US20080265516A1 - Two stage sealants and method of forming and/or using the same - Google Patents
Two stage sealants and method of forming and/or using the same Download PDFInfo
- Publication number
- US20080265516A1 US20080265516A1 US11/924,148 US92414807A US2008265516A1 US 20080265516 A1 US20080265516 A1 US 20080265516A1 US 92414807 A US92414807 A US 92414807A US 2008265516 A1 US2008265516 A1 US 2008265516A1
- Authority
- US
- United States
- Prior art keywords
- sealant material
- activation
- sealer
- during
- cavity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims description 25
- 239000000565 sealant Substances 0.000 title abstract description 10
- 230000004913 activation Effects 0.000 claims abstract description 65
- 239000006260 foam Substances 0.000 claims abstract description 14
- 239000012812 sealant material Substances 0.000 claims description 79
- 239000003795 chemical substances by application Substances 0.000 claims description 31
- 239000004604 Blowing Agent Substances 0.000 claims description 26
- 229920000642 polymer Polymers 0.000 claims description 22
- 229920000647 polyepoxide Polymers 0.000 claims description 18
- 239000003822 epoxy resin Substances 0.000 claims description 17
- 229920001971 elastomer Polymers 0.000 claims description 16
- 239000000806 elastomer Substances 0.000 claims description 13
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 10
- 239000005977 Ethylene Substances 0.000 claims description 10
- 125000000864 peroxy group Chemical group O(O*)* 0.000 claims description 9
- 229920002943 EPDM rubber Polymers 0.000 claims description 7
- 239000004593 Epoxy Substances 0.000 claims description 6
- 229920000573 polyethylene Polymers 0.000 claims description 6
- 239000002253 acid Substances 0.000 claims description 5
- 238000007789 sealing Methods 0.000 claims description 5
- 229920001169 thermoplastic Polymers 0.000 claims description 4
- 239000004416 thermosoftening plastic Substances 0.000 claims description 4
- 230000001747 exhibiting effect Effects 0.000 claims description 3
- 230000002401 inhibitory effect Effects 0.000 claims description 3
- 239000000463 material Substances 0.000 description 49
- 238000001994 activation Methods 0.000 description 37
- -1 thermosettables Polymers 0.000 description 23
- 239000000945 filler Substances 0.000 description 15
- 239000000853 adhesive Substances 0.000 description 12
- 230000001070 adhesive effect Effects 0.000 description 12
- 239000004615 ingredient Substances 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 239000003981 vehicle Substances 0.000 description 9
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 8
- 238000005187 foaming Methods 0.000 description 7
- 229920001187 thermosetting polymer Polymers 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000013032 Hydrocarbon resin Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000000835 fiber Substances 0.000 description 5
- 229920006270 hydrocarbon resin Polymers 0.000 description 5
- 150000002978 peroxides Chemical class 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 4
- 239000004952 Polyamide Substances 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 150000001336 alkenes Chemical class 0.000 description 4
- 150000001412 amines Chemical class 0.000 description 4
- 239000003963 antioxidant agent Substances 0.000 description 4
- 235000006708 antioxidants Nutrition 0.000 description 4
- 229910000019 calcium carbonate Inorganic materials 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 238000004132 cross linking Methods 0.000 description 4
- 229920006225 ethylene-methyl acrylate Polymers 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 239000000049 pigment Substances 0.000 description 4
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 4
- 229920002647 polyamide Polymers 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 3
- 230000003078 antioxidant effect Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 229910052618 mica group Inorganic materials 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000005060 rubber Substances 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000010456 wollastonite Substances 0.000 description 3
- 229910052882 wollastonite Inorganic materials 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 2
- 229920000459 Nitrile rubber Polymers 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 229920002367 Polyisobutene Polymers 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 150000001242 acetic acid derivatives Chemical class 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 239000004760 aramid Substances 0.000 description 2
- 229920006231 aramid fiber Polymers 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 210000003850 cellular structure Anatomy 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 239000004088 foaming agent Substances 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 239000002241 glass-ceramic Substances 0.000 description 2
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 2
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 2
- 239000010445 mica Substances 0.000 description 2
- 239000012764 mineral filler Substances 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 229920001195 polyisoprene Polymers 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 229910052604 silicate mineral Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- XKMZOFXGLBYJLS-UHFFFAOYSA-L zinc;prop-2-enoate Chemical compound [Zn+2].[O-]C(=O)C=C.[O-]C(=O)C=C XKMZOFXGLBYJLS-UHFFFAOYSA-L 0.000 description 2
- CZGWDPMDAIPURF-UHFFFAOYSA-N (4,6-dihydrazinyl-1,3,5-triazin-2-yl)hydrazine Chemical compound NNC1=NC(NN)=NC(NN)=N1 CZGWDPMDAIPURF-UHFFFAOYSA-N 0.000 description 1
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- FDSUVTROAWLVJA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol;prop-2-enoic acid Chemical compound OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OCC(CO)(CO)COCC(CO)(CO)CO FDSUVTROAWLVJA-UHFFFAOYSA-N 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- IZSHZLKNFQAAKX-UHFFFAOYSA-N 5-cyclopenta-2,4-dien-1-ylcyclopenta-1,3-diene Chemical group C1=CC=CC1C1C=CC=C1 IZSHZLKNFQAAKX-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 239000004156 Azodicarbonamide Substances 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- MWRWFPQBGSZWNV-UHFFFAOYSA-N Dinitrosopentamethylenetetramine Chemical compound C1N2CN(N=O)CN1CN(N=O)C2 MWRWFPQBGSZWNV-UHFFFAOYSA-N 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- 239000004609 Impact Modifier Substances 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- 239000006057 Non-nutritive feed additive Substances 0.000 description 1
- 229920000034 Plastomer Polymers 0.000 description 1
- 229920001665 Poly-4-vinylphenol Polymers 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 239000004113 Sepiolite Substances 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- BGYHLZZASRKEJE-UHFFFAOYSA-N [3-[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxy]-2,2-bis[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxymethyl]propyl] 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CCC(=O)OCC(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 BGYHLZZASRKEJE-UHFFFAOYSA-N 0.000 description 1
- 229920000800 acrylic rubber Polymers 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 229940045713 antineoplastic alkylating drug ethylene imines Drugs 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- XOZUGNYVDXMRKW-AATRIKPKSA-N azodicarbonamide Chemical compound NC(=O)\N=N\C(N)=O XOZUGNYVDXMRKW-AATRIKPKSA-N 0.000 description 1
- 235000019399 azodicarbonamide Nutrition 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- QYMGIIIPAFAFRX-UHFFFAOYSA-N butyl prop-2-enoate;ethene Chemical compound C=C.CCCCOC(=O)C=C QYMGIIIPAFAFRX-UHFFFAOYSA-N 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000002666 chemical blowing agent Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 1
- 125000005442 diisocyanate group Chemical group 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- HGVPOWOAHALJHA-UHFFFAOYSA-N ethene;methyl prop-2-enoate Chemical compound C=C.COC(=O)C=C HGVPOWOAHALJHA-UHFFFAOYSA-N 0.000 description 1
- 239000005043 ethylene-methyl acrylate Substances 0.000 description 1
- 239000010433 feldspar Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 229910052900 illite Inorganic materials 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 229910052622 kaolinite Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- SWXPTWPWDSJGGK-UHFFFAOYSA-N n'-[2-[2-(2-aminoethylamino)ethylamino]ethyl]ethane-1,2-diamine;n'-(2-aminoethyl)ethane-1,2-diamine Chemical compound NCCNCCN.NCCNCCNCCNCCN SWXPTWPWDSJGGK-UHFFFAOYSA-N 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- VGIBGUSAECPPNB-UHFFFAOYSA-L nonaaluminum;magnesium;tripotassium;1,3-dioxido-2,4,5-trioxa-1,3-disilabicyclo[1.1.1]pentane;iron(2+);oxygen(2-);fluoride;hydroxide Chemical compound [OH-].[O-2].[O-2].[O-2].[O-2].[O-2].[F-].[Mg+2].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[K+].[K+].[K+].[Fe+2].O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2 VGIBGUSAECPPNB-UHFFFAOYSA-L 0.000 description 1
- 229910000273 nontronite Inorganic materials 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 229920002627 poly(phosphazenes) Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920001083 polybutene Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920001470 polyketone Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 235000013824 polyphenols Nutrition 0.000 description 1
- 229920006380 polyphenylene oxide Polymers 0.000 description 1
- 239000005077 polysulfide Substances 0.000 description 1
- 229920001021 polysulfide Polymers 0.000 description 1
- 150000008117 polysulfides Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000010734 process oil Substances 0.000 description 1
- 229910052903 pyrophyllite Inorganic materials 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910000275 saponite Inorganic materials 0.000 description 1
- 229910000276 sauconite Inorganic materials 0.000 description 1
- 229910052624 sepiolite Inorganic materials 0.000 description 1
- 235000019355 sepiolite Nutrition 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 150000003440 styrenes Chemical class 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 235000007586 terpenes Nutrition 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- 150000003557 thiazoles Chemical class 0.000 description 1
- 230000009974 thixotropic effect Effects 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- 229910052902 vermiculite Inorganic materials 0.000 description 1
- 239000010455 vermiculite Substances 0.000 description 1
- 235000019354 vermiculite Nutrition 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C44/00—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
- B29C44/02—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
- B29C44/12—Incorporating or moulding on preformed parts, e.g. inserts or reinforcements
- B29C44/18—Filling preformed cavities
- B29C44/188—Sealing off parts of the cavities
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/0061—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/06—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J123/00—Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
- C09J123/02—Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
- C09J123/04—Homopolymers or copolymers of ethene
- C09J123/08—Copolymers of ethene
- C09J123/0846—Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
- C09J123/0853—Vinylacetate
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J123/00—Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
- C09J123/02—Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
- C09J123/16—Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2201/00—Foams characterised by the foaming process
- C08J2201/02—Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
- C08J2201/026—Crosslinking before of after foaming
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2201/00—Foams characterised by the foaming process
- C08J2201/02—Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
- C08J2201/03—Extrusion of the foamable blend
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/04—Homopolymers or copolymers of ethene
- C08J2323/08—Copolymers of ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/16—Ethene-propene or ethene-propene-diene copolymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2463/00—Characterised by the use of epoxy resins; Derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L21/00—Compositions of unspecified rubbers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/03—Polymer mixtures characterised by other features containing three or more polymers in a blend
- C08L2205/035—Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/08—Copolymers of ethene
- C08L23/0846—Copolymers of ethene with unsaturated hydrocarbons containing atoms other than carbon or hydrogen
- C08L23/0853—Ethene vinyl acetate copolymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/08—Copolymers of ethene
- C08L23/0846—Copolymers of ethene with unsaturated hydrocarbons containing atoms other than carbon or hydrogen
- C08L23/0869—Copolymers of ethene with unsaturated hydrocarbons containing atoms other than carbon or hydrogen with unsaturated acids, e.g. [meth]acrylic acid; with unsaturated esters, e.g. [meth]acrylic acid esters
- C08L23/0884—Epoxide-containing esters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2666/00—Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
- C08L2666/02—Organic macromolecular compounds, natural resins, waxes or and bituminous materials
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L77/00—Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
Definitions
- the present invention relates to sealants that activate to seal or baffle of cavity of a structure. More particularly, the present invention relates to sealants, and particularly baffles, that can be activated to expand (e.g., foam) and/or cure and which exhibit self-supporting characteristics during such activation.
- sealants e.g., foam
- baffles that can be activated to expand (e.g., foam) and/or cure and which exhibit self-supporting characteristics during such activation.
- baffles for automotive vehicles and other articles of manufacture.
- automotive baffles have been formed of a carrier that is designed to span a cavity of a structure of an automotive vehicle wherein that carrier would include expandable, (e.g., foamable) material about its periphery. When placed in the cavity, the expandable material could be expanded to seal between the periphery of the carrier and the walls of the structure.
- expandable material e.g., foamable
- seals particularly a baffle
- a seal that can be formed substantially entirely of expandable material and/or that can be formed relatively inexpensively.
- expandable materials particularly lower cost expandable materials
- the method includes provision of a sealer, the sealer being formed of an activatable sealant material.
- the sealant material undergoes a first activation to expand, cure or both at a first temperature that is at least about 10° C. and less than about 140° C.
- the sealant material is typically at least 85% by weight of the sealer.
- the sealer is locatedwithin a cavity of a structure of an automotive vehicle where the sealant material undergoes a second activation to foam and cure at a second temperature that is at least about 150° C. and less than about 300° C. and adheres to walls of the structure.
- the sealant material typically expands to a volume that is at least 400% its original unexpanded volume during the first activation, the second activation or both.
- the sealant material also typically exhibits self supporting characteristics during the second activation because of the first activation.
- FIG. 1 illustrates an exemplary application of an exemplary sealer according to an aspect of the present invention.
- FIG. 2 illustrates another exemplary application of an exemplary sealer according to an aspect of the present invention.
- FIG. 3 illustrates another exemplary application of an exemplary sealer according to an aspect of the present invention.
- the present invention is predicated upon the provision of novel sealant materials or sealant parts that are configured or formulated to expand (e.g., foam) and exhibit self-supporting characteristics such that the sealants can form more robust seals, baffles or the like.
- the materials or part can activate at two separate times.
- the materials or parts can be formulated with a particular material such as a relatively light weight and/or relatively high melt viscosity material (e.g., polymer) for assisting in exhibiting self supporting characteristics.
- the sealant material or parts can activate to foam and/or cure at a first point in time and then activate again to foam and/or cure at a second point in time.
- Both the first activation and the second activation can involve expansion (e.g., foaming), adhesion, reaction or curing (e.g., cross-linking or a combination thereof.
- the first activation will typically take place during processing and/or formation of the sealant material.
- the first activation takes place during mixing of the ingredients of the material.
- materials being mixed in a batch mixer, extruder, combination thereof or the like can undergo activation which can include expansion (e.g. foaming) and/or reaction or curing (e.g., thermosetting or cross-linking).
- the first level of activation provides for enough curing and/or thermosetting and/or expansion (e.g., foaming) to provide the desired self supporting characteristics to the sealant material.
- the first activation will typically take place at a temperature that is at least about 10° C., more typically at least about 45° C. and more typically at least about 70° C. and is typically less than about 200° C., more typically less than about 140° C. and even more typically less than about 110° C., although higher and lower temperatures are possible, unless otherwise stated.
- the sealant material can include acid functionalized elastomer and epoxy resin such that the elastomer and epoxy resin can react (e.g. cure, cross-link, thermoset or a combination thereof with the elastomer.
- the amount of acid functionalized elastomer is typically at least about 2%, more typically at least about 9% and even more typically at least about 15% and is typically less than about 40%, more typically less than about 25% and even more typically less than about 18% by weight of the sealant material, although higher or lower amounts are possible.
- the amount of epoxy resin is typically at least about 1%, more typically at least about 3% and even more typically at least about 5% and typically less than about 30%, more typically less than about 15% and even more typically less than about 7% by weight of the sealant material, although higher or lower amounts are possible.
- the sealant material can include a lower temperature decomposing peroxide or peroxy curing agent for curing (e.g., cross-linking) peroxide or peroxy curable polymeric material (e.g., elastomer) in the sealant material.
- a peroxide will typically cure the polymeric material at a temperature that is at least about 30° C., more typically at least about 50° C. and more typically at least about 70° C.
- the amount of peroxide or peroxy curing agent is typically at least about 0.01%, more typically at least about 0.1% and even more typically at least about 0.6% and is typically less than about 10%, more typically less than about 4% and even more typically less than about 2% by weight of the sealant material, although higher or lower amounts are possible.
- the amount of polymeric material is typically at least about 5%, more typically at least about 15% and even more typically at least about 25% and typically less than about 90%, more typically less than about 70% and even more typically less than about 40% by weight of the sealant material, although higher or lower amounts are possible.
- the sealant material can include a relatively low amount of epoxy resin and a relatively low amount of epoxy curative (e.g., amine, amide or both) for curing the epoxy resin.
- the amount of epoxy resin is typically at least about 1%, more typically at least about 3% and even possibly at least about 6 or even 8% and is typically less than about 25%, more typically less than about 14% and even possibly less than about 11 or 9% by weight of the sealant material, although higher or lower amounts are possible.
- the amount of epoxy curative is typically at least about 0.01%, more typically at least about 0.1% and even possibly at least about 1 or even 2% and typically less than about 10%, more typically less than about 4% and even more typically less than about 2% by weight of the sealant material, although higher or lower amounts are possible.
- the sealant material will typically include a foaming agent (e.g., a physical or chemical blowing agent) that activates for forming gas at the temperature of first activation or be chemically formulated to foam at that temperature.
- a foaming agent e.g., a physical or chemical blowing agent
- the first activation including any expansion (e.g., foaming) will typically take place at that is at least about 10° C., more typically at least about 45° C. and more typically at least about 70° C. and is typically less than about 200° C., more typically less than about 140° C. and even more typically less than about 110° C., although higher and lower temperatures are possible.
- Physical blowing agents useful for such activation include thermoplastic shells that encapsulated solvents. Other suitable foaming agents (e.g., blowing agents and/or blowing agent accelerators) are discussed below.
- the sealant material will typically include ingredients (e.g., blowing agent and/or blowing agent accelerator) configured to expand (e.g., foam) the sealant material and/or ingredients (e.g., curing agent and/or curing agent accelerator) configured to cure (e.g., cross-link and/or thermoset) polymeric materials within the sealant material.
- ingredients e.g., blowing agent and/or blowing agent accelerator
- curing agent and/or curing agent accelerator e.g., curing agent and/or curing agent accelerator
- cure e.g., cross-link and/or thermoset
- the polymeric material can include only one type of polymer or can be an admixture of 2, 3, 4 or several different polymers.
- the polymeric material admixture can include a variety of different polymers, such as thermoplastics, thermosets, thermosettables, elastomers, plastomers combinations thereof or the like.
- polymers that might be appropriately incorporated into the polymeric admixture include halogenated polymers, polycarbonates, polyolefins (e.g., polyethylene, polypropylene), polyethylenes, polypropylenes, poly(ethylene oxides), polysiloxane, polyethers, polyphosphazines, poly(ethyleneimines), polyamides, polyketones, polyurethanes, polyesters, polyimides, polyisobutylenes, polyacrylonitriles, poly(vinyl chlorides), poly(methyl methacrylates), poly(vinyl acetates), poly(vinylidene chlorides), polytetrafluoroethylenes, polyisoprenes, polyacrylamides, silanes, sulfones, allyls, olefins, styrenes, acrylates, methacrylates, epoxies, silicones, phenolics, rubbers, polyphenylene oxides, ter
- Suitable elastomers include, without limitation natural rubber, styrene-butadiene rubber, polyisoprene, polyisobutylene, polybutadiene, isoprene-butadiene copolymer, neoprene, nitrile rubber (e.g., a butyl nitrile, such as carboxy-terminated butyl nitrile), butyl rubber, polysulfide elastomer, acrylic elastomer, acrylonitrile elastomers, silicone rubber, polysiloxanes, polyester rubber, diisocyanate-linked condensation elastomer, EPDM (ethylene-propylene diene rubbers), chlorosulphonated polyethylene, fluorinated hydrocarbons and the like.
- nitrile rubber e.g., a butyl nitrile, such as carboxy-terminated butyl nitrile
- butyl rubber polysulfide elastomer
- the sealant material includes a substantial weight percentage one or more ethylene based polymers or olefins.
- Such polymers can include, without limitation, one or more acrylates, one or more acetates or both.
- the sealant material includes EVA, EMA, EPDM or any combination thereof.
- ethylene based polymers or olefins are typically at least about 10%, more typically at least about 20% and even more typically at least about 30% by weight of the sealant material.
- Such ethylene based polymer or olefins are also typically less than about 90%, more typically less than about 65% and even more typically less than about 40% by weight of the sealant material.
- one or more of the polymers or other materials of the present invention can be relatively lightweight and/or can have a relatively high melt viscosity.
- materials that can include such characteristics include, without limitation, ethylene polymer (e.g., epdm or eva), nylon powder or the like.
- One or more curing agents and/or curing agent accelerators may be suitable for the sealant material for use in the first activation, the second activation or both.
- a single curing agent may be employed or two or more curing agents may be employed.
- the two or more agents can be from the same class or different class of curing agents and may be directed at curing same or different polymeric materials.
- Amounts of curing agents and curing agent accelerators can vary widely within the sealant material depending upon the type of cellular structure desired, the desired amount or rate of expansion of the sealant material if the adhesive material is expandable, the desired properties of the sealant material or the like. Exemplary ranges for effective amounts of the curing agents, curing agent accelerators or both together present in the adhesive material range from about 0.1% by weight to about 7% by weight.
- the curing agents assist the sealant material in curing by crosslinking of the polymers, epoxy resins or both. It is also preferable for the curing agents to assist in thermosetting the adhesive material.
- Useful classes of curing agents are materials selected from aliphatic or aromatic amines or their respective adducts, amidoamines, polyamides, cycloaliphatic amines, (e.g., anhydrides, polycarboxylic polyesters, isocyanates, phenol-based resins (such as phenol or cresol novolak resins, copolymers such as those of phenol terpene, polyvinyl phenol, or bisphenol-A formaldehyde copolymers, bishydroxyphenyl alkanes or the like), peroxides, sulfur or mixtures thereof.
- Particularly preferred curing agents include modified and unmodified polyamines or polyamides such as triethylenetetramine, diethylenetriamine tetraethylenepentamine, cyanoguanidine, dicyandiamides and the like.
- An accelerator for the curing agents e.g., a modified or unmodified urea such as methylene diphenyl bis urea, an imidazole or a combination thereof
- a modified or unmodified urea such as methylene diphenyl bis urea, an imidazole or a combination thereof
- certain of these curing agents can be employed at non-stoichiometric or sub-stoichiometric levels to achieve a first or lesser degree of curing and/or adhesion when desired. For example, such can be employed to achieve the first cure during the first activation.
- One or more blowing agents may be employed to achieve expansion (e.g., foaming) during first or second activation. In this manner, it may be possible to lower the density of articles fabricated from the material. In addition, the material expansion can help to improve sealing capability, acoustic damping or both.
- the blowing agent[s] may include one or more nitrogen containing groups such as amides, amines and the like.
- suitable blowing agents include azodicarbonamide, dinitrosopentamethylenetetramine, 4,4 i -oxy-bis-(benzenesulphonylhydrazide), trihydrazinotriazine and N, N i -dimethyl-N,N i -dinitrosoterephthalamide.
- An accelerator for the blowing agent[s] may also be provided in the sealant material.
- Various accelerators may be used to increase the rate at which the blowing agents form inert gasses.
- One preferred blowing agent accelerator is a metal salt, or is an oxide, e.g. a metal oxide, such as zinc oxide.
- Other preferred accelerators include modified and unmodified thiazoles or imidazoles.
- Amounts of blowing agents and blowing agent accelerators can vary widely within the adhesive material depending upon the type of cellular structure desired, the desired amount of expansion of the adhesive material, the desired rate of expansion and the like. Exemplary ranges for the amounts of blowing agent and blowing agent accelerator in the adhesive material range from about 0.001% by weight to about 17% by weight and are preferably in the adhesive material in fractions of weight percentages.
- the sealant material, the blowing agent or both of the present invention are thermally activated.
- other agents may be employed for realizing activation by other means, such as moisture, radiation, or otherwise.
- the sealant material may also include one or more fillers, including but not limited to particulated materials (e.g., powder), beads, microspheres, nanoparticles or the like.
- the filler includes a relatively low-density material that is generally non-reactive with the other components present in the adhesive material.
- fillers examples include silica, diatomaceous earth, glass, clay, talc, pigments, colorants, glass beads or bubbles, glass, carbon ceramic fibers, antioxidants, and the like. Such fillers, particularly clays, can assist the adhesive material in leveling itself during flow of the material.
- the clays that may be used as fillers may include nanoparticles of clay and/or clays from the kaolinite, illite, chloritem, smecitite or sepiolite groups, which may be calcined.
- suitable fillers include, without limitation, talc, vermiculite, pyrophyllite, sauconite, saponite, nontronite, montmorillonite, wollastonite or mixtures thereof.
- the clays may also include minor amounts of other ingredients such as carbonates, feldspars, micas and quartz. Titanium dioxide might also be employed.
- one or more mineral or stone type fillers such as calcium carbonate, sodium carbonate or the like may be used as fillers.
- silicate minerals such as mica may be used as fillers. It has been found that, in addition to performing the normal functions of a filler, silicate minerals and mica in particular improved the impact resistance of the cured adhesive material.
- the fillers in the sealant material can range from 1% to 90% by weight of the sealant material.
- the sealant material may include from about 3% to about 30. % by weight, and more preferably about 10% to about 20% by weight clays, mineral fillers or other fillers.
- one of the fillers or other components of the material may be thixotropic for assisting in controlling flow of the material as well as properties such as tensile, compressive or shear strength.
- additives, agents or performance modifiers may also be included in the adhesive material as desired, including but not limited to a UV resistant agent, a flame retardant, an impact modifier, a heat stabilizer, a UV photoinitiator, a colorant, a processing aid, an anti-oxidant, a lubricant, a coagent, a reinforcement (e.g., chopped or continuous glass, glass fiber, ceramics and ceramic fibers, aramid fibers, aramid pulp, carbon fiber, acrylate fiber, polyamide fiber, polypropylene fibers, combinations thereof or the like).
- a reinforcement e.g., chopped or continuous glass, glass fiber, ceramics and ceramic fibers, aramid fibers, aramid pulp, carbon fiber, acrylate fiber, polyamide fiber, polypropylene fibers, combinations thereof or the like.
- an acrylate coagent may be employed for enhancing cure density.
- the sealant material may include about 0.10 to about 5.00 weight percent of an anti-oxidant such as a propionate (e.g., pentaerythritol tetrakis (3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate)) for assisting in controlling oxidation, cure rate or both.
- an anti-oxidant such as a propionate (e.g., pentaerythritol tetrakis (3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate)) for assisting in controlling oxidation, cure rate or both.
- IRGANOX® 1010 is sold under the tradename IRGANOX® 1010 and is commercially available from Ciba Specialty Chemicals Company, 141 Klybeckstrasse, Postfach, 4002 Basel, Switzerland.
- the second activation can occur before or after application of the sealant to an article of manufacture, it is typically desirable for such activation to occur after such application.
- the sealer can be applied to a variety of articles of manufacture such as buildings, furniture, vehicles (e.g., automotive or aerospace vehicles) or the like. In or for such articles, the sealer can be used to seal gaps, holes or other openings. The sealer has been found particularly useful as a baffle for automotive vehicle.
- a sealer 10 that has undergone first activation according to the present invention is being inserted within a cavity 28 of a structure 30 of an article of manufacture such as a pillar, frame member, body member or the like of an automotive vehicle.
- the sealer 10 upon second activation, adheres itself to walls of the structure 30 defining the cavity 28 by virtue of expansion of the material, wetting of the walls by the material, curing of the sealant material or a combination thereof.
- the sealant material 10 can be configured to undergo second activation to activate (e.g., expand, foam, cure, adhere, thermoset or a combination thereof) at temperatures experienced in an e-coat or paint bake oven typical to automotive processing.
- Such temperatures are typically at least about 100° C., more typically at least about 150° C. and more typically at least about 180° C. and is typically less than about 400° C., more typically less than about 300° C., although higher and lower temperatures are possible
- the sealer can be shaped to at least partially correspond to the cavity into which the sealer is inserted, however other shapes, as discussed herein can be desirable.
- the sealer can be held in a desired position within the cavity by virtue of the shape of the sealer forming an interference fit within the cavity, through the used of fasteners, a combination thereof or the like.
- a push pin 34 as shown in FIG. 1 could be extended into the sealer and into an opening of the structure 30 to hold the sealer in place.
- the sealant material could be compressed upon insertion of the sealer in the cavity thereby interference fitting the sealer in the cavity.
- the sealer e.g., baffle
- the sealer material is at least 70%, 85%, 95% or greater by volume or weight of the entire sealer.
- a sealer according to the present invention can be formed to include extensions (e.g., finger-like extensions) extending outwardly from a body of the sealer. Such extensions can assist in interference fitting a sealer within a cavity.
- a sealer can be formed with a shape having a cross-sectional area that progressively increases along an axis of the sealer from one location (e.g., end) of the sealer to another location (e.g., an opposite end) of the sealer.
- a shape could be, as shown, a cone or wedge shape.
- the sealer can be interference fit (e.g., wedged) into the cavity and then activated to expand as described herein.
- the sealer fills a first substantial volume of the cavity and can, if desired, be configured to substantially entirely fill a section of a cavity in which the member has been placed.
- the sealer can typically continuously span across a cross-section of the cavity for inhibiting or prohibiting the passage of mass (e.g., dust and debris) and or sound (e.g., noise) through the cavity and/or acting as a baffle.
- the sealer of the present invention is typically or primarily employed for sound (e.g., noise) reduction within an article of manufacture (e.g., used as a baffle within a cavity of an automotive vehicle). It is contemplated, however, that the sealer may be additionally or alternatively used as a separator, a reinforcement, a hole plug, a blocking member, an opening sealer a combination thereof or the like.
- the total expansion of the sealer material including any expansion from the first activation and the second activations preferably expands to a volume that is at least 200%, more typically at least 400% and even possibly at least 800% or even at least 1000% of its original volume in its non-expanded state.
- a volume of 100 cm 3 an expansion of 200% results in a volume of 200 cm 3 .
- the sealer 50 is formed entirely of expandable sealer material processed as described herein.
- the sealer 50 can be formed and processed according to any of the techniques described herein.
- the sealer 50 is formed by extruding sealer material and shaping or cutting (e.g., die cutting) the material to form the sealer 50 as shown.
- the sealer is shaped to include a fastener 56 (e.g., an arrowhead fastener) and at least one, but preferably a plurality of extensions 58 .
- the sealer 50 can be located within a cavity of a structure 66 by extending the extensions 58 into openings 68 of the structure and extending the fastener 56 into an opening 72 of the structure. In this manner, a body 70 of the sealer 50 can substantially span a cross-section of a cavity of the structure prior to expansion of the sealer 50 . Then the sealer 50 can be activated to expand and/or cure and span the cavity of the structure as described above.
- the sealer 50 illustrated is already substantially planar across the cross-section of the cavity of the structure prior to activation.
- the sealer 50 can span a cross-sectional distance 74 of the cavity that is much greater (e.g., at least 150%, more typically at least 200% and even possibly at least 300%) relative to a thickness 76 that is substantially perpendicular to the cross-sectional distance.
- a sealer according to the present invention could be cone shaped. Such a sealer can be wedged into a cavity of a structure.
- Table A, Table B, Table C and Table D all provide exemplary sealant material according to the present invention. It should be understood that the formulations of the sealant material are exemplary. Since they are merely exemplary, it is contemplated that the weight percents of the various ingredients may vary by ⁇ 50% or more or by ⁇ 30% or ⁇ 10%. For example, a value of 50 ⁇ 10% is a range of 45 to 55. Moreover, ingredients may be added or removed from the formulations.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- General Chemical & Material Sciences (AREA)
- Sealing Material Composition (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
A sealant is configured to activate (e.g., cure and/or foam) in two stages (e.g., of two distinct portions of time). Advantageously, the sealant can exhibit self supporting characteristics during the second activation at least partly because of the first activation.
Description
- This application claims the benefit of the filing date of U.S. Provisional Ser. No. 60/864,880 filed Nov. 8, 2006.
- The present invention relates to sealants that activate to seal or baffle of cavity of a structure. More particularly, the present invention relates to sealants, and particularly baffles, that can be activated to expand (e.g., foam) and/or cure and which exhibit self-supporting characteristics during such activation.
- Industry, particularly the automotive industry, has been seeking to form improved sealants, particularly baffles for automotive vehicles and other articles of manufacture. Traditionally, automotive baffles have been formed of a carrier that is designed to span a cavity of a structure of an automotive vehicle wherein that carrier would include expandable, (e.g., foamable) material about its periphery. When placed in the cavity, the expandable material could be expanded to seal between the periphery of the carrier and the walls of the structure. Formation of such baffles can be expensive since it often requires the formation of a relatively complex shaped carrier and can require expensive processing machinery to form and locate the expandable material as desired. As such, it would be desirable to form a seal, particularly a baffle, that can be formed substantially entirely of expandable material and/or that can be formed relatively inexpensively. However, it is quite difficult to form such as seal or baffle since such expandable materials, particularly lower cost expandable materials, do not typically exhibit sufficient or desired self-supporting characteristic during expansion and, in turn, such materials, can sag and/or undesirably flow such they are incapable or at least undesirable for sealing and baffling of cavities, particularly of larger cavities.
- Accordingly, there is disclosed a method of baffling or sealing a structure. The method includes provision of a sealer, the sealer being formed of an activatable sealant material. Preferably, the sealant material undergoes a first activation to expand, cure or both at a first temperature that is at least about 10° C. and less than about 140° C. The sealant material is typically at least 85% by weight of the sealer. The sealer is locatedwithin a cavity of a structure of an automotive vehicle where the sealant material undergoes a second activation to foam and cure at a second temperature that is at least about 150° C. and less than about 300° C. and adheres to walls of the structure. The sealant material typically expands to a volume that is at least 400% its original unexpanded volume during the first activation, the second activation or both. The sealant material also typically exhibits self supporting characteristics during the second activation because of the first activation.
- The features and inventive aspects of the present invention will become more apparent upon reading the following detailed description, claims, and drawings, of which the following is a brief description:
-
FIG. 1 illustrates an exemplary application of an exemplary sealer according to an aspect of the present invention. -
FIG. 2 illustrates another exemplary application of an exemplary sealer according to an aspect of the present invention. -
FIG. 3 illustrates another exemplary application of an exemplary sealer according to an aspect of the present invention. - The present invention is predicated upon the provision of novel sealant materials or sealant parts that are configured or formulated to expand (e.g., foam) and exhibit self-supporting characteristics such that the sealants can form more robust seals, baffles or the like. For achieving such characteristics, the materials or part can activate at two separate times. Additionally or alternatively, the materials or parts can be formulated with a particular material such as a relatively light weight and/or relatively high melt viscosity material (e.g., polymer) for assisting in exhibiting self supporting characteristics.
- For two stage cure, the sealant material or parts can activate to foam and/or cure at a first point in time and then activate again to foam and/or cure at a second point in time. Both the first activation and the second activation can involve expansion (e.g., foaming), adhesion, reaction or curing (e.g., cross-linking or a combination thereof.
- The first activation will typically take place during processing and/or formation of the sealant material. In preferred embodiments, the first activation takes place during mixing of the ingredients of the material. For example, materials being mixed in a batch mixer, extruder, combination thereof or the like can undergo activation which can include expansion (e.g. foaming) and/or reaction or curing (e.g., thermosetting or cross-linking). Preferably, the first level of activation provides for enough curing and/or thermosetting and/or expansion (e.g., foaming) to provide the desired self supporting characteristics to the sealant material. The first activation will typically take place at a temperature that is at least about 10° C., more typically at least about 45° C. and more typically at least about 70° C. and is typically less than about 200° C., more typically less than about 140° C. and even more typically less than about 110° C., although higher and lower temperatures are possible, unless otherwise stated.
- When the first activation includes reaction and/or curing, multiple mechanisms can be used to accomplish such first reaction and/or cure. As one example, the sealant material can include acid functionalized elastomer and epoxy resin such that the elastomer and epoxy resin can react (e.g. cure, cross-link, thermoset or a combination thereof with the elastomer. In such an embodiment, the amount of acid functionalized elastomer is typically at least about 2%, more typically at least about 9% and even more typically at least about 15% and is typically less than about 40%, more typically less than about 25% and even more typically less than about 18% by weight of the sealant material, although higher or lower amounts are possible. The amount of epoxy resin is typically at least about 1%, more typically at least about 3% and even more typically at least about 5% and typically less than about 30%, more typically less than about 15% and even more typically less than about 7% by weight of the sealant material, although higher or lower amounts are possible. As another example of a mechanism for the first reaction, the sealant material can include a lower temperature decomposing peroxide or peroxy curing agent for curing (e.g., cross-linking) peroxide or peroxy curable polymeric material (e.g., elastomer) in the sealant material. Such a peroxide will typically cure the polymeric material at a temperature that is at least about 30° C., more typically at least about 50° C. and more typically at least about 70° C. and is typically less than about 200° C., more typically less than about 140° C. and even more typically less than about 110° C., although higher and lower temperatures are possible. In such an embodiment, the amount of peroxide or peroxy curing agent is typically at least about 0.01%, more typically at least about 0.1% and even more typically at least about 0.6% and is typically less than about 10%, more typically less than about 4% and even more typically less than about 2% by weight of the sealant material, although higher or lower amounts are possible. The amount of polymeric material (e.g., elastomer) is typically at least about 5%, more typically at least about 15% and even more typically at least about 25% and typically less than about 90%, more typically less than about 70% and even more typically less than about 40% by weight of the sealant material, although higher or lower amounts are possible. As another example, the sealant material can include a relatively low amount of epoxy resin and a relatively low amount of epoxy curative (e.g., amine, amide or both) for curing the epoxy resin. In such an embodiment, the amount of epoxy resin is typically at least about 1%, more typically at least about 3% and even possibly at least about 6 or even 8% and is typically less than about 25%, more typically less than about 14% and even possibly less than about 11 or 9% by weight of the sealant material, although higher or lower amounts are possible. The amount of epoxy curative is typically at least about 0.01%, more typically at least about 0.1% and even possibly at least about 1 or even 2% and typically less than about 10%, more typically less than about 4% and even more typically less than about 2% by weight of the sealant material, although higher or lower amounts are possible.
- When the sealant is configured for expansion (e.g., foaming) during the first activation, the sealant material will typically include a foaming agent (e.g., a physical or chemical blowing agent) that activates for forming gas at the temperature of first activation or be chemically formulated to foam at that temperature. The first activation including any expansion (e.g., foaming) will typically take place at that is at least about 10° C., more typically at least about 45° C. and more typically at least about 70° C. and is typically less than about 200° C., more typically less than about 140° C. and even more typically less than about 110° C., although higher and lower temperatures are possible. Physical blowing agents useful for such activation include thermoplastic shells that encapsulated solvents. Other suitable foaming agents (e.g., blowing agents and/or blowing agent accelerators) are discussed below.
- For second activation, the sealant material will typically include ingredients (e.g., blowing agent and/or blowing agent accelerator) configured to expand (e.g., foam) the sealant material and/or ingredients (e.g., curing agent and/or curing agent accelerator) configured to cure (e.g., cross-link and/or thermoset) polymeric materials within the sealant material. It should be noted that, when the sealant material foams in the second activation, the amount of the curing in the first activation should be limited such that it does not inhibit any second stage foaming to an undesired degree.
- The polymeric material can include only one type of polymer or can be an admixture of 2, 3, 4 or several different polymers. The polymeric material admixture can include a variety of different polymers, such as thermoplastics, thermosets, thermosettables, elastomers, plastomers combinations thereof or the like. For example, and without limitation, polymers that might be appropriately incorporated into the polymeric admixture include halogenated polymers, polycarbonates, polyolefins (e.g., polyethylene, polypropylene), polyethylenes, polypropylenes, poly(ethylene oxides), polysiloxane, polyethers, polyphosphazines, poly(ethyleneimines), polyamides, polyketones, polyurethanes, polyesters, polyimides, polyisobutylenes, polyacrylonitriles, poly(vinyl chlorides), poly(methyl methacrylates), poly(vinyl acetates), poly(vinylidene chlorides), polytetrafluoroethylenes, polyisoprenes, polyacrylamides, silanes, sulfones, allyls, olefins, styrenes, acrylates, methacrylates, epoxies, silicones, phenolics, rubbers, polyphenylene oxides, terphthalates, acetates (e.g., EVA), acrylates, methacrylates (e.g., ethylene methyl acrylate polymer (EMA)), EPDM and any combination or mixtures thereof. Examples of suitable elastomers include, without limitation natural rubber, styrene-butadiene rubber, polyisoprene, polyisobutylene, polybutadiene, isoprene-butadiene copolymer, neoprene, nitrile rubber (e.g., a butyl nitrile, such as carboxy-terminated butyl nitrile), butyl rubber, polysulfide elastomer, acrylic elastomer, acrylonitrile elastomers, silicone rubber, polysiloxanes, polyester rubber, diisocyanate-linked condensation elastomer, EPDM (ethylene-propylene diene rubbers), chlorosulphonated polyethylene, fluorinated hydrocarbons and the like.
- It is generally preferred for the sealant material to include a substantial weight percentage one or more ethylene based polymers or olefins. Such polymers can include, without limitation, one or more acrylates, one or more acetates or both. In one preferred embodiment, the sealant material includes EVA, EMA, EPDM or any combination thereof. When included, such ethylene based polymers or olefins are typically at least about 10%, more typically at least about 20% and even more typically at least about 30% by weight of the sealant material. Such ethylene based polymer or olefins are also typically less than about 90%, more typically less than about 65% and even more typically less than about 40% by weight of the sealant material.
- For at least some of the embodiments of the present invention, one or more of the polymers or other materials of the present invention can be relatively lightweight and/or can have a relatively high melt viscosity. Examples of materials that can include such characteristics include, without limitation, ethylene polymer (e.g., epdm or eva), nylon powder or the like. In such embodiments, it may also be desirable to include a relatively low amount of filler (e.g., less than 15%, 10% or even less than 5% or 3% by weight).
- One or more curing agents and/or curing agent accelerators may be suitable for the sealant material for use in the first activation, the second activation or both. Thus, it is contemplated that a single curing agent may be employed or two or more curing agents may be employed. When two or more curing agents are employed, it is contemplated that the two or more agents can be from the same class or different class of curing agents and may be directed at curing same or different polymeric materials.
- Amounts of curing agents and curing agent accelerators can vary widely within the sealant material depending upon the type of cellular structure desired, the desired amount or rate of expansion of the sealant material if the adhesive material is expandable, the desired properties of the sealant material or the like. Exemplary ranges for effective amounts of the curing agents, curing agent accelerators or both together present in the adhesive material range from about 0.1% by weight to about 7% by weight.
- Preferably, the curing agents assist the sealant material in curing by crosslinking of the polymers, epoxy resins or both. It is also preferable for the curing agents to assist in thermosetting the adhesive material. Useful classes of curing agents are materials selected from aliphatic or aromatic amines or their respective adducts, amidoamines, polyamides, cycloaliphatic amines, (e.g., anhydrides, polycarboxylic polyesters, isocyanates, phenol-based resins (such as phenol or cresol novolak resins, copolymers such as those of phenol terpene, polyvinyl phenol, or bisphenol-A formaldehyde copolymers, bishydroxyphenyl alkanes or the like), peroxides, sulfur or mixtures thereof. Particularly preferred curing agents include modified and unmodified polyamines or polyamides such as triethylenetetramine, diethylenetriamine tetraethylenepentamine, cyanoguanidine, dicyandiamides and the like. An accelerator for the curing agents (e.g., a modified or unmodified urea such as methylene diphenyl bis urea, an imidazole or a combination thereof) may also be provided for preparing the adhesive material. It is contemplated that certain of these curing agents can be employed at non-stoichiometric or sub-stoichiometric levels to achieve a first or lesser degree of curing and/or adhesion when desired. For example, such can be employed to achieve the first cure during the first activation.
- Blowing Agent
- One or more blowing agents may be employed to achieve expansion (e.g., foaming) during first or second activation. In this manner, it may be possible to lower the density of articles fabricated from the material. In addition, the material expansion can help to improve sealing capability, acoustic damping or both.
- The blowing agent[s] may include one or more nitrogen containing groups such as amides, amines and the like. Examples of suitable blowing agents include azodicarbonamide, dinitrosopentamethylenetetramine, 4,4i-oxy-bis-(benzenesulphonylhydrazide), trihydrazinotriazine and N, Ni-dimethyl-N,Ni-dinitrosoterephthalamide.
- An accelerator for the blowing agent[s] may also be provided in the sealant material. Various accelerators may be used to increase the rate at which the blowing agents form inert gasses. One preferred blowing agent accelerator is a metal salt, or is an oxide, e.g. a metal oxide, such as zinc oxide. Other preferred accelerators include modified and unmodified thiazoles or imidazoles.
- Amounts of blowing agents and blowing agent accelerators can vary widely within the adhesive material depending upon the type of cellular structure desired, the desired amount of expansion of the adhesive material, the desired rate of expansion and the like. Exemplary ranges for the amounts of blowing agent and blowing agent accelerator in the adhesive material range from about 0.001% by weight to about 17% by weight and are preferably in the adhesive material in fractions of weight percentages.
- Preferably, the sealant material, the blowing agent or both of the present invention are thermally activated. Alternatively, other agents may be employed for realizing activation by other means, such as moisture, radiation, or otherwise.
- The sealant material may also include one or more fillers, including but not limited to particulated materials (e.g., powder), beads, microspheres, nanoparticles or the like. Preferably the filler includes a relatively low-density material that is generally non-reactive with the other components present in the adhesive material.
- Examples of fillers include silica, diatomaceous earth, glass, clay, talc, pigments, colorants, glass beads or bubbles, glass, carbon ceramic fibers, antioxidants, and the like. Such fillers, particularly clays, can assist the adhesive material in leveling itself during flow of the material. The clays that may be used as fillers may include nanoparticles of clay and/or clays from the kaolinite, illite, chloritem, smecitite or sepiolite groups, which may be calcined. Examples of suitable fillers include, without limitation, talc, vermiculite, pyrophyllite, sauconite, saponite, nontronite, montmorillonite, wollastonite or mixtures thereof. The clays may also include minor amounts of other ingredients such as carbonates, feldspars, micas and quartz. Titanium dioxide might also be employed. In one or more embodiments of the present invention, it can be desirable for as substantial portion (e.g., 40%, 70% or more) of the fillers (e.g., the mineral fillers such as wollastonite or the others) to have a relatively high aspect ratio of greater than or equal to 2 to 1, although possibly lower, more typically greater than or equal to 3 or 4 to 1, and possibly greater than or equal to 8 to 1, 12 to 1, 20 to 1 or more.
- In one preferred embodiment, one or more mineral or stone type fillers such as calcium carbonate, sodium carbonate or the like may be used as fillers. In another preferred embodiment, silicate minerals such as mica may be used as fillers. It has been found that, in addition to performing the normal functions of a filler, silicate minerals and mica in particular improved the impact resistance of the cured adhesive material.
- When employed, the fillers in the sealant material can range from 1% to 90% by weight of the sealant material. According to some embodiments, the sealant material may include from about 3% to about 30. % by weight, and more preferably about 10% to about 20% by weight clays, mineral fillers or other fillers.
- It is contemplated that one of the fillers or other components of the material may be thixotropic for assisting in controlling flow of the material as well as properties such as tensile, compressive or shear strength.
- Other Additives
- Other additives, agents or performance modifiers may also be included in the adhesive material as desired, including but not limited to a UV resistant agent, a flame retardant, an impact modifier, a heat stabilizer, a UV photoinitiator, a colorant, a processing aid, an anti-oxidant, a lubricant, a coagent, a reinforcement (e.g., chopped or continuous glass, glass fiber, ceramics and ceramic fibers, aramid fibers, aramid pulp, carbon fiber, acrylate fiber, polyamide fiber, polypropylene fibers, combinations thereof or the like). In one preferred embodiment, for example, an acrylate coagent may be employed for enhancing cure density. It is also contemplated that the sealant material may include about 0.10 to about 5.00 weight percent of an anti-oxidant such as a propionate (e.g., pentaerythritol tetrakis (3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate)) for assisting in controlling oxidation, cure rate or both. An example of such an anti-oxidant is sold under the tradename IRGANOX® 1010 and is commercially available from Ciba Specialty Chemicals Company, 141 Klybeckstrasse, Postfach, 4002 Basel, Switzerland.
- While it is generally contemplated that the second activation can occur before or after application of the sealant to an article of manufacture, it is typically desirable for such activation to occur after such application. Once formed or after first activation, the sealer can be applied to a variety of articles of manufacture such as buildings, furniture, vehicles (e.g., automotive or aerospace vehicles) or the like. In or for such articles, the sealer can be used to seal gaps, holes or other openings. The sealer has been found particularly useful as a baffle for automotive vehicle.
- With reference to
FIG. 1 , asealer 10 that has undergone first activation according to the present invention is being inserted within acavity 28 of astructure 30 of an article of manufacture such as a pillar, frame member, body member or the like of an automotive vehicle. Thesealer 10, upon second activation, adheres itself to walls of thestructure 30 defining thecavity 28 by virtue of expansion of the material, wetting of the walls by the material, curing of the sealant material or a combination thereof. As an example, for automotive applications, thesealant material 10 can be configured to undergo second activation to activate (e.g., expand, foam, cure, adhere, thermoset or a combination thereof) at temperatures experienced in an e-coat or paint bake oven typical to automotive processing. Such temperatures are typically at least about 100° C., more typically at least about 150° C. and more typically at least about 180° C. and is typically less than about 400° C., more typically less than about 300° C., although higher and lower temperatures are possible - The sealer can be shaped to at least partially correspond to the cavity into which the sealer is inserted, however other shapes, as discussed herein can be desirable. The sealer can be held in a desired position within the cavity by virtue of the shape of the sealer forming an interference fit within the cavity, through the used of fasteners, a combination thereof or the like. As an example, a
push pin 34 as shown inFIG. 1 could be extended into the sealer and into an opening of thestructure 30 to hold the sealer in place. As another example, the sealant material could be compressed upon insertion of the sealer in the cavity thereby interference fitting the sealer in the cavity. As such, it is preferably that the sealer (e.g., baffle) is without any carrier and that the sealer material is at least 70%, 85%, 95% or greater by volume or weight of the entire sealer. These weight percentages typically hold true for a sealer part that is a finished part ready for installation into vehicle. - It is additionally contemplated that a sealer according to the present invention can be formed to include extensions (e.g., finger-like extensions) extending outwardly from a body of the sealer. Such extensions can assist in interference fitting a sealer within a cavity. With reference to
FIG. 3 , a sealer can be formed with a shape having a cross-sectional area that progressively increases along an axis of the sealer from one location (e.g., end) of the sealer to another location (e.g., an opposite end) of the sealer. Such a shape could be, as shown, a cone or wedge shape. As can be seen, the sealer can be interference fit (e.g., wedged) into the cavity and then activated to expand as described herein. - Typically upon insertion and after second activation, the sealer fills a first substantial volume of the cavity and can, if desired, be configured to substantially entirely fill a section of a cavity in which the member has been placed. In such an embodiment, the sealer can typically continuously span across a cross-section of the cavity for inhibiting or prohibiting the passage of mass (e.g., dust and debris) and or sound (e.g., noise) through the cavity and/or acting as a baffle.
- The sealer of the present invention is typically or primarily employed for sound (e.g., noise) reduction within an article of manufacture (e.g., used as a baffle within a cavity of an automotive vehicle). It is contemplated, however, that the sealer may be additionally or alternatively used as a separator, a reinforcement, a hole plug, a blocking member, an opening sealer a combination thereof or the like.
- The total expansion of the sealer material including any expansion from the first activation and the second activations preferably expands to a volume that is at least 200%, more typically at least 400% and even possibly at least 800% or even at least 1000% of its original volume in its non-expanded state. Thus for a volume of 100 cm3, an expansion of 200% results in a volume of 200 cm3.
- With reference to
FIG. 2 , there is illustrated anotherexemplary sealer 50 according to the present invention. As can be seen, thesealer 50 is formed entirely of expandable sealer material processed as described herein. Thesealer 50 can be formed and processed according to any of the techniques described herein. In one preferred embodiment, thesealer 50 is formed by extruding sealer material and shaping or cutting (e.g., die cutting) the material to form thesealer 50 as shown. The sealer is shaped to include a fastener 56 (e.g., an arrowhead fastener) and at least one, but preferably a plurality of extensions 58. Thesealer 50 can be located within a cavity of astructure 66 by extending the extensions 58 intoopenings 68 of the structure and extending thefastener 56 into anopening 72 of the structure. In this manner, abody 70 of thesealer 50 can substantially span a cross-section of a cavity of the structure prior to expansion of thesealer 50. Then thesealer 50 can be activated to expand and/or cure and span the cavity of the structure as described above. Advantageously, thesealer 50 illustrated is already substantially planar across the cross-section of the cavity of the structure prior to activation. As such, thesealer 50 can span across-sectional distance 74 of the cavity that is much greater (e.g., at least 150%, more typically at least 200% and even possibly at least 300%) relative to a thickness 76 that is substantially perpendicular to the cross-sectional distance. - As another alternative, a sealer according to the present invention could be cone shaped. Such a sealer can be wedged into a cavity of a structure.
- The following tables: Table A, Table B, Table C and Table D all provide exemplary sealant material according to the present invention. It should be understood that the formulations of the sealant material are exemplary. Since they are merely exemplary, it is contemplated that the weight percents of the various ingredients may vary by ±50% or more or by ±30% or ±10%. For example, a value of 50±10% is a range of 45 to 55. Moreover, ingredients may be added or removed from the formulations.
-
TABLE A Formula Weight Percents Eva Resin 7.00 High Viscosity Vinyl Acetate Resin 10.40 Brominated Polymer 3.00 Ethylene, butyl acrylate and glycidyl 4.00 methacrylate Ethylene-n-Butyl Acrylate 20.00 Acrylate polymer(eg. Ema) 4.00 Polyethylene 6.00 Dicyclopentadienyl-based epoxy resin 1.00 Hydrocarbon Resin 5.50 Hydrocarbon tackifier 7.00 Dipentaerythritol pentaacrylate 0.80 Calcium Carbonate 24.00 zinc oxide 1.00 Peroxy curing agent 2.00 Blowing agent 3.00 ADH 0.10 pigment 0.20 Peroxy curing agent (lower 1.00 temperature) Mix in sigma blade mixer 100° C. 30 min Mix with 1 % Aztec BP 50 9.2 g 587% VE -
TABLE B Ingredients Weight Percents Solid Epoxy Resin 6.60 Terpolymer with acid functionality 15.00 Ethylene, methacrylate and glycidyl 6.00 methacrylate Nitrile Rubber 4.80 Acrylate Copolymer 4.00 EVA resin 22.00 Hydrocarbon Resin 15.60 Calcium carbonate 20.00 pigment 0.10 Zinc diacrylate 1.00 peroxy curing agent 1.00 Blowing agent/accelerator 2.90 Blowing agent/accelerator 1.00 Mix in sigma blade mixer 100° C. 30 min 680% VE -
TABLE C Ingredients Weight Percents Solid epoxy resin 5.00 GMA modified thermoplastic Epoxy 8.00 Resin Nylon Powder 10.00 Epoxy resin/aramid fiber 2.22 Ethylene, methacrylate and glycidyl methacrylate EMA 6.00 EVA Resin 20.00 Hydrocarbon Resin 12.00 Polybutene 3.00 Calcium carbonate 22.84 Wollastonite 3.81 Pigment 0.10 Zinc diacrylate 1.00 Peroxy curing agent 1.00 Amine curing agent 0.63 Blowing agent/accelerator 2.90 Blowing agent/accelerator 1.50 Mix in sigma blade mixer 100° C. 30 min 197% VE -
TABLE D Weight Percents B Ingredients % EPDM 34.54 EVA 6.04 Wax 5.37 Hydrocarbon resin 3.57 Cure accelerator 0.63 Liquid rubber 6.73 Cure accelerator 3.27 Sulfur 0.90 Sulfur Cure accelerator 0.90 Blowing agent (stage 2) 9.76 Blowing agent (stage 1) 4.00 Process oil 12.00 Hydrocarbon resin 12.29 Total (enter Batch size) 100 VE % = 800 to 1000 or more - Unless stated otherwise, dimensions and geometries of the various structures depicted herein are not intended to be restrictive of the invention, and other dimensions or geometries are possible. Plural structural components can be provided by a single integrated structure. Alternatively, a single integrated structure might be divided into separate plural components. In addition, while a feature of the present invention may have been described in the context of only one of the illustrated embodiments, such feature may be combined with one or more other features of other embodiments, for any given application. It will also be appreciated from the above that the fabrication of the unique structures herein and the operation thereof also constitute methods in accordance with the present invention.
- The preferred embodiment of the present invention has been disclosed. A person of ordinary skill in the art would realize however, that certain modifications would come within the teachings of this invention. Therefore, the following claims should be studied to determine the true scope and content of the invention.
Claims (18)
1. A method of baffling or sealing a structure, the method comprising:
providing a sealer, the sealer being formed of an activatable sealant material, wherein:
i. the sealant material undergoes a first activation to expand, cure or both at a first temperature that is at least about 10° C. and less than about 140° C.; and
ii. the sealant material is at least 85% by weight of the sealer;
locating the sealer within a cavity of a structure of an automotive vehicle, wherein:
i. the sealant material undergoes a second activation to foam and cure at a second temperature that is at least about 150° C. and less than about 300° C. and adheres to walls of the structure;
ii. the sealant material expands to a volume that is at least 400% its original unexpanded volume during the first activation, the second activation or both; and
iii. the sealant material exhibits self supporting characteristics during the second activation because of the first activation.
2. A method as in claim 1 wherein the sealer includes a fastener that attaches the sealer to the structure.
3. A method as in claim 2 wherein the fastener is formed of the sealant material.
4. A method as in claim 1 wherein the sealer is a baffle that, after the second activation, continuously spans across a cross-section of the cavity for inhibiting passage of mass, sound or both through the cavity.
5. A method as in claim 1 wherein the step of providing the sealer includes extruding the sealant material at the first temperature of activation.
6. A method as in claim 1 wherein the sealant material includes one or more ethylene based polymers.
7. A method as in claim 6 wherein the one or more ethylene based polymers includes EVA, EMA, EPDM or any combination thereof.
8. A method as in claim 7 wherein the one or more ethylene based polymers are at least about 10% and less than about 65% by weight of the sealant material.
9. A method as in claim 1 wherein the sealant material expands to a volume that is at least 800% its original unexpanded volume during the first activation, the second activation or both.
10. A method as in claim 1 wherein the sealant material includes an acid functionalized elastomer and an epoxy resin that react with each other during the first activation.
11. A method as in claim 1 wherein the sealant material includes a peroxy curing agent and a peroxy-curable polymer that cures during the first activation.
12. A method as in claim 1 wherein the sealant material includes a relatively low amount of epoxy resin and a relatively low amount of epoxy curative that cures the epoxy resin during the first activation.
13. A method as in claim 1 wherein the sealant material includes a blowing agent that foams the sealant material during the first activation.
14. A method as in claim 1 wherein the sealant material includes a relatively light weight and relatively high melt viscosity polymer for assisting in exhibiting self supporting characteristics
15. A method of baffling or sealing a structure, the method comprising:
providing a sealer, the sealer being formed of an activatable sealant material, wherein:
i. the sealant material undergoes a first activation to expand, cure or both at a first temperature that is at least about 10° C. and less than about 140° C.;
ii. the sealant material is at least 85% by weight of the sealer;
iii. the step of providing the sealer includes extruding the sealant material at the first temperature of activation; and
iv. the sealant material includes one or more ethylene based polymers selected from EVA, EMA and EPDM, the one or more ethylene polymer being at least about 10% and less than about 65% by weight of the sealant material;
locating the sealant material within a cavity of a structure of an automotive vehicle, wherein:
i. the sealant material undergoes a second activation to foam and cure at a second temperature that is at least about 150° C. and less than about 300° C. and adheres to walls of the structure;
ii. the sealant material expands to a volume that is at least 800% its original unexpanded volume during the first activation, the second activation or both; and
iii. the sealant material exhibits self supporting characteristics during the second activation because of the first activation; wherein
iv. the sealer is a baffle that, after the second activation, continuously span across a cross-section of the cavity for inhibiting passage of mass, sound or both through the cavity; and
wherein, either:
i. the sealant material includes an acid functionalized elastomer and an epoxy resin that react with each other during the first activation;
ii. the sealant material includes a peroxy curing agent and a peroxy-curable polymer that cures during the first activation; or
iii. the sealant material includes a relatively low amount of epoxy resin and a relatively low amount of epoxy curative that cures the epoxy resin during the first activation.
16. A method as in claim 15 wherein the sealer includes a fastener that attaches the sealer to the structure and the fastener is a thermoplastic push pin.
17. A method as in claim 16 wherein the sealant material includes a blowing agent that foams the sealant material during the first activation.
18. A method as in claim 17 wherein the sealant material includes a relatively light weight and relatively high melt viscosity polymer for assisting in exhibiting self supporting characteristics
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/924,148 US20080265516A1 (en) | 2006-11-08 | 2007-10-25 | Two stage sealants and method of forming and/or using the same |
EP07021461A EP1921121A1 (en) | 2006-11-08 | 2007-11-05 | Two stage sealants and method of forming and/or using the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US86488006P | 2006-11-08 | 2006-11-08 | |
US11/924,148 US20080265516A1 (en) | 2006-11-08 | 2007-10-25 | Two stage sealants and method of forming and/or using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080265516A1 true US20080265516A1 (en) | 2008-10-30 |
Family
ID=39110584
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/924,148 Abandoned US20080265516A1 (en) | 2006-11-08 | 2007-10-25 | Two stage sealants and method of forming and/or using the same |
Country Status (2)
Country | Link |
---|---|
US (1) | US20080265516A1 (en) |
EP (1) | EP1921121A1 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080105992A1 (en) * | 2006-11-08 | 2008-05-08 | Zephyros | Mixed masses sealant |
US20140228469A1 (en) * | 2013-02-13 | 2014-08-14 | Lion Copolymer Geismar, Llc | Method for making an ambient light curable ethylene propylene diene terpolymer rubber coating devoid of thermally activated accelerators |
CN104781323A (en) * | 2012-11-20 | 2015-07-15 | 汉高股份有限及两合公司 | Thermally expandable formulations |
US20180215888A1 (en) * | 2015-09-28 | 2018-08-02 | Henkel Ag & Co. Kgaa | Thermally expandable compositions comprising urea derivatives |
WO2018149826A1 (en) | 2017-02-17 | 2018-08-23 | Zephyros, Inc. | Activatable polymer composition comprising at least two carboxylic acids as blowing agent |
US20180339489A1 (en) * | 2017-05-25 | 2018-11-29 | Nd Industries, Inc. | Composite article and related methods |
US10301463B2 (en) | 2011-08-01 | 2019-05-28 | Henkel Ag & Co. Kgaa | Thermally hardenable preparations |
US10457840B2 (en) * | 2010-09-30 | 2019-10-29 | Zephyros, Inc. | Foamed adhesive |
CN110945094A (en) * | 2017-07-21 | 2020-03-31 | 泽费罗斯股份有限公司 | Seal coated device |
EP3079974B1 (en) | 2013-12-13 | 2020-07-15 | Sika Technology AG | Lightweight baffle or reinforcement element and method for producing such a lightweight baffle or reinforcement element |
JPWO2020261975A1 (en) * | 2019-06-28 | 2020-12-30 | ||
US20220056255A1 (en) * | 2018-10-25 | 2022-02-24 | Sika Technology Ag | New foam with improved expansion behaviour when used in thin layers |
US20220143879A1 (en) * | 2019-03-25 | 2022-05-12 | Zephyros, Inc. | Dual expanding foam for closed mold composite manufacturing |
EP3778738B1 (en) | 2019-08-15 | 2022-06-08 | Sika Technology Ag | Thermally expandable compositions comprising a chemical blowing agent |
WO2022162058A1 (en) | 2021-01-27 | 2022-08-04 | Zephyros, Inc. | Low odor heat-expandable materials |
US11441004B2 (en) | 2015-09-28 | 2022-09-13 | Henkel Ag & Co. Kgaa | Thermally expandable compositions comprising polysaccharide |
US20220403128A1 (en) * | 2019-08-15 | 2022-12-22 | Sika Technology Ag | Thermally expandable compositions comprising an endothermic blowing agent |
US11578181B2 (en) | 2014-10-16 | 2023-02-14 | Henkel Ag & Co. Kgaa | Thermally expandable compositions |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009124177A1 (en) * | 2008-04-04 | 2009-10-08 | Sika Technology Ag | Expandable barrier |
US8246872B2 (en) * | 2008-12-22 | 2012-08-21 | The Gates Corporation | Method for making composite article with expandable elastomer in compression |
RU2487907C1 (en) * | 2011-11-23 | 2013-07-20 | Закрытое акционерное общество "УНИХИМТЕК-ОГНЕЗАЩИТА" | High-temperature sealing material and method for production thereof |
CN104844917B (en) * | 2015-05-11 | 2017-05-10 | 宾度投资股份有限公司 | Non-gumming wear-resistant sole and preparation method thereof |
EP3263425B1 (en) | 2016-06-27 | 2020-08-12 | Sika Technology AG | Insulation element |
Citations (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4778845A (en) * | 1986-08-04 | 1988-10-18 | Sika Ag, Vorm. Kaspar Winkler & Co. | One-part adhesive and/or sealing mass which is stable and pumpable at temperatures up to 30 degree C. |
US4866108A (en) * | 1988-01-19 | 1989-09-12 | Hughes Aircraft Company | Flexible epoxy adhesive blend |
US4898630A (en) * | 1987-11-18 | 1990-02-06 | Toyota Jidosha Kabushiki | Thermosetting highly foaming sealer and method of using it |
US5342873A (en) * | 1986-05-09 | 1994-08-30 | Sika Ag, Vorm. Kaspar Winkler & Co. | Reactive hot-melt adhesive |
US5575526A (en) * | 1994-05-19 | 1996-11-19 | Novamax Technologies, Inc. | Composite laminate beam for radiator support |
US5629380A (en) * | 1994-09-19 | 1997-05-13 | Minnesota Mining And Manufacturing Company | Epoxy adhesive composition comprising a calcium salt and mannich base |
US5755486A (en) * | 1995-05-23 | 1998-05-26 | Novamax Technologies Holdings, Inc. | Composite structural reinforcement member |
US5766719A (en) * | 1994-03-14 | 1998-06-16 | Magna Exterior Systems Gmbh | Composite material |
US5894071A (en) * | 1994-04-15 | 1999-04-13 | Sika Ag, Vorm. Kaspar Winkler & Co. | Two-component adhesive-, sealing- or coating composition and it's use |
US5932680A (en) * | 1993-11-16 | 1999-08-03 | Henkel Kommanditgesellschaft Auf Aktien | Moisture-curing polyurethane hot-melt adhesive |
US6124370A (en) * | 1999-06-14 | 2000-09-26 | The Dow Chemical Company | Crosslinked polyolefinic foams with enhanced physical properties and a dual cure process of producing such foams |
US6131897A (en) * | 1999-03-16 | 2000-10-17 | L & L Products, Inc. | Structural reinforcements |
US6174932B1 (en) * | 1998-05-20 | 2001-01-16 | Denovus Llc | Curable sealant composition |
US6191212B1 (en) * | 1990-10-11 | 2001-02-20 | Henkel Kommanditgesellschaft Auf Aktien | Moisture-curing hotmelt adhesives |
US6277898B1 (en) * | 1997-05-21 | 2001-08-21 | Denovus Llc | Curable sealant composition |
US6321793B1 (en) * | 2000-06-12 | 2001-11-27 | L&L Products | Bladder system for reinforcing a portion of a longitudinal structure |
US6347799B1 (en) * | 1999-04-01 | 2002-02-19 | Tyco Electronics Corporation | Cavity sealing article having improved sag resistance |
US6383610B1 (en) * | 1997-12-08 | 2002-05-07 | L&L Products, Inc. | Self-sealing partition |
US6473611B2 (en) * | 1996-10-10 | 2002-10-29 | Nokia Telecommunications Oy | Preventing misuse of call forwarding service |
US6573309B1 (en) * | 1999-03-03 | 2003-06-03 | Henkel Teroson Gmbh | Heat-curable, thermally expandable moulded park |
US6607831B2 (en) * | 2000-12-28 | 2003-08-19 | 3M Innovative Properties Company | Multi-layer article |
US20030184121A1 (en) * | 2002-04-30 | 2003-10-02 | L&L Products, Inc. | Reinforcement system utilizing a hollow carrier |
US6635202B1 (en) * | 1998-10-23 | 2003-10-21 | Vantico Inc. | Method for filling and reinforcing honeycomb sandwich panels |
US6710115B2 (en) * | 2001-08-31 | 2004-03-23 | L & L Products, Inc. | Sealants |
US6776869B1 (en) * | 1998-12-19 | 2004-08-17 | Henkel-Teroson Gmbh | Impact-resistant epoxide resin compositions |
US6790906B2 (en) * | 1996-02-14 | 2004-09-14 | Sika Schweiz Ag | Fire-retardant polyurethane systems |
US20040204551A1 (en) * | 2003-03-04 | 2004-10-14 | L&L Products, Inc. | Epoxy/elastomer adduct, method of forming same and materials and articles formed therewith |
US6833044B2 (en) * | 2001-02-27 | 2004-12-21 | Mitsui Takeda Chemicals, Inc. | Solvent-free two-component curable adhesive composition |
US20040266898A1 (en) * | 2003-06-26 | 2004-12-30 | L&L Products, Inc. | Expandable material |
US20040262853A1 (en) * | 2003-06-26 | 2004-12-30 | L&L Products, Inc. | Fastenable member for sealing, baffling or reinforcing and method of forming same |
US6846559B2 (en) * | 2002-04-01 | 2005-01-25 | L&L Products, Inc. | Activatable material |
US20050159531A1 (en) * | 2004-01-20 | 2005-07-21 | L&L Products, Inc. | Adhesive material and use therefor |
US6921130B2 (en) * | 2000-02-11 | 2005-07-26 | L&L Products, Inc. | Structural reinforcement system for automotive vehicles |
US6923499B2 (en) * | 2002-08-06 | 2005-08-02 | L & L Products | Multiple material assembly for noise reduction |
US6926784B2 (en) * | 2000-08-03 | 2005-08-09 | L & L Products, Inc. | Sound absorption system for automotive vehicles |
US20050241756A1 (en) * | 2004-04-28 | 2005-11-03 | L&L Products, Inc. | Adhesive material and structures formed therewith |
US6984216B2 (en) * | 2003-05-09 | 2006-01-10 | Troy Polymers, Inc. | Orthopedic casting articles |
US7125461B2 (en) * | 2003-05-07 | 2006-10-24 | L & L Products, Inc. | Activatable material for sealing, baffling or reinforcing and method of forming same |
US7153243B1 (en) * | 1999-12-21 | 2006-12-26 | Krull Mark A | Weight selection methods |
US20070090560A1 (en) * | 2005-10-25 | 2007-04-26 | L&L Products, Inc. | Shaped expandable material |
US20070095475A1 (en) * | 2005-11-01 | 2007-05-03 | L&L Products, Inc. | Adhesive material and method of using same |
US20070193171A1 (en) * | 2004-07-21 | 2007-08-23 | Zephyros, Inc. | Sealant material |
US20080029214A1 (en) * | 2006-08-04 | 2008-02-07 | Zephyros, Inc. | Multiple or single stage cure adhesive material and method of use |
US20080107883A1 (en) * | 2006-11-08 | 2008-05-08 | L&L Products, Inc. | Coated sealer and method of use |
US20080105992A1 (en) * | 2006-11-08 | 2008-05-08 | Zephyros | Mixed masses sealant |
US20080254214A1 (en) * | 2006-10-26 | 2008-10-16 | Zephyros, Inc. | Adhesive materials, adhesive parts formed therewith and their uses |
US20080308212A1 (en) * | 2007-06-12 | 2008-12-18 | Zephyros, Inc. | Toughened adhesive material |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2061831A1 (en) * | 1970-12-16 | 1972-06-22 | Metallgesellschaft Ag | Cross-linked polyolefin mouldings prodn - by reacting polyolefin with an oxidising agent and then moulding |
DE10057583B4 (en) * | 2000-11-21 | 2005-12-01 | Vorwerk & Sohn Gmbh & Co. Kg | Method for producing elastic shaped bodies, in particular stop bumpers for strut shock absorbers, spring elements or the like |
-
2007
- 2007-10-25 US US11/924,148 patent/US20080265516A1/en not_active Abandoned
- 2007-11-05 EP EP07021461A patent/EP1921121A1/en not_active Withdrawn
Patent Citations (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5342873A (en) * | 1986-05-09 | 1994-08-30 | Sika Ag, Vorm. Kaspar Winkler & Co. | Reactive hot-melt adhesive |
US4778845A (en) * | 1986-08-04 | 1988-10-18 | Sika Ag, Vorm. Kaspar Winkler & Co. | One-part adhesive and/or sealing mass which is stable and pumpable at temperatures up to 30 degree C. |
US4898630A (en) * | 1987-11-18 | 1990-02-06 | Toyota Jidosha Kabushiki | Thermosetting highly foaming sealer and method of using it |
US4866108A (en) * | 1988-01-19 | 1989-09-12 | Hughes Aircraft Company | Flexible epoxy adhesive blend |
US6191212B1 (en) * | 1990-10-11 | 2001-02-20 | Henkel Kommanditgesellschaft Auf Aktien | Moisture-curing hotmelt adhesives |
US5932680A (en) * | 1993-11-16 | 1999-08-03 | Henkel Kommanditgesellschaft Auf Aktien | Moisture-curing polyurethane hot-melt adhesive |
US5766719A (en) * | 1994-03-14 | 1998-06-16 | Magna Exterior Systems Gmbh | Composite material |
US5894071A (en) * | 1994-04-15 | 1999-04-13 | Sika Ag, Vorm. Kaspar Winkler & Co. | Two-component adhesive-, sealing- or coating composition and it's use |
US5575526A (en) * | 1994-05-19 | 1996-11-19 | Novamax Technologies, Inc. | Composite laminate beam for radiator support |
US5629380A (en) * | 1994-09-19 | 1997-05-13 | Minnesota Mining And Manufacturing Company | Epoxy adhesive composition comprising a calcium salt and mannich base |
US5755486A (en) * | 1995-05-23 | 1998-05-26 | Novamax Technologies Holdings, Inc. | Composite structural reinforcement member |
US6790906B2 (en) * | 1996-02-14 | 2004-09-14 | Sika Schweiz Ag | Fire-retardant polyurethane systems |
US6473611B2 (en) * | 1996-10-10 | 2002-10-29 | Nokia Telecommunications Oy | Preventing misuse of call forwarding service |
US6277898B1 (en) * | 1997-05-21 | 2001-08-21 | Denovus Llc | Curable sealant composition |
US6383610B1 (en) * | 1997-12-08 | 2002-05-07 | L&L Products, Inc. | Self-sealing partition |
US6174932B1 (en) * | 1998-05-20 | 2001-01-16 | Denovus Llc | Curable sealant composition |
US6635202B1 (en) * | 1998-10-23 | 2003-10-21 | Vantico Inc. | Method for filling and reinforcing honeycomb sandwich panels |
US6776869B1 (en) * | 1998-12-19 | 2004-08-17 | Henkel-Teroson Gmbh | Impact-resistant epoxide resin compositions |
US6573309B1 (en) * | 1999-03-03 | 2003-06-03 | Henkel Teroson Gmbh | Heat-curable, thermally expandable moulded park |
US6131897A (en) * | 1999-03-16 | 2000-10-17 | L & L Products, Inc. | Structural reinforcements |
US6347799B1 (en) * | 1999-04-01 | 2002-02-19 | Tyco Electronics Corporation | Cavity sealing article having improved sag resistance |
US6124370A (en) * | 1999-06-14 | 2000-09-26 | The Dow Chemical Company | Crosslinked polyolefinic foams with enhanced physical properties and a dual cure process of producing such foams |
US7153243B1 (en) * | 1999-12-21 | 2006-12-26 | Krull Mark A | Weight selection methods |
US6921130B2 (en) * | 2000-02-11 | 2005-07-26 | L&L Products, Inc. | Structural reinforcement system for automotive vehicles |
US6321793B1 (en) * | 2000-06-12 | 2001-11-27 | L&L Products | Bladder system for reinforcing a portion of a longitudinal structure |
US6926784B2 (en) * | 2000-08-03 | 2005-08-09 | L & L Products, Inc. | Sound absorption system for automotive vehicles |
US6607831B2 (en) * | 2000-12-28 | 2003-08-19 | 3M Innovative Properties Company | Multi-layer article |
US6833044B2 (en) * | 2001-02-27 | 2004-12-21 | Mitsui Takeda Chemicals, Inc. | Solvent-free two-component curable adhesive composition |
US6710115B2 (en) * | 2001-08-31 | 2004-03-23 | L & L Products, Inc. | Sealants |
US6846559B2 (en) * | 2002-04-01 | 2005-01-25 | L&L Products, Inc. | Activatable material |
US7077460B2 (en) * | 2002-04-30 | 2006-07-18 | L&L Products, Inc. | Reinforcement system utilizing a hollow carrier |
US20080257491A1 (en) * | 2002-04-30 | 2008-10-23 | Zephyros, Inc. | Reinforcement system utilizing a hollow carrier |
US20030184121A1 (en) * | 2002-04-30 | 2003-10-02 | L&L Products, Inc. | Reinforcement system utilizing a hollow carrier |
US20060267378A1 (en) * | 2002-04-30 | 2006-11-30 | L&L Products, Inc. | Reinforcement system utilizing a hollow carrier |
US6923499B2 (en) * | 2002-08-06 | 2005-08-02 | L & L Products | Multiple material assembly for noise reduction |
US20040204551A1 (en) * | 2003-03-04 | 2004-10-14 | L&L Products, Inc. | Epoxy/elastomer adduct, method of forming same and materials and articles formed therewith |
US7125461B2 (en) * | 2003-05-07 | 2006-10-24 | L & L Products, Inc. | Activatable material for sealing, baffling or reinforcing and method of forming same |
US6984216B2 (en) * | 2003-05-09 | 2006-01-10 | Troy Polymers, Inc. | Orthopedic casting articles |
US20040266898A1 (en) * | 2003-06-26 | 2004-12-30 | L&L Products, Inc. | Expandable material |
US20040262853A1 (en) * | 2003-06-26 | 2004-12-30 | L&L Products, Inc. | Fastenable member for sealing, baffling or reinforcing and method of forming same |
US20050159531A1 (en) * | 2004-01-20 | 2005-07-21 | L&L Products, Inc. | Adhesive material and use therefor |
US20050241756A1 (en) * | 2004-04-28 | 2005-11-03 | L&L Products, Inc. | Adhesive material and structures formed therewith |
US20070193171A1 (en) * | 2004-07-21 | 2007-08-23 | Zephyros, Inc. | Sealant material |
US20070090560A1 (en) * | 2005-10-25 | 2007-04-26 | L&L Products, Inc. | Shaped expandable material |
US20070095475A1 (en) * | 2005-11-01 | 2007-05-03 | L&L Products, Inc. | Adhesive material and method of using same |
US20080029214A1 (en) * | 2006-08-04 | 2008-02-07 | Zephyros, Inc. | Multiple or single stage cure adhesive material and method of use |
US20080254214A1 (en) * | 2006-10-26 | 2008-10-16 | Zephyros, Inc. | Adhesive materials, adhesive parts formed therewith and their uses |
US20080107883A1 (en) * | 2006-11-08 | 2008-05-08 | L&L Products, Inc. | Coated sealer and method of use |
US20080105992A1 (en) * | 2006-11-08 | 2008-05-08 | Zephyros | Mixed masses sealant |
US20080308212A1 (en) * | 2007-06-12 | 2008-12-18 | Zephyros, Inc. | Toughened adhesive material |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080105992A1 (en) * | 2006-11-08 | 2008-05-08 | Zephyros | Mixed masses sealant |
US10457840B2 (en) * | 2010-09-30 | 2019-10-29 | Zephyros, Inc. | Foamed adhesive |
US10301463B2 (en) | 2011-08-01 | 2019-05-28 | Henkel Ag & Co. Kgaa | Thermally hardenable preparations |
CN104781323A (en) * | 2012-11-20 | 2015-07-15 | 汉高股份有限及两合公司 | Thermally expandable formulations |
US20150246646A1 (en) * | 2012-11-20 | 2015-09-03 | Henkel Ag & Co. Kgaa | Thermally expandable formulations |
JP2015537084A (en) * | 2012-11-20 | 2015-12-24 | ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co.KGaA | Thermally expansible preparation |
US9637067B2 (en) * | 2012-11-20 | 2017-05-02 | Henkel Ag & Co. Kgaa | Thermally expandable formulations |
CN104781323B (en) * | 2012-11-20 | 2018-03-30 | 汉高股份有限及两合公司 | The preparation of heat-swellable |
WO2014127157A1 (en) * | 2013-02-13 | 2014-08-21 | Lion Copolymer Geismar, Llc | Light curable terpolymer rubber coating |
US8901191B2 (en) | 2013-02-13 | 2014-12-02 | Lion Copolymer Geismar, Llc | Dual curable ethylene propylene diene polymer rubber coating using a photoinitiator and a peroxide |
US8901201B2 (en) * | 2013-02-13 | 2014-12-02 | Lion Copolymer Geismar, Llc | Method for making an ambient light curable ethylene propylene diene terpolymer rubber coating devoid of thermally activated accelerators |
US8901194B2 (en) | 2013-02-13 | 2014-12-02 | Lion Copolymer Geismar, Llc | Ambient light curable ethylene propylene diene terpolymer rubber coating devoid of thermally activated accelerators |
WO2014127159A1 (en) * | 2013-02-13 | 2014-08-21 | Lion Copolymer Geismar, Llc | Dual curable terpolymer rubber coating |
US20140228469A1 (en) * | 2013-02-13 | 2014-08-14 | Lion Copolymer Geismar, Llc | Method for making an ambient light curable ethylene propylene diene terpolymer rubber coating devoid of thermally activated accelerators |
US8901193B2 (en) | 2013-02-13 | 2014-12-02 | Lion Copolymer Geismar, Llc | Method for making a dual curable ethylene propylene diene polymer rubber coating using a photoinitiator and a peroxide |
EP3079974B1 (en) | 2013-12-13 | 2020-07-15 | Sika Technology AG | Lightweight baffle or reinforcement element and method for producing such a lightweight baffle or reinforcement element |
US11578181B2 (en) | 2014-10-16 | 2023-02-14 | Henkel Ag & Co. Kgaa | Thermally expandable compositions |
US20180215888A1 (en) * | 2015-09-28 | 2018-08-02 | Henkel Ag & Co. Kgaa | Thermally expandable compositions comprising urea derivatives |
US11505669B2 (en) * | 2015-09-28 | 2022-11-22 | Henkel Ag & Co. Kgaa | Thermally expandable compositions comprising urea derivatives |
US11441004B2 (en) | 2015-09-28 | 2022-09-13 | Henkel Ag & Co. Kgaa | Thermally expandable compositions comprising polysaccharide |
WO2018149826A1 (en) | 2017-02-17 | 2018-08-23 | Zephyros, Inc. | Activatable polymer composition comprising at least two carboxylic acids as blowing agent |
US11376813B2 (en) * | 2017-05-25 | 2022-07-05 | Nd Industries, Inc. | Composite article and related methods |
US20180339489A1 (en) * | 2017-05-25 | 2018-11-29 | Nd Industries, Inc. | Composite article and related methods |
CN110945094B (en) * | 2017-07-21 | 2022-10-28 | 泽费罗斯股份有限公司 | Seal coated device |
US11873427B2 (en) | 2017-07-21 | 2024-01-16 | Zephyros, Inc. | Seal coated devices |
CN110945094A (en) * | 2017-07-21 | 2020-03-31 | 泽费罗斯股份有限公司 | Seal coated device |
US20220056255A1 (en) * | 2018-10-25 | 2022-02-24 | Sika Technology Ag | New foam with improved expansion behaviour when used in thin layers |
US20220143879A1 (en) * | 2019-03-25 | 2022-05-12 | Zephyros, Inc. | Dual expanding foam for closed mold composite manufacturing |
JPWO2020261975A1 (en) * | 2019-06-28 | 2020-12-30 | ||
WO2020261975A1 (en) * | 2019-06-28 | 2020-12-30 | Nok株式会社 | Rubber composition, rubber/metal layered product, gasket, and method for producing rubber/metal layered product |
US20220403128A1 (en) * | 2019-08-15 | 2022-12-22 | Sika Technology Ag | Thermally expandable compositions comprising an endothermic blowing agent |
EP3778738B1 (en) | 2019-08-15 | 2022-06-08 | Sika Technology Ag | Thermally expandable compositions comprising a chemical blowing agent |
WO2022162058A1 (en) | 2021-01-27 | 2022-08-04 | Zephyros, Inc. | Low odor heat-expandable materials |
Also Published As
Publication number | Publication date |
---|---|
EP1921121A1 (en) | 2008-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20080265516A1 (en) | Two stage sealants and method of forming and/or using the same | |
US8741094B2 (en) | Handling layer and adhesive parts formed therewith | |
EP1790554B2 (en) | Expandable material and fastenable member for sealing, baffling or reinforcing and method of forming same | |
US7199165B2 (en) | Expandable material | |
US7438782B2 (en) | Activatable material for sealing, baffling or reinforcing and method of forming same | |
EP2024195B1 (en) | Method of sealing, baffling or reinforcing a portion of an automotive vehicle | |
CA2670779C (en) | Expandable filler insert and methods of producing the expandable filler insert | |
US20080105992A1 (en) | Mixed masses sealant | |
JP5399707B2 (en) | Molded inflatable material | |
EP2350218B1 (en) | Provision of inserts | |
EP1756241B1 (en) | Method for forming structures using an encapsulated adhesive material | |
EP1884533A2 (en) | Bonding process | |
US20070095475A1 (en) | Adhesive material and method of using same | |
US20050159531A1 (en) | Adhesive material and use therefor | |
US20090269547A1 (en) | Repair of honeycomb structures | |
US10195837B2 (en) | Production of joints | |
WO2020033393A1 (en) | High elastic modulus structural foam materials with improved strain to failure | |
EP1900787A2 (en) | Multiple or single stage cure adhesive material and method of use | |
US20190241777A1 (en) | Adhesives and sealants having microcellular structures formed within | |
WO2015175896A1 (en) | Inserts for extruded members |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |