US20080226536A1 - Method and apparatus for producing single-wall carbon nanotubes - Google Patents
Method and apparatus for producing single-wall carbon nanotubes Download PDFInfo
- Publication number
- US20080226536A1 US20080226536A1 US12/117,542 US11754208A US2008226536A1 US 20080226536 A1 US20080226536 A1 US 20080226536A1 US 11754208 A US11754208 A US 11754208A US 2008226536 A1 US2008226536 A1 US 2008226536A1
- Authority
- US
- United States
- Prior art keywords
- plasma
- carbon
- atoms
- inert gas
- metal catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000002109 single walled nanotube Substances 0.000 title claims abstract description 61
- 238000000034 method Methods 0.000 title claims abstract description 51
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 141
- 229910052751 metal Inorganic materials 0.000 claims abstract description 134
- 239000002184 metal Substances 0.000 claims abstract description 134
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 131
- 239000003054 catalyst Substances 0.000 claims abstract description 108
- 239000011261 inert gas Substances 0.000 claims abstract description 55
- 239000000126 substance Substances 0.000 claims abstract description 51
- 238000007599 discharging Methods 0.000 claims abstract description 37
- 238000004519 manufacturing process Methods 0.000 claims abstract description 12
- 125000004429 atom Chemical group 0.000 claims description 65
- 239000000203 mixture Substances 0.000 claims description 23
- 238000001816 cooling Methods 0.000 claims description 19
- 229910052742 iron Inorganic materials 0.000 claims description 16
- 229910052759 nickel Inorganic materials 0.000 claims description 9
- 239000007787 solid Substances 0.000 claims description 9
- 229910052727 yttrium Inorganic materials 0.000 claims description 8
- 125000004432 carbon atom Chemical group C* 0.000 claims description 7
- 229910052697 platinum Inorganic materials 0.000 claims description 6
- 239000004215 Carbon black (E152) Substances 0.000 claims description 4
- 229910052684 Cerium Inorganic materials 0.000 claims description 4
- 229910052692 Dysprosium Inorganic materials 0.000 claims description 4
- 229910052691 Erbium Inorganic materials 0.000 claims description 4
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 4
- 229910052689 Holmium Inorganic materials 0.000 claims description 4
- 229910052765 Lutetium Inorganic materials 0.000 claims description 4
- 229910052779 Neodymium Inorganic materials 0.000 claims description 4
- 229910052771 Terbium Inorganic materials 0.000 claims description 4
- 229930195733 hydrocarbon Natural products 0.000 claims description 4
- 150000002430 hydrocarbons Chemical class 0.000 claims description 4
- 229910052741 iridium Inorganic materials 0.000 claims description 4
- 229910052746 lanthanum Inorganic materials 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- 239000002048 multi walled nanotube Substances 0.000 claims description 4
- 229910052763 palladium Inorganic materials 0.000 claims description 4
- 229910052707 ruthenium Inorganic materials 0.000 claims description 4
- 229910052703 rhodium Inorganic materials 0.000 claims description 3
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical class C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 claims 1
- 229910003472 fullerene Inorganic materials 0.000 claims 1
- 210000002381 plasma Anatomy 0.000 description 129
- 239000007789 gas Substances 0.000 description 28
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 20
- 239000012159 carrier gas Substances 0.000 description 19
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 18
- 230000015572 biosynthetic process Effects 0.000 description 11
- KTWOOEGAPBSYNW-UHFFFAOYSA-N ferrocene Chemical compound [Fe+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 KTWOOEGAPBSYNW-UHFFFAOYSA-N 0.000 description 10
- 239000007792 gaseous phase Substances 0.000 description 10
- 239000007791 liquid phase Substances 0.000 description 10
- 229910052786 argon Inorganic materials 0.000 description 9
- 239000002071 nanotube Substances 0.000 description 9
- 238000009833 condensation Methods 0.000 description 8
- 230000005494 condensation Effects 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 229910002804 graphite Inorganic materials 0.000 description 7
- 239000010439 graphite Substances 0.000 description 7
- 239000001307 helium Substances 0.000 description 7
- 229910052734 helium Inorganic materials 0.000 description 7
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 7
- 125000002524 organometallic group Chemical group 0.000 description 7
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 6
- 239000005977 Ethylene Substances 0.000 description 6
- 230000005670 electromagnetic radiation Effects 0.000 description 6
- 238000005229 chemical vapour deposition Methods 0.000 description 5
- 239000004020 conductor Substances 0.000 description 5
- 238000011144 upstream manufacturing Methods 0.000 description 5
- 239000004411 aluminium Substances 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229910017052 cobalt Inorganic materials 0.000 description 4
- 239000010941 cobalt Substances 0.000 description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 239000007790 solid phase Substances 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 238000001069 Raman spectroscopy Methods 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000008033 biological extinction Effects 0.000 description 3
- XNMQEEKYCVKGBD-UHFFFAOYSA-N dimethylacetylene Natural products CC#CC XNMQEEKYCVKGBD-UHFFFAOYSA-N 0.000 description 3
- 238000010891 electric arc Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000002028 premature Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 2
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N Propene Chemical compound CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- KDKYADYSIPSCCQ-UHFFFAOYSA-N but-1-yne Chemical compound CCC#C KDKYADYSIPSCCQ-UHFFFAOYSA-N 0.000 description 2
- IAQRGUVFOMOMEM-UHFFFAOYSA-N but-2-ene Chemical compound CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 2
- 239000002041 carbon nanotube Substances 0.000 description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 description 2
- 150000004696 coordination complex Chemical class 0.000 description 2
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 2
- 238000000608 laser ablation Methods 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical compound C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 2
- -1 polyethylene Polymers 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 238000009834 vaporization Methods 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- PMPVIKIVABFJJI-UHFFFAOYSA-N Cyclobutane Chemical compound C1CCC1 PMPVIKIVABFJJI-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- LVZWSLJZHVFIQJ-UHFFFAOYSA-N Cyclopropane Chemical compound C1CC1 LVZWSLJZHVFIQJ-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229910052768 actinide Inorganic materials 0.000 description 1
- 150000001255 actinides Chemical class 0.000 description 1
- 150000001361 allenes Chemical class 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- QNRMTGGDHLBXQZ-UHFFFAOYSA-N buta-1,2-diene Chemical compound CC=C=C QNRMTGGDHLBXQZ-UHFFFAOYSA-N 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- WFYPICNXBKQZGB-UHFFFAOYSA-N butenyne Chemical compound C=CC#C WFYPICNXBKQZGB-UHFFFAOYSA-N 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 239000000112 cooling gas Substances 0.000 description 1
- CFBGXYDUODCMNS-UHFFFAOYSA-N cyclobutene Chemical compound C1CC=C1 CFBGXYDUODCMNS-UHFFFAOYSA-N 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 235000013847 iso-butane Nutrition 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- VNXBKJFUJUWOCW-UHFFFAOYSA-N methylcyclopropane Chemical compound CC1CC1 VNXBKJFUJUWOCW-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 239000011858 nanopowder Substances 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 125000005574 norbornylene group Chemical group 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- UHKHUAHIAZQAED-UHFFFAOYSA-N phthalocyaninatoiron Chemical compound [Fe].N=1C2=NC(C3=CC=CC=C33)=NC3=NC(C3=CC=CC=C33)=NC3=NC(C3=CC=CC=C33)=NC3=NC=1C1=CC=CC=C12 UHKHUAHIAZQAED-UHFFFAOYSA-N 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- MWWATHDPGQKSAR-UHFFFAOYSA-N propyne Chemical compound CC#C MWWATHDPGQKSAR-UHFFFAOYSA-N 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/16—Preparation
- C01B32/162—Preparation characterised by catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J19/087—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
- B01J19/088—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
- D01F9/12—Carbon filaments; Apparatus specially adapted for the manufacture thereof
- D01F9/127—Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J2219/0871—Heating or cooling of the reactor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J2219/0873—Materials to be treated
- B01J2219/0875—Gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J2219/0873—Materials to be treated
- B01J2219/0892—Materials to be treated involving catalytically active material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J2219/0894—Processes carried out in the presence of a plasma
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2202/00—Structure or properties of carbon nanotubes
- C01B2202/02—Single-walled nanotubes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/84—Manufacture, treatment, or detection of nanostructure
- Y10S977/842—Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
- Y10S977/843—Gas phase catalytic growth, i.e. chemical vapor deposition
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/84—Manufacture, treatment, or detection of nanostructure
- Y10S977/842—Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
- Y10S977/844—Growth by vaporization or dissociation of carbon source using a high-energy heat source, e.g. electric arc, laser, plasma, e-beam
Definitions
- the present invention relates to improvements in the field of carbon nanotube production. More particularly, the invention relates to an improved method and apparatus for producing single-wall carbon nanotubes.
- Carbon nanotubes are available either as multi-wall or single-wall nanotubes.
- Multi-wall carbon nanotubes have exceptional properties such as excellent electrical and thermal conductivities. They have applications in numerous fields such as storage of hydrogen (C. Liu, Y. Y. Fan, M. Liu, H. T. Cong, H. M. Cheng, M. S. Dresselhaus, Science 286 (1999), 1127; M. S. Dresselhaus, K. A Williams, P. C. Eklund, MRS Bull. (1999), 45) or other gases, adsorption heat pumps, materials reinforcement or nanoelectronics (M. Menon, D. Srivastava, Phy. Rev. Lett. 79 (1997), 4453).
- Single-wall carbon nanotubes possess properties that are significantly superior to those of multi-wall nanotubes.
- single-wall carbon nanotubes are available only in small quantities since known methods of production do not produce more than few grams per day of these nanotubes.
- the amount of single-wall carbon nanotubes produced must be at least a few kilograms per day.
- 5,424,054 discloses a process for producing hollow carbon fibers having wall consisting essentially of a single layer of carbon atoms using an electric arc. The process involves contacting carbon vapor with cobalt vapor under specific conditions, and is thus limited to the use of cobalt vapor.
- the metal catalyst plays a key role in the synthesis of the nanotubes.
- the carbon-containing gas is decomposed by the particles of metal catalyst on which the nanotubes form.
- the CVD method suffers from a major drawback since the encapsulation of the catalyst particles by carbon stops the growth of the nanotubes (R. E. Smalley et al. Chem. Phys. Lett. 296 (1998), 195).
- nanotubes having two, three or multi-walls are obtained at the same time as the single-wall nanotubes.
- a promising method for the production of single-wall carbon nanotubes involves the use of a plasma torch for decomposing a mixture of carbon-containing substance and a metal catalyst and then condensing the mixture to obtain single-wall carbon nanotubes.
- This method has been recently described by O. Smiljanic, B. L. Stansfield, J.-P. Dodelet, A. Serventi, S. Désilets, in Chem. Phys. Lett. 356 (2002), 189 and showed encouraging results.
- Such a method has an important drawback since a premature extinction of the plasma torch occurs due to a rapid formation of carbon deposit in the torch. This method is therefore non-continuous and requires removal of the carbon deposit. Thus, large quantities of single-wall carbon nanotubes cannot be produced.
- a method for producing single-wall carbon nanotubes comprising the steps of:
- a method for producing single-wall carbon nanotubes comprising the steps of:
- an apparatus for producing single-wall carbon nanotubes which comprises:
- a plasma torch having a plasma tube for receiving an inert gas so as to form a primary plasma, the plasma tube having a plasma-discharging end;
- a feeder for directing a carbon-containing substance and a metal catalyst towards the primary plasma so that the carbon-containing substance and the metal catalyst contact the primary plasma at the plasma-discharging end of the plasma tube, to thereby form a secondary plasma containing atoms or molecules of carbon and the atoms of the metal catalyst;
- a condenser for condensing the atoms or molecules of carbon and the atoms of the metal catalyst to form single-wall carbon nanotubes.
- an apparatus for producing single-wall carbon nanotubes which comprises:
- a plasma torch having a plasma tube for receiving an inert gas and an inorganic metal catalyst so as to form a primary plasma containing atoms of the metal catalyst, the plasma tube having a plasma-discharging end;
- a feeder for directing a carbon-containing substance towards the primary plasma so that the carbon-containing substance contacts the primary plasma at the plasma-discharging end of the plasma tube, to thereby form a secondary plasma containing atoms or molecules of carbon and the atoms of the metal catalyst;
- a condenser for condensing the atoms or molecules of carbon and the atoms of the metal catalyst to form single-wall carbon nanotubes.
- Applicant has found quite surprisingly that by feeding the carbon-containing substance separately from the inert gas used to generate the primary plasma so that the carbon-containing substance contacts the primary plasma at the plasma-discharging end of the plasma tube to form the aforesaid secondary plasma, there is no undesirable formation of carbon deposit adjacent the plasma-discharging end of the plasma tube. Thus, no premature extinction of the plasma torch.
- carbon-containing substance refers to a substance which contains carbon atoms. Preferably, such a substance does not contain nitrogen atoms.
- the carbon-containing substance can be a solid, a liquid or a gas.
- organometallic complex refers to a compound in which there is a bonding interaction (ionic or covalent, localized or delocalized) between one or more carbon atoms of an organic group or molecule with a main group, transition, lanthanide, or actinide metal atom or atoms.
- rapid condensation refers to a condensation which occurs at a rate of at least 10 5 K/second.
- step (c) can be carried out by separately directing the carbon-containing substance and the metal catalyst towards the primary plasma.
- the carbon-containing substance can be in admixture with a carrier gas.
- the carbon-containing substance is in liquid or gaseous phase and the carbon-containing substance in liquid or gaseous phase flows along a helical path prior to contacting the primary plasma.
- the carbon-containing substance in liquid or gaseous phase is preferably in admixture with a carrier gas. It is also possible to use a carbon-containing substance in solid phase, in admixture with a carrier gas; such a mixture preferably flows along a helical path prior to contacting the primary plasma.
- the metal catalyst can also be in admixture with a carrier gas.
- a metal catalyst in liquid or gaseous phase such a metal catalyst preferably flows along a helical path prior to contacting the primary plasma.
- the metal catalyst in liquid or gaseous phase is preferably in admixture with a carrier gas. It is also possible to use a metal catalyst in solid phase, in admixture with a carrier gas; such a mixture preferably flows along a helical path prior to contacting the primary plasma.
- Step (c) of the method according to the first aspect of the invention can also be carried out by directing a mixture of the carbon-containing substance and the metal catalyst towards the primary plasma.
- the latter mixture can be in admixture with a carrier gas.
- the carbon-containing substance and the metal catalyst are in liquid or gaseous phase and the latter two flow along a helical path prior to contacting the primary plasma.
- the carbon-containing substance and the metal catalyst in liquid or gaseous phase are preferably in admixture with a carrier gas. It is also possible to use the carbon-containing substance and the metal catalyst in solid phase, in admixture with a carrier gas; such a mixture preferably flows along a helical path prior to contacting the primary plasma.
- the metal catalyst used in the method according to the first aspect of the invention is preferably an organometallic complex. It is also possible to use, as a metal catalyst, an inorganic metal complex or an inorganic metal catalyst comprising at least one metal in metallic form.
- suitable metal catalyst include those comprising at least one metal selected from the group consisting of Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Y, La, Ce, Mn, Li, Pr, Nd, Tb, Dy, Ho, Er, Lu and Gd.
- the metal is preferably iron.
- the metal catalyst can also comprise cobalt and at least one metal selected from the group consisting of Ni, Fe, Y, Pt, Mo, Cu, Pb and Bi.
- the metal catalyst can comprise nickel and at least one metal selected from the group consisting of Fe, Y, Lu, Pt, B, Ce, Mg, Cu and Ti.
- Ferrocene iron (II) phthalocyanine, iron in metallic form, iron pentacarbonyl and mixtures thereof can be used as suitable metal catalyst. Ferrocene is preferred.
- inert gas in admixture with an inorganic metal catalyst which may be the same or different than the one used in step (c).
- step (c) can be carried out by directing the carbon-containing substance towards the primary plasma.
- the carbon-containing substance can be in admixture with a carrier gas.
- the carbon-containing substance is in liquid or gaseous phase and the carbon-containing substance in liquid or gaseous phase flows along a helical path prior to contacting the primary plasma.
- the carbon-containing substance in liquid or gaseous phase is preferably in admixture with a carrier gas. It is also possible to use a carbon-containing substance in solid phase, in admixture with a carrier gas; such a mixture preferably flows along a helical path prior to contacting the primary plasma.
- the inorganic metal catalyst used in the method according to the second aspect of the invention can be an inorganic metal complex or at least one metal in metallic form.
- the inorganic metal catalyst comprises at least one metal selected from the group consisting of Fe, Ru, Co, Ph, Ir, Ni, Pd, Pt, Y, La, Ce, Mn, Li, Pr, Nd, Tb, Dy, Ho, Er, Lu and Gd.
- the metal is preferably iron.
- the inorganic metal catalyst can also comprise cobalt and at least one metal selected from the group consisting of Ni, Fe, Y, Pt, Mo, Cu, Pb and Bi.
- the inorganic metal catalyst can comprise nickel and at least one metal selected from the group consisting of Fe, Y, Lu, Pt, B, Ce, Mg, Cu and Ti.
- the carbon-containing substance used in the method according to the first or the second aspect of the invention can be a carbon-containing gas, a carbon-containing liquid or a carbon-containing solid. It is also possible to use a mixture of a carbon-containing gas and a carbon-containing liquid, a mixture of a carbon-containing gas and a carbon-containing solid, a mixture of a carbon-containing liquid and a carbon-containing solid or a mixture of a carbon-containing gas, a carbon-containing liquid and a carbon-containing solid.
- the carbon-containing gas is a C 1 -C 4 hydrocarbon such as methane, ethane, ethylene, acetylene, propane, propene, cyclopropane, allene, propyne, butane, 2-methylpropane, 1-butene, 2-butene, 2-methylpropene, cyclobutane, methylcyclopropane, 1-butyne, 2-butyne, cyclobutene, 1,2-butadiene, 1,3-butadiene or 1-buten-3-yne or a mixture thereof.
- care should be taken to filter such a gas in order to remove impurities.
- the carbon-containing liquid is preferably a C 5 -C 10 hydrocarbon.
- the carbon-containing liquid can be selected from the group consisting of pentane, hexane, cyclohexane, heptane, benzene, toluene, xylene or styrene or mixtures thereof.
- the carbon-containing solid can be graphite, carbon black, norbornylene, naphthalene, anthracene, phenanthrene, polyethylene, polypropylene, or polystyrene or mixtures thereof.
- Graphite is preferred. More preferably, the graphite is in the form of a nano-powder.
- the inert gas used in the method according to the first or second aspect of the invention can be helium, argon or a mixture thereof. Argon is preferred.
- a further inert gas can be injected in the plasma torch and directed towards the primary and secondary plasmas.
- a cooling inert gas is preferably injected downstream of the secondary plasma; the cooling inert gas can be helium, argon or a mixture thereof. The cooling inert gas assists in providing a temperature gradient.
- the aforementioned carrier gas can be helium, argon, hydrogen or hydrogen sulfide or a mixture thereof. Argon is preferably used as carrier gas.
- the metal catalyst and the carbon-containing substance are used in an atomic ratio metal atoms/carbon atoms of about 0.01 to about 0.06. More preferably, the atomic ratio metal atoms/carbon atoms is about 0.02.
- Step (d) of the method according to the first or second aspect of the invention is preferably carried out to provide a temperature gradient permitting rapid condensation of the atoms or molecules of carbon and the atoms of metal catalyst.
- the temperature gradient is provided by directing the atoms or molecules of carbon and the atoms of metal catalyst through an oven disposed downstream of the plasma tube in spaced relation thereto, the oven being heated at a predetermined temperature.
- the predetermined temperature can be comprised between 500 and 1800° C. and preferably between 800 and 950° C. A temperature of about 900° C. is preferred. Such a temperature of about 900° C. is also particularly preferred when the metal catalyst comprises iron.
- the single-wall carbon nanotubes produced can be collected in a trap such as an electrostatic trap.
- the feeder preferably comprise a first conduit for directing the carbon-containing substance towards the primary plasma and a second conduit for directing the metal catalyst towards the primary plasma.
- the first and second conduits each have a discharge end disposed adjacent the plasma-discharging end of the plasma tube.
- the feeder can comprise a single conduit for directing a mixture of the carbon-containing substance and the metal catalyst towards the primary plasma.
- the single conduit preferably has a discharge end disposed adjacent the plasma-discharging end of the plasma tube.
- the single conduit is disposed inside the plasma tube and extends substantially coaxially thereof.
- the feeder preferably comprises a single conduit for directing the carbon-containing substance towards the primary plasma.
- the conduit has a discharge end disposed adjacent the plasma-discharging end of the plasma tube.
- the conduit is disposed inside the plasma tube and extends substantially coaxially thereof.
- the condenser preferably comprise an oven disposed downstream of the plasma tube in spaced relation thereto, and a heat source for heating the oven to provide a temperature gradient permitting rapid condensation of the atoms or molecules of carbon and the atoms of metal catalyst.
- a heat-resistant tubular member having a plasma-receiving end extends through the oven with the plasma-receiving end disposed upstream of the plasma-discharging end of the plasma tube.
- An injector is provided for injecting a cooling inert gas into the tubular member, downstream of the secondary plasma; the cooling inert gas assists in providing the temperature gradient.
- the heat-resistant tubular member can be made of quartz or boron nitride.
- the apparatus can be provided with a trap for collecting single-wall carbon nanotubes produced.
- the trap is an electrostatic trap.
- the apparatus can also be provided with a cooling system disposed about the plasma tube and extends substantially coaxially thereof.
- the apparatus comprises a Faraday shield made of a conductive material for preventing emission of electromagnetic radiations outside of the apparatus.
- the apparatus preferably includes another heat-resistant tubular member disposed about the plasma tube and extending substantially coaxially thereof, and an injector for injecting a further inert gas between the plasma tube and the tubular member to prevent undesirable formation of carbon deposit adjacent the plasma-discharging end of the plasma tube.
- the latter heat-resistant tubular member can also be made of quartz or boron nitride.
- FIG. 1 is a schematic, sectional elevation view of an apparatus for producing single-wall carbon nanotubes, according to a first preferred embodiment of the invention
- FIG. 2 is a schematic, sectional elevation view of an apparatus for producing single-wall carbon nanotubes, according to a second preferred embodiment of the invention
- FIG. 3 is a schematic, sectional elevation view of an apparatus for producing single-wall carbon nanotubes, according to a third preferred embodiment of the invention.
- FIG. 4 is a schematic, sectional elevation view of an injecting device according to a fourth preferred embodiment of the invention.
- FIG. 5 is a SEM (Scanning Electron Microscope) picture of a crude sample of single-wall carbon nanotubes
- FIG. 6 is another SEM picture of the sample shown in FIG. 5 ;
- FIG. 7 is a TEM (Transmission Electron Microscope) picture of the sample shown in FIG. 5 ;
- FIG. 8 is another TEM picture of the sample shown in FIG. 5 ;
- FIG. 9 is the graph of a Raman spectroscopy measurement performed on the sample shown in FIG. 5 using a 514 nm laser.
- FIG. 10 is the graph of another Raman spectroscopy measurement performed on the sample shown in FIG. 5 using a 782 nm laser.
- an apparatus 10 for producing single-wall carbon nanotubes which comprises a plasma torch 12 having a plasma tube 14 with a plasma-discharging end 16 , and an oven 18 disposed downstream of the plasma tube 14 in spaced relation thereto.
- the plasma tube 14 is adapted to receive an inert gas for activation by electromagnetic radiation generated from a source (not shown) so as to form a primary plasma 20 .
- the electromagnetic radiations are propagated on the plasma tube 14 so as to maintain the primary plasma 20 .
- the primary plasma 20 comprises ionized atoms of the inert gas.
- a feed conduit 22 having a discharge end 24 is arranged inside the plasma tube 14 and extends substantially coaxially thereof.
- the discharge end 24 of the feed conduit 22 is disposed adjacent the plasma discharging end 16 of the plasma tube 14 .
- the feed conduit 22 serves to direct a carbon-containing substance, such as a carbon-containing gas, and a metal catalyst towards the primary plasma 20 so that the carbon-containing substance and the metal catalyst contact the primary plasma 20 at the plasma-discharging end 16 of the plasma tube 14 , whereby to form a secondary plasma 26 containing atoms or molecules of carbon and the atoms of metal catalyst.
- the carbon-containing gas is preferably ethylene or methane.
- the oven 18 serves to condense the atoms or molecules of carbon and atoms of metal catalyst to form single-wall carbon nanotubes 28 .
- a heat source 30 is provided for heating the oven 18 to generate a temperature gradient permitting rapid condensation of the atoms or molecules of carbon and the atoms of metal catalyst.
- a heat-resistant tubular member 32 having a plasma-receiving end 34 extends through the oven 18 , the plasma-receiving end 34 being disposed upstream of the plasma-discharging end 16 of the plasma tube 14 .
- An electrostatic trap 35 comprising a filter 36 and a rod 37 is extending downstream of oven 18 .
- the deposit of single-wall carbon nanotubes 28 occurs on the heat-resistant member 32 upstream and downstream of the oven 18 , as well as inside of the trap 35 .
- the filter 36 traps some of the fine particles (not shown) generated during the formation of single-wall carbon nanotubes 28 and reduces the emission of fine particles outside of the apparatus.
- the electrostatic trap 35 permits a more efficient recovery of the single-wall nanotubes produced by the apparatus 10 .
- the apparatus further includes a gas injector 38 for injecting a cooling inert gas into the tubular member 32 , downstream of the secondary plasma 26 .
- the cooling inert gas assists in providing the temperature gradient.
- Another heat-resistant tubular member 40 is disposed about the plasma tube 14 and extends substantially coaxially thereof, the tubular member 40 being fixed to the tubular member 32 and supporting same.
- Another gas injector 42 is provided for injecting a further inert gas between the plasma tube 14 and the tubular member 40 to prevent undesirable formation of carbon deposit adjacent the plasma-discharging end 16 of the plasma tube 14 .
- the plasma tube 14 is also provided with a cooling system (not shown), which preferably uses water.
- the apparatus 10 further comprises a Faraday shield (not shown) made of a conductive material, preferably aluminium.
- the inert gas flows through the plasma tube 14 along a helical path represented by the arrow 44 .
- the carbon-containing gas and the metal catalyst optionally in admixture with a carrier gas, flow through the feed conduit 22 along a helical path represented by the arrow 46 .
- the metal catalyst which is fed through the conduit 22 can be either an organometallic complex such as ferrocene, or an inorganic metal catalyst such as iron in metallic form. Instead of feeding the metal catalyst through the conduit 22 , it is possible to feed only the carbon-containing gas through the conduit 22 and to feed the metal catalyst in admixture with the inert gas through the plasma tube 14 .
- the metal catalyst must be an inorganic metal catalyst to prevent undesirable formation of carbon deposit adjacent the plasma-discharging end 16 of the plasma tube 14 . It is also possible to feed the inert gas and an inorganic metal catalyst through the plasma tube 14 and to feed the carbon-containing gas in admixture with an organometallic complex or an inorganic metal catalyst through the conduit 22 .
- FIG. 2 illustrates another apparatus 48 for producing single-wall carbon nanotubes, which comprises a plasma torch 50 having a plasma tube 52 with a plasma-discharging end 54 , and an oven 56 disposed downstream of the plasma tube 52 in spaced relation thereto.
- the plasma tube 52 is adapted to receive an inert gas for activation by electromagnetic radiation generated from a source (not shown) so as to form a primary plasma 58 .
- a feed conduit 60 having a discharge end 62 disposed adjacent the plasma-discharging end 54 of the plasma tube 52 is provided for directing a carbon-containing substance, such as a carbon-containing gas, and a metal catalyst towards the primary plasma 58 .
- the carbon-containing substance and the metal catalyst discharged from the feed conduit 60 contact the primary plasma 58 at the plasma-discharging end 54 of the plasma tube 52 , thereby forming a secondary plasma 64 containing atoms or molecules of carbon and the atoms of metal catalyst.
- the carbon-containing gas is preferably ethylene or methane.
- the plasma tube 52 is also provided with a cooling system (not shown), which preferably uses water.
- the apparatus 48 further comprises a Faraday shield (not shown) made of a conductive material, preferably aluminium.
- the oven 56 serves to condense the atoms or molecules of carbon and the atoms of metal catalyst to form single-wall carbon nanotubes 66 .
- a heat source 68 is provided for heating the oven 56 to generate a temperature gradient permitting rapid condensation of the atoms or molecules of carbon and the atoms of metal catalyst.
- a heat-resistant tubular member 70 having a plasma-receiving end 72 extends through the oven 56 , the plasma-receiving end 72 being disposed upstream of the plasma-discharging end 54 of the plasma tube 52 .
- the apparatus further includes a gas injector 74 for injecting a cooling inert gas into the tubular member 70 , downstream of the secondary plasma 64 . The cooling inert gas assists in providing the temperature gradient.
- the deposit of single-wall carbon nanotubes 66 occurs on the heat-resistant tubular member 70 upstream and downstream of the oven 56 .
- the inert gas flows through the plasma tube 52 along a helical path represented by the arrow 76 .
- the carbon-containing gas and the metal catalyst optionally in admixture with a carrier gas, flow through the conduit 60 along a helical path represented by the arrow 78 .
- the metal catalyst which is fed through the conduit 60 can be either an organometallic complex such as ferrocene, or an inorganic metal catalyst such as iron. Instead of feeding the metal catalyst through the conduit 60 , it is possible to feed only the carbon-containing gas through the conduit 60 and to feed the metal catalyst in admixture with the inert gas through the plasma tube 52 .
- the metal catalyst must be an inorganic metal catalyst to prevent undesirable formation of carbon deposit adjacent the plasma-discharging end 54 of the plasma tube 52 . It is also possible to feed the inert gas and an inorganic metal catalyst through the plasma tube 52 and to feed the carbon-containing gas in admixture with an organometallic complex or an inorganic metal catalyst through the conduit 60 .
- the apparatus 48 can be provided with the electrostatic trap 35 illustrated in FIG. 1 .
- the apparatus 48 ′ illustrated in FIG. 3 is similar to the apparatus 48 shown in FIG. 2 , with the exception that an additional feed conduit 60 ′ is provided, the feed conduits 60 and 60 ′ being arranged on either side of the plasma tube 52 .
- the conduit 60 ′ has a discharge end 62 ′ disposed adjacent the plasma-discharging end 54 of the plasma tube 52 and serves the same purpose as the feed conduit 60 .
- the carbon-containing gas and the metal catalyst optionally in admixture with a carrier gas, flow through the conduit 60 ′ along a helical path represented by the arrow 78 ′.
- two feed conduits 60 and 60 ′ are shown in FIG. 3 , it is possible to have a plurality of such conduits disposed symmetrically about the plasma tube 52 .
- the metal catalyst instead of feeding the metal catalyst through the conduits 60 and 60 ′, it is possible to feed only the carbon-containing gas through the conduits 60 and 60 ′ and to feed the metal catalyst in admixture with the inert gas through the plasma tube 52 .
- the metal catalyst must be an inorganic metal catalyst to prevent undesirable formation of carbon deposit adjacent the plasma-discharging end 54 of the plasma tube 52 . It is also possible to feed the inert gas and an inorganic metal catalyst through the plasma tube 52 and to feed the carbon-containing gas in admixture with an organometallic complex or an inorganic metal catalyst through the conduits 60 and 60 ′.
- the plasma tube 52 is also provided with a cooling system (not shown), which preferably uses water.
- the apparatus 48 ′ further comprises a Faraday shield (not shown) made of a conductive material, preferably aluminium.
- the apparatus 48 ′ can be provided with the electrostatic trap 35 illustrated in FIG. 1 .
- FIG. 4 illustrates an injecting device 80 comprising a reservoir 82 adapted to receive an oil 84 , and a reservoir 86 having filters 88 .
- the reservoir 86 is forming a chamber 89 for receiving a metal catalyst 90 , preferably ferrocene.
- the reservoir 86 has an inlet 92 and an outlet 94 , which are in fluid flow communication with conduits 96 having an inlet 98 and an outlet 100 .
- the chamber 89 of the reservoir 86 is provided with a metal catalyst 90 and the catalyst 90 is heated by the hot oil 84 so as to evaporate the metal catalyst 90 .
- a mixture of a carbon-containing gas and a carrier gas (not shown) or a carbon-containing gas is injected at the inlet 98 so as to flow into conduits 96 thereby passing through the reservoir 86 and carrying the evaporated metal catalyst 90 at the outlet 100 , which is connected to the apparatus 10 , 48 or 48 ′.
- the filters 88 prevent solid particles of the metal catalyst 90 from being carried out into said conduits 96 .
- the production or synthesis of single-wall carbon nanotubes has been performed by using a plasma torch as illustrated in FIG. 1 .
- the following experiment has been carried out by the inventors by providing the plasma torch with a cooling system and a Faraday shield.
- the cooling system prevents the plasma torch from over-heating and being damaged.
- the Faraday shield comprising a conductive material, preferably aluminium, prevents the electromagnetic radiations from escaping from said apparatus, thereby protecting users of the plasma torch. All the parameters related to the plasma torch are controlled by a computer using the LABVIEW® software. The parameters can also be manually controlled.
- the inert gas used for generating the primary plasma was argon, the metal catalyst was ferrocene, the carbon-containing gas was ethylene and the cooling gas was helium.
- Helium was also injected toward the plasma discharging end so as to prevent carbon deposit.
- the injecting device illustrated in FIG. 4 was used for injecting the ferrocene. Ferrocene was heated to 100° C. and the conduits were heated to 250° C. so as to prevent condensation of ferrocene in the conduit disposed downstream of the reservoir containing the latter metal catalyst.
- the argon flow varied from 1000 to 3000 sccm (standard cubic centimeters per minute).
- the helium flows were both stabilized at about 3250 sccm, and the ethylene flow varied between 50 and 100 sccm.
- the temperature of the oven was kept at 900° C. and measured with a pyrometer.
- the power of the source generating the electromagnetic radiations was 1000 W and the reflected power was about 200 W.
- the rod of the electrostatic trap was maintained at a tension of ⁇ 1000 V.
- the heat-resistant tubular members were made of quartz.
- the plasma tube was made of brass.
- the feed conduit was made of stainless steel.
- the metal catalyst (ferrocene) and the carbon-containing substance (ethylene) were used in an atomic ratio metal atoms/carbon atoms of 0.02.
- the software controlled the flow of the carrier gas, argon, so as to maintain the atomic ratio at such a value.
- the experiment was carried out at atmospheric pressure under inert conditions (helium and argon).
- the synthesis of single-wall carbon nanotubes was performed for a period of 20 minutes using the above-mentioned experimental conditions. During this period of time, 500 mg of the desired single-wall carbon nanotubes were produced. The purity of the nanotubes thus obtained was about 20%.
- the crude sample obtained in the above example was characterized by SEM; the results are illustrated in FIGS. 5 and 6 .
- single-wall carbon nanotubes were produced.
- the sample was also characterized by TEM; the results are illustrated in FIGS. 7 and 8 .
- These two figures show that the growth of the single-wall nanotubes is initiated by metal catalyst particles of about 5 nm (indicated by the arrows).
- the rope-like structure shown in FIGS. 7 and 8 is very common for single-wall nanotubes.
- the purity of the sample was estimated by comparing the surface occupied by the single-wall carbon nanotubes with the amorphous carbon residues in FIGS. 7 and 8 .
- the peaks at 127.91, 141.20, 147.59, 163.02, 181.64, 200.26, 211.96, 222.60, 230.05 and 263.57 cm ⁇ 1 correspond to single-wall carbon nanotubes having diameters of 1.75, 1.60, 1.52, 1.37, 1.23, 1.12, 1.06, 1.00, 0.97 and 0.85 nm, respectively.
- the production of single-wall carbon nanotubes can be performed for a period of several hours since the deposit of carbon at the plasma-discharging end, leading to the premature extinction of the plasma torch, is avoided.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Thermal Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Textile Engineering (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
The invention relates to a method for producing single-wall carbon nanotubes. The method of the invention comprises the steps of (a) providing a plasma torch having a plasma tube with a plasma-discharging end; (b) feeding an inert gas through the plasma tube to form a primary plasma; (c) contacting a carbon-containing substance and a metal catalyst with the primary plasma at the plasma-discharging end of the plasma tube, to form a secondary plasma containing atoms or molecules of carbon and atoms of the metal catalyst; and (d) condensing the atoms or molecules of carbon and the atoms of the metal catalyst to form single-wall carbon nanotubes. Alternatively, steps (b) and (c) can be carried out by feeding an inert gas and an inorganic metal catalyst through the plasma tube to form a primary plasma containing atoms of the inorganic metal catalyst and contacting a carbon-containing substance with the primary plasma at the plasma-discharging end of the plasma tube, to form a secondary plasma containing atoms or molecules of carbon and the atoms of metal catalyst. An apparatus for carrying out the method according to the invention is also disclosed.
Description
- The present invention relates to improvements in the field of carbon nanotube production. More particularly, the invention relates to an improved method and apparatus for producing single-wall carbon nanotubes.
- Carbon nanotubes are available either as multi-wall or single-wall nanotubes. Multi-wall carbon nanotubes have exceptional properties such as excellent electrical and thermal conductivities. They have applications in numerous fields such as storage of hydrogen (C. Liu, Y. Y. Fan, M. Liu, H. T. Cong, H. M. Cheng, M. S. Dresselhaus, Science 286 (1999), 1127; M. S. Dresselhaus, K. A Williams, P. C. Eklund, MRS Bull. (1999), 45) or other gases, adsorption heat pumps, materials reinforcement or nanoelectronics (M. Menon, D. Srivastava, Phy. Rev. Lett. 79 (1997), 4453). Single-wall carbon nanotubes, on the other hand, possess properties that are significantly superior to those of multi-wall nanotubes. However, single-wall carbon nanotubes are available only in small quantities since known methods of production do not produce more than few grams per day of these nanotubes. For any industrial application such as storage or material reinforcement, the amount of single-wall carbon nanotubes produced must be at least a few kilograms per day.
- Nowadays, the most popular methods for producing single-wall carbon nanotubes are laser ablation, electric arc and chemical vapor deposition (CVD). The two first methods are based on the same principal: local evaporation of a graphite target enriched with a metal catalyst and subsequent condensation of the vapor to form nanotubes (A. A. Puretzky, D. B. Geohegan, S. J. Pennycook, Appl. Phys. A 70 (2000), 153). U.S. Pat. No. 6,183,714 discloses a method of making ropes of single-wall carbon nanotubes using a laser pulse to produce a vapor containing carbon and one or more Group VIII transition metals. U.S. Pat. No. 5,424,054 discloses a process for producing hollow carbon fibers having wall consisting essentially of a single layer of carbon atoms using an electric arc. The process involves contacting carbon vapor with cobalt vapor under specific conditions, and is thus limited to the use of cobalt vapor.
- Although the above methods are relatively efficient for the transformation of carbon into nanotubes, they have inherent drawbacks. The vaporisation of graphite is not energetically advantageous since 717 kJ are required to evaporate one mole of carbon. Therefore, the production of single-wall carbon nanotubes via laser ablation and electric arc consumes a lot of energy for small quantities of nanotubes produced. Moreover, these processes are non-continuous since they must be stopped for renewing the source of carbon once the graphite has been consumed.
- In the CVD method as well as in the other two methods described above, the metal catalyst plays a key role in the synthesis of the nanotubes. For example, in the CVD method, the carbon-containing gas is decomposed by the particles of metal catalyst on which the nanotubes form. The CVD method suffers from a major drawback since the encapsulation of the catalyst particles by carbon stops the growth of the nanotubes (R. E. Smalley et al. Chem. Phys. Lett. 296 (1998), 195). In addition, due to the non-selectivity of the method, nanotubes having two, three or multi-walls are obtained at the same time as the single-wall nanotubes.
- A promising method for the production of single-wall carbon nanotubes involves the use of a plasma torch for decomposing a mixture of carbon-containing substance and a metal catalyst and then condensing the mixture to obtain single-wall carbon nanotubes. This method has been recently described by O. Smiljanic, B. L. Stansfield, J.-P. Dodelet, A. Serventi, S. Désilets, in Chem. Phys. Lett. 356 (2002), 189 and showed encouraging results. Such a method, however, has an important drawback since a premature extinction of the plasma torch occurs due to a rapid formation of carbon deposit in the torch. This method is therefore non-continuous and requires removal of the carbon deposit. Thus, large quantities of single-wall carbon nanotubes cannot be produced.
- It is therefore an object of the present invention to overcome the above drawbacks and to provide a method and apparatus for the continuous production of single-wall carbon nanotubes in large quantities.
- According to a first aspect of the invention, there is provided a method for producing single-wall carbon nanotubes, comprising the steps of:
- a) providing a plasma torch having a plasma tube with a plasma-discharging end;
- b) feeding an inert gas through the plasma tube to form a primary plasma;
- c) contacting a carbon-containing substance and a metal catalyst with the primary plasma at the plasma-discharging end of the plasma tube, to form a secondary plasma containing atoms or molecules of carbon and atoms of metal catalyst; and
- d) condensing the atoms or molecules of carbon and the atoms of metal catalyst to form single-wall carbon nanotubes.
- According to a second aspect of the invention, there is provided a method for producing single-wall carbon nanotubes, comprising the steps of:
- a) providing a plasma torch having a plasma tube with a plasma-discharging end;
- b) feeding an inert gas and an inorganic metal catalyst through the plasma tube to form a primary plasma containing the atoms of metal catalyst;
- c) contacting a carbon-containing substance with the primary plasma at the plasma-discharging end of said plasma tube, to form a secondary plasma containing atoms or molecules of carbon and the atoms of metal; catalyst; and
- d) condensing the atoms or molecules of carbon and the atoms of metal catalyst to form single-wall carbon nanotubes.
- According to a third aspect of the invention, there is provided an apparatus for producing single-wall carbon nanotubes, which comprises:
- a plasma torch having a plasma tube for receiving an inert gas so as to form a primary plasma, the plasma tube having a plasma-discharging end;
- a feeder for directing a carbon-containing substance and a metal catalyst towards the primary plasma so that the carbon-containing substance and the metal catalyst contact the primary plasma at the plasma-discharging end of the plasma tube, to thereby form a secondary plasma containing atoms or molecules of carbon and the atoms of the metal catalyst; and
- a condenser for condensing the atoms or molecules of carbon and the atoms of the metal catalyst to form single-wall carbon nanotubes.
- According to a fourth aspect of the invention, there is provided an apparatus for producing single-wall carbon nanotubes, which comprises:
- a plasma torch having a plasma tube for receiving an inert gas and an inorganic metal catalyst so as to form a primary plasma containing atoms of the metal catalyst, the plasma tube having a plasma-discharging end;
- a feeder for directing a carbon-containing substance towards the primary plasma so that the carbon-containing substance contacts the primary plasma at the plasma-discharging end of the plasma tube, to thereby form a secondary plasma containing atoms or molecules of carbon and the atoms of the metal catalyst; and
- a condenser for condensing the atoms or molecules of carbon and the atoms of the metal catalyst to form single-wall carbon nanotubes.
- Applicant has found quite surprisingly that by feeding the carbon-containing substance separately from the inert gas used to generate the primary plasma so that the carbon-containing substance contacts the primary plasma at the plasma-discharging end of the plasma tube to form the aforesaid secondary plasma, there is no undesirable formation of carbon deposit adjacent the plasma-discharging end of the plasma tube. Thus, no premature extinction of the plasma torch.
- The term “carbon-containing substance” as used herein refers to a substance which contains carbon atoms. Preferably, such a substance does not contain nitrogen atoms. The carbon-containing substance can be a solid, a liquid or a gas.
- The expression “organometallic complex” as used herein refers to a compound in which there is a bonding interaction (ionic or covalent, localized or delocalized) between one or more carbon atoms of an organic group or molecule with a main group, transition, lanthanide, or actinide metal atom or atoms.
- The expression “rapid condensation” as used herein refers to a condensation which occurs at a rate of at least 105 K/second.
- In the method according to the first aspect of the invention, step (c) can be carried out by separately directing the carbon-containing substance and the metal catalyst towards the primary plasma. The carbon-containing substance can be in admixture with a carrier gas. Preferably, the carbon-containing substance is in liquid or gaseous phase and the carbon-containing substance in liquid or gaseous phase flows along a helical path prior to contacting the primary plasma. The carbon-containing substance in liquid or gaseous phase is preferably in admixture with a carrier gas. It is also possible to use a carbon-containing substance in solid phase, in admixture with a carrier gas; such a mixture preferably flows along a helical path prior to contacting the primary plasma. The metal catalyst can also be in admixture with a carrier gas. When use is made of a metal catalyst in liquid or gaseous phase, such a metal catalyst preferably flows along a helical path prior to contacting the primary plasma. The metal catalyst in liquid or gaseous phase is preferably in admixture with a carrier gas. It is also possible to use a metal catalyst in solid phase, in admixture with a carrier gas; such a mixture preferably flows along a helical path prior to contacting the primary plasma.
- Step (c) of the method according to the first aspect of the invention can also be carried out by directing a mixture of the carbon-containing substance and the metal catalyst towards the primary plasma. The latter mixture can be in admixture with a carrier gas. Preferably, the carbon-containing substance and the metal catalyst are in liquid or gaseous phase and the latter two flow along a helical path prior to contacting the primary plasma. The carbon-containing substance and the metal catalyst in liquid or gaseous phase are preferably in admixture with a carrier gas. It is also possible to use the carbon-containing substance and the metal catalyst in solid phase, in admixture with a carrier gas; such a mixture preferably flows along a helical path prior to contacting the primary plasma.
- The metal catalyst used in the method according to the first aspect of the invention is preferably an organometallic complex. It is also possible to use, as a metal catalyst, an inorganic metal complex or an inorganic metal catalyst comprising at least one metal in metallic form. Examples of suitable metal catalyst include those comprising at least one metal selected from the group consisting of Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Y, La, Ce, Mn, Li, Pr, Nd, Tb, Dy, Ho, Er, Lu and Gd. The metal is preferably iron.
- The metal catalyst can also comprise cobalt and at least one metal selected from the group consisting of Ni, Fe, Y, Pt, Mo, Cu, Pb and Bi. Alternatively, the metal catalyst can comprise nickel and at least one metal selected from the group consisting of Fe, Y, Lu, Pt, B, Ce, Mg, Cu and Ti.
- Ferrocene, iron (II) phthalocyanine, iron in metallic form, iron pentacarbonyl and mixtures thereof can be used as suitable metal catalyst. Ferrocene is preferred.
- In the method according to the first aspect of the invention, it is possible to use the inert gas in admixture with an inorganic metal catalyst which may be the same or different than the one used in step (c).
- In the method according to the second aspect of the invention, step (c) can be carried out by directing the carbon-containing substance towards the primary plasma. The carbon-containing substance can be in admixture with a carrier gas. Preferably, the carbon-containing substance is in liquid or gaseous phase and the carbon-containing substance in liquid or gaseous phase flows along a helical path prior to contacting the primary plasma. The carbon-containing substance in liquid or gaseous phase is preferably in admixture with a carrier gas. It is also possible to use a carbon-containing substance in solid phase, in admixture with a carrier gas; such a mixture preferably flows along a helical path prior to contacting the primary plasma.
- The inorganic metal catalyst used in the method according to the second aspect of the invention can be an inorganic metal complex or at least one metal in metallic form. Preferably, the inorganic metal catalyst comprises at least one metal selected from the group consisting of Fe, Ru, Co, Ph, Ir, Ni, Pd, Pt, Y, La, Ce, Mn, Li, Pr, Nd, Tb, Dy, Ho, Er, Lu and Gd. The metal is preferably iron. The inorganic metal catalyst can also comprise cobalt and at least one metal selected from the group consisting of Ni, Fe, Y, Pt, Mo, Cu, Pb and Bi. Alternatively, the inorganic metal catalyst can comprise nickel and at least one metal selected from the group consisting of Fe, Y, Lu, Pt, B, Ce, Mg, Cu and Ti.
- The carbon-containing substance used in the method according to the first or the second aspect of the invention can be a carbon-containing gas, a carbon-containing liquid or a carbon-containing solid. It is also possible to use a mixture of a carbon-containing gas and a carbon-containing liquid, a mixture of a carbon-containing gas and a carbon-containing solid, a mixture of a carbon-containing liquid and a carbon-containing solid or a mixture of a carbon-containing gas, a carbon-containing liquid and a carbon-containing solid. Preferably, the carbon-containing gas is a C1-C4 hydrocarbon such as methane, ethane, ethylene, acetylene, propane, propene, cyclopropane, allene, propyne, butane, 2-methylpropane, 1-butene, 2-butene, 2-methylpropene, cyclobutane, methylcyclopropane, 1-butyne, 2-butyne, cyclobutene, 1,2-butadiene, 1,3-butadiene or 1-buten-3-yne or a mixture thereof. When commercial acetylene is used, care should be taken to filter such a gas in order to remove impurities. The carbon-containing liquid is preferably a C5-C10 hydrocarbon. Alternatively, the carbon-containing liquid can be selected from the group consisting of pentane, hexane, cyclohexane, heptane, benzene, toluene, xylene or styrene or mixtures thereof. The carbon-containing solid can be graphite, carbon black, norbornylene, naphthalene, anthracene, phenanthrene, polyethylene, polypropylene, or polystyrene or mixtures thereof. Graphite is preferred. More preferably, the graphite is in the form of a nano-powder.
- The inert gas used in the method according to the first or second aspect of the invention can be helium, argon or a mixture thereof. Argon is preferred. A further inert gas can be injected in the plasma torch and directed towards the primary and secondary plasmas. A cooling inert gas is preferably injected downstream of the secondary plasma; the cooling inert gas can be helium, argon or a mixture thereof. The cooling inert gas assists in providing a temperature gradient. The aforementioned carrier gas can be helium, argon, hydrogen or hydrogen sulfide or a mixture thereof. Argon is preferably used as carrier gas.
- According to a preferred embodiment, the metal catalyst and the carbon-containing substance are used in an atomic ratio metal atoms/carbon atoms of about 0.01 to about 0.06. More preferably, the atomic ratio metal atoms/carbon atoms is about 0.02.
- Step (d) of the method according to the first or second aspect of the invention is preferably carried out to provide a temperature gradient permitting rapid condensation of the atoms or molecules of carbon and the atoms of metal catalyst. Preferably, the temperature gradient is provided by directing the atoms or molecules of carbon and the atoms of metal catalyst through an oven disposed downstream of the plasma tube in spaced relation thereto, the oven being heated at a predetermined temperature. The predetermined temperature can be comprised between 500 and 1800° C. and preferably between 800 and 950° C. A temperature of about 900° C. is preferred. Such a temperature of about 900° C. is also particularly preferred when the metal catalyst comprises iron. The single-wall carbon nanotubes produced can be collected in a trap such as an electrostatic trap.
- In the apparatus according to the third aspect of the invention, the feeder preferably comprise a first conduit for directing the carbon-containing substance towards the primary plasma and a second conduit for directing the metal catalyst towards the primary plasma. Preferably, the first and second conduits each have a discharge end disposed adjacent the plasma-discharging end of the plasma tube. Alternatively, the feeder can comprise a single conduit for directing a mixture of the carbon-containing substance and the metal catalyst towards the primary plasma. In such a case, the single conduit preferably has a discharge end disposed adjacent the plasma-discharging end of the plasma tube. In a particularly preferred embodiment, the single conduit is disposed inside the plasma tube and extends substantially coaxially thereof.
- In the apparatus according to the fourth aspect of the invention, the feeder preferably comprises a single conduit for directing the carbon-containing substance towards the primary plasma. Preferably, the conduit has a discharge end disposed adjacent the plasma-discharging end of the plasma tube. In a particularly preferred embodiment, the conduit is disposed inside the plasma tube and extends substantially coaxially thereof.
- In the apparatus according to the third or fourth aspect of the invention, the condenser preferably comprise an oven disposed downstream of the plasma tube in spaced relation thereto, and a heat source for heating the oven to provide a temperature gradient permitting rapid condensation of the atoms or molecules of carbon and the atoms of metal catalyst. Preferably, a heat-resistant tubular member having a plasma-receiving end extends through the oven with the plasma-receiving end disposed upstream of the plasma-discharging end of the plasma tube. An injector is provided for injecting a cooling inert gas into the tubular member, downstream of the secondary plasma; the cooling inert gas assists in providing the temperature gradient. The heat-resistant tubular member can be made of quartz or boron nitride. The apparatus can be provided with a trap for collecting single-wall carbon nanotubes produced. Preferably, the trap is an electrostatic trap. The apparatus can also be provided with a cooling system disposed about the plasma tube and extends substantially coaxially thereof. Preferably, the apparatus comprises a Faraday shield made of a conductive material for preventing emission of electromagnetic radiations outside of the apparatus.
- Where the apparatus according to the third or fourth aspect of the invention has the aforementioned conduit disposed inside the plasma tube and extending substantially coaxially thereof, the apparatus preferably includes another heat-resistant tubular member disposed about the plasma tube and extending substantially coaxially thereof, and an injector for injecting a further inert gas between the plasma tube and the tubular member to prevent undesirable formation of carbon deposit adjacent the plasma-discharging end of the plasma tube. The latter heat-resistant tubular member can also be made of quartz or boron nitride.
- Further features and advantages of the invention will become more readily apparent from the following description of preferred embodiments as illustrated by way of examples in the appended drawings wherein:
-
FIG. 1 is a schematic, sectional elevation view of an apparatus for producing single-wall carbon nanotubes, according to a first preferred embodiment of the invention; -
FIG. 2 is a schematic, sectional elevation view of an apparatus for producing single-wall carbon nanotubes, according to a second preferred embodiment of the invention; -
FIG. 3 is a schematic, sectional elevation view of an apparatus for producing single-wall carbon nanotubes, according to a third preferred embodiment of the invention; -
FIG. 4 is a schematic, sectional elevation view of an injecting device according to a fourth preferred embodiment of the invention; -
FIG. 5 is a SEM (Scanning Electron Microscope) picture of a crude sample of single-wall carbon nanotubes; -
FIG. 6 is another SEM picture of the sample shown inFIG. 5 ; -
FIG. 7 is a TEM (Transmission Electron Microscope) picture of the sample shown inFIG. 5 ; -
FIG. 8 is another TEM picture of the sample shown inFIG. 5 ; -
FIG. 9 is the graph of a Raman spectroscopy measurement performed on the sample shown inFIG. 5 using a 514 nm laser; and -
FIG. 10 is the graph of another Raman spectroscopy measurement performed on the sample shown inFIG. 5 using a 782 nm laser. - Referring first to
FIG. 1 , there is shown anapparatus 10 for producing single-wall carbon nanotubes, which comprises aplasma torch 12 having aplasma tube 14 with a plasma-dischargingend 16, and anoven 18 disposed downstream of theplasma tube 14 in spaced relation thereto. Theplasma tube 14 is adapted to receive an inert gas for activation by electromagnetic radiation generated from a source (not shown) so as to form aprimary plasma 20. The electromagnetic radiations are propagated on theplasma tube 14 so as to maintain theprimary plasma 20. Theprimary plasma 20 comprises ionized atoms of the inert gas. Afeed conduit 22 having adischarge end 24 is arranged inside theplasma tube 14 and extends substantially coaxially thereof. Thedischarge end 24 of thefeed conduit 22 is disposed adjacent theplasma discharging end 16 of theplasma tube 14. Thefeed conduit 22 serves to direct a carbon-containing substance, such as a carbon-containing gas, and a metal catalyst towards theprimary plasma 20 so that the carbon-containing substance and the metal catalyst contact theprimary plasma 20 at the plasma-dischargingend 16 of theplasma tube 14, whereby to form asecondary plasma 26 containing atoms or molecules of carbon and the atoms of metal catalyst. The carbon-containing gas is preferably ethylene or methane. - The
oven 18 serves to condense the atoms or molecules of carbon and atoms of metal catalyst to form single-wall carbon nanotubes 28. Aheat source 30 is provided for heating theoven 18 to generate a temperature gradient permitting rapid condensation of the atoms or molecules of carbon and the atoms of metal catalyst. A heat-resistant tubular member 32 having a plasma-receivingend 34 extends through theoven 18, the plasma-receivingend 34 being disposed upstream of the plasma-dischargingend 16 of theplasma tube 14. Anelectrostatic trap 35 comprising afilter 36 and arod 37 is extending downstream ofoven 18. The deposit of single-wall carbon nanotubes 28 occurs on the heat-resistant member 32 upstream and downstream of theoven 18, as well as inside of thetrap 35. Thefilter 36 traps some of the fine particles (not shown) generated during the formation of single-wall carbon nanotubes 28 and reduces the emission of fine particles outside of the apparatus. Theelectrostatic trap 35 permits a more efficient recovery of the single-wall nanotubes produced by theapparatus 10. The apparatus further includes agas injector 38 for injecting a cooling inert gas into thetubular member 32, downstream of thesecondary plasma 26. The cooling inert gas assists in providing the temperature gradient. Another heat-resistant tubular member 40 is disposed about theplasma tube 14 and extends substantially coaxially thereof, thetubular member 40 being fixed to thetubular member 32 and supporting same. Anothergas injector 42 is provided for injecting a further inert gas between theplasma tube 14 and thetubular member 40 to prevent undesirable formation of carbon deposit adjacent the plasma-dischargingend 16 of theplasma tube 14. Theplasma tube 14 is also provided with a cooling system (not shown), which preferably uses water. Theapparatus 10 further comprises a Faraday shield (not shown) made of a conductive material, preferably aluminium. - The inert gas flows through the
plasma tube 14 along a helical path represented by thearrow 44. Similarly, the carbon-containing gas and the metal catalyst, optionally in admixture with a carrier gas, flow through thefeed conduit 22 along a helical path represented by thearrow 46. The metal catalyst which is fed through theconduit 22 can be either an organometallic complex such as ferrocene, or an inorganic metal catalyst such as iron in metallic form. Instead of feeding the metal catalyst through theconduit 22, it is possible to feed only the carbon-containing gas through theconduit 22 and to feed the metal catalyst in admixture with the inert gas through theplasma tube 14. In such a case, the metal catalyst must be an inorganic metal catalyst to prevent undesirable formation of carbon deposit adjacent the plasma-dischargingend 16 of theplasma tube 14. It is also possible to feed the inert gas and an inorganic metal catalyst through theplasma tube 14 and to feed the carbon-containing gas in admixture with an organometallic complex or an inorganic metal catalyst through theconduit 22. -
FIG. 2 illustrates anotherapparatus 48 for producing single-wall carbon nanotubes, which comprises aplasma torch 50 having aplasma tube 52 with a plasma-dischargingend 54, and anoven 56 disposed downstream of theplasma tube 52 in spaced relation thereto. Theplasma tube 52 is adapted to receive an inert gas for activation by electromagnetic radiation generated from a source (not shown) so as to form aprimary plasma 58. Afeed conduit 60 having adischarge end 62 disposed adjacent the plasma-dischargingend 54 of theplasma tube 52 is provided for directing a carbon-containing substance, such as a carbon-containing gas, and a metal catalyst towards theprimary plasma 58. The carbon-containing substance and the metal catalyst discharged from thefeed conduit 60 contact theprimary plasma 58 at the plasma-dischargingend 54 of theplasma tube 52, thereby forming asecondary plasma 64 containing atoms or molecules of carbon and the atoms of metal catalyst. The carbon-containing gas is preferably ethylene or methane. Although only onefeed conduit 60 is shown inFIG. 2 , it is possible to have a plurality of such conduits disposed symmetrically about theplasma tube 52. Theplasma tube 52 is also provided with a cooling system (not shown), which preferably uses water. Theapparatus 48 further comprises a Faraday shield (not shown) made of a conductive material, preferably aluminium. - The
oven 56 serves to condense the atoms or molecules of carbon and the atoms of metal catalyst to form single-wall carbon nanotubes 66. Aheat source 68 is provided for heating theoven 56 to generate a temperature gradient permitting rapid condensation of the atoms or molecules of carbon and the atoms of metal catalyst. A heat-resistant tubular member 70 having a plasma-receivingend 72 extends through theoven 56, the plasma-receivingend 72 being disposed upstream of the plasma-dischargingend 54 of theplasma tube 52. The apparatus further includes agas injector 74 for injecting a cooling inert gas into thetubular member 70, downstream of thesecondary plasma 64. The cooling inert gas assists in providing the temperature gradient. The deposit of single-wall carbon nanotubes 66 occurs on the heat-resistant tubular member 70 upstream and downstream of theoven 56. - The inert gas flows through the
plasma tube 52 along a helical path represented by thearrow 76. Similarly, the carbon-containing gas and the metal catalyst, optionally in admixture with a carrier gas, flow through theconduit 60 along a helical path represented by thearrow 78. The metal catalyst which is fed through theconduit 60 can be either an organometallic complex such as ferrocene, or an inorganic metal catalyst such as iron. Instead of feeding the metal catalyst through theconduit 60, it is possible to feed only the carbon-containing gas through theconduit 60 and to feed the metal catalyst in admixture with the inert gas through theplasma tube 52. In such a case, the metal catalyst must be an inorganic metal catalyst to prevent undesirable formation of carbon deposit adjacent the plasma-dischargingend 54 of theplasma tube 52. It is also possible to feed the inert gas and an inorganic metal catalyst through theplasma tube 52 and to feed the carbon-containing gas in admixture with an organometallic complex or an inorganic metal catalyst through theconduit 60. Optionally, theapparatus 48 can be provided with theelectrostatic trap 35 illustrated inFIG. 1 . - The
apparatus 48′ illustrated inFIG. 3 is similar to theapparatus 48 shown inFIG. 2 , with the exception that anadditional feed conduit 60′ is provided, thefeed conduits plasma tube 52. Theconduit 60′ has adischarge end 62′ disposed adjacent the plasma-dischargingend 54 of theplasma tube 52 and serves the same purpose as thefeed conduit 60. The carbon-containing gas and the metal catalyst, optionally in admixture with a carrier gas, flow through theconduit 60′ along a helical path represented by thearrow 78′. Although twofeed conduits FIG. 3 , it is possible to have a plurality of such conduits disposed symmetrically about theplasma tube 52. Instead of feeding the metal catalyst through theconduits conduits plasma tube 52. In such a case, the metal catalyst must be an inorganic metal catalyst to prevent undesirable formation of carbon deposit adjacent the plasma-dischargingend 54 of theplasma tube 52. It is also possible to feed the inert gas and an inorganic metal catalyst through theplasma tube 52 and to feed the carbon-containing gas in admixture with an organometallic complex or an inorganic metal catalyst through theconduits plasma tube 52 is also provided with a cooling system (not shown), which preferably uses water. Theapparatus 48′ further comprises a Faraday shield (not shown) made of a conductive material, preferably aluminium. Optionally, theapparatus 48′ can be provided with theelectrostatic trap 35 illustrated inFIG. 1 . -
FIG. 4 illustrates an injectingdevice 80 comprising areservoir 82 adapted to receive anoil 84, and areservoir 86 havingfilters 88. Thereservoir 86 is forming achamber 89 for receiving ametal catalyst 90, preferably ferrocene. Thereservoir 86 has aninlet 92 and anoutlet 94, which are in fluid flow communication withconduits 96 having aninlet 98 and anoutlet 100. - The
chamber 89 of thereservoir 86 is provided with ametal catalyst 90 and thecatalyst 90 is heated by thehot oil 84 so as to evaporate themetal catalyst 90. A mixture of a carbon-containing gas and a carrier gas (not shown) or a carbon-containing gas is injected at theinlet 98 so as to flow intoconduits 96 thereby passing through thereservoir 86 and carrying the evaporatedmetal catalyst 90 at theoutlet 100, which is connected to theapparatus filters 88 prevent solid particles of themetal catalyst 90 from being carried out into saidconduits 96. - The following non-limiting example further illustrates the invention.
- The production or synthesis of single-wall carbon nanotubes has been performed by using a plasma torch as illustrated in
FIG. 1 . The following experiment has been carried out by the inventors by providing the plasma torch with a cooling system and a Faraday shield. The cooling system prevents the plasma torch from over-heating and being damaged. The Faraday shield comprising a conductive material, preferably aluminium, prevents the electromagnetic radiations from escaping from said apparatus, thereby protecting users of the plasma torch. All the parameters related to the plasma torch are controlled by a computer using the LABVIEW® software. The parameters can also be manually controlled. The inert gas used for generating the primary plasma was argon, the metal catalyst was ferrocene, the carbon-containing gas was ethylene and the cooling gas was helium. Helium was also injected toward the plasma discharging end so as to prevent carbon deposit. The injecting device illustrated inFIG. 4 was used for injecting the ferrocene. Ferrocene was heated to 100° C. and the conduits were heated to 250° C. so as to prevent condensation of ferrocene in the conduit disposed downstream of the reservoir containing the latter metal catalyst. The argon flow varied from 1000 to 3000 sccm (standard cubic centimeters per minute). The helium flows were both stabilized at about 3250 sccm, and the ethylene flow varied between 50 and 100 sccm. The temperature of the oven was kept at 900° C. and measured with a pyrometer. The power of the source generating the electromagnetic radiations (microwaves) was 1000 W and the reflected power was about 200 W. The rod of the electrostatic trap was maintained at a tension of −1000 V. The heat-resistant tubular members were made of quartz. The plasma tube was made of brass. The feed conduit, on the other hand, was made of stainless steel. The metal catalyst (ferrocene) and the carbon-containing substance (ethylene) were used in an atomic ratio metal atoms/carbon atoms of 0.02. The software controlled the flow of the carrier gas, argon, so as to maintain the atomic ratio at such a value. The experiment was carried out at atmospheric pressure under inert conditions (helium and argon). - The synthesis of single-wall carbon nanotubes was performed for a period of 20 minutes using the above-mentioned experimental conditions. During this period of time, 500 mg of the desired single-wall carbon nanotubes were produced. The purity of the nanotubes thus obtained was about 20%.
- The crude sample obtained in the above example was characterized by SEM; the results are illustrated in
FIGS. 5 and 6 . As it is apparent fromFIGS. 5 and 6 , single-wall carbon nanotubes were produced. The sample was also characterized by TEM; the results are illustrated inFIGS. 7 and 8 . These two figures show that the growth of the single-wall nanotubes is initiated by metal catalyst particles of about 5 nm (indicated by the arrows). The rope-like structure shown inFIGS. 7 and 8 is very common for single-wall nanotubes. The purity of the sample was estimated by comparing the surface occupied by the single-wall carbon nanotubes with the amorphous carbon residues inFIGS. 7 and 8 . - In order to determine the diameter of the single-wall nanotubes produced according to the above example, two Raman spectroscopy measurements were performed. In the first experiment, a 514 nm laser was used (
FIG. 9 ) whereas, in the second experiment, a 782 nm laser was used (FIG. 10 ). InFIG. 9 , the peaks at 149.10, 171.90, 184.22, 217.75 and 284.79 cm−1 correspond to single-wall carbon nanotubes having diameters of 1.50, 1.30, 1.22, 1.03 and 0.80 nm, respectively. - In
FIG. 10 , the peaks at 127.91, 141.20, 147.59, 163.02, 181.64, 200.26, 211.96, 222.60, 230.05 and 263.57 cm−1 correspond to single-wall carbon nanotubes having diameters of 1.75, 1.60, 1.52, 1.37, 1.23, 1.12, 1.06, 1.00, 0.97 and 0.85 nm, respectively. - The above data indicate that in the method according to the example, as opposed to the methods comprising vaporization of graphite, a plurality of single-wall nanotube chiralities was obtained.
- It should be noted that by using the method and apparatus of the invention, the production of single-wall carbon nanotubes can be performed for a period of several hours since the deposit of carbon at the plasma-discharging end, leading to the premature extinction of the plasma torch, is avoided.
- While the invention has been described with particular reference to the illustrated embodiment, it will be understood that numerous modifications thereto will appear to those skilled in the art. Accordingly, the above description and accompanying drawings should be taken as illustrative of the invention and not in a limiting sense.
Claims (27)
1-36. (canceled)
37. A method for producing single-wall carbon nanotubes comprising:
feeding an inert gas through a plasma torch to form an inert gas plasma;
injecting a carbon-containing substance and a metal catalyst in said inert gas plasma, downstream of said inert gas feed, in order to form a plasma comprising atoms or molecules of carbon and atoms of said metal, wherein at least said carbon-containing substance is injected by means of a feeder disposed within said plasma torch and which extends coaxially thereof;
condensing said atoms or molecules of carbon and said atoms of said metal to form single-wall carbon nanotubes; and
recovering said single-wall carbon nanotubes.
38. The method of claim 37 , wherein said atoms or molecules of carbon and said atoms of said metal are condensed through a temperature gradient in order to permit a rapid cooling at a rate of at least 105 K/second and obtain a predetermined temperature.
39. The method of claim 38 , wherein said condensed atoms or molecules of carbon and said condensed atoms of said metal are maintained at said predetermined temperature in order to obtain single-wall carbon nanotubes.
40. The method of claim 39 , wherein said predetermined temperature is comprised between 500 and 1800° C.
41. The method of claim 40 , wherein said feeder has an outlet which is disposed inside said plasma torch and downstream of an inert gas inlet of said plasma torch through which said inert gas is fed in said plasma torch to form the inert gas plasma.
42. The method of claim 41 , wherein the outlet of said feeder is disposed adjacently to a plasma-discharging end of said plasma torch.
43. The method of claim 41 , wherein the metal catalyst comprises at least one metal selected from the group consisting of Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Y, La, Ce, Mn, Li, Pr, Nd, Tb, Dy, Ho, Er, Lu and Gd.
44. The method of claim 41 , wherein the carbon-containing substance is a C1-C4 hydrocarbon.
45. The method of claim 41 , wherein the carbon-containing substance is a carbon-containing solid.
46. The method of claim 41 , further comprising injecting a cooling inert gas downstream of the plasma comprising said atoms or molecules of carbon and said atoms of said metal.
47. A method for producing single-wall carbon nanotubes comprising:
feeding an inert gas through a plasma torch to form an inert gas plasma;
injecting a mixture comprising a carbon-containing substance and a metal catalyst in said inert gas plasma, downstream of said inert gas feed, in order to form a plasma comprising atoms or molecules of carbon and atoms of said metal, said mixture being injected by means of a feeder disposed within said plasma torch and which extends coaxially thereof;
condensing said atoms or molecules of carbon and said atoms of said metal through a temperature gradient in order to permit a rapid cooling at a rate of at least 105 K/second;
maintaining said condensed atoms or molecules of carbon and said condensed atoms of said metal at a predetermined temperature in order to obtain single-wall carbon nanotubes; and
recovering said single-wall carbon nanotubes.
48. The method of claim 47 , wherein said predetermined temperature is comprised between 500 and 1800° C.
49. The method of claim 47 , wherein said predetermined temperature is comprised between 900 and 1800° C.
50. The method of claim 47 , wherein said predetermined temperature is comprised between 800 and 1300° C.
51. The method of claim 49 , wherein said feeder has an outlet which is disposed inside said plasma torch and downstream of the inert gas inlet of said plasma torch through which said inert gas is fed in said plasma torch to form the inert gas plasma.
52. The method of claim 51 , wherein the outlet of said feeder is disposed adjacently to a plasma-discharging end of said plasma torch.
53. The method of claim 51 , wherein the metal catalyst comprises at least one metal selected from the group consisting of Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Y, La, Ce, Mn, Li, Pr, Nd, Tb, Dy, Ho, Er, Lu and Gd.
54. The method of claim 49 , wherein the metal catalyst comprises at least one metal selected from the group consisting of Fe, Co, and Ni.
55. The method of claim 49 , wherein the metal catalyst and the carbon-containing substance are used in an atomic ratio metal atoms/carbon atoms of about 0.01 to about 0.06.
56. The method of claim 49 , wherein the carbon-containing substance is a C1-C4 hydrocarbon.
57. The method of claim 49 , wherein the carbon-containing substance is a carbon-containing solid.
58. The method of claim 49 , wherein said produced single-wall carbon nanotubes contain essentially no multi-wall carbon nanotubes.
59. The method of claim 49 , wherein said produced single-wall carbon nanotubes contain essentially no fullerenes.
60. An apparatus for producing single-wall carbon nanotubes, which comprises:
a plasma torch having a plasma tube for receiving an inert gas so as to form an inert gas plasma, said plasma tube having a plasma-discharging end;
a feeder for injecting a carbon-containing substance and a metal catalyst into said inert gas plasma in order to form a plasma comprising atoms or molecules of carbon and atoms of said metal, said feeder being disposed within said plasma tube, extending coaxially thereof, and being adapted to inject said carbon-containing substance and said metal catalyst into said inert gas plasma downstream of an inert gas inlet of said plasma tube through which said inert gas is fed; and
a condenser for condensing said atoms or molecules of carbon and said atoms of said metal through a temperature gradient in order to permit a rapid cooling at a rate of at least 105 K/second, and maintaining said condensed atoms or molecules of carbon and said condensed atoms of said metal at a predetermined temperature in order to obtain single-wall carbon nanotubes.
61. The apparatus of claim 60 , wherein said feeder has an outlet which is disposed inside said plasma tube and downstream of said inert gas inlet of said plasma tube.
62. The apparatus of claim 61 , wherein the outlet of said feeder is disposed adjacently to said plasma-discharging end.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/117,542 US20080226536A1 (en) | 2002-05-09 | 2008-05-08 | Method and apparatus for producing single-wall carbon nanotubes |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA002385802A CA2385802C (en) | 2002-05-09 | 2002-05-09 | Method and apparatus for producing single-wall carbon nanotubes |
CA2385802 | 2002-05-09 | ||
US10/434,181 US7591989B2 (en) | 2002-05-09 | 2003-05-09 | Method and apparatus for producing single-wall carbon nanotubes |
US12/117,542 US20080226536A1 (en) | 2002-05-09 | 2008-05-08 | Method and apparatus for producing single-wall carbon nanotubes |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/434,181 Continuation US7591989B2 (en) | 2002-05-09 | 2003-05-09 | Method and apparatus for producing single-wall carbon nanotubes |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080226536A1 true US20080226536A1 (en) | 2008-09-18 |
Family
ID=29275940
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/434,181 Active 2025-07-18 US7591989B2 (en) | 2002-05-09 | 2003-05-09 | Method and apparatus for producing single-wall carbon nanotubes |
US11/565,740 Active 2026-10-15 US8071906B2 (en) | 2002-05-09 | 2006-12-01 | Apparatus for producing single-wall carbon nanotubes |
US11/734,443 Abandoned US20080124482A1 (en) | 2002-05-09 | 2007-04-12 | Method and apparatus for producing single-wall carbon nanotubes |
US12/117,542 Abandoned US20080226536A1 (en) | 2002-05-09 | 2008-05-08 | Method and apparatus for producing single-wall carbon nanotubes |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/434,181 Active 2025-07-18 US7591989B2 (en) | 2002-05-09 | 2003-05-09 | Method and apparatus for producing single-wall carbon nanotubes |
US11/565,740 Active 2026-10-15 US8071906B2 (en) | 2002-05-09 | 2006-12-01 | Apparatus for producing single-wall carbon nanotubes |
US11/734,443 Abandoned US20080124482A1 (en) | 2002-05-09 | 2007-04-12 | Method and apparatus for producing single-wall carbon nanotubes |
Country Status (4)
Country | Link |
---|---|
US (4) | US7591989B2 (en) |
AU (1) | AU2003223807A1 (en) |
CA (2) | CA2584508A1 (en) |
WO (1) | WO2003095362A2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060127299A1 (en) * | 2002-11-15 | 2006-06-15 | Mcgill University | Method for producing carbon nanotubes using a dc non-transferred thermal plasma torch |
WO2013109545A1 (en) * | 2012-01-17 | 2013-07-25 | Synos Technology, Inc. | Deposition of graphene or conjugated carbons using radical reactor |
US9957168B2 (en) | 2014-07-09 | 2018-05-01 | Honda Motor Co., Ltd. | Method for synthesis of ruthenium nanoparticles with face-centered cubic and hexagonal close-packed structures |
US9969006B2 (en) | 2014-07-09 | 2018-05-15 | Honda Motor Co., Ltd. | Method for production of indium nanoparticles |
Families Citing this family (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2584508A1 (en) | 2002-05-09 | 2003-11-09 | Institut National De La Recherche Scientifique | Method for producing single-wall carbon nanotubes |
US7754283B2 (en) * | 2003-12-24 | 2010-07-13 | Nanometrix Inc. | Continuous production of carbon nanotubes |
US8075863B2 (en) | 2004-05-26 | 2011-12-13 | Massachusetts Institute Of Technology | Methods and devices for growth and/or assembly of nanostructures |
US7838165B2 (en) * | 2004-07-02 | 2010-11-23 | Kabushiki Kaisha Toshiba | Carbon fiber synthesizing catalyst and method of making thereof |
CA2500766A1 (en) | 2005-03-14 | 2006-09-14 | National Research Council Of Canada | Method and apparatus for the continuous production and functionalization of single-walled carbon nanotubes using a high frequency induction plasma torch |
JP5232637B2 (en) * | 2005-03-25 | 2013-07-10 | インスティトゥーツ ナショナル デ ラ レシェルシェ サイエンティフィック | Method and apparatus for depositing nanometer filament structures |
CA2772597A1 (en) * | 2005-03-25 | 2006-09-28 | Institut National De La Recherche Scientifique | Methods and apparatuses for purifying carbon filamentary structures |
US7833505B2 (en) * | 2005-04-13 | 2010-11-16 | Continental Carbon Company | Methods and systems for synthesis on nanoscale materials |
KR100684933B1 (en) | 2005-05-09 | 2007-02-20 | 재단법인서울대학교산학협력재단 | Thermal Plasma Reactor and Method for Producing Conductive Carbon Nanomaterial |
EP2365117B1 (en) | 2005-07-28 | 2014-12-31 | Nanocomp Technologies, Inc. | Apparatus and method for formation and collection of nanofibrous non-woven sheet |
US9102525B2 (en) * | 2005-08-29 | 2015-08-11 | University Of The Witwatersrand | Process for producing carbon nanotubes |
US9061913B2 (en) | 2007-06-15 | 2015-06-23 | Nanocomp Technologies, Inc. | Injector apparatus and methods for production of nanostructures |
WO2013066445A1 (en) * | 2011-07-28 | 2013-05-10 | Nanocomp Technologies, Inc. | Systems and methods for production of nanostructures using a plasma generator |
AU2008283846A1 (en) | 2007-08-07 | 2009-02-12 | Nanocomp Technologies, Inc. | Electrically and thermally non-metallic conductive nanostructure-based adapters |
WO2009137725A1 (en) | 2008-05-07 | 2009-11-12 | Nanocomp Technologies, Inc. | Nanostructure-based heating devices and method of use |
EP2274464A4 (en) | 2008-05-07 | 2011-10-12 | Nanocomp Technologies Inc | Nanostructure composite sheets and methods of use |
KR101048822B1 (en) * | 2008-11-26 | 2011-07-12 | 세메스 주식회사 | Carbon Nanotube Synthesis Device |
DE102008060560A1 (en) * | 2008-12-04 | 2010-06-10 | Linde Aktiengesellschaft | Apparatus and method for producing carbon nanotubes (CNTs) |
US8354593B2 (en) | 2009-07-10 | 2013-01-15 | Nanocomp Technologies, Inc. | Hybrid conductors and method of making same |
KR101158188B1 (en) * | 2010-02-01 | 2012-06-19 | 삼성전기주식회사 | Apparatus for synthesizing nano particles, and method for synthesizing the nano particles with the same |
WO2011109421A1 (en) * | 2010-03-01 | 2011-09-09 | Auburn University | Novel nanocomposite for sustainability of infrastructure |
WO2011119494A1 (en) * | 2010-03-22 | 2011-09-29 | The Regents Of The University Of California | Method and device to synthesize boron nitride nanotubes and related nanoparticles |
KR101064929B1 (en) * | 2010-12-01 | 2011-09-15 | (주)이오렉스 | Ionization Water Treatment System Using Carbon Nanotubes |
CN102079507B (en) | 2010-12-31 | 2013-06-05 | 清华大学 | Method for forming defects on surface of carbon nano pipe |
EP2661369B1 (en) | 2011-01-04 | 2019-04-10 | Nanocomp Technologies, Inc. | Thermal insulators based on nanotubes, their use and method for thermal insulation. |
TWI426046B (en) * | 2011-01-05 | 2014-02-11 | Hon Hai Prec Ind Co Ltd | Method for forming defect on carbon nanotube |
US20130192979A1 (en) * | 2011-01-17 | 2013-08-01 | Greenville Envirotech Co Ltd | Apparatus for plasmatizing solid-fuel combustion additive and method for using the same |
RU2480398C1 (en) * | 2011-09-29 | 2013-04-27 | Учреждение Российской академии наук Институт прикладной механики (ИПРИМ РАН) | Method of producing carbon nanotubes and apparatus for realising said method |
US8486363B2 (en) | 2011-09-30 | 2013-07-16 | Ppg Industries Ohio, Inc. | Production of graphenic carbon particles utilizing hydrocarbon precursor materials |
KR20150030671A (en) | 2012-06-22 | 2015-03-20 | 고쿠리츠다이가쿠호징 도쿄다이가쿠 | Carbon-containing metal catalyst particles for carbon nanotube synthesis and method of producing the same, catalyst carrier support, and method of producing carbon nanotubes |
AU2013290093B2 (en) * | 2012-07-13 | 2017-09-21 | Peter Morrisroe | Torches and methods of using them |
US9718691B2 (en) | 2013-06-17 | 2017-08-01 | Nanocomp Technologies, Inc. | Exfoliating-dispersing agents for nanotubes, bundles and fibers |
CL2013003340A1 (en) * | 2013-11-21 | 2014-04-04 | Univ Concepcion | Electric arc system in a controlled atmosphere, which includes a feed section, a discharge and reaction section, followed by a surface charge acceleration system, which leads to an accumulation and relaxation section; and continuous process for the production of nanometric material in said system. |
GB201410639D0 (en) * | 2014-06-13 | 2014-07-30 | Fgv Cambridge Nanosystems Ltd | Apparatus and method for plasma synthesis of graphitic products including graphene |
US11434581B2 (en) | 2015-02-03 | 2022-09-06 | Nanocomp Technologies, Inc. | Carbon nanotube structures and methods for production thereof |
GB2545643B (en) * | 2015-12-15 | 2022-06-15 | Levidian Nanosystems Ltd | Apparatus and method for plasma synthesis of carbon nanotubes |
JP6512484B2 (en) * | 2016-03-25 | 2019-05-15 | パナソニックIpマネジメント株式会社 | Microparticle production apparatus and method |
US10581082B2 (en) | 2016-11-15 | 2020-03-03 | Nanocomp Technologies, Inc. | Systems and methods for making structures defined by CNT pulp networks |
US11279836B2 (en) | 2017-01-09 | 2022-03-22 | Nanocomp Technologies, Inc. | Intumescent nanostructured materials and methods of manufacturing same |
CN107032325B (en) * | 2017-04-10 | 2019-05-21 | 铱格斯曼航空科技集团有限公司 | A kind of carbon nano tube composite wave-absorbing material and preparation method thereof |
US11358869B2 (en) | 2017-08-08 | 2022-06-14 | H Quest Vanguard, Inc. | Methods and systems for microwave assisted production of graphitic materials |
US11358113B2 (en) * | 2017-08-08 | 2022-06-14 | H Quest Vanguard, Inc. | Non-thermal micro-plasma conversion of hydrocarbons |
CN111763926A (en) * | 2020-07-02 | 2020-10-13 | 成都蓝玛尚科技有限公司 | Material synthesis system based on high-temperature normal-pressure microwave plasma |
CN114229830A (en) * | 2020-09-09 | 2022-03-25 | 哈尔滨金纳科技有限公司 | Preparation method of single-walled carbon nanotube powder |
US12226765B2 (en) | 2021-05-17 | 2025-02-18 | H Quest Vanguard, Inc. | Microwave assisted fluidized bed reactor |
US12230419B1 (en) | 2021-07-09 | 2025-02-18 | Hrl Laboratories, Llc | Carbon nanotube ultraconductor |
CN113860287B (en) * | 2021-09-22 | 2022-12-27 | 江西铜业技术研究院有限公司 | System and method for preparing single-walled carbon nanotube by plasma arc method |
KR102661308B1 (en) * | 2021-10-14 | 2024-04-26 | 제주대학교 산학협력단 | Method for manufacturing metal-CNT nanocomposite and manufacturing method for water electrolysis catalyst electrode comprising the same |
TWI801058B (en) * | 2021-12-23 | 2023-05-01 | 明遠精密科技股份有限公司 | A hybrid plasma source and operation method thereof |
CN115650210B (en) * | 2022-09-26 | 2024-03-26 | 江门市昊鑫新能源有限公司 | Preparation method and application of single/double-wall carbon nano tube |
Citations (82)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4490229A (en) * | 1984-07-09 | 1984-12-25 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Deposition of diamondlike carbon films |
US4518575A (en) * | 1982-01-28 | 1985-05-21 | Phillips Petroleum Company | Catalytic fibrous carbon |
US4572813A (en) * | 1983-09-06 | 1986-02-25 | Nikkiso Co., Ltd. | Process for preparing fine carbon fibers in a gaseous phase reaction |
US4582254A (en) * | 1984-06-06 | 1986-04-15 | Eutectic Corporation | Device for the controlled multiple feeding of powder material |
US4640830A (en) * | 1984-09-13 | 1987-02-03 | Nikkiso Co., Ltd. | Process for preparing fine fibers |
US4749557A (en) * | 1984-12-04 | 1988-06-07 | General Motors Corporation | Graphite fiber growth employing nuclei derived from iron pentacarbonyl |
US4767608A (en) * | 1986-10-23 | 1988-08-30 | National Institute For Research In Inorganic Materials | Method for synthesizing diamond by using plasma |
US4816289A (en) * | 1984-04-25 | 1989-03-28 | Asahi Kasei Kogyo Kabushiki Kaisha | Process for production of a carbon filament |
US4876078A (en) * | 1984-04-20 | 1989-10-24 | Nikkiso Co., Ltd. | Process for preparing carbon fibers in gas phase growth |
US5102647A (en) * | 1988-04-12 | 1992-04-07 | Showa Denko K.K. | Method of producing vapor growth carbon fibers |
US5147998A (en) * | 1991-05-29 | 1992-09-15 | Noranda Inc. | High enthalpy plasma torch |
US5207999A (en) * | 1991-08-13 | 1993-05-04 | Cameco Corporation | Generation of fluorine via thermal plasma decomposition of metal fluoride |
US5217747A (en) * | 1990-02-26 | 1993-06-08 | Noranda Inc. | Reactive spray forming process |
US5227038A (en) * | 1991-10-04 | 1993-07-13 | William Marsh Rice University | Electric arc process for making fullerenes |
US5300203A (en) * | 1991-11-27 | 1994-04-05 | William Marsh Rice University | Process for making fullerenes by the laser evaporation of carbon |
US5346683A (en) * | 1993-03-26 | 1994-09-13 | Gas Research Institute | Uncapped and thinned carbon nanotubes and process |
US5395496A (en) * | 1992-04-07 | 1995-03-07 | Pegasus Refractory Materials, Inc. | Process for the synthesis of fullerenes |
US5424054A (en) * | 1993-05-21 | 1995-06-13 | International Business Machines Corporation | Carbon fibers and method for their production |
US5481080A (en) * | 1991-12-12 | 1996-01-02 | Kvaerner Engineering A.S. | Plasma torch with a lead-in tube |
US5482601A (en) * | 1994-01-28 | 1996-01-09 | Director-General Of Agency Of Industrial Science And Technology | Method and device for the production of carbon nanotubes |
US5486674A (en) * | 1991-12-12 | 1996-01-23 | Kvaerner Engineering As | Plasma torch device for chemical processes |
US5493094A (en) * | 1993-01-14 | 1996-02-20 | Simmons; Walter N. | Preparation of fullerenes and apparatus therefor |
US5510098A (en) * | 1994-01-03 | 1996-04-23 | University Of Central Florida | CVD method of producing and doping fullerenes |
US5527518A (en) * | 1992-04-07 | 1996-06-18 | Kvaerner Engineering A.S | Production of carbon black |
US5556517A (en) * | 1993-06-28 | 1996-09-17 | William Marsh Rice University | Solar process for making fullerenes |
US5587141A (en) * | 1994-02-25 | 1996-12-24 | Director-General Of Industrial Science And Technology | Method and device for the production of fullerenes |
US5591312A (en) * | 1992-10-09 | 1997-01-07 | William Marsh Rice University | Process for making fullerene fibers |
US5593740A (en) * | 1995-01-17 | 1997-01-14 | Synmatix Corporation | Method and apparatus for making carbon-encapsulated ultrafine metal particles |
US5611896A (en) * | 1993-10-14 | 1997-03-18 | Atomic Energy Corporation Of S. Africa Limited | Production of fluorocarbon compounds |
US5641466A (en) * | 1993-06-03 | 1997-06-24 | Nec Corporation | Method of purifying carbon nanotubes |
US5684218A (en) * | 1995-03-31 | 1997-11-04 | E. I. Du Pont De Nemours And Company | Preparation of tetrafluoroethylene |
US5744657A (en) * | 1994-12-22 | 1998-04-28 | E. I. Du Pont De Nemours And Company | Process for the preparation of perfluorocarbons |
US5753088A (en) * | 1997-02-18 | 1998-05-19 | General Motors Corporation | Method for making carbon nanotubes |
US5773834A (en) * | 1996-02-13 | 1998-06-30 | Director-General Of Agency Of Industrial Science And Technology | Method of forming carbon nanotubes on a carbonaceous body, composite material obtained thereby and electron beam source element using same |
US5788738A (en) * | 1996-09-03 | 1998-08-04 | Nanomaterials Research Corporation | Method of producing nanoscale powders by quenching of vapors |
US5851507A (en) * | 1996-09-03 | 1998-12-22 | Nanomaterials Research Corporation | Integrated thermal process for the continuous synthesis of nanoscale powders |
US5876684A (en) * | 1992-08-14 | 1999-03-02 | Materials And Electrochemical Research (Mer) Corporation | Methods and apparati for producing fullerenes |
US5916642A (en) * | 1995-11-22 | 1999-06-29 | Northwestern University | Method of encapsulating a material in a carbon nanotube |
US5985232A (en) * | 1994-03-30 | 1999-11-16 | Massachusetts Institute Of Technology | Production of fullerenic nanostructures in flames |
US5989648A (en) * | 1997-05-06 | 1999-11-23 | The Penn State Research Foundation | Plasma generation of supported metal catalysts |
US5997837A (en) * | 1991-12-12 | 1999-12-07 | Kvaerner Technology And Research Ltd. | Method for decomposition of hydrocarbons |
US6063243A (en) * | 1995-02-14 | 2000-05-16 | The Regents Of The Univeristy Of California | Method for making nanotubes and nanoparticles |
US6068827A (en) * | 1992-04-07 | 2000-05-30 | Kvaerner Engineering As | Decomposition of hydrocarbon to carbon black |
US6083469A (en) * | 1998-04-10 | 2000-07-04 | Leftin; Harry Paul | Pyrolysis process for making fullerenes |
US6099696A (en) * | 1993-02-05 | 2000-08-08 | Armines | Conversion of carbon or carbon-containing compounds in a plasma |
US6149775A (en) * | 1998-03-16 | 2000-11-21 | Futaba Denshi Kogyo Kabushiki Kaisha | Method for preparing single layer carbon nano-tube |
US6156256A (en) * | 1998-05-13 | 2000-12-05 | Applied Sciences, Inc. | Plasma catalysis of carbon nanofibers |
US6171451B1 (en) * | 1997-01-13 | 2001-01-09 | Daimlerchrysler Aerospace | Method and apparatus for producing complex carbon molecules |
US6183714B1 (en) * | 1995-09-08 | 2001-02-06 | Rice University | Method of making ropes of single-wall carbon nanotubes |
US6187206B1 (en) * | 1995-12-20 | 2001-02-13 | Alcan International | Thermal plasma reactor and wastewater treatment method |
US6221330B1 (en) * | 1997-08-04 | 2001-04-24 | Hyperion Catalysis International Inc. | Process for producing single wall nanotubes using unsupported metal catalysts |
US6227038B1 (en) * | 1999-04-12 | 2001-05-08 | General Motors Corporation | Radiotracer method for measuring leakage of engine coolant |
US6254940B1 (en) * | 1996-07-11 | 2001-07-03 | University Of Cincinnati | Electrically assisted synthesis of particles and film with precisely controlled characteristic |
US6261532B1 (en) * | 1998-03-25 | 2001-07-17 | Research Institute Of Innovative Technology For The Earth | Method of producing carbon |
US6261484B1 (en) * | 2000-08-11 | 2001-07-17 | The Regents Of The University Of California | Method for producing ceramic particles and agglomerates |
US20010009693A1 (en) * | 2000-01-26 | 2001-07-26 | Lee Cheol-Jin | Thermal chemical vapor deposition apparatus and method of synthesizing carbon nanotubes using the same |
US6303094B1 (en) * | 1997-03-21 | 2001-10-16 | Japan Fine Ceramics Center | Process for producing carbon nanotubes, process for producing carbon nanotube film, and structure provided with carbon nanotube film |
US20010031900A1 (en) * | 1998-09-18 | 2001-10-18 | Margrave John L. | Chemical derivatization of single-wall carbon nanotubes to facilitate solvation thereof; and use of derivatized nanotubes to form catalyst-containing seed materials for use in making carbon fibers |
US20010050219A1 (en) * | 2000-05-31 | 2001-12-13 | Fuji Xerox Co., Ltd. | Method of manufacturing carbon nanotubes and/or fullerenes, and manufacturing apparatus for the same |
US6331209B1 (en) * | 1999-04-21 | 2001-12-18 | Jin Jang | Method of forming carbon nanotubes |
US6331690B1 (en) * | 1997-12-22 | 2001-12-18 | Nec Corporation | Process for producing single-wall carbon nanotubes uniform in diameter and laser ablation apparatus used therein |
US6333016B1 (en) * | 1999-06-02 | 2001-12-25 | The Board Of Regents Of The University Of Oklahoma | Method of producing carbon nanotubes |
US20020000402A1 (en) * | 2000-06-30 | 2002-01-03 | Dillon Jack R. | Dialysis wall station |
US20020018745A1 (en) * | 2000-04-10 | 2002-02-14 | Herman Frederick James | Net shape manufacturing using carbon nanotubes |
US6350488B1 (en) * | 1999-06-11 | 2002-02-26 | Iljin Nanotech Co., Ltd. | Mass synthesis method of high purity carbon nanotubes vertically aligned over large-size substrate using thermal chemical vapor deposition |
US20020031465A1 (en) * | 1998-07-21 | 2002-03-14 | Yahachi Saito | Production of carbon nanotube |
US6358375B1 (en) * | 1997-06-06 | 2002-03-19 | Association Pour La Recherche Et Le Developpement Des Methods Et Processus Industries, Of Paris | Method and device for producing fullerenes |
US6361861B2 (en) * | 1999-06-14 | 2002-03-26 | Battelle Memorial Institute | Carbon nanotubes on a substrate |
US20020047110A1 (en) * | 2000-10-23 | 2002-04-25 | Nat'l. Inst. Of Adv. Industrial Science And Tech. | Flame synthesized aluminum nitride filler-powder |
US20020048632A1 (en) * | 2000-08-24 | 2002-04-25 | Smalley Richard E. | Polymer-wrapped single wall carbon nanotubes |
US20020048832A1 (en) * | 2000-09-11 | 2002-04-25 | Hannstar Display Corp. | Method for preventing corrosion of metal lines |
US6382526B1 (en) * | 1998-10-01 | 2002-05-07 | The University Of Akron | Process and apparatus for the production of nanofibers |
US6395197B1 (en) * | 1999-12-21 | 2002-05-28 | Bechtel Bwxt Idaho Llc | Hydrogen and elemental carbon production from natural gas and other hydrocarbons |
US20020085968A1 (en) * | 1997-03-07 | 2002-07-04 | William Marsh Rice University | Method for producing self-assembled objects comprising single-wall carbon nanotubes and compositions thereof |
US20020084410A1 (en) * | 1996-08-08 | 2002-07-04 | William Marsh Rice University | Macroscopically manipulable nanoscale devices made from nanotube assemblies |
US20020090468A1 (en) * | 2000-10-30 | 2002-07-11 | Honda Giken Kogyo Kabushiki Kaisha | Method of manufacturing carbon nanotube |
US6426134B1 (en) * | 1998-06-30 | 2002-07-30 | E. I. Du Pont De Nemours And Company | Single-wall carbon nanotube-polymer composites |
US20020102193A1 (en) * | 2001-01-31 | 2002-08-01 | William Marsh Rice University | Process utilizing two zones for making single-wall carbon nanotubes |
US20020102203A1 (en) * | 2001-01-31 | 2002-08-01 | William Marsh Rice University | Process utilizing pre-formed cluster catalysts for making single-wall carbon nanotubes |
US20020102194A1 (en) * | 2001-01-31 | 2002-08-01 | William Marsh Rice University | Process utilizing seeds for making single-wall carbon nanotubes |
US20020110513A1 (en) * | 1998-09-18 | 2002-08-15 | Margrave John L. | Chemical derivatization of single-wall carbon nanotubes to facilitate solvation thereof; and use of derivatized nanotubes to form catalyst-containing seed materials for use in making carbon fibers |
US6444864B1 (en) * | 1999-06-07 | 2002-09-03 | Drexel University | Thermal plasma process for recovering monomers and high value carbons from polymeric materials |
Family Cites Families (84)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2001A (en) * | 1841-03-12 | Sawmill | ||
US5200595A (en) | 1991-04-12 | 1993-04-06 | Universite De Sherbrooke | High performance induction plasma torch with a water-cooled ceramic confinement tube |
JP2644196B2 (en) * | 1994-09-10 | 1997-08-25 | 東洋エクステリア株式会社 | Building panel |
US5707419A (en) * | 1995-08-15 | 1998-01-13 | Pegasus Refractory Materials, Inc. | Method of production of metal and ceramic powders by plasma atomization |
US7338915B1 (en) | 1995-09-08 | 2008-03-04 | Rice University | Ropes of single-wall carbon nanotubes and compositions thereof |
CA2231367C (en) | 1995-09-08 | 2007-08-14 | Richard E. Smalley | Ropes of single-wall carbon nanotubes |
JP2737736B2 (en) * | 1996-01-12 | 1998-04-08 | 日本電気株式会社 | Method for producing carbon single-walled nanotube |
ATE299474T1 (en) | 1997-03-07 | 2005-07-15 | Univ Rice William M | CARBON FIBERS FROM SINGLE-WALLED CARBON NANOTUBE |
US6692717B1 (en) | 1999-09-17 | 2004-02-17 | William Marsh Rice University | Catalytic growth of single-wall carbon nanotubes from metal particles |
AU6148499A (en) | 1998-09-18 | 2000-04-10 | William Marsh Rice University | Catalytic growth of single-wall carbon nanotubes from metal particles |
US7252812B2 (en) | 1998-09-18 | 2007-08-07 | Mary Lou Margrave, legal representative | High-yield method of endohedrally encapsulating species inside fluorinated fullerene nanocages |
JP4619539B2 (en) | 1998-11-03 | 2011-01-26 | ウィリアム・マーシュ・ライス・ユニバーシティ | Crystal nucleation and growth of single-walled carbon nanotubes from high temperature carbon monoxide gas |
US6518218B1 (en) | 1999-03-31 | 2003-02-11 | General Electric Company | Catalyst system for producing carbon fibrils |
KR100376197B1 (en) | 1999-06-15 | 2003-03-15 | 일진나노텍 주식회사 | Low temperature synthesis of carbon nanotubes using metal catalyst layer for decompsing carbon source gas |
FR2795906B1 (en) | 1999-07-01 | 2001-08-17 | Commissariat Energie Atomique | PROCESS AND DEVICE FOR PLASMA DEPOSIT AT THE ELECTRONIC CYCLOTRON RESONANCE OF LAYERS OF CARBON NONOFIBRES TISSUES AND LAYERS OF TISSUES THUS OBTAINED |
US6495114B1 (en) | 1999-07-22 | 2002-12-17 | Fina Research, S.A. | Production of silica particles |
EP1072693A1 (en) | 1999-07-27 | 2001-01-31 | Iljin Nanotech Co., Ltd. | Chemical vapor deposition apparatus and method of synthesizing carbon nanotubes using the apparatus |
AU2248301A (en) | 1999-10-27 | 2001-05-08 | William Marsh Rice University | Macroscopic ordered assembly of carbon nanotubes |
EP1129990A1 (en) | 2000-02-25 | 2001-09-05 | Lucent Technologies Inc. | Process for controlled growth of carbon nanotubes |
AU2001258109A1 (en) | 2000-05-11 | 2001-11-20 | Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence | Process for preparing carbon nanotubes |
US6413487B1 (en) | 2000-06-02 | 2002-07-02 | The Board Of Regents Of The University Of Oklahoma | Method and apparatus for producing carbon nanotubes |
US6919064B2 (en) | 2000-06-02 | 2005-07-19 | The Board Of Regents Of The University Of Oklahoma | Process and apparatus for producing single-walled carbon nanotubes |
JP4896345B2 (en) | 2000-06-16 | 2012-03-14 | ザ ペン ステイト リサーチ ファンデーション | Method and apparatus for producing carbonaceous articles |
EP1186572A1 (en) | 2000-09-06 | 2002-03-13 | Facultés Universitaires Notre-Dame de la Paix | Short carbon nanotubes and method for the production thereof |
DE60024084T2 (en) | 2000-09-19 | 2006-08-03 | Timcal Sa | Apparatus and method for converting a carbonaceous raw material into carbon having a defined structure |
ATE479630T1 (en) | 2000-10-06 | 2010-09-15 | Mat & Electrochem Res Corp | DOUBLE-WALLED CARBON NANOTUBE AND METHOD FOR PRODUCTION, AND APPLICATIONS |
US6855301B1 (en) | 2000-10-20 | 2005-02-15 | The Ohio State University | Synthesis method for producing carbon clusters and structured carbon clusters produced thereby |
FR2815954B1 (en) | 2000-10-27 | 2003-02-21 | Commissariat Energie Atomique | PROCESS AND DEVICE FOR DEPOSIT BY PLASMA AT THE ELECTRONIC CYCLOTRON RESONANCE OF MONOPAROIS CARBON NANOTUBES AND NANOTUBES THUS OBTAINED |
US6752977B2 (en) | 2001-02-12 | 2004-06-22 | William Marsh Rice University | Process for purifying single-wall carbon nanotubes and compositions thereof |
US7090819B2 (en) | 2001-02-12 | 2006-08-15 | William Marsh Rice University | Gas-phase process for purifying single-wall carbon nanotubes and compositions thereof |
US6613198B2 (en) * | 2001-04-18 | 2003-09-02 | James F. Garvey | Pulsed arc molecular beam process |
EP1373137B1 (en) | 2001-03-26 | 2009-05-06 | National Research Council Of Canada | Process and apparatus for synthesis of nanotubes |
AUPR421701A0 (en) | 2001-04-04 | 2001-05-17 | Commonwealth Scientific And Industrial Research Organisation | Process and apparatus for the production of carbon nanotubes |
US20020172767A1 (en) | 2001-04-05 | 2002-11-21 | Leonid Grigorian | Chemical vapor deposition growth of single-wall carbon nanotubes |
US20020155059A1 (en) | 2001-04-24 | 2002-10-24 | Tekna Plasma Systems Inc. | Plasma synthesis of titanium dioxide nanopowder and powder doping and surface modification process |
US6994837B2 (en) | 2001-04-24 | 2006-02-07 | Tekna Plasma Systems, Inc. | Plasma synthesis of metal oxide nanopowder and apparatus therefor |
GB0111875D0 (en) | 2001-05-15 | 2001-07-04 | Univ Cambridge Tech | Synthesis of nanoscaled carbon materials |
US20030113714A1 (en) | 2001-09-28 | 2003-06-19 | Belcher Angela M. | Biological control of nanoparticles |
WO2002100154A2 (en) | 2001-06-06 | 2002-12-19 | Reytech Corporation | Functionalized fullerenes, their method of manufacture and uses thereof |
DE60203508T3 (en) | 2001-07-03 | 2010-09-02 | Facultés Universitaires Notre-Dame de la Paix | CATALYST CARRIERS AND CARBON NANOTUBES MANUFACTURED THEREFROM |
US7125502B2 (en) | 2001-07-06 | 2006-10-24 | William Marsh Rice University | Fibers of aligned single-wall carbon nanotubes and process for making the same |
US7288238B2 (en) | 2001-07-06 | 2007-10-30 | William Marsh Rice University | Single-wall carbon nanotube alewives, process for making, and compositions thereof |
CN1093507C (en) * | 2001-07-22 | 2002-10-30 | 太原理工大学 | Preparation of carbon nanometer pipe material and its equipment |
WO2003011755A1 (en) | 2001-07-27 | 2003-02-13 | University Of Surrey | Production of carbon nanotubes |
EP1421032B1 (en) | 2001-08-29 | 2008-11-19 | Georgia Tech Research Corporation | Compositions comprising rigid-rod polymers and carbon nanotubes and process for making the same |
US6887291B2 (en) | 2001-08-30 | 2005-05-03 | Tda Research, Inc. | Filter devices and methods for carbon nanomaterial collection |
US6758025B2 (en) * | 2001-09-19 | 2004-07-06 | Gerhard Haberler | Method of forming a swimming pool construction |
JP3725063B2 (en) | 2001-09-25 | 2005-12-07 | 株式会社国際基盤材料研究所 | Method for producing carbon nanotube |
KR20030028296A (en) * | 2001-09-28 | 2003-04-08 | 학교법인 한양학원 | Plasma enhanced chemical vapor deposition apparatus and method of producing a cabon nanotube using the same |
RU2295206C9 (en) | 2001-10-05 | 2007-10-27 | Текна Плазма Системз,Инк.Канада | Multi-coil induction plasma burner with solid-bodied power source |
WO2003038163A1 (en) | 2001-10-30 | 2003-05-08 | Materials And Electrochemical Research (Mer) Corporation | Rf plasma method for production of single walled carbon nanotubes |
US7138100B2 (en) | 2001-11-21 | 2006-11-21 | William Marsh Rice Univesity | Process for making single-wall carbon nanotubes utilizing refractory particles |
GB0201600D0 (en) * | 2002-01-24 | 2002-03-13 | Univ Cambridge Tech | Large- scale plasma synthesis of hollow nanostructures |
US20040013598A1 (en) | 2002-02-22 | 2004-01-22 | Mcelrath Kenneth O. | Molecular-level thermal management materials comprising single-wall carbon nanotubes |
US20030224114A1 (en) | 2002-02-27 | 2003-12-04 | Yuemei Yang | Method for making an improved aerogel catalyst for making single-wall carbon nanotubes by chemical vapor deposition |
JP4208722B2 (en) | 2002-03-04 | 2009-01-14 | ウィリアム・マーシュ・ライス・ユニバーシティ | Method for separating single-walled carbon nanotubes |
WO2003078317A1 (en) | 2002-03-14 | 2003-09-25 | Carbon Nanotechnologies, Inc. | Composite materials comprising polar polyers and single-wall carbon naotubes |
US6899945B2 (en) | 2002-03-19 | 2005-05-31 | William Marsh Rice University | Entangled single-wall carbon nanotube solid material and methods for making same |
EP1461390A1 (en) | 2002-04-01 | 2004-09-29 | Carbon Nanotechnologies, Inc. | Composite of single-wall carbon nanotubes and aromatic polyamide and process for making the same |
US7135160B2 (en) | 2002-04-02 | 2006-11-14 | Carbon Nanotechnologies, Inc. | Spheroidal aggregates comprising single-wall carbon nanotubes and method for making the same |
WO2003086969A1 (en) | 2002-04-08 | 2003-10-23 | William Marsh Rice University | Method for cutting single-wall carbon nanotubes through fluorination |
US6879143B2 (en) * | 2002-04-16 | 2005-04-12 | Motorola, Inc. | Method of selectively aligning and positioning nanometer-scale components using AC fields |
CA2584508A1 (en) | 2002-05-09 | 2003-11-09 | Institut National De La Recherche Scientifique | Method for producing single-wall carbon nanotubes |
US20040005269A1 (en) | 2002-06-06 | 2004-01-08 | Houjin Huang | Method for selectively producing carbon nanostructures |
US6852410B2 (en) | 2002-07-01 | 2005-02-08 | Georgia Tech Research Corporation | Macroscopic fiber comprising single-wall carbon nanotubes and acrylonitrile-based polymer and process for making the same |
US7250148B2 (en) | 2002-07-31 | 2007-07-31 | Carbon Nanotechnologies, Inc. | Method for making single-wall carbon nanotubes using supported catalysts |
US20040053440A1 (en) | 2002-08-21 | 2004-03-18 | First Nano, Inc. | Method and apparatus of carbon nanotube fabrication |
EP1570539A2 (en) | 2002-10-31 | 2005-09-07 | Carbon Nanotechnologies, Inc. | Fuel cell electrode comprising carbon nanotubes |
GB0226590D0 (en) | 2002-11-14 | 2002-12-24 | Univ Cambridge Tech | Method for producing carbon nanotubes and/or nanofibres |
AU2003287801A1 (en) | 2002-11-15 | 2004-06-15 | Mgill University | Method for producing carbon nanotubes using a dc non-transferred thermal plasma torch |
US6841002B2 (en) | 2002-11-22 | 2005-01-11 | Cdream Display Corporation | Method for forming carbon nanotubes with post-treatment step |
US6841003B2 (en) | 2002-11-22 | 2005-01-11 | Cdream Display Corporation | Method for forming carbon nanotubes with intermediate purification steps |
US20050002851A1 (en) | 2002-11-26 | 2005-01-06 | Mcelrath Kenneth O. | Carbon nanotube particulates, compositions and use thereof |
US7335344B2 (en) | 2003-03-14 | 2008-02-26 | Massachusetts Institute Of Technology | Method and apparatus for synthesizing filamentary structures |
US20040183220A1 (en) | 2003-03-18 | 2004-09-23 | Avinash Dalmia | Ultra thin layer coating using self-assembled molecules as a separating layer for diffraction grating application |
DE10312494A1 (en) | 2003-03-20 | 2004-10-07 | Association pour la Recherche et le Développement des Méthodes et Processus Industriels (Armines) | Carbon nanostructures and methods of making nanotubes, nanofibers, and carbon-based nanostructures |
US7261779B2 (en) | 2003-06-05 | 2007-08-28 | Lockheed Martin Corporation | System, method, and apparatus for continuous synthesis of single-walled carbon nanotubes |
US7640341B2 (en) * | 2003-06-19 | 2009-12-29 | Microsoft Corporation | Instant messaging for multi-user computers |
US7628974B2 (en) | 2003-10-22 | 2009-12-08 | International Business Machines Corporation | Control of carbon nanotube diameter using CVD or PECVD growth |
US7262266B2 (en) | 2003-10-24 | 2007-08-28 | William Marsh Rice University | Copolymerization of polybenzazoles and other aromatic polymers with carbon nanotubes |
KR101158590B1 (en) | 2003-11-17 | 2012-06-22 | 코니카 미놀타 홀딩스 가부시키가이샤 | A method of producing a nanostructured carbon material, a nanostructured carbon material formed by the method and a substrate having the nanostructured carbon material |
US7981396B2 (en) | 2003-12-03 | 2011-07-19 | Honda Motor Co., Ltd. | Methods for production of carbon nanostructures |
JP2011129565A (en) | 2009-12-15 | 2011-06-30 | Elpida Memory Inc | Semiconductor device and method of manufacturing the same |
TWI401850B (en) | 2010-07-23 | 2013-07-11 | Delta Electronics Inc | Power adapter and power supply with replaceable connector |
-
2002
- 2002-05-09 CA CA002584508A patent/CA2584508A1/en not_active Abandoned
- 2002-05-09 CA CA002385802A patent/CA2385802C/en not_active Expired - Lifetime
-
2003
- 2003-05-09 WO PCT/CA2003/000694 patent/WO2003095362A2/en not_active Application Discontinuation
- 2003-05-09 AU AU2003223807A patent/AU2003223807A1/en not_active Abandoned
- 2003-05-09 US US10/434,181 patent/US7591989B2/en active Active
-
2006
- 2006-12-01 US US11/565,740 patent/US8071906B2/en active Active
-
2007
- 2007-04-12 US US11/734,443 patent/US20080124482A1/en not_active Abandoned
-
2008
- 2008-05-08 US US12/117,542 patent/US20080226536A1/en not_active Abandoned
Patent Citations (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4518575A (en) * | 1982-01-28 | 1985-05-21 | Phillips Petroleum Company | Catalytic fibrous carbon |
US4572813A (en) * | 1983-09-06 | 1986-02-25 | Nikkiso Co., Ltd. | Process for preparing fine carbon fibers in a gaseous phase reaction |
US4876078A (en) * | 1984-04-20 | 1989-10-24 | Nikkiso Co., Ltd. | Process for preparing carbon fibers in gas phase growth |
US4816289A (en) * | 1984-04-25 | 1989-03-28 | Asahi Kasei Kogyo Kabushiki Kaisha | Process for production of a carbon filament |
US4582254A (en) * | 1984-06-06 | 1986-04-15 | Eutectic Corporation | Device for the controlled multiple feeding of powder material |
US4490229A (en) * | 1984-07-09 | 1984-12-25 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Deposition of diamondlike carbon films |
US4640830A (en) * | 1984-09-13 | 1987-02-03 | Nikkiso Co., Ltd. | Process for preparing fine fibers |
US4749557A (en) * | 1984-12-04 | 1988-06-07 | General Motors Corporation | Graphite fiber growth employing nuclei derived from iron pentacarbonyl |
US4767608A (en) * | 1986-10-23 | 1988-08-30 | National Institute For Research In Inorganic Materials | Method for synthesizing diamond by using plasma |
US5102647A (en) * | 1988-04-12 | 1992-04-07 | Showa Denko K.K. | Method of producing vapor growth carbon fibers |
US5217747A (en) * | 1990-02-26 | 1993-06-08 | Noranda Inc. | Reactive spray forming process |
US5147998A (en) * | 1991-05-29 | 1992-09-15 | Noranda Inc. | High enthalpy plasma torch |
US5207999A (en) * | 1991-08-13 | 1993-05-04 | Cameco Corporation | Generation of fluorine via thermal plasma decomposition of metal fluoride |
US5227038A (en) * | 1991-10-04 | 1993-07-13 | William Marsh Rice University | Electric arc process for making fullerenes |
US5300203A (en) * | 1991-11-27 | 1994-04-05 | William Marsh Rice University | Process for making fullerenes by the laser evaporation of carbon |
US5481080A (en) * | 1991-12-12 | 1996-01-02 | Kvaerner Engineering A.S. | Plasma torch with a lead-in tube |
US5997837A (en) * | 1991-12-12 | 1999-12-07 | Kvaerner Technology And Research Ltd. | Method for decomposition of hydrocarbons |
US5486674A (en) * | 1991-12-12 | 1996-01-23 | Kvaerner Engineering As | Plasma torch device for chemical processes |
US5527518A (en) * | 1992-04-07 | 1996-06-18 | Kvaerner Engineering A.S | Production of carbon black |
US6068827A (en) * | 1992-04-07 | 2000-05-30 | Kvaerner Engineering As | Decomposition of hydrocarbon to carbon black |
US5395496A (en) * | 1992-04-07 | 1995-03-07 | Pegasus Refractory Materials, Inc. | Process for the synthesis of fullerenes |
US5876684A (en) * | 1992-08-14 | 1999-03-02 | Materials And Electrochemical Research (Mer) Corporation | Methods and apparati for producing fullerenes |
US5591312A (en) * | 1992-10-09 | 1997-01-07 | William Marsh Rice University | Process for making fullerene fibers |
US5493094A (en) * | 1993-01-14 | 1996-02-20 | Simmons; Walter N. | Preparation of fullerenes and apparatus therefor |
US6099696A (en) * | 1993-02-05 | 2000-08-08 | Armines | Conversion of carbon or carbon-containing compounds in a plasma |
US5346683A (en) * | 1993-03-26 | 1994-09-13 | Gas Research Institute | Uncapped and thinned carbon nanotubes and process |
US5424054A (en) * | 1993-05-21 | 1995-06-13 | International Business Machines Corporation | Carbon fibers and method for their production |
US5641466A (en) * | 1993-06-03 | 1997-06-24 | Nec Corporation | Method of purifying carbon nanotubes |
US5556517A (en) * | 1993-06-28 | 1996-09-17 | William Marsh Rice University | Solar process for making fullerenes |
US5611896A (en) * | 1993-10-14 | 1997-03-18 | Atomic Energy Corporation Of S. Africa Limited | Production of fluorocarbon compounds |
US5510098A (en) * | 1994-01-03 | 1996-04-23 | University Of Central Florida | CVD method of producing and doping fullerenes |
US5482601A (en) * | 1994-01-28 | 1996-01-09 | Director-General Of Agency Of Industrial Science And Technology | Method and device for the production of carbon nanotubes |
US5587141A (en) * | 1994-02-25 | 1996-12-24 | Director-General Of Industrial Science And Technology | Method and device for the production of fullerenes |
US5985232A (en) * | 1994-03-30 | 1999-11-16 | Massachusetts Institute Of Technology | Production of fullerenic nanostructures in flames |
US6162411A (en) * | 1994-03-30 | 2000-12-19 | Massachusetts Institute Of Technology | Production of fullerenic soot in flames |
US5744657A (en) * | 1994-12-22 | 1998-04-28 | E. I. Du Pont De Nemours And Company | Process for the preparation of perfluorocarbons |
US5593740A (en) * | 1995-01-17 | 1997-01-14 | Synmatix Corporation | Method and apparatus for making carbon-encapsulated ultrafine metal particles |
US6063243A (en) * | 1995-02-14 | 2000-05-16 | The Regents Of The Univeristy Of California | Method for making nanotubes and nanoparticles |
US5684218A (en) * | 1995-03-31 | 1997-11-04 | E. I. Du Pont De Nemours And Company | Preparation of tetrafluoroethylene |
US6183714B1 (en) * | 1995-09-08 | 2001-02-06 | Rice University | Method of making ropes of single-wall carbon nanotubes |
US5916642A (en) * | 1995-11-22 | 1999-06-29 | Northwestern University | Method of encapsulating a material in a carbon nanotube |
US6187206B1 (en) * | 1995-12-20 | 2001-02-13 | Alcan International | Thermal plasma reactor and wastewater treatment method |
US5773834A (en) * | 1996-02-13 | 1998-06-30 | Director-General Of Agency Of Industrial Science And Technology | Method of forming carbon nanotubes on a carbonaceous body, composite material obtained thereby and electron beam source element using same |
US6254940B1 (en) * | 1996-07-11 | 2001-07-03 | University Of Cincinnati | Electrically assisted synthesis of particles and film with precisely controlled characteristic |
US20020092983A1 (en) * | 1996-08-08 | 2002-07-18 | William Marsh Rice University | Method for growing single-wall carbon nanotubes utilizing seed molecules |
US20020102201A1 (en) * | 1996-08-08 | 2002-08-01 | William Marsh Rice University | Method for forming an array of single-wall carbon nanotubes in an electric field and compositions thereof |
US20020109087A1 (en) * | 1996-08-08 | 2002-08-15 | William Marsh Rice University | Method for producing a catalyst support and compositions thereof |
US20020084410A1 (en) * | 1996-08-08 | 2002-07-04 | William Marsh Rice University | Macroscopically manipulable nanoscale devices made from nanotube assemblies |
US20020088938A1 (en) * | 1996-08-08 | 2002-07-11 | William Marsh Rice University | Method for forming an array of single-wall carbon nanotubes and compositions thereof |
US20020092984A1 (en) * | 1996-08-08 | 2002-07-18 | William Marsh Rice University | Method for purification of as-produced single-wall carbon nanotubes |
US20020109086A1 (en) * | 1996-08-08 | 2002-08-15 | William Marsh Rice University | Method for growing continuous carbon fiber and compositions thereof |
US20020096634A1 (en) * | 1996-08-08 | 2002-07-25 | William Marsh Rice University | Method for cutting single-wall carbon nanotubes |
US5851507A (en) * | 1996-09-03 | 1998-12-22 | Nanomaterials Research Corporation | Integrated thermal process for the continuous synthesis of nanoscale powders |
US5788738A (en) * | 1996-09-03 | 1998-08-04 | Nanomaterials Research Corporation | Method of producing nanoscale powders by quenching of vapors |
US6171451B1 (en) * | 1997-01-13 | 2001-01-09 | Daimlerchrysler Aerospace | Method and apparatus for producing complex carbon molecules |
US5753088A (en) * | 1997-02-18 | 1998-05-19 | General Motors Corporation | Method for making carbon nanotubes |
US20020094311A1 (en) * | 1997-03-07 | 2002-07-18 | William Marsh Rice University | Method for cutting nanotubes |
US20020098135A1 (en) * | 1997-03-07 | 2002-07-25 | William Marsh Rice University | Array of single-wall carbon nanotubes |
US20020102196A1 (en) * | 1997-03-07 | 2002-08-01 | William Marsh Rice University | Compositions and articles of manufacture |
US20020090331A1 (en) * | 1997-03-07 | 2002-07-11 | William Marsh Rice University | Method for growing continuous fiber |
US20020090330A1 (en) * | 1997-03-07 | 2002-07-11 | William Marsh Rice University | Method for growing single-wall carbon nanotubes utlizing seed molecules |
US20020085968A1 (en) * | 1997-03-07 | 2002-07-04 | William Marsh Rice University | Method for producing self-assembled objects comprising single-wall carbon nanotubes and compositions thereof |
US6303094B1 (en) * | 1997-03-21 | 2001-10-16 | Japan Fine Ceramics Center | Process for producing carbon nanotubes, process for producing carbon nanotube film, and structure provided with carbon nanotube film |
US5989648A (en) * | 1997-05-06 | 1999-11-23 | The Penn State Research Foundation | Plasma generation of supported metal catalysts |
US6358375B1 (en) * | 1997-06-06 | 2002-03-19 | Association Pour La Recherche Et Le Developpement Des Methods Et Processus Industries, Of Paris | Method and device for producing fullerenes |
US6221330B1 (en) * | 1997-08-04 | 2001-04-24 | Hyperion Catalysis International Inc. | Process for producing single wall nanotubes using unsupported metal catalysts |
US6331690B1 (en) * | 1997-12-22 | 2001-12-18 | Nec Corporation | Process for producing single-wall carbon nanotubes uniform in diameter and laser ablation apparatus used therein |
US6149775A (en) * | 1998-03-16 | 2000-11-21 | Futaba Denshi Kogyo Kabushiki Kaisha | Method for preparing single layer carbon nano-tube |
US6261532B1 (en) * | 1998-03-25 | 2001-07-17 | Research Institute Of Innovative Technology For The Earth | Method of producing carbon |
US6083469A (en) * | 1998-04-10 | 2000-07-04 | Leftin; Harry Paul | Pyrolysis process for making fullerenes |
US6156256A (en) * | 1998-05-13 | 2000-12-05 | Applied Sciences, Inc. | Plasma catalysis of carbon nanofibers |
US6426134B1 (en) * | 1998-06-30 | 2002-07-30 | E. I. Du Pont De Nemours And Company | Single-wall carbon nanotube-polymer composites |
US20020031465A1 (en) * | 1998-07-21 | 2002-03-14 | Yahachi Saito | Production of carbon nanotube |
US20020110513A1 (en) * | 1998-09-18 | 2002-08-15 | Margrave John L. | Chemical derivatization of single-wall carbon nanotubes to facilitate solvation thereof; and use of derivatized nanotubes to form catalyst-containing seed materials for use in making carbon fibers |
US20010031900A1 (en) * | 1998-09-18 | 2001-10-18 | Margrave John L. | Chemical derivatization of single-wall carbon nanotubes to facilitate solvation thereof; and use of derivatized nanotubes to form catalyst-containing seed materials for use in making carbon fibers |
US20010041160A1 (en) * | 1998-09-18 | 2001-11-15 | Margrave John L. | Chemical derivatization of single-wall carbon nanotubes to facilitate solvation thereof; and use of derivatized nanotubes to form catalyst-containing seed materials for use in making carbon fibers |
US20020086124A1 (en) * | 1998-09-18 | 2002-07-04 | Margrave John L. | Chemical derivatization of single-wall carbon nanotubes to facilitate solvation thereof; and use of derivatized nanotubes to form catalyst-containing seed materials for use in making carbon fibers |
US6382526B1 (en) * | 1998-10-01 | 2002-05-07 | The University Of Akron | Process and apparatus for the production of nanofibers |
US6227038B1 (en) * | 1999-04-12 | 2001-05-08 | General Motors Corporation | Radiotracer method for measuring leakage of engine coolant |
US6331209B1 (en) * | 1999-04-21 | 2001-12-18 | Jin Jang | Method of forming carbon nanotubes |
US6333016B1 (en) * | 1999-06-02 | 2001-12-25 | The Board Of Regents Of The University Of Oklahoma | Method of producing carbon nanotubes |
US6444864B1 (en) * | 1999-06-07 | 2002-09-03 | Drexel University | Thermal plasma process for recovering monomers and high value carbons from polymeric materials |
US6350488B1 (en) * | 1999-06-11 | 2002-02-26 | Iljin Nanotech Co., Ltd. | Mass synthesis method of high purity carbon nanotubes vertically aligned over large-size substrate using thermal chemical vapor deposition |
US6361861B2 (en) * | 1999-06-14 | 2002-03-26 | Battelle Memorial Institute | Carbon nanotubes on a substrate |
US6395197B1 (en) * | 1999-12-21 | 2002-05-28 | Bechtel Bwxt Idaho Llc | Hydrogen and elemental carbon production from natural gas and other hydrocarbons |
US20010009693A1 (en) * | 2000-01-26 | 2001-07-26 | Lee Cheol-Jin | Thermal chemical vapor deposition apparatus and method of synthesizing carbon nanotubes using the same |
US20020018745A1 (en) * | 2000-04-10 | 2002-02-14 | Herman Frederick James | Net shape manufacturing using carbon nanotubes |
US20010050219A1 (en) * | 2000-05-31 | 2001-12-13 | Fuji Xerox Co., Ltd. | Method of manufacturing carbon nanotubes and/or fullerenes, and manufacturing apparatus for the same |
US20020000402A1 (en) * | 2000-06-30 | 2002-01-03 | Dillon Jack R. | Dialysis wall station |
US6261484B1 (en) * | 2000-08-11 | 2001-07-17 | The Regents Of The University Of California | Method for producing ceramic particles and agglomerates |
US20020068170A1 (en) * | 2000-08-24 | 2002-06-06 | Smalley Richard E. | Polymer-wrapped single wall carbon nanotubes |
US20020046872A1 (en) * | 2000-08-24 | 2002-04-25 | Smalley Richard E. | Polymer-wrapped single wall carbon nanotubes |
US20020048632A1 (en) * | 2000-08-24 | 2002-04-25 | Smalley Richard E. | Polymer-wrapped single wall carbon nanotubes |
US20020048832A1 (en) * | 2000-09-11 | 2002-04-25 | Hannstar Display Corp. | Method for preventing corrosion of metal lines |
US20020047110A1 (en) * | 2000-10-23 | 2002-04-25 | Nat'l. Inst. Of Adv. Industrial Science And Tech. | Flame synthesized aluminum nitride filler-powder |
US20020090468A1 (en) * | 2000-10-30 | 2002-07-11 | Honda Giken Kogyo Kabushiki Kaisha | Method of manufacturing carbon nanotube |
US20020102203A1 (en) * | 2001-01-31 | 2002-08-01 | William Marsh Rice University | Process utilizing pre-formed cluster catalysts for making single-wall carbon nanotubes |
US20020102193A1 (en) * | 2001-01-31 | 2002-08-01 | William Marsh Rice University | Process utilizing two zones for making single-wall carbon nanotubes |
US20020102194A1 (en) * | 2001-01-31 | 2002-08-01 | William Marsh Rice University | Process utilizing seeds for making single-wall carbon nanotubes |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060127299A1 (en) * | 2002-11-15 | 2006-06-15 | Mcgill University | Method for producing carbon nanotubes using a dc non-transferred thermal plasma torch |
US7846414B2 (en) | 2002-11-15 | 2010-12-07 | Mcgill University | Method for producing carbon nanotubes using a DC non-transferred thermal plasma torch |
WO2013109545A1 (en) * | 2012-01-17 | 2013-07-25 | Synos Technology, Inc. | Deposition of graphene or conjugated carbons using radical reactor |
US9957168B2 (en) | 2014-07-09 | 2018-05-01 | Honda Motor Co., Ltd. | Method for synthesis of ruthenium nanoparticles with face-centered cubic and hexagonal close-packed structures |
US9969006B2 (en) | 2014-07-09 | 2018-05-15 | Honda Motor Co., Ltd. | Method for production of indium nanoparticles |
US10195668B2 (en) | 2014-07-09 | 2019-02-05 | Honda Motor Co., Ltd. | Method for continuous and controllable production of single walled carbon nanotubes |
US10933471B2 (en) | 2014-07-09 | 2021-03-02 | Honda Motor Co., Ltd. | Method for continuous and controllable production of single walled carbon nanotubes |
Also Published As
Publication number | Publication date |
---|---|
CA2385802C (en) | 2008-09-02 |
WO2003095362A2 (en) | 2003-11-20 |
US8071906B2 (en) | 2011-12-06 |
US20030211030A1 (en) | 2003-11-13 |
US20080124482A1 (en) | 2008-05-29 |
AU2003223807A1 (en) | 2003-11-11 |
WO2003095362A3 (en) | 2004-04-08 |
US7591989B2 (en) | 2009-09-22 |
US20100300358A1 (en) | 2010-12-02 |
CA2385802A1 (en) | 2003-11-09 |
AU2003223807A8 (en) | 2003-11-11 |
CA2584508A1 (en) | 2003-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7591989B2 (en) | Method and apparatus for producing single-wall carbon nanotubes | |
US7824649B2 (en) | Apparatus and method for synthesizing a single-wall carbon nanotube array | |
Smiljanic et al. | Gas-phase synthesis of SWNT by an atmospheric pressure plasma jet | |
Qin | CVD synthesis of carbon nanotubes | |
EP1948562B1 (en) | Carbon nanotubes functionalized with fullerenes | |
US7846414B2 (en) | Method for producing carbon nanotubes using a DC non-transferred thermal plasma torch | |
EP3391715B1 (en) | Apparatus and method for plasma synthesis of carbon nanotubes | |
US20050118090A1 (en) | Plasma synthesis of hollow nanostructures | |
US20110020211A1 (en) | High Throughput Carbon Nanotube Growth System, and Carbon Nanotubes and Carbon Nanofibers Formed Thereby | |
US20090311445A1 (en) | Synthesis of Carbon Nanotubes by Selectively Heating Catalyst | |
CA2748064A1 (en) | Method and apparatus for recovering carbon filamentary structures | |
KR100376202B1 (en) | Apparatus of vapor phase-synthesis for carbon nanotubes or carbon nanofibers and synthesizing method of using the same | |
JP3463091B2 (en) | Method for producing carbon nanotube | |
CA2499850C (en) | Method and apparatus for producing single-wall carbon nanotubes | |
Takikawa et al. | Amorphous carbon fibrilliform nanomaterials prepared by chemical vapor deposition | |
Harbec et al. | A parametric study of carbon nanotubes production from tetrachloroethylene using a supersonic thermal plasma jet | |
Ma et al. | Low-temperature growth of carbon nanofiber using a vapor–facet–solid process | |
Govindaraj et al. | Synthesis, growth mechanism and processing of carbon nanotubes | |
US8506921B2 (en) | Production of vertical arrays of small diameter single-walled carbon nanotubes | |
Shavelkina et al. | Effect of the precursor aggregate state on the synthesis of CNTs in a DC plasma jet | |
Le Normand et al. | Gas phase and surface kinetics in plasma and hot filament-enhanced catalytic chemical vapor deposition of carbon nanostructures | |
Hayashi et al. | Gas phase syntheses of single-walled carbon nanotubes by chemical vapor deposition using hot filament and plasma | |
EP2743231A1 (en) | Method for producing carbon nanotubes in the absence of metal catalysts | |
KR20040050409A (en) | Thermal cvd equipment for carbon nanotubes or carbon nanofibers using plasma generator | |
Ren et al. | Chemical Vapor Deposition of Carbon Nanotubes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INSTITUT NATIONAL DE LA RECHERCHE SCIENTIFIQUE, QU Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SMILJANIC, OLIVIER;STANSFIELD, BARRY L.;LAROUCHE, FREDERIC;SIGNING DATES FROM 20110616 TO 20111024;REEL/FRAME:027138/0614 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |