a route |
US9389088B2 (en) | 2011-12-12 | 2016-07-12 | Google Inc. | Method of pre-fetching map data for rendering and offline routing |
US9646313B2 (en) * | 2011-12-13 | 2017-05-09 | Microsoft Technology Licensing, Llc | Gesture-based tagging to view related content |
US9262780B2 (en) * | 2012-01-09 | 2016-02-16 | Google Inc. | Method and apparatus for enabling real-time product and vendor identification |
US10497022B2 (en) | 2012-01-20 | 2019-12-03 | Visa International Service Association | Systems and methods to present and process offers |
US9052819B2 (en) | 2012-01-25 | 2015-06-09 | Honeywell International Inc. | Intelligent gesture-based user's instantaneous interaction and task requirements recognition system and method |
JP6019601B2 (en) * | 2012-02-10 | 2016-11-02 | ソニー株式会社 | Information processing apparatus, information processing method, and program |
US10672018B2 (en) * | 2012-03-07 | 2020-06-02 | Visa International Service Association | Systems and methods to process offers via mobile devices |
US9058703B2 (en) * | 2012-03-14 | 2015-06-16 | Flextronics Ap, Llc | Shared navigational information between vehicles |
US9098367B2 (en) | 2012-03-14 | 2015-08-04 | Flextronics Ap, Llc | Self-configuring vehicle console application store |
US9058341B2 (en) | 2012-03-15 | 2015-06-16 | Crown Packaging Technology, Inc. | Device and system for providing a visual representation of product contents within a package |
GB2507810A (en) * | 2012-03-15 | 2014-05-14 | Crown Packaging Technology Inc | Marking Applications for Metal Packages and Packages Having Metal Components |
WO2013142429A1 (en) | 2012-03-19 | 2013-09-26 | Farver Brandon | System and method for mode-based social networking |
RU2014141890A (en) * | 2012-04-23 | 2016-05-10 | Сони Корпорейшн | INFORMATION PROCESSING DEVICE, INFORMATION PROCESSING METHOD AND PROGRAM |
US8923760B2 (en) * | 2012-04-26 | 2014-12-30 | Qualcomm Incorporated | Orientational collaboration of data between multiple devices |
US8949974B2 (en) * | 2012-05-11 | 2015-02-03 | Tyfone, Inc. | Mobile device with password protected desktop screen |
US9055404B2 (en) | 2012-05-21 | 2015-06-09 | Nokia Technologies Oy | Apparatus and method for detecting proximate devices |
US10489723B2 (en) | 2012-05-21 | 2019-11-26 | Nokia Technologies Oy | Apparatus and method for providing for communications using distribution lists |
US20130317925A1 (en) * | 2012-05-23 | 2013-11-28 | Ebay, Inc. | Transaction Auto Synchronization |
WO2013179242A1 (en) * | 2012-05-29 | 2013-12-05 | Ubiprism, Lda. | System and method for calculatig dynamic prices |
US20130320094A1 (en) * | 2012-05-30 | 2013-12-05 | Mark Slusar | Dynamic embedded machine readable encoding |
KR20130137489A (en) | 2012-06-07 | 2013-12-17 | 주식회사 케이티 | Method and system for providing service |
JP5768010B2 (en) * | 2012-06-12 | 2015-08-26 | 東芝テック株式会社 | Signage system and program |
CN103514113A (en) * | 2012-06-18 | 2014-01-15 | 联胜(中国)科技有限公司 | Electronic data exchange system and method |
US9857177B1 (en) * | 2012-06-20 | 2018-01-02 | Amazon Technologies, Inc. | Personalized points of interest for mapping applications |
US9538319B1 (en) | 2012-06-20 | 2017-01-03 | Amazon Technologies, Inc. | Synchronization for mapping applications |
US9092908B2 (en) * | 2012-07-13 | 2015-07-28 | Google Inc. | Sharing photo albums in three dimensional environments |
KR20140013253A (en) * | 2012-07-23 | 2014-02-05 | 삼성전자주식회사 | Contents searching system and method based on a cloud service, and portable device supporting the same |
US9357272B2 (en) | 2012-08-03 | 2016-05-31 | Intel Corporation | Device orientation capability exchange signaling and server adaptation of multimedia content in response to device orientation |
KR101892959B1 (en) * | 2012-08-22 | 2018-08-29 | 삼성전자주식회사 | Flexible display apparatus and flexible display apparatus controlling method |
US9354721B2 (en) * | 2012-09-28 | 2016-05-31 | Apple Inc. | Movement based image transformation |
US20140095618A1 (en) * | 2012-10-02 | 2014-04-03 | Mind Rocket, Inc. | Social Interaction Device |
KR102045841B1 (en) * | 2012-10-09 | 2019-11-18 | 삼성전자주식회사 | Method for creating an task-recommendation-icon in electronic apparatus and apparatus thereof |
US9223830B1 (en) * | 2012-10-26 | 2015-12-29 | Audible, Inc. | Content presentation analysis |
EP3148290B1 (en) * | 2012-10-26 | 2023-08-30 | Apple Inc. | Multimedia adaptation based on video orientation |
US9710873B1 (en) * | 2012-10-26 | 2017-07-18 | Amazon Technologies, Inc. | Point of interest mapping |
US9215262B2 (en) | 2012-10-26 | 2015-12-15 | Intel Corporation | Streaming with coordination of video orientation (CVO) |
EP2733970A1 (en) * | 2012-11-16 | 2014-05-21 | Alcatel Lucent | An indoor mobile augmented reality application |
US20140149916A1 (en) * | 2012-11-28 | 2014-05-29 | SoMo Audience Corp. | Content manipulation using swipe gesture recognition technology |
US9532095B2 (en) | 2012-11-29 | 2016-12-27 | Fanvision Entertainment Llc | Mobile device with smart gestures |
US20140181105A1 (en) * | 2012-12-22 | 2014-06-26 | Continental Automotive Systems, Inc. | Vehicle point and select |
US20140188989A1 (en) * | 2012-12-27 | 2014-07-03 | Google Inc. | Exchanging content across multiple devices |
US8814683B2 (en) | 2013-01-22 | 2014-08-26 | Wms Gaming Inc. | Gaming system and methods adapted to utilize recorded player gestures |
US9554244B2 (en) | 2013-01-24 | 2017-01-24 | Sap Se | Distribution of location and movement information of meeting participants |
US20140214598A1 (en) * | 2013-01-30 | 2014-07-31 | Wal-Mart Stores, Inc. | Completing A Purchase Transaction And Delivering Items |
US9164588B1 (en) | 2013-02-05 | 2015-10-20 | Google Inc. | Wearable computing device with gesture recognition |
WO2014126993A1 (en) * | 2013-02-12 | 2014-08-21 | Zary Segall | Method, node, device, and computer program for interaction |
US8902303B2 (en) | 2013-03-15 | 2014-12-02 | Orcam Technologies Ltd. | Apparatus connectable to glasses |
WO2014145953A2 (en) * | 2013-03-15 | 2014-09-18 | Proximity Concepts Llc | Systems and methods involving proximity, mapping, indexing, mobile, advertising and/or other features |
US12039243B2 (en) | 2013-04-15 | 2024-07-16 | Autoconnect Holdings Llc | Access and portability of user profiles stored as templates |
EP2804096B1 (en) * | 2013-05-15 | 2018-03-21 | Google LLC | Efficient fetching of a map data during animation |
US20140358684A1 (en) * | 2013-06-03 | 2014-12-04 | Cloudwear, Inc. | System for communicating primary and supplemental advertiser information using a server |
US9429432B2 (en) * | 2013-06-06 | 2016-08-30 | Duke University | Systems and methods for defining a geographic position of an object or event based on a geographic position of a computing device and a user gesture |
US9317486B1 (en) | 2013-06-07 | 2016-04-19 | Audible, Inc. | Synchronizing playback of digital content with captured physical content |
US9704164B2 (en) * | 2013-06-13 | 2017-07-11 | Google Inc. | Validating hours of operation |
US9109921B1 (en) * | 2013-06-19 | 2015-08-18 | Amazon Technologies, Inc. | Contextual based navigation element |
US9423946B2 (en) | 2013-08-12 | 2016-08-23 | Apple Inc. | Context sensitive actions in response to touch input |
WO2015028465A1 (en) * | 2013-09-02 | 2015-03-05 | Koninklijke Philips N.V. | Shopping assistance system and method |
US9851451B2 (en) * | 2013-09-06 | 2017-12-26 | Landmark Graphics Corporation | Method for using geographical positioning system data to sketch the site for scouting job |
US9292764B2 (en) * | 2013-09-17 | 2016-03-22 | Qualcomm Incorporated | Method and apparatus for selectively providing information on objects in a captured image |
US10713688B2 (en) * | 2013-09-25 | 2020-07-14 | Transform Sr Brands Llc | Method and system for gesture-based cross channel commerce and marketing |
US20150100445A1 (en) * | 2013-10-08 | 2015-04-09 | Toshiba Global Commerce Solutions Holdings Corporation | Systems and methods for interaction with objects to implement a retail function |
US9435660B2 (en) * | 2013-10-16 | 2016-09-06 | Mapquest, Inc. | Systems and methods for initiating mapping exit routines and rating highway exits |
US9582516B2 (en) | 2013-10-17 | 2017-02-28 | Nant Holdings Ip, Llc | Wide area augmented reality location-based services |
US20150169070A1 (en) * | 2013-12-17 | 2015-06-18 | Google Inc. | Visual Display of Interactive, Gesture-Controlled, Three-Dimensional (3D) Models for Head-Mountable Displays (HMDs) |
US10019149B2 (en) | 2014-01-07 | 2018-07-10 | Toshiba Global Commerce Solutions Holdings Corporation | Systems and methods for implementing retail processes based on machine-readable images and user gestures |
US9910501B2 (en) * | 2014-01-07 | 2018-03-06 | Toshiba Global Commerce Solutions Holdings Corporation | Systems and methods for implementing retail processes based on machine-readable images and user gestures |
US10362033B1 (en) * | 2014-01-27 | 2019-07-23 | Microstrategy Incorporated | Finding users |
JP5972301B2 (en) * | 2014-02-20 | 2016-08-17 | 本田技研工業株式会社 | Visit plan creation system, terminal device, and visit plan creation method |
US9756549B2 (en) | 2014-03-14 | 2017-09-05 | goTenna Inc. | System and method for digital communication between computing devices |
US9626709B2 (en) | 2014-04-16 | 2017-04-18 | At&T Intellectual Property I, L.P. | In-store field-of-view merchandising and analytics |
US20150310831A1 (en) * | 2014-04-29 | 2015-10-29 | Sony Corporation | Proximity detection of candidate companion display device in same room as primary display using camera |
TW201544993A (en) * | 2014-05-28 | 2015-12-01 | Pegatron Corp | Gesture control method, gesture control module, and wearable device having the same |
US10467896B2 (en) | 2014-05-29 | 2019-11-05 | Rideshare Displays, Inc. | Vehicle identification system and method |
US9892637B2 (en) | 2014-05-29 | 2018-02-13 | Rideshare Displays, Inc. | Vehicle identification system |
US9575560B2 (en) | 2014-06-03 | 2017-02-21 | Google Inc. | Radar-based gesture-recognition through a wearable device |
CN104596523B (en) * | 2014-06-05 | 2019-05-07 | 腾讯科技(深圳)有限公司 | A kind of streetscape destination bootstrap technique and equipment |
US10445820B2 (en) | 2014-06-25 | 2019-10-15 | Paypal, Inc. | Systems and methods for facilitating purchase using gesture |
US20160034143A1 (en) * | 2014-07-29 | 2016-02-04 | Flipboard, Inc. | Navigating digital content by tilt gestures |
US9811164B2 (en) | 2014-08-07 | 2017-11-07 | Google Inc. | Radar-based gesture sensing and data transmission |
US10268321B2 (en) | 2014-08-15 | 2019-04-23 | Google Llc | Interactive textiles within hard objects |
US9778749B2 (en) | 2014-08-22 | 2017-10-03 | Google Inc. | Occluded gesture recognition |
US11169988B2 (en) | 2014-08-22 | 2021-11-09 | Google Llc | Radar recognition-aided search |
US10180974B2 (en) * | 2014-09-16 | 2019-01-15 | International Business Machines Corporation | System and method for generating content corresponding to an event |
US20160098766A1 (en) * | 2014-10-02 | 2016-04-07 | Maqsood Alam | Feedback collecting system |
US9600080B2 (en) | 2014-10-02 | 2017-03-21 | Google Inc. | Non-line-of-sight radar-based gesture recognition |
US11107091B2 (en) | 2014-10-15 | 2021-08-31 | Toshiba Global Commerce Solutions | Gesture based in-store product feedback system |
EP3015306B1 (en) * | 2014-10-31 | 2021-01-06 | Volkswagen Aktiengesellschaft | Device and method for operating a clock fitting |
US10134049B2 (en) | 2014-11-20 | 2018-11-20 | At&T Intellectual Property I, L.P. | Customer service based upon in-store field-of-view and analytics |
CN104460999B (en) * | 2014-11-28 | 2017-07-28 | 广东欧珀移动通信有限公司 | A kind of gesture identification method and device with flex point |
US10671277B2 (en) | 2014-12-17 | 2020-06-02 | Datalogic Usa, Inc. | Floating soft trigger for touch displays on an electronic device with a scanning module |
US11567626B2 (en) | 2014-12-17 | 2023-01-31 | Datalogic Usa, Inc. | Gesture configurable floating soft trigger for touch displays on data-capture electronic devices |
US9607515B2 (en) * | 2014-12-22 | 2017-03-28 | Intel Corporation | System and method for interacting with digital signage |
WO2016122692A1 (en) * | 2015-01-29 | 2016-08-04 | Hewlett Packard Enterprise Development Lp | Packet headers with device-extrinsic information |
US10016162B1 (en) | 2015-03-23 | 2018-07-10 | Google Llc | In-ear health monitoring |
EP4395372A3 (en) | 2015-04-20 | 2024-11-27 | Snap Inc. | Interactive media system and method |
WO2016176606A1 (en) | 2015-04-30 | 2016-11-03 | Google Inc. | Type-agnostic rf signal representations |
CN104950840A (en) * | 2015-04-30 | 2015-09-30 | 东莞电子科技大学电子信息工程研究院 | Battery pack monitoring and transmitting system and method |
EP3885882A1 (en) | 2015-04-30 | 2021-09-29 | Google LLC | Rf-based micro-motion tracking for gesture tracking and recognition |
CN111880650B (en) | 2015-04-30 | 2024-07-05 | 谷歌有限责任公司 | Gesture recognition based on wide-field radar |
US10080528B2 (en) | 2015-05-19 | 2018-09-25 | Google Llc | Optical central venous pressure measurement |
CN106289299A (en) * | 2015-05-22 | 2017-01-04 | 深圳市凯立德科技股份有限公司 | A kind of navigator and operational approach thereof |
US9693592B2 (en) | 2015-05-27 | 2017-07-04 | Google Inc. | Attaching electronic components to interactive textiles |
US10088908B1 (en) | 2015-05-27 | 2018-10-02 | Google Llc | Gesture detection and interactions |
US10376195B1 (en) | 2015-06-04 | 2019-08-13 | Google Llc | Automated nursing assessment |
US10509476B2 (en) * | 2015-07-02 | 2019-12-17 | Verizon Patent And Licensing Inc. | Enhanced device authentication using magnetic declination |
WO2017009518A1 (en) * | 2015-07-16 | 2017-01-19 | Nokia Technologies Oy | Methods, apparatuses and computer readable media for causing or enabling performance of a wireless interaction |
KR20170035678A (en) * | 2015-09-23 | 2017-03-31 | 엘지전자 주식회사 | Mobile terminal and method of controlling the same |
US10817065B1 (en) | 2015-10-06 | 2020-10-27 | Google Llc | Gesture recognition using multiple antenna |
US9754338B2 (en) | 2015-10-09 | 2017-09-05 | Gt Gettaxi Limited | System to facilitate a correct identification of a service provider |
US10692126B2 (en) | 2015-11-17 | 2020-06-23 | Nio Usa, Inc. | Network-based system for selling and servicing cars |
US10222979B2 (en) | 2015-12-04 | 2019-03-05 | Datalogic Usa, Inc. | Size adjustable soft activation trigger for touch displays on electronic device |
US10366528B2 (en) | 2015-12-08 | 2019-07-30 | Amazon Technologies, Inc. | Interactive points of interest for 3D-representations |
US10492302B2 (en) | 2016-05-03 | 2019-11-26 | Google Llc | Connecting an electronic component to an interactive textile |
WO2017200949A1 (en) | 2016-05-16 | 2017-11-23 | Google Llc | Interactive fabric |
WO2017200570A1 (en) | 2016-05-16 | 2017-11-23 | Google Llc | Interactive object with multiple electronics modules |
US10586257B2 (en) * | 2016-06-07 | 2020-03-10 | At&T Mobility Ii Llc | Facilitation of real-time interactive feedback |
US20180012197A1 (en) | 2016-07-07 | 2018-01-11 | NextEv USA, Inc. | Battery exchange licensing program based on state of charge of battery pack |
US9928734B2 (en) | 2016-08-02 | 2018-03-27 | Nio Usa, Inc. | Vehicle-to-pedestrian communication systems |
JP6551611B2 (en) * | 2016-09-23 | 2019-07-31 | 株式会社村田製作所 | Position estimation system and position estimation method |
US10636108B2 (en) | 2016-09-30 | 2020-04-28 | Lyft, Inc. | Identifying matched requestors and providers |
US11024160B2 (en) | 2016-11-07 | 2021-06-01 | Nio Usa, Inc. | Feedback performance control and tracking |
US10708547B2 (en) | 2016-11-11 | 2020-07-07 | Nio Usa, Inc. | Using vehicle sensor data to monitor environmental and geologic conditions |
US10694357B2 (en) | 2016-11-11 | 2020-06-23 | Nio Usa, Inc. | Using vehicle sensor data to monitor pedestrian health |
US10410064B2 (en) | 2016-11-11 | 2019-09-10 | Nio Usa, Inc. | System for tracking and identifying vehicles and pedestrians |
USD868895S1 (en) | 2016-11-14 | 2019-12-03 | Lyft, Inc. | Electronic device with front and rear displays |
US10515390B2 (en) | 2016-11-21 | 2019-12-24 | Nio Usa, Inc. | Method and system for data optimization |
US10579150B2 (en) | 2016-12-05 | 2020-03-03 | Google Llc | Concurrent detection of absolute distance and relative movement for sensing action gestures |
US10249104B2 (en) | 2016-12-06 | 2019-04-02 | Nio Usa, Inc. | Lease observation and event recording |
EP3559783A1 (en) * | 2016-12-23 | 2019-10-30 | Signify Holding B.V. | Interactive display system displaying a machine readable code |
US10554783B2 (en) | 2016-12-30 | 2020-02-04 | Lyft, Inc. | Navigation using proximity information |
US11574262B2 (en) | 2016-12-30 | 2023-02-07 | Lyft, Inc. | Location accuracy using local device communications |
US10074223B2 (en) | 2017-01-13 | 2018-09-11 | Nio Usa, Inc. | Secured vehicle for user use only |
US10471829B2 (en) | 2017-01-16 | 2019-11-12 | Nio Usa, Inc. | Self-destruct zone and autonomous vehicle navigation |
US10031521B1 (en) | 2017-01-16 | 2018-07-24 | Nio Usa, Inc. | Method and system for using weather information in operation of autonomous vehicles |
US9984572B1 (en) | 2017-01-16 | 2018-05-29 | Nio Usa, Inc. | Method and system for sharing parking space availability among autonomous vehicles |
US10464530B2 (en) | 2017-01-17 | 2019-11-05 | Nio Usa, Inc. | Voice biometric pre-purchase enrollment for autonomous vehicles |
US10286915B2 (en) | 2017-01-17 | 2019-05-14 | Nio Usa, Inc. | Machine learning for personalized driving |
US10452150B2 (en) * | 2017-01-25 | 2019-10-22 | International Business Machines Corporation | Electronic map augmentation through pointing gestures background |
US10897469B2 (en) | 2017-02-02 | 2021-01-19 | Nio Usa, Inc. | System and method for firewalls between vehicle networks |
US10237699B2 (en) * | 2017-02-09 | 2019-03-19 | International Business Machines Corporation | Predicting obstacles in a travel path |
US10140147B2 (en) * | 2017-02-16 | 2018-11-27 | Sanctum Solutions Inc. | Intelligently assisted IoT endpoint device |
US9924313B1 (en) * | 2017-02-23 | 2018-03-20 | International Business Machines Corporation | Location based generation of pertinent information |
US10355912B2 (en) | 2017-04-06 | 2019-07-16 | At&T Intellectual Property I, L.P. | Network trouble shooting digital assistant system |
US10234302B2 (en) | 2017-06-27 | 2019-03-19 | Nio Usa, Inc. | Adaptive route and motion planning based on learned external and internal vehicle environment |
US10369974B2 (en) | 2017-07-14 | 2019-08-06 | Nio Usa, Inc. | Control and coordination of driverless fuel replenishment for autonomous vehicles |
US10710633B2 (en) | 2017-07-14 | 2020-07-14 | Nio Usa, Inc. | Control of complex parking maneuvers and autonomous fuel replenishment of driverless vehicles |
US10837790B2 (en) | 2017-08-01 | 2020-11-17 | Nio Usa, Inc. | Productive and accident-free driving modes for a vehicle |
CN107883953B (en) * | 2017-09-26 | 2021-05-25 | 广州新维感信息技术有限公司 | VR handle static detection algorithm, VR handle and storage medium |
KR102382478B1 (en) | 2017-10-13 | 2022-04-05 | 삼성전자주식회사 | Electronic apparatus and control method thereof |
US10635109B2 (en) | 2017-10-17 | 2020-04-28 | Nio Usa, Inc. | Vehicle path-planner monitor and controller |
US10935978B2 (en) | 2017-10-30 | 2021-03-02 | Nio Usa, Inc. | Vehicle self-localization using particle filters and visual odometry |
US10606274B2 (en) | 2017-10-30 | 2020-03-31 | Nio Usa, Inc. | Visual place recognition based self-localization for autonomous vehicles |
US10717412B2 (en) | 2017-11-13 | 2020-07-21 | Nio Usa, Inc. | System and method for controlling a vehicle using secondary access methods |
JP6777825B2 (en) * | 2017-11-17 | 2020-10-28 | 株式会社Nttドコモ | Information processing device and information processing method |
JP6453501B1 (en) * | 2018-02-01 | 2019-01-16 | 株式会社Cygames | Mixed reality system, program, method, and portable terminal device |
US10944669B1 (en) | 2018-02-09 | 2021-03-09 | GoTenna, Inc. | System and method for efficient network-wide broadcast in a multi-hop wireless network using packet echos |
US11151315B1 (en) | 2018-05-02 | 2021-10-19 | Microstrategy Incorporated | Automatically defining groups in documents |
US10369966B1 (en) | 2018-05-23 | 2019-08-06 | Nio Usa, Inc. | Controlling access to a vehicle using wireless access devices |
US11526568B2 (en) * | 2018-05-25 | 2022-12-13 | Yellcast, Inc. | User interfaces and methods for operating a mobile computing device for location-based transactions |
USD896237S1 (en) * | 2018-06-06 | 2020-09-15 | Lyft, Inc. | Display screen or portion thereof with a graphical user interface |
CN108834171B (en) * | 2018-07-27 | 2021-09-17 | 新华三大数据技术有限公司 | Image method and device |
US11082324B2 (en) | 2018-07-27 | 2021-08-03 | goTenna Inc. | Vine: zero-control routing using data packet inspection for wireless mesh networks |
US10956975B1 (en) * | 2018-09-24 | 2021-03-23 | Wells Fargo Bank, N.A. | Purchase assistance based on device movement |
WO2020092777A1 (en) * | 2018-11-02 | 2020-05-07 | MyCollected, Inc. | Computer-implemented, user-controlled method of automatically organizing, storing, and sharing personal information |
US20200193534A1 (en) * | 2018-12-17 | 2020-06-18 | Toast, Inc. | Command-adaptive restaurant management system |
US10885480B2 (en) | 2018-12-17 | 2021-01-05 | Toast, Inc. | Adaptive restaurant management system |
US11030678B2 (en) | 2018-12-17 | 2021-06-08 | Toast, Inc. | User-adaptive restaurant management system |
US11082344B2 (en) | 2019-03-08 | 2021-08-03 | GoTenna, Inc. | Method for utilization-based traffic throttling in a wireless mesh network |
CA3134269A1 (en) * | 2019-04-03 | 2020-10-08 | ICX Media, Inc. | Method for optimizing media and marketing content using cross-platform video intelligence |
US11910452B2 (en) | 2019-05-28 | 2024-02-20 | Lyft, Inc. | Automatically connecting wireless computing devices based on recurring wireless signal detections |
US11191005B2 (en) * | 2019-05-29 | 2021-11-30 | At&T Intellectual Property I, L.P. | Cyber control plane for universal physical space |
US11032409B1 (en) * | 2019-09-20 | 2021-06-08 | Yellcast, Inc | Methods for geographic gesturing using a mobile device for interactions with nearby other mobile devices |
US10991035B2 (en) * | 2019-10-10 | 2021-04-27 | Drinda Douglass | Listing and location application |
US11593710B1 (en) * | 2019-12-13 | 2023-02-28 | Walgreen Co. | Methods and system to estimate retail prescription waiting time |
US11887386B1 (en) | 2020-03-30 | 2024-01-30 | Lyft, Inc. | Utilizing an intelligent in-cabin media capture device in conjunction with a transportation matching system |
USD997988S1 (en) | 2020-03-30 | 2023-09-05 | Lyft, Inc. | Transportation communication device |
KR20220061431A (en) * | 2020-11-06 | 2022-05-13 | 삼성전자주식회사 | Electronic apparatus and method of controlling the same |
US12167081B2 (en) * | 2021-05-21 | 2024-12-10 | Adeia Guides, Inc. | Methods and systems for personalized content based on captured gestures |
US20240404207A1 (en) * | 2023-06-04 | 2024-12-05 | Apple Inc. | Devices, methods, and graphical user interfaces for displaying content of physical locations |
Citations (93)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4262199A (en) * | 1978-05-26 | 1981-04-14 | The Marconi Company Limited | Infra-red target detection and recognition system |
US5424524A (en) * | 1993-06-24 | 1995-06-13 | Ruppert; Jonathan P. | Personal scanner/computer for displaying shopping lists and scanning barcodes to aid shoppers |
US5767795A (en) * | 1996-07-03 | 1998-06-16 | Delta Information Systems, Inc. | GPS-based information system for vehicles |
US6252544B1 (en) * | 1998-01-27 | 2001-06-26 | Steven M. Hoffberg | Mobile communication device |
US20010039546A1 (en) * | 2000-05-05 | 2001-11-08 | Moore Michael R. | System and method for obtaining and storing information for deferred browsing |
US6353398B1 (en) * | 1999-10-22 | 2002-03-05 | Himanshu S. Amin | System for dynamically pushing information to a user utilizing global positioning system |
US20020042750A1 (en) * | 2000-08-11 | 2002-04-11 | Morrison Douglas C. | System method and article of manufacture for a visual self calculating order system over the world wide web |
US6381603B1 (en) * | 1999-02-22 | 2002-04-30 | Position Iq, Inc. | System and method for accessing local information by using referencing position system |
US20020091568A1 (en) * | 2001-01-10 | 2002-07-11 | International Business Machines Corporation | Personalized profile based advertising system and method with integration of physical location using GPS |
US20020111873A1 (en) * | 2001-02-10 | 2002-08-15 | International Business Machines Corporation | On-line real-time price comparison and adjustment system and method |
US20020138196A1 (en) * | 2001-03-07 | 2002-09-26 | Visteon Global Technologies, Inc. | Methods and apparatus for dynamic point of interest display |
US20030036848A1 (en) * | 2001-08-16 | 2003-02-20 | Sheha Michael A. | Point of interest spatial rating search method and system |
US6526335B1 (en) * | 2000-01-24 | 2003-02-25 | G. Victor Treyz | Automobile personal computer systems |
US20030069690A1 (en) * | 2001-10-04 | 2003-04-10 | General Motors Corporation | Method and system for navigation-enhanced directory assistance |
US20030078002A1 (en) * | 2001-10-24 | 2003-04-24 | Raghunandan Sanjeev | Method for wireless link reestablishment |
US6587835B1 (en) * | 2000-02-09 | 2003-07-01 | G. Victor Treyz | Shopping assistance with handheld computing device |
US20030142853A1 (en) * | 2001-11-08 | 2003-07-31 | Pelco | Security identification system |
US6672506B2 (en) * | 1996-01-25 | 2004-01-06 | Symbol Technologies, Inc. | Statistical sampling security methodology for self-scanning checkout system |
US20040070602A1 (en) * | 2002-08-05 | 2004-04-15 | Sony Corporation | Electronic guide system, contents server for electronic guide system, portable electronic guide device, and information processing method for electronic guide system |
US20040107072A1 (en) * | 2002-12-03 | 2004-06-03 | Arne Dietrich | Ins-based user orientation and navigation |
US20040147329A1 (en) * | 2000-06-16 | 2004-07-29 | Meadows James W. | Personal golfing assistant and method and system for graphically displaying golf related information and for collection, processing and distribution of golf related data |
US6837436B2 (en) * | 1996-09-05 | 2005-01-04 | Symbol Technologies, Inc. | Consumer interactive shopping system |
US20050063563A1 (en) * | 2003-09-23 | 2005-03-24 | Soliman Samir S. | System and method for geolocation using imaging techniques |
US6898517B1 (en) * | 2001-07-24 | 2005-05-24 | Trimble Navigation Limited | Vehicle-based dynamic advertising |
US20050160014A1 (en) * | 2004-01-15 | 2005-07-21 | Cairo Inc. | Techniques for identifying and comparing local retail prices |
US20060004713A1 (en) * | 2004-06-30 | 2006-01-05 | Korte Thomas C | Methods and systems for endorsing local search results |
US6992619B2 (en) * | 2003-08-01 | 2006-01-31 | Intel Corporation | Use of global positioning satellites (GPS) to discover and select local services |
US20060041663A1 (en) * | 2004-08-20 | 2006-02-23 | Icentric Corporation | Location based dynamic information services |
US7010501B1 (en) * | 1998-05-29 | 2006-03-07 | Symbol Technologies, Inc. | Personal shopping system |
US20060058041A1 (en) * | 2003-06-20 | 2006-03-16 | Cheng Steven D | System and method for providing position alerting with a mobile device |
US20060061554A1 (en) * | 2004-09-20 | 2006-03-23 | Asustek Computer Inc. | Key and keyboard with efficiency of depth and scattered light |
US7040541B2 (en) * | 1996-09-05 | 2006-05-09 | Symbol Technologies, Inc. | Portable shopping and order fulfillment system |
US20060123053A1 (en) * | 2004-12-02 | 2006-06-08 | Insignio Technologies, Inc. | Personalized content processing and delivery system and media |
US20060176516A1 (en) * | 2004-11-29 | 2006-08-10 | Rothschild Trust Holdings, Llc | System and method for embedding and retrieving information in digital images and using the information to copyright the digital images |
US20070004451A1 (en) * | 2005-06-30 | 2007-01-04 | C Anderson Eric | Controlling functions of a handheld multifunction device |
US20070008110A1 (en) * | 2004-01-17 | 2007-01-11 | Huawei Technologies Co., Ltd. | Method for obtaining direction of target location through a handset |
US20070016368A1 (en) * | 2005-07-13 | 2007-01-18 | Charles Chapin | Generating Human-Centric Directions in Mapping Systems |
US20070015515A1 (en) * | 2003-09-25 | 2007-01-18 | Nec Corporation | Position information service providing system and method thereof |
US7171378B2 (en) * | 1998-05-29 | 2007-01-30 | Symbol Technologies, Inc. | Portable electronic terminal and data processing system |
US20070032943A1 (en) * | 2005-08-05 | 2007-02-08 | Aisin Aw Co., Ltd. | Navigation system |
US20070053056A1 (en) * | 2003-10-14 | 2007-03-08 | Charlesworth Charles N G | Viewing device with orientating imaging device |
US7198192B2 (en) * | 2005-02-01 | 2007-04-03 | Electronic Data Systems Corporation | Wireless mobile instant product price comparison and product review |
US20070078596A1 (en) * | 2005-09-30 | 2007-04-05 | John Grace | Landmark enhanced directions |
US20070080216A1 (en) * | 2001-05-25 | 2007-04-12 | At&T Corp. | User interface systems |
US20070118278A1 (en) * | 2005-11-18 | 2007-05-24 | Michael Finn | Geographic database with detailed local data |
US20070139366A1 (en) * | 2005-12-21 | 2007-06-21 | Dunko Gregory A | Sharing information between devices |
US20070162942A1 (en) * | 2006-01-09 | 2007-07-12 | Kimmo Hamynen | Displaying network objects in mobile devices based on geolocation |
US7245923B2 (en) * | 2003-11-20 | 2007-07-17 | Intelligent Spatial Technologies | Mobile device and geographic information system background and summary of the related art |
US20070165554A1 (en) * | 2004-12-23 | 2007-07-19 | Agovo Communications Inc. | System, Method and Portable Communication Device |
US20080004802A1 (en) * | 2006-06-30 | 2008-01-03 | Microsoft Corporation | Route planning with contingencies |
US20080027632A1 (en) * | 2006-03-28 | 2008-01-31 | Mauderer Hans P | Storage and visualization of points of interest in a navigation system |
US20080036586A1 (en) * | 2006-08-11 | 2008-02-14 | Eric Shigeru Ohki | Method and system for receiving and sending navigational data via a wireless messaging service on a navigation system |
US20080036766A1 (en) * | 2006-04-10 | 2008-02-14 | Sony Corporation | Display control apparatus, display control method and display control program |
US20080046298A1 (en) * | 2004-07-29 | 2008-02-21 | Ziv Ben-Yehuda | System and Method For Travel Planning |
US20080056535A1 (en) * | 2006-09-01 | 2008-03-06 | Harman Becker Automotive Systems Gmbh | Image recongition system |
US20080065322A1 (en) * | 2006-03-31 | 2008-03-13 | Brian Ng | Motor vehicle and navigation arrangement for a motor vehicle |
US20080071620A1 (en) * | 2006-09-18 | 2008-03-20 | John Lowe | System, Methods, And Apparatus For Interactive Advertising |
US20080077319A1 (en) * | 2006-09-27 | 2008-03-27 | Xanavi Informatics Corporation | Navigation System Using Intersection Information |
US20080097698A1 (en) * | 2002-10-21 | 2008-04-24 | Johnson Controls Technology Company | Point-of-interest display system |
US20080113674A1 (en) * | 2006-11-10 | 2008-05-15 | Mohammad Faisal Baig | Vicinity-based community for wireless users |
US20080122785A1 (en) * | 2006-11-25 | 2008-05-29 | John Paul Harmon | Portable display with improved functionality |
US20080147730A1 (en) * | 2006-12-18 | 2008-06-19 | Motorola, Inc. | Method and system for providing location-specific image information |
US20080172496A1 (en) * | 2007-01-12 | 2008-07-17 | Justin Middleton | System and method for providing Web services for wireless communication devices |
US20080172374A1 (en) * | 2007-01-17 | 2008-07-17 | Google Inc. | Presentation of Local Results |
US20080174679A1 (en) * | 2006-11-20 | 2008-07-24 | Funai Electric Co., Ltd. | Portable device |
US20080183380A1 (en) * | 2007-01-10 | 2008-07-31 | Adrian Blackwood | Navigation device and method for determining network coverage |
US20080195759A1 (en) * | 2007-02-09 | 2008-08-14 | Microsoft Corporation | Efficient knowledge representation in data synchronization systems |
US20090005077A1 (en) * | 2007-06-28 | 2009-01-01 | Apple Inc. | Location-Based Services |
US20090005076A1 (en) * | 2007-06-28 | 2009-01-01 | Scott Forstall | Location-Based Information Services |
US20090005080A1 (en) * | 2007-06-28 | 2009-01-01 | Apple Inc. | Location-Aware Mobile Device |
US20090031258A1 (en) * | 2007-07-26 | 2009-01-29 | Nokia Corporation | Gesture activated close-proximity communication |
US20090030778A1 (en) * | 2007-07-23 | 2009-01-29 | Motivepath, Inc. | System, method and apparatus for secure multiparty location based services |
US20090036145A1 (en) * | 2007-07-31 | 2009-02-05 | Rosenblum Alan J | Systems and Methods for Providing Tourist Information Based on a Location |
US20090040370A1 (en) * | 2007-08-07 | 2009-02-12 | Palm, Inc. | Displaying image data and geographic element data |
US20090076723A1 (en) * | 2007-09-14 | 2009-03-19 | Palm, Inc. | Targeting Location Through Haptic Feedback Signals |
US20090102859A1 (en) * | 2007-10-18 | 2009-04-23 | Yahoo! Inc. | User augmented reality for camera-enabled mobile devices |
US20090143078A1 (en) * | 2007-11-30 | 2009-06-04 | Palm, Inc. | Techniques to manage a radio based on location information |
US20090163228A1 (en) * | 2000-02-29 | 2009-06-25 | Blumberg Brad W | System and method for providing information based on geographic position |
US20090192704A1 (en) * | 2006-03-08 | 2009-07-30 | Tomtom International B.V. | Portable navigation device |
US20090198767A1 (en) * | 2008-02-01 | 2009-08-06 | Gabriel Jakobson | Method and system for associating content with map zoom function |
US20100008255A1 (en) * | 2008-06-20 | 2010-01-14 | Microsoft Corporation | Mesh network services for devices supporting dynamic direction information |
US7653576B2 (en) * | 2006-08-01 | 2010-01-26 | International Business Machines Corporation | Method for pricing items |
US20100030646A1 (en) * | 2005-12-13 | 2010-02-04 | Yahoo! Inc. | System for providing location predictive advertising |
US20100035224A1 (en) * | 2008-08-06 | 2010-02-11 | Maria Theresa Minard | Learning with Magnets |
US7747528B1 (en) * | 2004-02-11 | 2010-06-29 | Yt Acquisition Corporation | System and method for delaying payment processing for biometrically-initiated financial transactions |
US7783523B2 (en) * | 2003-01-17 | 2010-08-24 | California Distribution Center, Inc. | Automated pricing system |
US20110093227A1 (en) * | 2006-12-08 | 2011-04-21 | Andrew Shane Huang | Systems and methods for location, motion, and contact detection and tracking in a networked audiovisual device |
US7941269B2 (en) * | 2005-05-06 | 2011-05-10 | Rialcardo Tice B.V. Llc | Network-based navigation system having virtual drive-thru advertisements integrated with actual imagery from along a physical route |
US7990394B2 (en) * | 2007-05-25 | 2011-08-02 | Google Inc. | Viewing and navigating within panoramic images, and applications thereof |
US8165034B2 (en) * | 2007-03-16 | 2012-04-24 | Jon Buchwald | Configurable zone-based location detection |
US8170795B2 (en) * | 2005-01-18 | 2012-05-01 | Harman Becker Automotive Systems Gmbh | Navigation system with animated intersection view |
US8249949B2 (en) * | 2004-11-04 | 2012-08-21 | Ebay Inc. | System to generate an aggregate interest indication with respect to an information item |
US8407003B2 (en) * | 2006-08-15 | 2013-03-26 | Tomtom International B.V. | Method of generating improved map data for use in navigation devices, map data and navigation device therefor |
Family Cites Families (258)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4745545A (en) * | 1985-06-28 | 1988-05-17 | Cray Research, Inc. | Memory reference control in a multiprocessor |
US5948040A (en) * | 1994-06-24 | 1999-09-07 | Delorme Publishing Co. | Travel reservation information and planning system |
US6321158B1 (en) | 1994-06-24 | 2001-11-20 | Delorme Publishing Company | Integrated routing/mapping information |
US5892900A (en) * | 1996-08-30 | 1999-04-06 | Intertrust Technologies Corp. | Systems and methods for secure transaction management and electronic rights protection |
JP3474022B2 (en) * | 1995-04-20 | 2003-12-08 | 株式会社日立製作所 | Map display device, map display method, arithmetic processing unit for map display device, and navigation system |
US7426437B2 (en) | 1997-10-22 | 2008-09-16 | Intelligent Technologies International, Inc. | Accident avoidance systems and methods |
JP3658659B2 (en) * | 1995-11-15 | 2005-06-08 | カシオ計算機株式会社 | Image processing device |
US5781908A (en) * | 1995-12-18 | 1998-07-14 | J.D. Edwards World Source Company | File data synchronizer in a distributed data computer network |
US5787262A (en) | 1996-06-26 | 1998-07-28 | Microsoft Corporation | System and method for distributed conflict resolution between data objects replicated across a computer network |
WO1998040807A2 (en) | 1997-02-27 | 1998-09-17 | Siebel Systems, Inc. | Migrating to a successive software distribution level |
AU739611B2 (en) | 1997-06-03 | 2001-10-18 | Stephen Bide | Portable information-providing apparatus |
JP4251673B2 (en) | 1997-06-24 | 2009-04-08 | 富士通株式会社 | Image presentation device |
US6409086B1 (en) | 1997-08-08 | 2002-06-25 | Symbol Technolgies, Inc. | Terminal locking system |
US9177476B2 (en) * | 1997-10-22 | 2015-11-03 | American Vehicular Sciences Llc | Method and system for guiding a person to a location |
WO1999042947A2 (en) | 1998-02-18 | 1999-08-26 | Geovector Corporation | Apparatus and methods for presentation of information relating to objects being addressed |
US6304881B1 (en) | 1998-03-03 | 2001-10-16 | Pumatech, Inc. | Remote data access and synchronization |
JP2000017242A (en) | 1998-06-29 | 2000-01-18 | Minnesota Mining & Mfg Co <3M> | Hot-melt adhesive composition, pressure-sensitive adhesive film and method for bonding with hot-melt adhesive composition |
US6317754B1 (en) | 1998-07-03 | 2001-11-13 | Mitsubishi Electric Research Laboratories, Inc | System for user control of version /Synchronization in mobile computing |
US6076070A (en) | 1998-07-23 | 2000-06-13 | Cendant Publishing, Inc. | Apparatus and method for on-line price comparison of competitor's goods and/or services over a computer network |
US6810405B1 (en) * | 1998-08-18 | 2004-10-26 | Starfish Software, Inc. | System and methods for synchronizing data between multiple datasets |
US6243076B1 (en) | 1998-09-01 | 2001-06-05 | Synthetic Environments, Inc. | System and method for controlling host system interface with point-of-interest data |
US6369794B1 (en) | 1998-09-09 | 2002-04-09 | Matsushita Electric Industrial Co., Ltd. | Operation indication outputting device for giving operation indication according to type of user's action |
JP2000123027A (en) | 1998-10-13 | 2000-04-28 | Sony Corp | Information providing system, server and information providing method |
US6332127B1 (en) | 1999-01-28 | 2001-12-18 | International Business Machines Corporation | Systems, methods and computer program products for providing time and location specific advertising via the internet |
US6360167B1 (en) * | 1999-01-29 | 2002-03-19 | Magellan Dis, Inc. | Vehicle navigation system with location-based multi-media annotation |
US20060061551A1 (en) * | 1999-02-12 | 2006-03-23 | Vega Vista, Inc. | Motion detection and tracking system to control navigation and display of portable displays including on-chip gesture detection |
US6212392B1 (en) | 1999-02-26 | 2001-04-03 | Signal Soft Corp. | Method for determining if the location of a wireless communication device is within a specified area |
US6308201B1 (en) * | 1999-04-08 | 2001-10-23 | Palm, Inc. | System and method for sharing data among a plurality of personal digital assistants |
US6678882B1 (en) * | 1999-06-30 | 2004-01-13 | Qwest Communications International Inc. | Collaborative model for software systems with synchronization submodel with merge feature, automatic conflict resolution and isolation of potential changes for reuse |
US20010030664A1 (en) | 1999-08-16 | 2001-10-18 | Shulman Leo A. | Method and apparatus for configuring icon interactivity |
US6381465B1 (en) | 1999-08-27 | 2002-04-30 | Leap Wireless International, Inc. | System and method for attaching an advertisement to an SMS message for wireless transmission |
AU1484501A (en) | 1999-11-10 | 2001-06-06 | Foodwagon, Com, Inc. | System and method for retail price information |
US6429808B1 (en) * | 1999-11-12 | 2002-08-06 | Motorola, Inc. | Method and apparatus for assisted GPS integrity maintenance |
US6771294B1 (en) | 1999-12-29 | 2004-08-03 | Petri Pulli | User interface |
US6317688B1 (en) | 2000-01-31 | 2001-11-13 | Rockwell Collins | Method and apparatus for achieving sole means navigation from global navigation satelite systems |
CA2298194A1 (en) | 2000-02-07 | 2001-08-07 | Profilium Inc. | Method and system for delivering and targeting advertisements over wireless networks |
GB2365260B (en) | 2000-02-24 | 2004-05-26 | Ibm | Database synchronisation for mobile computing devices |
US20020165771A1 (en) | 2001-05-07 | 2002-11-07 | Walker Jay S. | Method and apparatus for establishing prices for a plurality of products |
US6643669B1 (en) | 2000-03-14 | 2003-11-04 | Telefonaktiebolaget Lm Ericsson (Publ) | Method for optimization of synchronization between a client's database and a server database |
US6587782B1 (en) | 2000-03-14 | 2003-07-01 | Navigation Technologies Corp. | Method and system for providing reminders about points of interests while traveling |
US7142205B2 (en) | 2000-03-29 | 2006-11-28 | Autodesk, Inc. | Single gesture map navigation graphical user interface for a personal digital assistant |
US6912398B1 (en) | 2000-04-10 | 2005-06-28 | David Domnitz | Apparatus and method for delivering information to an individual based on location and/or time |
GB0008931D0 (en) | 2000-04-11 | 2000-05-31 | Hewlett Packard Co | Shopping assistance method and apparatus |
US6636873B1 (en) * | 2000-04-17 | 2003-10-21 | Oracle International Corporation | Methods and systems for synchronization of mobile devices with a remote database |
JP2001312507A (en) | 2000-04-28 | 2001-11-09 | Netyear Group Corp | System for data transmission from host and its method |
US20020002504A1 (en) * | 2000-05-05 | 2002-01-03 | Andrew Engel | Mobile shopping assistant system and device |
EP2202616B1 (en) | 2000-05-16 | 2016-09-28 | Nokia Technologies Oy | A method and apparatus to browse and access downloaded contextual information |
US7133892B2 (en) | 2000-06-16 | 2006-11-07 | Nvidia International, Inc. | Method and computer program product for customized information management by allowing a first habitat to access other habitats to retrieve information from the other habitats |
US20020191034A1 (en) | 2000-06-28 | 2002-12-19 | Sowizral Henry A. | Size conditioned visibility search system and method |
US6327533B1 (en) | 2000-06-30 | 2001-12-04 | Geospatial Technologies, Inc. | Method and apparatus for continuously locating an object |
US6930715B1 (en) * | 2000-07-21 | 2005-08-16 | The Research Foundation Of The State University Of New York | Method, system and program product for augmenting an image of a scene with information about the scene |
US6466938B1 (en) | 2000-07-31 | 2002-10-15 | Motorola, Inc. | Method and apparatus for locating a device using a database containing hybrid location data |
US20020077905A1 (en) | 2000-08-11 | 2002-06-20 | Tvx Internet Services, Inc. | Integrated system for differentiation and positioning of a commercial offering |
US6374180B1 (en) | 2000-09-18 | 2002-04-16 | Magellan Dis, Inc. | Points of interest for a navigation system |
US6529144B1 (en) | 2000-09-22 | 2003-03-04 | Motorola Inc. | Method and apparatus for motion activated control of an electronic device |
US6351710B1 (en) | 2000-09-28 | 2002-02-26 | Michael F. Mays | Method and system for visual addressing |
WO2002033503A2 (en) | 2000-10-18 | 2002-04-25 | Koninklijke Philips Electronics N.V. | System for storing and accessing information units |
US8130242B2 (en) | 2000-11-06 | 2012-03-06 | Nant Holdings Ip, Llc | Interactivity via mobile image recognition |
US7680324B2 (en) | 2000-11-06 | 2010-03-16 | Evryx Technologies, Inc. | Use of image-derived information as search criteria for internet and other search engines |
JP2002140620A (en) | 2000-11-06 | 2002-05-17 | Matsushita Electric Ind Co Ltd | System for providing comparison information |
US6377793B1 (en) | 2000-12-06 | 2002-04-23 | Xybernaut Corporation | System and method of accessing and recording messages at coordinate way points |
US20030101059A1 (en) | 2000-12-08 | 2003-05-29 | Heyman Martin D. | System and method of accessing and recording messages at coordinate way points |
US7072956B2 (en) * | 2000-12-22 | 2006-07-04 | Microsoft Corporation | Methods and systems for context-aware policy determination and enforcement |
US6421602B1 (en) | 2001-01-03 | 2002-07-16 | Motorola, Inc. | Method of navigation guidance for a distributed communications system having communications nodes |
US6795710B1 (en) | 2001-01-05 | 2004-09-21 | Palmone, Inc. | Identifying client patterns using online location-based derivative analysis |
US20030069693A1 (en) | 2001-01-16 | 2003-04-10 | Snapp Douglas N. | Geographic pointing device |
US6372974B1 (en) * | 2001-01-16 | 2002-04-16 | Intel Corporation | Method and apparatus for sharing music content between devices |
US20020173905A1 (en) | 2001-01-24 | 2002-11-21 | Televigation, Inc. | Real-time navigation system for mobile environment |
US7031875B2 (en) | 2001-01-24 | 2006-04-18 | Geo Vector Corporation | Pointing systems for addressing objects |
JP2002245333A (en) | 2001-02-16 | 2002-08-30 | Mitsubishi Electric Corp | Store information providing system |
US7358985B2 (en) | 2001-02-16 | 2008-04-15 | Fuji Xerox Co., Ltd. | Systems and methods for computer-assisted meeting capture |
US7103365B2 (en) * | 2001-02-21 | 2006-09-05 | International Business Machines Corporation | System and method for locating an alternate communication mechanism in case of a failure of a wireless communication device |
WO2002073818A1 (en) | 2001-03-13 | 2002-09-19 | Geovector Corporation | Systems for providing point-to-call functionality |
US6661353B1 (en) | 2001-03-15 | 2003-12-09 | Matsushita Avionics Systems Corporation | Method for displaying interactive flight map information |
AU2002305653A1 (en) | 2001-05-22 | 2002-12-03 | Coovi, Inc. | Electronic incentive and promotion management system and method with secure redemption models for brick-and-mortar redemption of on-line coupons |
US6452544B1 (en) | 2001-05-24 | 2002-09-17 | Nokia Corporation | Portable map display system for presenting a 3D map image and method thereof |
US6895503B2 (en) * | 2001-05-31 | 2005-05-17 | Contentguard Holdings, Inc. | Method and apparatus for hierarchical assignment of rights to documents and documents having such rights |
US7092964B1 (en) | 2001-06-22 | 2006-08-15 | Navteq North America, Llc | Method of collecting market research information |
US20030046164A1 (en) | 2001-07-16 | 2003-03-06 | Junichi Sato | Method for providing content distribution service and terminal device |
US7032003B1 (en) * | 2001-08-13 | 2006-04-18 | Union Gold Holdings, Ltd. | Hybrid replication scheme with data and actions for wireless devices |
US20030046158A1 (en) | 2001-09-04 | 2003-03-06 | Kratky Jan Joseph | Method and system for enhancing mobile advertisement targeting with virtual roadside billboards |
US7571124B2 (en) | 2001-09-24 | 2009-08-04 | International Business Machines Corporation | Location based services virtual bookmarking |
DE10156832B4 (en) | 2001-11-20 | 2004-01-29 | Siemens Ag | Method and device for displaying information |
GB0128220D0 (en) | 2001-11-24 | 2002-01-16 | Koninkl Philips Electronics Nv | Location based delivery of service data |
JP3811071B2 (en) | 2002-01-15 | 2006-08-16 | 富士通株式会社 | User terminal |
US6542818B1 (en) | 2002-01-29 | 2003-04-01 | General Motors Corporation | Method and system for real-time recording and uploading of vehicle routes for routing assistance and traffic reporting |
JP2003242407A (en) | 2002-02-18 | 2003-08-29 | Fujitsu Ltd | Information providing method and information providing program |
US20030174838A1 (en) | 2002-03-14 | 2003-09-18 | Nokia Corporation | Method and apparatus for user-friendly peer-to-peer distribution of digital rights management protected content and mechanism for detecting illegal content distributors |
US7149759B2 (en) | 2002-03-25 | 2006-12-12 | International Business Machines Corporation | Method and system for detecting conflicts in replicated data in a database network |
WO2003088561A1 (en) | 2002-04-11 | 2003-10-23 | Ong Corp. | System for managing distribution of digital audio content |
US20040032410A1 (en) | 2002-05-09 | 2004-02-19 | John Ryan | System and method for generating a structured two-dimensional virtual presentation from less than all of a three-dimensional virtual reality model |
US20030220966A1 (en) | 2002-05-24 | 2003-11-27 | International Business Machines Corporation | System and method for dynamic content dependent conflict resolution |
US7103844B2 (en) | 2002-06-26 | 2006-09-05 | International Business Machines Corporation | Portal/portlet application data synchronization |
US7096030B2 (en) * | 2002-06-28 | 2006-08-22 | Nokia Corporation | System and method for initiating location-dependent applications on mobile devices |
US6983293B2 (en) * | 2002-07-24 | 2006-01-03 | International Business Machines Corporation | Mid-tier-based conflict resolution method and system usable for message synchronization and replication |
US7854655B2 (en) | 2002-07-27 | 2010-12-21 | Sony Computer Entertainment America Inc. | Obtaining input for controlling execution of a game program |
US20040024727A1 (en) | 2002-07-30 | 2004-02-05 | Sandvine Incorporated | Method and system of re-sharing files with modifications |
US6763226B1 (en) * | 2002-07-31 | 2004-07-13 | Computer Science Central, Inc. | Multifunctional world wide walkie talkie, a tri-frequency cellular-satellite wireless instant messenger computer and network for establishing global wireless volp quality of service (qos) communications, unified messaging, and video conferencing via the internet |
US7184020B2 (en) | 2002-10-30 | 2007-02-27 | Matsushita Electric Industrial Co., Ltd. | Operation instructing device, operation instructing method, and operation instructing program |
US20040153473A1 (en) | 2002-11-21 | 2004-08-05 | Norman Hutchinson | Method and system for synchronizing data in peer to peer networking environments |
USD494584S1 (en) | 2002-12-05 | 2004-08-17 | Symbol Technologies, Inc. | Mobile companion |
US20040203891A1 (en) * | 2002-12-10 | 2004-10-14 | International Business Machines Corporation | Dynamic service binding providing transparent switching of information services having defined coverage regions |
EP1579239A1 (en) | 2002-12-20 | 2005-09-28 | Koninklijke Philips Electronics N.V. | Providing a user with location-based information |
KR100462839B1 (en) | 2002-12-24 | 2004-12-23 | 한국전자통신연구원 | Method for database synchronization and conflict resolution between clients and server of mobile system |
US7321824B1 (en) | 2002-12-30 | 2008-01-22 | Aol Llc | Presenting a travel route using more than one presentation style |
US8364951B2 (en) | 2002-12-30 | 2013-01-29 | General Instrument Corporation | System for digital rights management using distributed provisioning and authentication |
US7522675B2 (en) | 2002-12-30 | 2009-04-21 | Motorola, Inc. | Digital content preview generation and distribution among peer devices |
US20060107330A1 (en) | 2003-01-02 | 2006-05-18 | Yaacov Ben-Yaacov | Method and system for tracking and managing rights for digital music |
US6795768B2 (en) | 2003-02-20 | 2004-09-21 | Motorola, Inc. | Handheld object selector |
KR100518832B1 (en) | 2003-03-18 | 2005-10-05 | 삼성전자주식회사 | a input system based on three dimensional Inertial Navigation System and method for trajectory estimation thereof |
US7136945B2 (en) | 2003-03-31 | 2006-11-14 | Sony Corporation | Method and apparatus for extending protected content access with peer to peer applications |
GB0308629D0 (en) | 2003-04-14 | 2003-05-21 | Tagboard Ltd | Payment apparatus and method |
US7406499B2 (en) | 2003-05-09 | 2008-07-29 | Microsoft Corporation | Architecture for partition computation and propagation of changes in data replication |
US8234387B2 (en) | 2003-06-05 | 2012-07-31 | Intertrust Technologies Corp. | Interoperable systems and methods for peer-to-peer service orchestration |
US20040260464A1 (en) | 2003-06-23 | 2004-12-23 | Winnie Wong | Point of interest (POI) search method and apparatus for navigation system |
JP2005044427A (en) | 2003-07-25 | 2005-02-17 | Toshiba Corp | Semiconductor storage device |
US7636776B2 (en) | 2003-07-31 | 2009-12-22 | Microsoft Corporation | Systems and methods for synchronizing with multiple data stores |
US7440985B2 (en) | 2003-07-31 | 2008-10-21 | Microsoft Corporation | Filtered replication of data stores |
US7756825B2 (en) | 2003-07-31 | 2010-07-13 | Microsoft Corporation | Synchronization peer participant model |
US20060236258A1 (en) | 2003-08-11 | 2006-10-19 | Core Mobility, Inc. | Scheduling of rendering of location-based content |
US7428546B2 (en) | 2003-08-21 | 2008-09-23 | Microsoft Corporation | Systems and methods for data modeling in an item-based storage platform |
US7401104B2 (en) | 2003-08-21 | 2008-07-15 | Microsoft Corporation | Systems and methods for synchronizing computer systems through an intermediary file system share or device |
US7512638B2 (en) | 2003-08-21 | 2009-03-31 | Microsoft Corporation | Systems and methods for providing conflict handling for peer-to-peer synchronization of units of information manageable by a hardware/software interface system |
US7389273B2 (en) | 2003-09-25 | 2008-06-17 | Scott Andrew Irwin | System and method for federated rights management |
US7489299B2 (en) | 2003-10-23 | 2009-02-10 | Hillcrest Laboratories, Inc. | User interface devices and methods employing accelerometers |
EP1692602A4 (en) | 2003-10-31 | 2007-10-24 | Landmark Technology Partners I | Intelligent client architecture computer system and method |
US20050172261A1 (en) | 2004-01-30 | 2005-08-04 | Yuknewicz Paul J. | Architecture for creating a user interface using a data schema |
US7526768B2 (en) | 2004-02-04 | 2009-04-28 | Microsoft Corporation | Cross-pollination of multiple sync sources |
US8014763B2 (en) | 2004-02-28 | 2011-09-06 | Charles Martin Hymes | Wireless communications with proximal targets identified visually, aurally, or positionally |
US20050203905A1 (en) | 2004-03-12 | 2005-09-15 | Samsung Electronics Co., Ltd. | Method of synchronizing data between server and user terminal using messenger service system and system using the same |
US20050212753A1 (en) * | 2004-03-23 | 2005-09-29 | Marvit David L | Motion controlled remote controller |
US20050212760A1 (en) | 2004-03-23 | 2005-09-29 | Marvit David L | Gesture based user interface supporting preexisting symbols |
CA2559726C (en) * | 2004-03-24 | 2015-10-20 | A9.Com, Inc. | System and method for displaying images in an online directory |
WO2005101200A1 (en) | 2004-04-13 | 2005-10-27 | Red Bend Ltd | Method and apparatus for generating and update package |
US8015211B2 (en) | 2004-04-21 | 2011-09-06 | Architecture Technology Corporation | Secure peer-to-peer object storage system |
EP2337016B1 (en) | 2004-04-30 | 2018-01-10 | IDHL Holdings, Inc. | Free space pointing devices with tilt compensation and improved usability |
US20050256786A1 (en) | 2004-05-17 | 2005-11-17 | Ian Michael Sands | System and method for communicating product information |
JP2008501177A (en) | 2004-05-28 | 2008-01-17 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | License management in an information distribution system that protects privacy |
US8684839B2 (en) | 2004-06-18 | 2014-04-01 | Igt | Control of wager-based game using gesture recognition |
US7460953B2 (en) | 2004-06-30 | 2008-12-02 | Navteq North America, Llc | Method of operating a navigation system using images |
JP2006023793A (en) | 2004-07-06 | 2006-01-26 | Sony Corp | Information processor, program and program providing server |
US7340333B2 (en) | 2004-07-26 | 2008-03-04 | Gm Global Technology Operations, Inc. | Multifunction control system |
JP4391909B2 (en) | 2004-08-05 | 2009-12-24 | 本田技研工業株式会社 | Bumper beam manufacturing method |
US20070271317A1 (en) | 2004-08-16 | 2007-11-22 | Beinsync Ltd. | System and Method for the Synchronization of Data Across Multiple Computing Devices |
US20060047776A1 (en) | 2004-08-31 | 2006-03-02 | Chieng Stephen S | Automated failover in a cluster of geographically dispersed server nodes using data replication over a long distance communication link |
US20060064346A1 (en) | 2004-08-31 | 2006-03-23 | Qualcomm Incorporated | Location based service (LBS) system and method for targeted advertising |
GB2417846A (en) | 2004-09-03 | 2006-03-08 | Sony Comp Entertainment Europe | Rendering an image of a display object to generate a reflection of a captured video image |
US7664109B2 (en) | 2004-09-03 | 2010-02-16 | Microsoft Corporation | System and method for distributed streaming of scalable media |
US20070100834A1 (en) | 2004-09-15 | 2007-05-03 | John Landry | System and method for managing data in a distributed computer system |
GB2419433A (en) | 2004-10-20 | 2006-04-26 | Glasgow School Of Art | Automated Gesture Recognition |
KR20070084302A (en) | 2004-10-25 | 2007-08-24 | 임파워 테크놀로지스 인코포레이티드 | System and method for general purpose data synchronization |
US20060106879A1 (en) | 2004-11-16 | 2006-05-18 | International Business Machines Corporation | Conflict resolution in a synchronization framework |
US7734585B2 (en) | 2004-12-03 | 2010-06-08 | Oracle International Corporation | Updateable fan-out replication with reconfigurable master association |
US20060122035A1 (en) | 2004-12-08 | 2006-06-08 | Felix Ronnie D | Virtual reality exercise system and method |
US7593943B2 (en) | 2005-01-14 | 2009-09-22 | Microsoft Corporation | Method and system for synchronizing multiple user revisions to a shared object |
US7589616B2 (en) | 2005-01-20 | 2009-09-15 | Avaya Inc. | Mobile devices including RFID tag readers |
US7809607B2 (en) | 2005-01-28 | 2010-10-05 | Qualcomm Incorporated | Method and system for providing reverse online auction and mobile commerce |
US8214353B2 (en) | 2005-02-18 | 2012-07-03 | International Business Machines Corporation | Support for schema evolution in a multi-node peer-to-peer replication environment |
US20060194596A1 (en) | 2005-02-26 | 2006-08-31 | Li Deng | System and method for direct peer to peer mobile messaging |
US7925212B2 (en) | 2005-03-07 | 2011-04-12 | Broadcom Corporation | Automatic network and device configuration for handheld devices based on bluetooth device proximity |
US20060256008A1 (en) | 2005-05-13 | 2006-11-16 | Outland Research, Llc | Pointing interface for person-to-person information exchange |
US7353034B2 (en) | 2005-04-04 | 2008-04-01 | X One, Inc. | Location sharing and tracking using mobile phones or other wireless devices |
WO2006105655A1 (en) | 2005-04-06 | 2006-10-12 | March Networks Corporation | Method and system for counting moving objects in a digital video stream |
US7466244B2 (en) | 2005-04-21 | 2008-12-16 | Microsoft Corporation | Virtual earth rooftop overlay and bounding |
US9621749B2 (en) | 2005-06-02 | 2017-04-11 | Invention Science Fund I, Llc | Capturing selected image objects |
US8964054B2 (en) * | 2006-08-18 | 2015-02-24 | The Invention Science Fund I, Llc | Capturing selected image objects |
US7775428B2 (en) | 2005-05-06 | 2010-08-17 | Berkun Kenneth A | Systems and methods for generating, reading and transferring identifiers |
US20060259574A1 (en) | 2005-05-13 | 2006-11-16 | Outland Research, Llc | Method and apparatus for accessing spatially associated information |
US20060256007A1 (en) | 2005-05-13 | 2006-11-16 | Outland Research, Llc | Triangulation method and apparatus for targeting and accessing spatially associated information |
JP4722554B2 (en) | 2005-05-20 | 2011-07-13 | 株式会社ナビタイムジャパン | POI information providing system, POI information providing method, information distribution server, terminal device |
US7848765B2 (en) | 2005-05-27 | 2010-12-07 | Where, Inc. | Location-based services |
US20060271286A1 (en) | 2005-05-27 | 2006-11-30 | Outland Research, Llc | Image-enhanced vehicle navigation systems and methods |
US7523146B2 (en) | 2005-06-21 | 2009-04-21 | Apple Inc. | Apparatus and method for peer-to-peer N-way synchronization in a decentralized environment |
US20060291482A1 (en) | 2005-06-23 | 2006-12-28 | Cisco Technology, Inc. | Method and apparatus for providing a metropolitan mesh network |
US7647171B2 (en) * | 2005-06-29 | 2010-01-12 | Microsoft Corporation | Learning, storing, analyzing, and reasoning about the loss of location-identifying signals |
US7925995B2 (en) | 2005-06-30 | 2011-04-12 | Microsoft Corporation | Integration of location logs, GPS signals, and spatial resources for identifying user activities, goals, and context |
US8933889B2 (en) | 2005-07-29 | 2015-01-13 | Nokia Corporation | Method and device for augmented reality message hiding and revealing |
JP2007072730A (en) | 2005-09-06 | 2007-03-22 | Improove Technologies Co Ltd | Dynamic promotion system and dynamic promotion method in ec site |
US8666376B2 (en) * | 2005-09-14 | 2014-03-04 | Millennial Media | Location based mobile shopping affinity program |
US20070060114A1 (en) | 2005-09-14 | 2007-03-15 | Jorey Ramer | Predictive text completion for a mobile communication facility |
KR100735555B1 (en) | 2005-09-15 | 2007-07-04 | 삼성전자주식회사 | Apparatus and method for performing functions according to the operation |
KR101038477B1 (en) | 2005-09-20 | 2011-06-03 | 맥스테크 커뮤니케이션 네트웍스 리미티드 | Real time peer to peer network |
US20070130217A1 (en) | 2005-10-13 | 2007-06-07 | Unwired Software, Inc. | Many to many data synchronization |
US7782359B2 (en) * | 2005-10-26 | 2010-08-24 | Olympus Corporation | Image capture apparatus and method |
US7501981B2 (en) * | 2005-11-18 | 2009-03-10 | Texas Instruments Incorporated | Methods and apparatus to detect and correct integrity failures in satellite positioning system receivers |
US20070282564A1 (en) | 2005-12-06 | 2007-12-06 | Microvision, Inc. | Spatially aware mobile projection |
US7620404B2 (en) | 2005-12-22 | 2009-11-17 | Pascal Chesnais | Methods and apparatus for organizing and presenting contact information in a mobile communication system |
US20070161382A1 (en) | 2006-01-09 | 2007-07-12 | Melinger Daniel J | System and method including asynchronous location-based messaging |
US20070260398A1 (en) | 2006-03-08 | 2007-11-08 | David Stelpstra | Portable navigation device with accelerometer |
US7519470B2 (en) | 2006-03-15 | 2009-04-14 | Microsoft Corporation | Location-based caching for mobile devices |
US8731821B2 (en) | 2006-03-15 | 2014-05-20 | Qualcomm Incorporated | Method and apparatus for determining relevant point of interest information based upon route of user |
US7536201B2 (en) | 2006-03-29 | 2009-05-19 | Sony Ericsson Mobile Communications Ab | Motion sensor character generation for mobile device |
US7913192B2 (en) | 2006-03-31 | 2011-03-22 | Research In Motion Limited | Methods and apparatus for retrieving and displaying map-related data for visually displayed maps of mobile communication devices |
US8917716B2 (en) | 2006-04-17 | 2014-12-23 | Muse Green Investments LLC | Mesh network telephone system |
FI20060470A0 (en) | 2006-05-12 | 2006-05-12 | Nokia Corp | Orientation-based retrieval of messages |
EP3079085B1 (en) | 2006-05-15 | 2017-11-15 | BlackBerry Limited | Information search dependent on the position and direction of a portable electronic device |
US8571580B2 (en) | 2006-06-01 | 2013-10-29 | Loopt Llc. | Displaying the location of individuals on an interactive map display on a mobile communication device |
US20080154740A1 (en) | 2006-06-09 | 2008-06-26 | Chun-Kyoung Lee | Apparatuses, Methods and Systems for Electronic Real Estate Transactions |
US20070290037A1 (en) | 2006-06-14 | 2007-12-20 | Arellanes Paul T | Method, Computer Program Product And Portable Electronic Device For Providing Pricing Information To Assist A User In Comparative Shopping |
KR20090023735A (en) | 2006-06-23 | 2009-03-05 | 엔엑스피 비 브이 | Communication system and method |
JP2010511921A (en) | 2006-07-24 | 2010-04-15 | エクスビブリオ ベースローテン フェンノートシャップ | Referral reward system for portable devices |
US8234578B2 (en) | 2006-07-25 | 2012-07-31 | Northrop Grumman Systems Corporatiom | Networked gesture collaboration system |
US7801058B2 (en) * | 2006-07-27 | 2010-09-21 | Mobitrum Corporation | Method and system for dynamic information exchange on mesh network devices |
JP4825617B2 (en) | 2006-08-08 | 2011-11-30 | 生活協同組合コープさっぽろ | Product information providing system, product information providing method, and server system |
US7725547B2 (en) | 2006-09-06 | 2010-05-25 | International Business Machines Corporation | Informing a user of gestures made by others out of the user's line of sight |
US20080091518A1 (en) | 2006-09-28 | 2008-04-17 | Henry Eisenson | Adaptive cellular network advertising system |
US20080082254A1 (en) | 2006-10-02 | 2008-04-03 | Yka Huhtala | Route-assisted GPS location sensing via mobile device |
US20080092057A1 (en) | 2006-10-05 | 2008-04-17 | Instrinsyc Software International, Inc | Framework for creation of user interfaces for electronic devices |
US8243022B2 (en) | 2006-11-27 | 2012-08-14 | Microsoft Corporation | Federated virtual graffiti |
US20080132249A1 (en) | 2006-12-05 | 2008-06-05 | Palm, Inc. | Local caching of map data based on carrier coverage data |
EP2102594A1 (en) | 2006-12-21 | 2009-09-23 | International Business Machines Corporation | A method and system for presenting information associated with a location |
US20090265671A1 (en) | 2008-04-21 | 2009-10-22 | Invensense | Mobile devices with motion gesture recognition |
US20080201074A1 (en) | 2007-02-15 | 2008-08-21 | Garmin Ltd. | System and method for creating and sharing navigation routes with electronic devices |
US20080281794A1 (en) | 2007-03-06 | 2008-11-13 | Mathur Anup K | "Web 2.0 information search and presentation" with "consumer == author" and "dynamic Information relevance" models delivered to "mobile and web consumers". |
CN101270998A (en) | 2007-03-20 | 2008-09-24 | 联发科技(合肥)有限公司 | Electronic device and method for reminding interest point according to road section |
US20080250337A1 (en) | 2007-04-05 | 2008-10-09 | Nokia Corporation | Identifying interesting locations based on commonalities in location based postings |
US8229458B2 (en) | 2007-04-08 | 2012-07-24 | Enhanced Geographic Llc | Systems and methods to determine the name of a location visited by a user of a wireless device |
JP2008257644A (en) | 2007-04-09 | 2008-10-23 | Sony Ericsson Mobilecommunications Japan Inc | Cellular phone terminal and database system |
WO2008128133A1 (en) | 2007-04-13 | 2008-10-23 | Pelago, Inc. | Location-based information determination |
US20080268876A1 (en) | 2007-04-24 | 2008-10-30 | Natasha Gelfand | Method, Device, Mobile Terminal, and Computer Program Product for a Point of Interest Based Scheme for Improving Mobile Visual Searching Functionalities |
WO2008134595A1 (en) | 2007-04-27 | 2008-11-06 | Pelago, Inc. | Determining locations of interest based on user visits |
US20080273109A1 (en) | 2007-05-02 | 2008-11-06 | Drew Bamford | Portable device with interactive display and geographical location capability |
US8396881B2 (en) | 2007-05-17 | 2013-03-12 | Research In Motion Limited | Method and system for automatically generating web page transcoding instructions |
JP4729531B2 (en) | 2007-05-18 | 2011-07-20 | 富士通株式会社 | Server device for spatial information service |
US7962152B2 (en) | 2007-05-24 | 2011-06-14 | Virgin Mobile Usa, L.P. | Location determination for wireless mobile devices |
US20090006194A1 (en) * | 2007-06-27 | 2009-01-01 | Microsoft Corporation | Location, destination and other contextual information-based mobile advertisements |
US8311526B2 (en) | 2007-06-28 | 2012-11-13 | Apple Inc. | Location-based categorical information services |
US8108144B2 (en) | 2007-06-28 | 2012-01-31 | Apple Inc. | Location based tracking |
US8260809B2 (en) | 2007-06-28 | 2012-09-04 | Microsoft Corporation | Voice-based search processing |
US7720844B2 (en) * | 2007-07-03 | 2010-05-18 | Vulcan, Inc. | Method and system for continuous, dynamic, adaptive searching based on a continuously evolving personal region of interest |
US20090037273A1 (en) | 2007-07-31 | 2009-02-05 | Jian Zhu | Systems and methods for displaying advertisement information |
US7826999B1 (en) * | 2007-08-20 | 2010-11-02 | Pni Corporation | Magnetic tilt compensated heading compass with adaptive zoffset |
US9261979B2 (en) | 2007-08-20 | 2016-02-16 | Qualcomm Incorporated | Gesture-based mobile interaction |
US20090054077A1 (en) | 2007-08-23 | 2009-02-26 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and apparatus for sending data relating to a target to a mobile device |
JP2009080662A (en) | 2007-09-26 | 2009-04-16 | Brother Ind Ltd | Information providing system, portable terminal device, information management server, information providing method, and program used therefor |
US20090287527A1 (en) | 2007-10-19 | 2009-11-19 | Siemens Aktiengesellschaft | Device for communicating orders for transportation, vehicle-base communication device, communication system and method |
US7853296B2 (en) | 2007-10-31 | 2010-12-14 | Motorola Mobility, Inc. | Mobile virtual and augmented reality system |
US20100214111A1 (en) | 2007-12-21 | 2010-08-26 | Motorola, Inc. | Mobile virtual and augmented reality system |
US11159909B2 (en) | 2008-02-05 | 2021-10-26 | Victor Thomas Anderson | Wireless location establishing device |
US8217964B2 (en) | 2008-02-14 | 2012-07-10 | Nokia Corporation | Information presentation based on display screen orientation |
US20090237328A1 (en) | 2008-03-20 | 2009-09-24 | Motorola, Inc. | Mobile virtual and augmented reality system |
JP2009259238A (en) * | 2008-03-26 | 2009-11-05 | Fujifilm Corp | Storage device for image sharing and image sharing system and method |
US7487017B1 (en) | 2008-03-31 | 2009-02-03 | International Business Machines Corporation | Systems and methods for generating pattern keys for use in navigation systems to predict user destinations |
US9646025B2 (en) | 2008-05-27 | 2017-05-09 | Qualcomm Incorporated | Method and apparatus for aggregating and presenting data associated with geographic locations |
US8700301B2 (en) | 2008-06-19 | 2014-04-15 | Microsoft Corporation | Mobile computing devices, architecture and user interfaces based on dynamic direction information |
US9200901B2 (en) | 2008-06-19 | 2015-12-01 | Microsoft Technology Licensing, Llc | Predictive services for devices supporting dynamic direction information |
US20090315775A1 (en) | 2008-06-20 | 2009-12-24 | Microsoft Corporation | Mobile computing services based on devices with dynamic direction information |
US20090319166A1 (en) | 2008-06-20 | 2009-12-24 | Microsoft Corporation | Mobile computing services based on devices with dynamic direction information |
US8098894B2 (en) | 2008-06-20 | 2012-01-17 | Yahoo! Inc. | Mobile imaging device as navigator |
US20100016022A1 (en) | 2008-07-15 | 2010-01-21 | Sony Ericsson Mobile Communications Ab | Methods and Apparatus for Providing Services Information with a Femtocell Wireless Base Station |
US20100205628A1 (en) | 2009-02-12 | 2010-08-12 | Davis Bruce L | Media processing methods and arrangements |
US8788977B2 (en) | 2008-11-20 | 2014-07-22 | Amazon Technologies, Inc. | Movement recognition as input mechanism |
US9646008B2 (en) | 2008-11-20 | 2017-05-09 | Sony Interactive Entertainment Inc. | Modifying virtual item states in conjunction with digital broadcast |
US8547342B2 (en) | 2008-12-22 | 2013-10-01 | Verizon Patent And Licensing Inc. | Gesture-based delivery from mobile device |
US20100228612A1 (en) * | 2009-03-09 | 2010-09-09 | Microsoft Corporation | Device transaction model and services based on directional information of device |
US20100332324A1 (en) | 2009-06-25 | 2010-12-30 | Microsoft Corporation | Portal services based on interactions with points of interest discovered via directional device information |
US8872767B2 (en) | 2009-07-07 | 2014-10-28 | Microsoft Corporation | System and method for converting gestures into digital graffiti |
US8260269B2 (en) | 2009-11-25 | 2012-09-04 | Visa International Service Association | Input device with an accelerometer |
-
2009
- 2009-05-08 US US12/437,863 patent/US20100009662A1/en not_active Abandoned
- 2009-05-08 US US12/437,857 patent/US8467991B2/en active Active
- 2009-06-02 US US12/476,406 patent/US20100008255A1/en not_active Abandoned
-
2013
- 2013-06-03 US US13/908,737 patent/US8868374B2/en not_active Expired - Fee Related
-
2014
- 2014-08-06 US US14/453,312 patent/US9703385B2/en active Active
-
2017
- 2017-06-08 US US15/617,248 patent/US10509477B2/en active Active
Patent Citations (101)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4262199A (en) * | 1978-05-26 | 1981-04-14 | The Marconi Company Limited | Infra-red target detection and recognition system |
US5424524A (en) * | 1993-06-24 | 1995-06-13 | Ruppert; Jonathan P. | Personal scanner/computer for displaying shopping lists and scanning barcodes to aid shoppers |
US6672506B2 (en) * | 1996-01-25 | 2004-01-06 | Symbol Technologies, Inc. | Statistical sampling security methodology for self-scanning checkout system |
US5767795A (en) * | 1996-07-03 | 1998-06-16 | Delta Information Systems, Inc. | GPS-based information system for vehicles |
US7040541B2 (en) * | 1996-09-05 | 2006-05-09 | Symbol Technologies, Inc. | Portable shopping and order fulfillment system |
US6837436B2 (en) * | 1996-09-05 | 2005-01-04 | Symbol Technologies, Inc. | Consumer interactive shopping system |
US7195157B2 (en) * | 1996-09-05 | 2007-03-27 | Symbol Technologies, Inc. | Consumer interactive shopping system |
US7063263B2 (en) * | 1996-09-05 | 2006-06-20 | Symbol Technologies, Inc. | Consumer interactive shopping system |
US6252544B1 (en) * | 1998-01-27 | 2001-06-26 | Steven M. Hoffberg | Mobile communication device |
US7010501B1 (en) * | 1998-05-29 | 2006-03-07 | Symbol Technologies, Inc. | Personal shopping system |
US7171378B2 (en) * | 1998-05-29 | 2007-01-30 | Symbol Technologies, Inc. | Portable electronic terminal and data processing system |
US6381603B1 (en) * | 1999-02-22 | 2002-04-30 | Position Iq, Inc. | System and method for accessing local information by using referencing position system |
US6353398B1 (en) * | 1999-10-22 | 2002-03-05 | Himanshu S. Amin | System for dynamically pushing information to a user utilizing global positioning system |
US20080090591A1 (en) * | 1999-10-22 | 2008-04-17 | Miller John M | computer-implemented method to perform location-based searching |
US20060019676A1 (en) * | 1999-10-22 | 2006-01-26 | Miller John M | System for dynamically pushing information to a user utilizing global positioning system |
US20080161018A1 (en) * | 1999-10-22 | 2008-07-03 | Miller John M | System for dynamically pushing information to a user utilizing global positioning system |
US7385501B2 (en) * | 1999-10-22 | 2008-06-10 | Himanshu S. Amin | System for dynamically pushing information to a user utilizing global positioning system |
US6741188B1 (en) * | 1999-10-22 | 2004-05-25 | John M. Miller | System for dynamically pushing information to a user utilizing global positioning system |
US6526335B1 (en) * | 2000-01-24 | 2003-02-25 | G. Victor Treyz | Automobile personal computer systems |
US6587835B1 (en) * | 2000-02-09 | 2003-07-01 | G. Victor Treyz | Shopping assistance with handheld computing device |
US20090163228A1 (en) * | 2000-02-29 | 2009-06-25 | Blumberg Brad W | System and method for providing information based on geographic position |
US20010039546A1 (en) * | 2000-05-05 | 2001-11-08 | Moore Michael R. | System and method for obtaining and storing information for deferred browsing |
US20040147329A1 (en) * | 2000-06-16 | 2004-07-29 | Meadows James W. | Personal golfing assistant and method and system for graphically displaying golf related information and for collection, processing and distribution of golf related data |
US20020042750A1 (en) * | 2000-08-11 | 2002-04-11 | Morrison Douglas C. | System method and article of manufacture for a visual self calculating order system over the world wide web |
US20020091568A1 (en) * | 2001-01-10 | 2002-07-11 | International Business Machines Corporation | Personalized profile based advertising system and method with integration of physical location using GPS |
US20020111873A1 (en) * | 2001-02-10 | 2002-08-15 | International Business Machines Corporation | On-line real-time price comparison and adjustment system and method |
US20020138196A1 (en) * | 2001-03-07 | 2002-09-26 | Visteon Global Technologies, Inc. | Methods and apparatus for dynamic point of interest display |
US20070080216A1 (en) * | 2001-05-25 | 2007-04-12 | At&T Corp. | User interface systems |
US6898517B1 (en) * | 2001-07-24 | 2005-05-24 | Trimble Navigation Limited | Vehicle-based dynamic advertising |
US20030036848A1 (en) * | 2001-08-16 | 2003-02-20 | Sheha Michael A. | Point of interest spatial rating search method and system |
US20030069690A1 (en) * | 2001-10-04 | 2003-04-10 | General Motors Corporation | Method and system for navigation-enhanced directory assistance |
US20030078002A1 (en) * | 2001-10-24 | 2003-04-24 | Raghunandan Sanjeev | Method for wireless link reestablishment |
US20030142853A1 (en) * | 2001-11-08 | 2003-07-31 | Pelco | Security identification system |
US20040070602A1 (en) * | 2002-08-05 | 2004-04-15 | Sony Corporation | Electronic guide system, contents server for electronic guide system, portable electronic guide device, and information processing method for electronic guide system |
US20080097698A1 (en) * | 2002-10-21 | 2008-04-24 | Johnson Controls Technology Company | Point-of-interest display system |
US20040107072A1 (en) * | 2002-12-03 | 2004-06-03 | Arne Dietrich | Ins-based user orientation and navigation |
US7783523B2 (en) * | 2003-01-17 | 2010-08-24 | California Distribution Center, Inc. | Automated pricing system |
US20060058041A1 (en) * | 2003-06-20 | 2006-03-16 | Cheng Steven D | System and method for providing position alerting with a mobile device |
US6992619B2 (en) * | 2003-08-01 | 2006-01-31 | Intel Corporation | Use of global positioning satellites (GPS) to discover and select local services |
US20050063563A1 (en) * | 2003-09-23 | 2005-03-24 | Soliman Samir S. | System and method for geolocation using imaging techniques |
US20070015515A1 (en) * | 2003-09-25 | 2007-01-18 | Nec Corporation | Position information service providing system and method thereof |
US20070053056A1 (en) * | 2003-10-14 | 2007-03-08 | Charlesworth Charles N G | Viewing device with orientating imaging device |
US7245923B2 (en) * | 2003-11-20 | 2007-07-17 | Intelligent Spatial Technologies | Mobile device and geographic information system background and summary of the related art |
US20050160014A1 (en) * | 2004-01-15 | 2005-07-21 | Cairo Inc. | Techniques for identifying and comparing local retail prices |
US20070008110A1 (en) * | 2004-01-17 | 2007-01-11 | Huawei Technologies Co., Ltd. | Method for obtaining direction of target location through a handset |
US7747528B1 (en) * | 2004-02-11 | 2010-06-29 | Yt Acquisition Corporation | System and method for delaying payment processing for biometrically-initiated financial transactions |
US20060004713A1 (en) * | 2004-06-30 | 2006-01-05 | Korte Thomas C | Methods and systems for endorsing local search results |
US20080046298A1 (en) * | 2004-07-29 | 2008-02-21 | Ziv Ben-Yehuda | System and Method For Travel Planning |
US20060041663A1 (en) * | 2004-08-20 | 2006-02-23 | Icentric Corporation | Location based dynamic information services |
US20060061554A1 (en) * | 2004-09-20 | 2006-03-23 | Asustek Computer Inc. | Key and keyboard with efficiency of depth and scattered light |
US8249949B2 (en) * | 2004-11-04 | 2012-08-21 | Ebay Inc. | System to generate an aggregate interest indication with respect to an information item |
US20060176516A1 (en) * | 2004-11-29 | 2006-08-10 | Rothschild Trust Holdings, Llc | System and method for embedding and retrieving information in digital images and using the information to copyright the digital images |
US20060123053A1 (en) * | 2004-12-02 | 2006-06-08 | Insignio Technologies, Inc. | Personalized content processing and delivery system and media |
US20070165554A1 (en) * | 2004-12-23 | 2007-07-19 | Agovo Communications Inc. | System, Method and Portable Communication Device |
US8170795B2 (en) * | 2005-01-18 | 2012-05-01 | Harman Becker Automotive Systems Gmbh | Navigation system with animated intersection view |
US7198192B2 (en) * | 2005-02-01 | 2007-04-03 | Electronic Data Systems Corporation | Wireless mobile instant product price comparison and product review |
US7941269B2 (en) * | 2005-05-06 | 2011-05-10 | Rialcardo Tice B.V. Llc | Network-based navigation system having virtual drive-thru advertisements integrated with actual imagery from along a physical route |
US20070004451A1 (en) * | 2005-06-30 | 2007-01-04 | C Anderson Eric | Controlling functions of a handheld multifunction device |
US20070016368A1 (en) * | 2005-07-13 | 2007-01-18 | Charles Chapin | Generating Human-Centric Directions in Mapping Systems |
US20070032943A1 (en) * | 2005-08-05 | 2007-02-08 | Aisin Aw Co., Ltd. | Navigation system |
US20070078596A1 (en) * | 2005-09-30 | 2007-04-05 | John Grace | Landmark enhanced directions |
US20070118278A1 (en) * | 2005-11-18 | 2007-05-24 | Michael Finn | Geographic database with detailed local data |
US20100030646A1 (en) * | 2005-12-13 | 2010-02-04 | Yahoo! Inc. | System for providing location predictive advertising |
US20070139366A1 (en) * | 2005-12-21 | 2007-06-21 | Dunko Gregory A | Sharing information between devices |
US20070162942A1 (en) * | 2006-01-09 | 2007-07-12 | Kimmo Hamynen | Displaying network objects in mobile devices based on geolocation |
US20090192704A1 (en) * | 2006-03-08 | 2009-07-30 | Tomtom International B.V. | Portable navigation device |
US20080027632A1 (en) * | 2006-03-28 | 2008-01-31 | Mauderer Hans P | Storage and visualization of points of interest in a navigation system |
US20080065322A1 (en) * | 2006-03-31 | 2008-03-13 | Brian Ng | Motor vehicle and navigation arrangement for a motor vehicle |
US20080036766A1 (en) * | 2006-04-10 | 2008-02-14 | Sony Corporation | Display control apparatus, display control method and display control program |
US20080004802A1 (en) * | 2006-06-30 | 2008-01-03 | Microsoft Corporation | Route planning with contingencies |
US7653576B2 (en) * | 2006-08-01 | 2010-01-26 | International Business Machines Corporation | Method for pricing items |
US20080036586A1 (en) * | 2006-08-11 | 2008-02-14 | Eric Shigeru Ohki | Method and system for receiving and sending navigational data via a wireless messaging service on a navigation system |
US8407003B2 (en) * | 2006-08-15 | 2013-03-26 | Tomtom International B.V. | Method of generating improved map data for use in navigation devices, map data and navigation device therefor |
US20080056535A1 (en) * | 2006-09-01 | 2008-03-06 | Harman Becker Automotive Systems Gmbh | Image recongition system |
US20080071620A1 (en) * | 2006-09-18 | 2008-03-20 | John Lowe | System, Methods, And Apparatus For Interactive Advertising |
US20080077319A1 (en) * | 2006-09-27 | 2008-03-27 | Xanavi Informatics Corporation | Navigation System Using Intersection Information |
US20080113674A1 (en) * | 2006-11-10 | 2008-05-15 | Mohammad Faisal Baig | Vicinity-based community for wireless users |
US20080174679A1 (en) * | 2006-11-20 | 2008-07-24 | Funai Electric Co., Ltd. | Portable device |
US20080122785A1 (en) * | 2006-11-25 | 2008-05-29 | John Paul Harmon | Portable display with improved functionality |
US20110093227A1 (en) * | 2006-12-08 | 2011-04-21 | Andrew Shane Huang | Systems and methods for location, motion, and contact detection and tracking in a networked audiovisual device |
US20080147730A1 (en) * | 2006-12-18 | 2008-06-19 | Motorola, Inc. | Method and system for providing location-specific image information |
US20080183380A1 (en) * | 2007-01-10 | 2008-07-31 | Adrian Blackwood | Navigation device and method for determining network coverage |
US20080172496A1 (en) * | 2007-01-12 | 2008-07-17 | Justin Middleton | System and method for providing Web services for wireless communication devices |
US20080172374A1 (en) * | 2007-01-17 | 2008-07-17 | Google Inc. | Presentation of Local Results |
US20080195759A1 (en) * | 2007-02-09 | 2008-08-14 | Microsoft Corporation | Efficient knowledge representation in data synchronization systems |
US8165034B2 (en) * | 2007-03-16 | 2012-04-24 | Jon Buchwald | Configurable zone-based location detection |
US7990394B2 (en) * | 2007-05-25 | 2011-08-02 | Google Inc. | Viewing and navigating within panoramic images, and applications thereof |
US20090005077A1 (en) * | 2007-06-28 | 2009-01-01 | Apple Inc. | Location-Based Services |
US20090005076A1 (en) * | 2007-06-28 | 2009-01-01 | Scott Forstall | Location-Based Information Services |
US20090005080A1 (en) * | 2007-06-28 | 2009-01-01 | Apple Inc. | Location-Aware Mobile Device |
US20090030778A1 (en) * | 2007-07-23 | 2009-01-29 | Motivepath, Inc. | System, method and apparatus for secure multiparty location based services |
US20090031258A1 (en) * | 2007-07-26 | 2009-01-29 | Nokia Corporation | Gesture activated close-proximity communication |
US20090036145A1 (en) * | 2007-07-31 | 2009-02-05 | Rosenblum Alan J | Systems and Methods for Providing Tourist Information Based on a Location |
US20090040370A1 (en) * | 2007-08-07 | 2009-02-12 | Palm, Inc. | Displaying image data and geographic element data |
US20090076723A1 (en) * | 2007-09-14 | 2009-03-19 | Palm, Inc. | Targeting Location Through Haptic Feedback Signals |
US7788032B2 (en) * | 2007-09-14 | 2010-08-31 | Palm, Inc. | Targeting location through haptic feedback signals |
US20090102859A1 (en) * | 2007-10-18 | 2009-04-23 | Yahoo! Inc. | User augmented reality for camera-enabled mobile devices |
US20090143078A1 (en) * | 2007-11-30 | 2009-06-04 | Palm, Inc. | Techniques to manage a radio based on location information |
US20090198767A1 (en) * | 2008-02-01 | 2009-08-06 | Gabriel Jakobson | Method and system for associating content with map zoom function |
US20100008255A1 (en) * | 2008-06-20 | 2010-01-14 | Microsoft Corporation | Mesh network services for devices supporting dynamic direction information |
US20100035224A1 (en) * | 2008-08-06 | 2010-02-11 | Maria Theresa Minard | Learning with Magnets |
Cited By (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100041416A1 (en) * | 2006-10-18 | 2010-02-18 | Yoshihisa Manzen | Mobile communication terminal with gps function, positioning system, operation control method, and program |
US8345658B2 (en) * | 2006-10-18 | 2013-01-01 | Nec Corporation | Mobile communication terminal with GPS function, positioning system, operation control method, and program |
US20090319177A1 (en) * | 2008-06-19 | 2009-12-24 | Microsoft Corporation | Predictive services for devices supporting dynamic direction information |
US9200901B2 (en) | 2008-06-19 | 2015-12-01 | Microsoft Technology Licensing, Llc | Predictive services for devices supporting dynamic direction information |
US8700302B2 (en) | 2008-06-19 | 2014-04-15 | Microsoft Corporation | Mobile computing devices, architecture and user interfaces based on dynamic direction information |
US20090319175A1 (en) * | 2008-06-19 | 2009-12-24 | Microsoft Corporation | Mobile computing devices, architecture and user interfaces based on dynamic direction information |
US20090319178A1 (en) * | 2008-06-19 | 2009-12-24 | Microsoft Corporation | Overlay of information associated with points of interest of direction based data services |
US20090315766A1 (en) * | 2008-06-19 | 2009-12-24 | Microsoft Corporation | Source switching for devices supporting dynamic direction information |
US8700301B2 (en) | 2008-06-19 | 2014-04-15 | Microsoft Corporation | Mobile computing devices, architecture and user interfaces based on dynamic direction information |
US8615257B2 (en) | 2008-06-19 | 2013-12-24 | Microsoft Corporation | Data synchronization for devices supporting direction-based services |
US20090315995A1 (en) * | 2008-06-19 | 2009-12-24 | Microsoft Corporation | Mobile computing devices, architecture and user interfaces based on dynamic direction information |
US20090318168A1 (en) * | 2008-06-19 | 2009-12-24 | Microsoft Corporation | Data synchronization for devices supporting direction-based services |
US8200246B2 (en) | 2008-06-19 | 2012-06-12 | Microsoft Corporation | Data synchronization for devices supporting direction-based services |
US10057724B2 (en) | 2008-06-19 | 2018-08-21 | Microsoft Technology Licensing, Llc | Predictive services for devices supporting dynamic direction information |
US20090315775A1 (en) * | 2008-06-20 | 2009-12-24 | Microsoft Corporation | Mobile computing services based on devices with dynamic direction information |
US20100008255A1 (en) * | 2008-06-20 | 2010-01-14 | Microsoft Corporation | Mesh network services for devices supporting dynamic direction information |
US20090319348A1 (en) * | 2008-06-20 | 2009-12-24 | Microsoft Corporation | Mobile computing services based on devices with dynamic direction information |
US8868374B2 (en) | 2008-06-20 | 2014-10-21 | Microsoft Corporation | Data services based on gesture and location information of device |
US20090319181A1 (en) * | 2008-06-20 | 2009-12-24 | Microsoft Corporation | Data services based on gesture and location information of device |
US10509477B2 (en) | 2008-06-20 | 2019-12-17 | Microsoft Technology Licensing, Llc | Data services based on gesture and location information of device |
US20090319166A1 (en) * | 2008-06-20 | 2009-12-24 | Microsoft Corporation | Mobile computing services based on devices with dynamic direction information |
US20090315776A1 (en) * | 2008-06-20 | 2009-12-24 | Microsoft Corporation | Mobile computing services based on devices with dynamic direction information |
US9703385B2 (en) | 2008-06-20 | 2017-07-11 | Microsoft Technology Licensing, Llc | Data services based on gesture and location information of device |
US8467991B2 (en) | 2008-06-20 | 2013-06-18 | Microsoft Corporation | Data services based on gesture and location information of device |
US20100034104A1 (en) * | 2008-08-07 | 2010-02-11 | Samsung Electronics Co., Ltd | Delayable events in home network |
US8095651B2 (en) * | 2008-08-07 | 2012-01-10 | Samsung Electronics Co., Ltd. | Delayable events in home network |
US20100228612A1 (en) * | 2009-03-09 | 2010-09-09 | Microsoft Corporation | Device transaction model and services based on directional information of device |
US20100332324A1 (en) * | 2009-06-25 | 2010-12-30 | Microsoft Corporation | Portal services based on interactions with points of interest discovered via directional device information |
US9661468B2 (en) | 2009-07-07 | 2017-05-23 | Microsoft Technology Licensing, Llc | System and method for converting gestures into digital graffiti |
US8666377B2 (en) * | 2010-03-03 | 2014-03-04 | Htc Corporation | Method, system and computer-readable medium for synchronizing spot information |
US20110217965A1 (en) * | 2010-03-03 | 2011-09-08 | Htc Corporation | Method, system and computer-readable medium for synchronizing spot information |
WO2011109751A1 (en) * | 2010-03-05 | 2011-09-09 | The Dun And Bradstreet Corporation | Location-aware business data retrieval |
US20110218985A1 (en) * | 2010-03-05 | 2011-09-08 | The Dun & Bradstreet Corporation | Location-aware business data retrieval |
US9009132B2 (en) * | 2010-03-05 | 2015-04-14 | The Dun & Bradstreet Corporation | Location-aware business data retrieval |
US9043723B2 (en) | 2010-04-21 | 2015-05-26 | Microsoft Technology Licensing, Llc | Representation of overlapping visual entities |
US9449581B2 (en) | 2010-04-21 | 2016-09-20 | Microsoft Technology Licensing, Llc | Representation of overlapping visual entities |
US9620085B2 (en) | 2010-04-21 | 2017-04-11 | Microsoft Technology Licensing, Llc | Representation of overlapping visual entities |
US20110265023A1 (en) * | 2010-04-21 | 2011-10-27 | Microsoft Corporation | Interactive Representation of Clustered Entities |
US20110316885A1 (en) * | 2010-06-23 | 2011-12-29 | Samsung Electronics Co., Ltd. | Method and apparatus for displaying image including position information |
US8929604B2 (en) * | 2010-11-09 | 2015-01-06 | Harman Becker Automotive Systems Gmbh | Vision system and method of analyzing an image |
US20120114178A1 (en) * | 2010-11-09 | 2012-05-10 | Juri Platonov | Vision system and method of analyzing an image |
WO2016117926A1 (en) * | 2015-01-20 | 2016-07-28 | 엘지전자(주) | Method for performing discovery in wireless communication system and device therefor |
US10299104B2 (en) | 2015-01-20 | 2019-05-21 | Lg Electronics Inc. | Method for performing discovery in wireless communication system and device therefor |
US11740775B1 (en) * | 2015-05-05 | 2023-08-29 | State Farm Mutual Automobile Insurance Company | Connecting users to entities based on recognized objects |
US12099706B2 (en) | 2015-05-05 | 2024-09-24 | State Farm Mutual Automobile Insurance Company | Connecting users to entities based on recognized objects |
US9983407B2 (en) | 2015-09-11 | 2018-05-29 | Honda Motor Co., Ltd. | Managing points of interest |
Also Published As
Publication number | Publication date |
---|---|
US8467991B2 (en) | 2013-06-18 |
US20170269703A1 (en) | 2017-09-21 |
US8868374B2 (en) | 2014-10-21 |
US10509477B2 (en) | 2019-12-17 |
US20130265223A1 (en) | 2013-10-10 |
US20100008255A1 (en) | 2010-01-14 |
US20090319181A1 (en) | 2009-12-24 |
US20140347268A1 (en) | 2014-11-27 |
US9703385B2 (en) | 2017-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10728706B2 (en) | Predictive services for devices supporting dynamic direction information | |
US10509477B2 (en) | Data services based on gesture and location information of device | |
US8700302B2 (en) | Mobile computing devices, architecture and user interfaces based on dynamic direction information | |
US20100332324A1 (en) | Portal services based on interactions with points of interest discovered via directional device information | |
US20100228612A1 (en) | Device transaction model and services based on directional information of device | |
US8769442B2 (en) | System and method for allocating digital graffiti objects and canvasses | |
US20170249748A1 (en) | System and method for converting gestures into digital graffiti | |
US20090319166A1 (en) | Mobile computing services based on devices with dynamic direction information | |
US9057616B1 (en) | Enhanced identification of interesting points-of-interest | |
US20090315776A1 (en) | Mobile computing services based on devices with dynamic direction information |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MICROSOFT CORPORATION, WASHINGTON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KHOSRAVY, MOE;NOVIK, LEV;REEL/FRAME:022658/0582;SIGNING DATES FROM 20090413 TO 20090428 |
|
AS | Assignment |
Owner name: MICROSOFT TECHNOLOGY LICENSING, LLC, WASHINGTON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MICROSOFT CORPORATION;REEL/FRAME:034564/0001 Effective date: 20141014 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |