[go: up one dir, main page]

US10750257B2 - Data encoding and channel hopping using orbital angular momentum modes - Google Patents

Data encoding and channel hopping using orbital angular momentum modes Download PDF

Info

Publication number
US10750257B2
US10750257B2 US15/838,120 US201715838120A US10750257B2 US 10750257 B2 US10750257 B2 US 10750257B2 US 201715838120 A US201715838120 A US 201715838120A US 10750257 B2 US10750257 B2 US 10750257B2
Authority
US
United States
Prior art keywords
signal
oam
optical switch
time period
symbol time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US15/838,120
Other versions
US20180167703A1 (en
Inventor
Alan E. Willner
Yongxiong Ren
Guodong Xie
Asher J. Willner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Southern California USC
Original Assignee
University of Southern California USC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Southern California USC filed Critical University of Southern California USC
Priority to US15/838,120 priority Critical patent/US10750257B2/en
Assigned to UNIVERSITY OF SOUTHERN CALIFORNIA reassignment UNIVERSITY OF SOUTHERN CALIFORNIA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WILLNER, ASHER J., REN, YONGXIONG, WILLNER, ALAN E., XIE, GUODONG
Publication of US20180167703A1 publication Critical patent/US20180167703A1/en
Application granted granted Critical
Publication of US10750257B2 publication Critical patent/US10750257B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/548Phase or frequency modulation
    • H04B10/556Digital modulation, e.g. differential phase shift keying [DPSK] or frequency shift keying [FSK]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/04Mode multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/07Orbital angular momentum [OAM] multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0003Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/1301Optical transmission, optical switches

Definitions

  • This specification relates to a system, device and/or a method for data encoding and channel hopping.
  • Free-space optical communication plays a significant role in line-of-sight links.
  • the data in these links can be encoded on the amplitude, phase or temporal position of the optical wave.
  • typical systems may use on-off keying to represent the presence or absence of a carrier wave.
  • more information may be desired for a given amount of optical energy, which requires more degrees-of-freedom for the wave to occupy. This provides for a higher energy efficiency for a given capacity.
  • free-space optical links have used only a single beam.
  • the use of a single beam allows little opportunity for a wave to occupy more than one spatial location, and thus, does not allow for the use of the spatial domain for encoding.
  • space- and mode-multiplexing has been demonstrated to transmit multiple data-carrying free-space beams.
  • the spatially overlapping mode may be orthogonal to other modes and carry a unique amount of orbital-angular momentum (OAM).
  • OAM orbital-angular momentum
  • the performance of these OAM-based data encoding schemes have been limited in performance to kHz data rates and have been limited in the amount of information that is conveyed within a set amount of energy.
  • the system includes a signal source for providing a signal.
  • the system includes an optical switch having an input port and multiple output paths.
  • the optical switch is configured to receive, at the input port, the signal.
  • the optical switch is configured to route the signal to an output path of the multiple output paths.
  • the system includes a mode converter.
  • the mode converter is connected to the optical switch and configured to select an orbital angular momentum (OAM) mode.
  • OAM orbital angular momentum
  • the mode converter is configured to encode or channel hop the signal using the OAM mode and combine the signal from each output path.
  • the system includes a transmitter configured to propagate the signal.
  • the signal may be a beam of continuous wave (CW) laser light or a quadrature phase-shift keying (QPSK) signal.
  • the signal source may be configured to transmit the beam of CW laser light to the optical switch when encoding data or transmit the QPSK signal to the optical switch when channel hopping.
  • the mode converter may include a first spatial light modulator (SLM) having a spiral phase hologram that is configured to convert or set the signal into a single OAM mode.
  • the mode converter may include a beam splitter that is configured to combine the signal from each output path.
  • the system may include a free-space collimator that narrows the beam of CW laser light from the output path.
  • the system may include a receiver that is configured to receive the combined signal.
  • the system may include a second SLM that is configured to decouple the combined signal and convert each signal of the combined signal into a Gaussian beam.
  • the system may include a single-mode optical fiber that is configured to send the Gaussian beam to a processor for signal detection and data recovery.
  • the optical switch may be formed from multiple optical switches that are cascaded together. The OAM more for each signal of each output path may be different.
  • the subject matter is embodied in a method for data encoding or channel hopping.
  • the method includes receiving, by a data modulator, a signal being a beam of CW laser light, when data encoding, or a QPSK signal, when channel hopping.
  • the method includes converting the signal using a respective OAM mode of multiple OAM modes.
  • the method includes transmitting or propagating the converted signal.
  • the subject matter is embodied in a system for data encoding or channel hopping.
  • the system includes a signal source for providing a signal.
  • the system includes an optical switch configured to receive the signal.
  • the system includes a first SLM that has a spiral phase hologram that is configured to convert or set the signal into an OAM mode.
  • the system includes multiple beam splitters that are connected to the first SLM. The multiple beam splitters are configured to combine the signal and propagate the combined signal over-the-air.
  • the system includes a receiver that is configured to receive the combined signal and a second SLM to decouple the combined signal.
  • FIG. 1A shows an example data encoding and channel hopping system that utilizes Orbital-Angular Momentum (OAM) modes to data encode and/or channel hop according to an aspect of the invention.
  • OFAM Orbital-Angular Momentum
  • FIG. 1B shows a transmitter of the data encoding and channel hopping system of FIG. 1A according to an aspect of the invention.
  • FIG. 1C shows a receiver of the data encoding and channel hopping system of FIG. 1A according to an aspect of the invention.
  • FIG. 2 is an example process of transmitting a data encoded and/or a channel hopped signal using the data encoding and hopping system of FIG. 1 according to an aspect of the invention.
  • FIG. 3A shows the data encoding and channel hopping system of FIG. 1A performing data encoding using OAM modes according to an aspect of the invention.
  • FIG. 3B shows the data encoding and channel hopping system of FIG. 1A performing channel hopping using OAM modes according to an aspect of the invention.
  • FIG. 4 is an example process of receiving a data encoded signal and/or a channel hopped signal using the encoding and hopping system of FIG. 1 according to an aspect of the invention.
  • FIGS. 6A-6D show a symbol period of a received signal for a channel of an OAM mode at different hopping rates according to an aspect of the invention.
  • FIG. 7 shows a graphical illustration of the bit error rate for an OAM value when using mode sets with different mode spacing according to an aspect of the invention.
  • FIG. 8 shows a graphical illustration of the bit error rate when channel hopping at different rates according to an aspect of the invention.
  • a data encoding and/or channel hopping system (hereinafter, “encoding and hopping system”) using OAM modes to encode data and/or channel hop allows a beam to occupy one of many modes. With additional modes, the beam provides additional possible states and additional capacity to convey information while using the same amount of energy to communicate the information.
  • An encoding and hopping system that uses OAM modes is able to encode data across several modes, which is accomplished using a fast switch. This increases the speed and efficiency of data encoding.
  • the encoding and hopping system also achieves low bit error rates at high data rate speeds that are orders-of-magnitude faster than previous communication data rates achieved.
  • the OAM modes provide a large number of discrete states, which may be used for data encoding in the spatial domain.
  • the large number of discrete states allow the encoding and hopping system to encode a higher amount of data for a fixed amount of optical power since there are a greater number of possible states for the optical wave to occupy in a single symbol. This increases the amount of information per unit time for a fixed amount of optical power. Since there are more degrees-of-freedom, the optical wave can occupy and be encoded with more information and at a higher energy efficiency for a given capacity for either classical or quantum communication.
  • SDM space-division-multiplexing
  • FIG. 1A shows an encoding and hopping system 100 that uses OAM modes to data encode and/or channel hop.
  • the encoding and hopping system 100 includes a transmitting device 102 and a receiving device 104 .
  • the encoding and hopping system 100 may include a data encoding and detection scheme 142 .
  • the encoding and hopping system 100 includes a transmitting device 102 .
  • the transmitting device 102 includes an optical switch 106 , an OAM generation module 116 and a transmitter 114 .
  • the encoding and hopping system 100 may include a data stream device, e.g., a pseudo-random binary sequence (PRBS) sequencer, and/or a hopping controller 144 .
  • the OAM generation module 116 may include a collimator 108 , a programmable spatial light modulator (SLM) 110 and/or a beam splitter 112 .
  • the transmitting device 102 may include a signal module 118 .
  • the OAM generation module 116 may have a mode converter 117 that combines the functions of the collimator 108 , SLM 110 and/or beam splitter 112 .
  • the transmitting device 102 may include a signal module 118 .
  • the signal module 118 includes a signal source 120 that provides a signal, such as a continuous wave (CW) laser or a data signal, an amplifier 122 and/or a single mode fiber (SMF).
  • the data signal may be a Phase-Shift Keying (PSK) signal that may have any number of phases, such as a Quadrature Phase-Shift Keying (QPSK) signal.
  • PSK Phase-Shift Keying
  • QPSK Quadrature Phase-Shift Keying
  • the signal source 120 may transmit a single signal to be encoded or channel hopped using a single OAM mode. In some implementations, the signal source 120 may transmit multiple signals to be channel hopped using multiple OAM modes.
  • the amplifier 122 may be an Erbium-Doped Fiber Amplifier (EDFA).
  • EDFA Erbium-Doped Fiber Amplifier
  • the EDFA is a device that amplifies the optical signal.
  • the signal module 118 may have an SMF 124 that carries the optical signal to the optical switch 106 .
  • the SMF 124 may delay and/or de-correlate one of the multiple signals if there are multiple signals for channel hopping before providing the signals to the optical switch 106 .
  • the transmitting device 102 includes the optical switch 106 .
  • the optical switch 106 may have multiple inputs ports and/or multiple output paths.
  • the optical switch 106 may have 2 input ports 105 a - b and 4 output paths 107 a - d to the OAM generation module 116 .
  • the optical switch 106 may operate at a switching rate up to 10 GHz.
  • the multiple input ports are each configured to receive the signal and route the signal to the OAM generation module 116 through the multiple output paths.
  • the optical switch 106 may be formed using one or more optical switches that are cascaded. For example, a 2 ⁇ 4 optical switch may be formed by cascading a 1 ⁇ 2 optical switch and a 2 ⁇ 2 optical switch.
  • the transmitting device 102 may include a data stream device, such as a PRBS sequencer, or a hopping controller 144 .
  • the data stream device selects the OAM mode on which the signal uses to perform data encoding and/or channel hopping.
  • the data stream device and/or hopping controller 144 selects the OAM mode and switches among the different OAM modes within the set of OAM modes.
  • the transmitting device 102 includes an OAM generation module 116 .
  • the OAM generation module 116 may include a collimator 108 , one or more spatial light modulators (SLM) 110 and a beam splitter 112 .
  • the OAM generation module 116 receives the signal from at least one of the output paths of the optical switch 106 .
  • the OAM generation module 116 employs OAM modes to perform data encoding and/or channel hopping of the signal.
  • a collimator 108 may narrow the signal outputted from at least one of the output paths of the optical switch 106 .
  • the collimator 108 may be a free-space collimator with a diameter of 3 mm, which launches the signal onto one or more SLMs 110 .
  • the one or more SLMs 110 may convert the signal in each output path into a Gaussian-like beam.
  • a combiner such as a beam splitter 112 , couples each beam outputted by the SLMs 110 for transmission to the receiving device for detection and data recovery.
  • the transmitting device 102 includes a transmitter 114 .
  • the transmitter 114 transmits or sends the combined signal to the receiving device 104 for detection and data recovery.
  • the transmission is sent over-the-air and is secured by the channel hopping and/or data encoding using the OAM modes.
  • the encoding and hopping system 100 includes a receiving device 104 .
  • the receiving device 104 includes a receiver 126 , an OAM detection module 140 , and a processor 132 .
  • the OAM detection module 140 may include a SLM 128 and a SMF 130 .
  • the receiving device 104 includes the receiver 126 that receives the combined signal from the transmitter 114 .
  • the receiver 126 provides the received signal to the OAM detection module 140 for demodulation.
  • the receiving device 104 has an OAM detection module 140 .
  • the OAM detection module 140 detects and extracts the modulated signal for each OAM value.
  • the OAM detection module 140 separates the modulated signal for each OAM value and converts the modulated signal into a Gaussian-like beam for each OAM value.
  • the SLM 128 may separate the modulated signal from the combined signal and convert the modulated signal into the Gaussian-like beam for each OAM value.
  • the Gaussian-like beams are coupled, using a SMF 130 , for data detection and recovery, by a processor 132 , for example.
  • the receiving device 104 includes a processor 132 .
  • the processor 132 performs the detection and data recovery of the signal.
  • the processor 132 identifies the transmitted OAM mode for each symbol period in each beam and recovers the bit information using a mapping relationship between the bit information and OAM mode values. For channel hopping, the data stream of each channel may be recovered sequentially.
  • the processor 132 may record the channels for each beam for offline digital signal processing.
  • the encoding and hopping system 100 may include a data encoding and detection scheme 142 .
  • the encoding and hopping system 100 may use the data encoding and detection scheme 142 for offline processing of the recovered data from the beams.
  • the data encoding and detection scheme 142 may include one or more photodiodes 134 , one or more analog-to-digital converters (ADC) 136 and a digital signal processor (DSP) 138 .
  • the one or more photodiodes 134 convert the light to an electrical current, which the ADC 136 converts to a digital signal that the DSP 138 processes.
  • the encoded data and/or channel hopped data is provided to an electronic device that displays or otherwise utilizes or interprets the data.
  • FIG. 2 is a flow diagram of a process 200 for transmitting a data encoded or channel hopped signal.
  • the encoding and hopping system 100 may implement the process 200 to perform data encoding and/or channel hopping using OAM modes.
  • OAM modes By performing data encoding and/or channel hopping using OAM modes, the encoding and hopping system 100 enhances the amount of information that may be transmitted per amount of energy and enhance the security of the transmission.
  • the encoding and hopping system 100 may generate and amplify a signal prior to OAM generation ( 202 ).
  • the signal may be a CW light or a PSK signal, such as a QPSK signal.
  • the encoding and hopping system 100 may generate the signal using a signal source, such as a CW laser or a transmitter, and amplify the signal using an amplifier.
  • the signal source may generate multiple signals to be channel hopped.
  • the encoding and hopping system 100 may split the signal into multiple signals, e.g., when performing experimentation.
  • the encoding and hopping system 100 may delay one or more of the multiple signals to synchronize the multiple signals prior to OAM generation and/or for de-correlation.
  • An optical switch 106 of the encoding and hopping system 100 obtains the signal from the signal source ( 204 ).
  • the optical switch 106 may have multiple input ports. When data encoding and/or channel hopping, the optical switch 106 receives the signal at one of the input ports. When channel hopping, the optical switch 106 may receive another signal at another input port.
  • the optical switch 106 routes the one or more signals along one or more output paths for OAM generation ( 206 ).
  • the optical switch 106 may provide the one or more signals to the OAM generation module for data encoding and/or channel hopping in response to receiving the signal.
  • the data stream device switches the OAM mode so that the signal is loaded onto a single OAM mode for a single symbol time period, as shown in FIG. 3A , for example.
  • the data stream device then rotates, switches or selects another OAM mode so that the signal is loaded onto another OAM mode for a subsequent symbol time period.
  • the bit information is mapped or loaded onto different OAM modes in different symbol time periods.
  • the hopping controller may select one or more OAM modes to use when loading the bit information onto the phase and amplitude of one or more signals.
  • the encoding and hopping system 100 may determine whether to perform data encoding or channel hopping ( 208 ).
  • the encoding and hopping system 100 may determine the mode based on the type of signal that the optical switch 106 receives. For example, the optical switch 106 may detect or identify that the signal is a CW light and set the OAM generation module 116 to perform data encoding or the optical switch 106 may detect or identify that the signal as a data signal, such as a PSK signal, and set the OAM generation module 116 to perform channel hopping.
  • the encoding and hopping system 100 may determine whether to perform data encoding and/or channel hopping based on a user input or configuration that identifies whether the encoding and channel hopping system 100 is to perform data encoding or channel hopping.
  • the OAM generation module 116 receives the signal from the optical switch 106 .
  • the encoding and hopping system 100 modulates the signal using OAM modes ( 210 ).
  • the encoding and hopping system 100 encodes bits of information on the signal and converts the signal into one of the modes of the OAM modes, N, e.g., in the set of OAM modes ⁇ l 1 , l 2 , l 3 , and l 4 ⁇ for each symbol period, T, as shown in FIG. 3A , for example.
  • the encoding and hopping system 100 switches or selects among the different OAM modes and loads the bit information onto different OAM modes for each symbol period using the data stream device.
  • the encoding and hopping system 100 uses the hopping controller 144 to select and use an OAM mode to place the bit information onto the signal, such as the QPSK signal, as shown in FIG. 3B , for example ( 212 ). This enhances the security of the communication.
  • the encoding and hopping system 100 may use another OAM mode and place other bit information on a second signal.
  • the OAM value and time duration depends on a controller signal that is sent by the hopping controller 144 .
  • the encoding and hopping system 100 includes a guard time during the channel hopping.
  • the encoding and hopping system 100 places the bit information onto the phase and amplitude of the signal and uses the different OAM modes to further secure the transmission of the signal since the OAM mode switches as the bit information is loaded onto the signal.
  • the encoding and hopping system 100 may narrow the signal, e.g., using a free-space collimator, and launch the signal onto an SLM to convert the signal using the OAM mode.
  • the encoding and hopping system 100 may use an SLM or mode converter to convert the signal using the OAM mode ( 214 ).
  • Each SLM may be loaded with a specific spiral phase hologram which converts the signal into a desired OAM value in the set of OAM modes, e.g., in the set of OAM modes ⁇ l 1 , l 2 , l 3 , and l 4 ⁇ .
  • FIG. 5A shows the intensity profiles and FIG.
  • the interferograms are obtained from interfering OAM beams with an expanded Gaussian beam.
  • the rotating arms in the interferograms confirm the OAM value of each beam.
  • the encoding and hopping system 100 may combine the one or more signals on the different output paths using a combiner, such as a beam splitter 112 or other mode converter/combiner ( 215 ).
  • the combiner provides the combined signal to the transmitter 114 . That is, the combiner sequences all the beams from all the different channels across all the symbol time periods when data encoding and/or overlaps and forms a single signal from the one or more signals when channel hopping.
  • the encoding and hopping system 100 transmits the combined signal across free-space ( 216 ).
  • FIG. 4 is a flow diagram of a process 400 for receiving a data encoded or channel hopped signal.
  • the encoding and hopping system 100 may implement the process 400 to perform data encoding and/or channel hopping using OAM modes.
  • the encoding and hopping system 100 receives a combined signal that has been data encoded and/or channel hopped ( 402 ).
  • the combined signal may have multiple OAM values that are decoupled.
  • the receiver 126 provides the combined signal to an OAM detection module 140 where the combined signal is demodulated or converted into a Gaussian-like beam.
  • the encoding and hopping system 100 decouples, extracts or separates the multiple OAM values from the combined signal at the detection module 140 ( 404 ).
  • the encoding and hopping system 100 may decouple, extract or separate the multiple OAM values using the SLM 128 .
  • the encoding and hopping system 100 may de-multiplex the combined signal into separate signals.
  • the encoding and hopping system 100 converts each of the multiple OAM values into a Gaussian-like beam using the SLM, for example ( 406 ).
  • the encoding and hopping system 100 couples the Gaussian-like beams, for example, using an SMF 130 to provide to a processor 132 to perform signal detection and recovery ( 408 ).
  • the encoding and hopping system 100 detects and/or records the signal for offline processing ( 410 ).
  • the information encoded and/or obscured by the channel hopping may be used by another electronic device or analyzed.
  • the processor 132 identifies the transmitted OAM mode for each symbol period.
  • the processor 132 calculates the power of each of the extracted or decoupled beams and determines the bit information using a mapping relationship to identify the transmitted OAM for each symbol period.
  • the encoding and hopping system 100 may use a PSK coherent receiver, such as a 100 Gbit/s QPSK coherent receiver, to recover the data stream for each beam sequentially.
  • the encoding and hopping system 100 may perform offline processing, such as offline digital signal processing, to recover the data from the beams ( 412 ).
  • the encoding and hopping system 100 may convert the signal from an analog to a digital signal to input into a digital signal processor to analyze.
  • the encoding and hopping system 100 may use one or more photodiodes to convert the light into an electrical current and use an analog-to-digital (ADC) converter to convert the electrical current into a digital signal that is provided to a digital signal processor for analysis and/or a device for use.
  • ADC analog-to-digital
  • Offline processing may include analyzing waveforms within the channels and measuring bit error rate at different mode spacing and frequencies.
  • FIGS. 6C-6D show the recovered constellations of the signal during the effective data period and the switching transition time at the 50 MHz hopping rate, respectively.
  • the QPSK constellation in FIG. 6D is blurred in comparison to the QPSK constellation in FIG. 6C due to power leakage or and/or crosstalk when hopping to another mode.
  • the power leakage among the four OAM values is further shown in Table 1 below:
  • OSNR optical signal-to-noise ratio

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

Methods, systems, and devices for data encoding and channel hopping. The system includes a signal source for providing a signal. The system includes an optical switch having an input port and multiple output paths. The optical switch is configured to receive, at the input port, the signal. The optical switch is configured to route the signal to an output path of the multiple output paths. The system includes a mode converter that is connected to the optical switch and configured to select an orbital angular momentum (OAM) mode. The mode converter is configured to encode or channel hop the signal using the OAM mode and combine the signal from each output path. The system includes a transmitter configured to propagate the signal.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims priority to and the benefit of U.S. Provisional Patent Application No. 62/432,484 titled “DATA HOPPING AND CHANNEL HOPPING USING ORBITAL ANGULAR MOMENTUM MODES,” filed on Dec. 9, 2016, and the entirety of which is hereby incorporated by reference herein.
BACKGROUND 1. Field
This specification relates to a system, device and/or a method for data encoding and channel hopping.
2. Description of the Related Art
Free-space optical communication plays a significant role in line-of-sight links. The data in these links can be encoded on the amplitude, phase or temporal position of the optical wave. For example, typical systems may use on-off keying to represent the presence or absence of a carrier wave. In certain environments, more information may be desired for a given amount of optical energy, which requires more degrees-of-freedom for the wave to occupy. This provides for a higher energy efficiency for a given capacity.
Traditionally, free-space optical links have used only a single beam. The use of a single beam allows little opportunity for a wave to occupy more than one spatial location, and thus, does not allow for the use of the spatial domain for encoding. Recently, space- and mode-multiplexing has been demonstrated to transmit multiple data-carrying free-space beams. The spatially overlapping mode may be orthogonal to other modes and carry a unique amount of orbital-angular momentum (OAM). The performance of these OAM-based data encoding schemes have been limited in performance to kHz data rates and have been limited in the amount of information that is conveyed within a set amount of energy.
Accordingly, there is a need for a system and a method to improve or increase the amount of information that is conveyed within the set amount of energy and improve or increase the data rates for the communications so that more information is conveyed for the set of energy to improve and increase the overall data transfer.
SUMMARY
In general, one aspect of the subject matter described in this specification is embodied in a system for data encoding or channel hopping. The system includes a signal source for providing a signal. The system includes an optical switch having an input port and multiple output paths. The optical switch is configured to receive, at the input port, the signal. The optical switch is configured to route the signal to an output path of the multiple output paths. The system includes a mode converter. The mode converter is connected to the optical switch and configured to select an orbital angular momentum (OAM) mode. The mode converter is configured to encode or channel hop the signal using the OAM mode and combine the signal from each output path. The system includes a transmitter configured to propagate the signal.
These and other embodiments may optionally include one or more of the following features. The signal may be a beam of continuous wave (CW) laser light or a quadrature phase-shift keying (QPSK) signal. The signal source may be configured to transmit the beam of CW laser light to the optical switch when encoding data or transmit the QPSK signal to the optical switch when channel hopping.
The mode converter may include a first spatial light modulator (SLM) having a spiral phase hologram that is configured to convert or set the signal into a single OAM mode. The mode converter may include a beam splitter that is configured to combine the signal from each output path.
The system may include a free-space collimator that narrows the beam of CW laser light from the output path. The system may include a receiver that is configured to receive the combined signal. The system may include a second SLM that is configured to decouple the combined signal and convert each signal of the combined signal into a Gaussian beam. The system may include a single-mode optical fiber that is configured to send the Gaussian beam to a processor for signal detection and data recovery. The optical switch may be formed from multiple optical switches that are cascaded together. The OAM more for each signal of each output path may be different.
In another aspect, the subject matter is embodied in a method for data encoding or channel hopping. The method includes receiving, by a data modulator, a signal being a beam of CW laser light, when data encoding, or a QPSK signal, when channel hopping. The method includes converting the signal using a respective OAM mode of multiple OAM modes. The method includes transmitting or propagating the converted signal.
In another aspect, the subject matter is embodied in a system for data encoding or channel hopping. The system includes a signal source for providing a signal. The system includes an optical switch configured to receive the signal. The system includes a first SLM that has a spiral phase hologram that is configured to convert or set the signal into an OAM mode. The system includes multiple beam splitters that are connected to the first SLM. The multiple beam splitters are configured to combine the signal and propagate the combined signal over-the-air. The system includes a receiver that is configured to receive the combined signal and a second SLM to decouple the combined signal.
BRIEF DESCRIPTION OF THE DRAWINGS
Other systems, methods, features, and advantages of the present invention will be or will become apparent to one of ordinary skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features, and advantages be included within this description, be within the scope of the present invention, and be protected by the accompanying claims. Component parts shown in the drawings are not necessarily to scale, and may be exaggerated to better illustrate the important features of the present invention. In the drawings, like reference numerals designate like parts throughout the different views, wherein:
FIG. 1A shows an example data encoding and channel hopping system that utilizes Orbital-Angular Momentum (OAM) modes to data encode and/or channel hop according to an aspect of the invention.
FIG. 1B shows a transmitter of the data encoding and channel hopping system of FIG. 1A according to an aspect of the invention.
FIG. 1C shows a receiver of the data encoding and channel hopping system of FIG. 1A according to an aspect of the invention.
FIG. 2 is an example process of transmitting a data encoded and/or a channel hopped signal using the data encoding and hopping system of FIG. 1 according to an aspect of the invention.
FIG. 3A shows the data encoding and channel hopping system of FIG. 1A performing data encoding using OAM modes according to an aspect of the invention.
FIG. 3B shows the data encoding and channel hopping system of FIG. 1A performing channel hopping using OAM modes according to an aspect of the invention.
FIG. 4 is an example process of receiving a data encoded signal and/or a channel hopped signal using the encoding and hopping system of FIG. 1 according to an aspect of the invention.
FIGS. 5A-5B shows the intensity profiles and interferograms, respectively, of four different OAM beams with a mode spacing of Δ=2 according to an aspect of the invention.
FIGS. 6A-6D show a symbol period of a received signal for a channel of an OAM mode at different hopping rates according to an aspect of the invention.
FIG. 7 shows a graphical illustration of the bit error rate for an OAM value when using mode sets with different mode spacing according to an aspect of the invention.
FIG. 8 shows a graphical illustration of the bit error rate when channel hopping at different rates according to an aspect of the invention.
DETAILED DESCRIPTION
Disclosed herein are systems, devices and methods for data encoding and/or channel hopping using Orbital-Angular-Momentum (OAM) modes. A data encoding and/or channel hopping system (hereinafter, “encoding and hopping system”) using OAM modes to encode data and/or channel hop allows a beam to occupy one of many modes. With additional modes, the beam provides additional possible states and additional capacity to convey information while using the same amount of energy to communicate the information. An encoding and hopping system that uses OAM modes is able to encode data across several modes, which is accomplished using a fast switch. This increases the speed and efficiency of data encoding. The encoding and hopping system also achieves low bit error rates at high data rate speeds that are orders-of-magnitude faster than previous communication data rates achieved.
The OAM modes provide a large number of discrete states, which may be used for data encoding in the spatial domain. The large number of discrete states allow the encoding and hopping system to encode a higher amount of data for a fixed amount of optical power since there are a greater number of possible states for the optical wave to occupy in a single symbol. This increases the amount of information per unit time for a fixed amount of optical power. Since there are more degrees-of-freedom, the optical wave can occupy and be encoded with more information and at a higher energy efficiency for a given capacity for either classical or quantum communication.
Other benefits and advantages include the encoding and hopping system utilizing space-division-multiplexing (SDM) which dramatically increases system capacity. The encoding and hopping system multiplexes multiple independent data-carrying spatial channels and de-multiplexes the combined signal at the receiver to enhance system performance. Additionally, the use of OAM modes to perform data encoding and/or channel hopping provides additional security due to the availability of multiple states or values that hold the data signal.
FIG. 1A shows an encoding and hopping system 100 that uses OAM modes to data encode and/or channel hop. The encoding and hopping system 100 includes a transmitting device 102 and a receiving device 104. The encoding and hopping system 100 may include a data encoding and detection scheme 142.
The encoding and hopping system 100 includes a transmitting device 102. The transmitting device 102 includes an optical switch 106, an OAM generation module 116 and a transmitter 114. The encoding and hopping system 100 may include a data stream device, e.g., a pseudo-random binary sequence (PRBS) sequencer, and/or a hopping controller 144. The OAM generation module 116 may include a collimator 108, a programmable spatial light modulator (SLM) 110 and/or a beam splitter 112. The transmitting device 102 may include a signal module 118. The OAM generation module 116 may have a mode converter 117 that combines the functions of the collimator 108, SLM 110 and/or beam splitter 112.
The transmitting device 102 may include a signal module 118. The signal module 118 includes a signal source 120 that provides a signal, such as a continuous wave (CW) laser or a data signal, an amplifier 122 and/or a single mode fiber (SMF). The data signal may be a Phase-Shift Keying (PSK) signal that may have any number of phases, such as a Quadrature Phase-Shift Keying (QPSK) signal. The signal source 120 may transmit a single signal to be encoded or channel hopped using a single OAM mode. In some implementations, the signal source 120 may transmit multiple signals to be channel hopped using multiple OAM modes. The amplifier 122 may be an Erbium-Doped Fiber Amplifier (EDFA). The EDFA is a device that amplifies the optical signal. The signal module 118 may have an SMF 124 that carries the optical signal to the optical switch 106. The SMF 124 may delay and/or de-correlate one of the multiple signals if there are multiple signals for channel hopping before providing the signals to the optical switch 106.
The transmitting device 102 includes the optical switch 106. The optical switch 106 may have multiple inputs ports and/or multiple output paths. For example, the optical switch 106 may have 2 input ports 105 a-b and 4 output paths 107 a-d to the OAM generation module 116. The optical switch 106 may operate at a switching rate up to 10 GHz. The multiple input ports are each configured to receive the signal and route the signal to the OAM generation module 116 through the multiple output paths. The optical switch 106 may be formed using one or more optical switches that are cascaded. For example, a 2×4 optical switch may be formed by cascading a 1×2 optical switch and a 2×2 optical switch.
The transmitting device 102 may include a data stream device, such as a PRBS sequencer, or a hopping controller 144. The data stream device selects the OAM mode on which the signal uses to perform data encoding and/or channel hopping. The data stream device and/or hopping controller 144 selects the OAM mode and switches among the different OAM modes within the set of OAM modes.
The transmitting device 102 includes an OAM generation module 116. The OAM generation module 116 may include a collimator 108, one or more spatial light modulators (SLM) 110 and a beam splitter 112. The OAM generation module 116 receives the signal from at least one of the output paths of the optical switch 106. The OAM generation module 116 employs OAM modes to perform data encoding and/or channel hopping of the signal.
For example, a collimator 108 may narrow the signal outputted from at least one of the output paths of the optical switch 106. The collimator 108 may be a free-space collimator with a diameter of 3 mm, which launches the signal onto one or more SLMs 110. The one or more SLMs 110 may convert the signal in each output path into a Gaussian-like beam. A combiner, such as a beam splitter 112, couples each beam outputted by the SLMs 110 for transmission to the receiving device for detection and data recovery.
The transmitting device 102 includes a transmitter 114. The transmitter 114 transmits or sends the combined signal to the receiving device 104 for detection and data recovery. The transmission is sent over-the-air and is secured by the channel hopping and/or data encoding using the OAM modes.
The encoding and hopping system 100 includes a receiving device 104. The receiving device 104 includes a receiver 126, an OAM detection module 140, and a processor 132. The OAM detection module 140 may include a SLM 128 and a SMF 130.
The receiving device 104 includes the receiver 126 that receives the combined signal from the transmitter 114. The receiver 126 provides the received signal to the OAM detection module 140 for demodulation.
The receiving device 104 has an OAM detection module 140. The OAM detection module 140 detects and extracts the modulated signal for each OAM value. The OAM detection module 140 separates the modulated signal for each OAM value and converts the modulated signal into a Gaussian-like beam for each OAM value. For example, the SLM 128 may separate the modulated signal from the combined signal and convert the modulated signal into the Gaussian-like beam for each OAM value. The Gaussian-like beams are coupled, using a SMF 130, for data detection and recovery, by a processor 132, for example.
The receiving device 104 includes a processor 132. The processor 132 performs the detection and data recovery of the signal. The processor 132 identifies the transmitted OAM mode for each symbol period in each beam and recovers the bit information using a mapping relationship between the bit information and OAM mode values. For channel hopping, the data stream of each channel may be recovered sequentially. The processor 132 may record the channels for each beam for offline digital signal processing.
The encoding and hopping system 100 may include a data encoding and detection scheme 142. The encoding and hopping system 100 may use the data encoding and detection scheme 142 for offline processing of the recovered data from the beams. The data encoding and detection scheme 142 may include one or more photodiodes 134, one or more analog-to-digital converters (ADC) 136 and a digital signal processor (DSP) 138. The one or more photodiodes 134 convert the light to an electrical current, which the ADC 136 converts to a digital signal that the DSP 138 processes. In some implementations, the encoded data and/or channel hopped data is provided to an electronic device that displays or otherwise utilizes or interprets the data.
FIG. 2 is a flow diagram of a process 200 for transmitting a data encoded or channel hopped signal. The encoding and hopping system 100, for example, may implement the process 200 to perform data encoding and/or channel hopping using OAM modes. By performing data encoding and/or channel hopping using OAM modes, the encoding and hopping system 100 enhances the amount of information that may be transmitted per amount of energy and enhance the security of the transmission.
The encoding and hopping system 100 may generate and amplify a signal prior to OAM generation (202). The signal may be a CW light or a PSK signal, such as a QPSK signal. The encoding and hopping system 100 may generate the signal using a signal source, such as a CW laser or a transmitter, and amplify the signal using an amplifier.
When performing channel hopping, the signal source may generate multiple signals to be channel hopped. In some implementations, the encoding and hopping system 100 may split the signal into multiple signals, e.g., when performing experimentation. The encoding and hopping system 100 may delay one or more of the multiple signals to synchronize the multiple signals prior to OAM generation and/or for de-correlation.
An optical switch 106 of the encoding and hopping system 100 obtains the signal from the signal source (204). The optical switch 106 may have multiple input ports. When data encoding and/or channel hopping, the optical switch 106 receives the signal at one of the input ports. When channel hopping, the optical switch 106 may receive another signal at another input port.
The optical switch 106 routes the one or more signals along one or more output paths for OAM generation (206). The optical switch 106 may provide the one or more signals to the OAM generation module for data encoding and/or channel hopping in response to receiving the signal. For data encoding, the data stream device switches the OAM mode so that the signal is loaded onto a single OAM mode for a single symbol time period, as shown in FIG. 3A, for example. The data stream device then rotates, switches or selects another OAM mode so that the signal is loaded onto another OAM mode for a subsequent symbol time period. Thus, the bit information is mapped or loaded onto different OAM modes in different symbol time periods. For channel hopping, the hopping controller may select one or more OAM modes to use when loading the bit information onto the phase and amplitude of one or more signals.
The encoding and hopping system 100 may determine whether to perform data encoding or channel hopping (208). The encoding and hopping system 100 may determine the mode based on the type of signal that the optical switch 106 receives. For example, the optical switch 106 may detect or identify that the signal is a CW light and set the OAM generation module 116 to perform data encoding or the optical switch 106 may detect or identify that the signal as a data signal, such as a PSK signal, and set the OAM generation module 116 to perform channel hopping. In some implementations, the encoding and hopping system 100 may determine whether to perform data encoding and/or channel hopping based on a user input or configuration that identifies whether the encoding and channel hopping system 100 is to perform data encoding or channel hopping.
The OAM generation module 116 receives the signal from the optical switch 106. For data encoding, the encoding and hopping system 100 modulates the signal using OAM modes (210). The encoding and hopping system 100 encodes bits of information on the signal and converts the signal into one of the modes of the OAM modes, N, e.g., in the set of OAM modes {l1, l2, l3, and l4} for each symbol period, T, as shown in FIG. 3A, for example. The encoding and hopping system 100 switches or selects among the different OAM modes and loads the bit information onto different OAM modes for each symbol period using the data stream device. The amount of bit information that is loaded may be represented by the following: Number of bits information/Symbol Time=log2 (Number of Possible States).
For channel hopping, the encoding and hopping system 100 uses the hopping controller 144 to select and use an OAM mode to place the bit information onto the signal, such as the QPSK signal, as shown in FIG. 3B, for example (212). This enhances the security of the communication. The encoding and hopping system 100 may use another OAM mode and place other bit information on a second signal. The OAM value and time duration depends on a controller signal that is sent by the hopping controller 144. The encoding and hopping system 100 includes a guard time during the channel hopping. The encoding and hopping system 100 places the bit information onto the phase and amplitude of the signal and uses the different OAM modes to further secure the transmission of the signal since the OAM mode switches as the bit information is loaded onto the signal.
The encoding and hopping system 100 may narrow the signal, e.g., using a free-space collimator, and launch the signal onto an SLM to convert the signal using the OAM mode. The encoding and hopping system 100 may use an SLM or mode converter to convert the signal using the OAM mode (214). Each SLM may be loaded with a specific spiral phase hologram which converts the signal into a desired OAM value in the set of OAM modes, e.g., in the set of OAM modes {l1, l2, l3, and l4}. FIG. 5A shows the intensity profiles and FIG. 5B shows the interferograms of the different OAM beams l=−3, −1, +1, and +3 with a mode space of Δ=2 in an experimental setup where the optical switch operates at 10 GHz. The interferograms are obtained from interfering OAM beams with an expanded Gaussian beam. The rotating arms in the interferograms confirm the OAM value of each beam.
The encoding and hopping system 100 may combine the one or more signals on the different output paths using a combiner, such as a beam splitter 112 or other mode converter/combiner (215). The combiner provides the combined signal to the transmitter 114. That is, the combiner sequences all the beams from all the different channels across all the symbol time periods when data encoding and/or overlaps and forms a single signal from the one or more signals when channel hopping. The encoding and hopping system 100 transmits the combined signal across free-space (216).
FIG. 4 is a flow diagram of a process 400 for receiving a data encoded or channel hopped signal. The encoding and hopping system 100, for example, may implement the process 400 to perform data encoding and/or channel hopping using OAM modes.
The encoding and hopping system 100 receives a combined signal that has been data encoded and/or channel hopped (402). The combined signal may have multiple OAM values that are decoupled. The receiver 126 provides the combined signal to an OAM detection module 140 where the combined signal is demodulated or converted into a Gaussian-like beam.
The encoding and hopping system 100 decouples, extracts or separates the multiple OAM values from the combined signal at the detection module 140 (404). The encoding and hopping system 100 may decouple, extract or separate the multiple OAM values using the SLM 128. For channel hopping, the encoding and hopping system 100 may de-multiplex the combined signal into separate signals. The encoding and hopping system 100 converts each of the multiple OAM values into a Gaussian-like beam using the SLM, for example (406).
The encoding and hopping system 100 couples the Gaussian-like beams, for example, using an SMF 130 to provide to a processor 132 to perform signal detection and recovery (408). During signal detection and recovery, the encoding and hopping system 100 detects and/or records the signal for offline processing (410). The information encoded and/or obscured by the channel hopping may be used by another electronic device or analyzed. The processor 132 identifies the transmitted OAM mode for each symbol period. The processor 132 calculates the power of each of the extracted or decoupled beams and determines the bit information using a mapping relationship to identify the transmitted OAM for each symbol period. For channel hopping, the encoding and hopping system 100 may use a PSK coherent receiver, such as a 100 Gbit/s QPSK coherent receiver, to recover the data stream for each beam sequentially.
The encoding and hopping system 100 may perform offline processing, such as offline digital signal processing, to recover the data from the beams (412). The encoding and hopping system 100 may convert the signal from an analog to a digital signal to input into a digital signal processor to analyze. The encoding and hopping system 100 may use one or more photodiodes to convert the light into an electrical current and use an analog-to-digital (ADC) converter to convert the electrical current into a digital signal that is provided to a digital signal processor for analysis and/or a device for use.
Offline processing may include analyzing waveforms within the channels and measuring bit error rate at different mode spacing and frequencies. For example, in an experimental setup demonstrating channel hopping, where the signal source is a 100 Gbit/s QPSK signal and the signal hops between four OAM modes, FIGS. 6A-6B show a period of the waveform received for the OAM value l3=+1 at hopping rates of 10 and 50 MHz, respectively, when using the mode set {l1=−3, l2=−1, l3=+1, and l4=+3}. FIGS. 6C-6D show the recovered constellations of the signal during the effective data period and the switching transition time at the 50 MHz hopping rate, respectively. The QPSK constellation in FIG. 6D is blurred in comparison to the QPSK constellation in FIG. 6C due to power leakage or and/or crosstalk when hopping to another mode. The power leakage among the four OAM values is further shown in Table 1 below:
TABLE 1
Power Transfer between 4 OAM channels under
mode spacing of Δ = 2.
l = +1 l = +3 l = −3 l = −1
dBm Ch 1 Ch 2 Ch 3 Ch 4
l = ±1 and ±3 Ch 1 −7.19 −31.8 −39.6 −26.9
with mode Ch 2 −25.3 −7.0 −52.9 −37.1
spacing Δ = 2 Ch 3 −44.5 −45.3 −7.5 −28.2
Ch 4 −35.4 −26.4 −31.0 −7.51
In another example, using the same experimental setup, FIG. 7 shows the measured bit error rate as a function of the optical signal-to-noise ratio (OSNR) for the OAM value l3=+1 at different mode spacing of Δ=1, 2 and 3, respectively. The measured bit error rate curves at different hopping rates of 1, 10 and 50 MHz using the mode set {l1=−3, l2=−1, l3=+1, and l4=+3} which is shown in FIG. 8, for example.
Where used throughout the specification and the claims, “at least one of A or B” includes “A” only, “B” only, or “A and B.” Exemplary embodiments of the methods/systems have been disclosed in an illustrative style. Accordingly, the terminology employed throughout should be read in a non-limiting manner. Although minor modifications to the teachings herein will occur to those well versed in the art, it shall be understood that what is intended to be circumscribed within the scope of the patent warranted hereon are all such embodiments that reasonably fall within the scope of the advancement to the art hereby contributed, and that that scope shall not be restricted, except in light of the appended claims and their equivalents.

Claims (18)

What is claimed is:
1. A system for data encoding or channel hopping, comprising:
a signal source configured to provide a signal;
a data stream device configured to select or switch orbital angular momentum (OAM) modes when data encoding or a hopping controller configured to select or switch the OAM modes when channel hopping;
a mode converter configured to perform data encoding or channel hopping;
an optical switch coupled to the mode converter and one of the data stream device or the channel hopper, and having an input port and a plurality of output paths, the optical switch being configured to:
receive, at the input port, the signal,
route the signal to an output path of the plurality of output paths,
determine whether the signal is a continuous wave (CW) light or a data signal,
set the mode converter to perform data encoding when the signal is the continuous wave (CW) light, and
set the mode converter to perform channel hopping when the signal is the data signal;
wherein the mode converter is further configured to:
modulate the signal received from the optical switch when data encoding using a first OAM mode during a first symbol time period and using a second OAM mode during a second symbol time period, and
place bits of information on a phase and amplitude of the signal received from the optical switch when channel hopping,
using the first OAM mode during the first symbol time period and using the second OAM mode during the second symbol time period; and
a transmitter configured to propagate the signal.
2. The system of claim 1, wherein the CW light is a beam of continuous wave laser light or the data signal is a quadrature phase-shift keying (QPSK) signal.
3. The system of claim 2, wherein to provide the signal the signal source is configured to:
transmit the of CW light to the optical switch when data encoding, or
transmit the QPSK signal to the optical switch when channel hopping.
4. The system of claim 1, wherein the mode converter includes a first spatial light modulator (SLM) having a spiral phase hologram that is configured to convert or set the signal into the first OAM mode or the second OAM mode.
5. The system of claim 4, wherein the mode converter includes a beam splitter that is configured to sequence the signal from the first SLM across the first symbol time period and the second symbol time period.
6. The system of claim 5, further comprising:
a free-space collimator coupled between the optical switch and the first SLM that narrows the signal outputted from the optical switch on the output path.
7. The system of claim 1, wherein the optical switch is formed from a plurality of optical switches that are cascaded together.
8. The system of claim 1, wherein the data stream device or the hopping controller switches or selects the first OAM mode during the first symbol time period and the second OAM mode during the second symbol time period, wherein the second symbol time period is subsequent to the first symbol time period.
9. The system of claim 1, wherein to modulate the signal received from the optical switch bits of information are loaded onto the signal and the signal is converted into the first OAM mode during the first symbol time period and the second OAM mode during the second symbol time period.
10. A method for data encoding or channel hopping, comprising:
receiving, by an optical switch, a signal that is a beam of continuous wave (CW) laser light, when data encoding, or a quadrature phase-shift keying (QPSK) signal, when channel hopping;
determining, by the optical switch, whether the signal is the beam of CW laser light or the QPSK signal;
setting, by the optical switch, a mode converter to perform data encoding when the signal is the beam of CW laser light;
setting, by the optical switch, the mode converter to perform channel hopping when the signal is the QPSK signal;
routing the signal to an output path to form an orbital angular momentum mode (OAM);
selecting a first orbital angular momentum mode during a first symbol time period and a second OAM mode during a second symbol time period;
modulating, using the mode converter, the signal when data encoding;
placing, using the mode converter, bits of information on a phase and amplitude of the signal when channel hopping;
converting or setting, using the mode converter, the signal into the first OAM mode during the first symbol time period and into the second OAM mode during the second symbol time period; and
transmitting or propagating the converted or set signal.
11. The method of claim 10, further comprising:
when channel hopping, splitting the signal into at least two signals and delaying one of the at least two signals for de-correlation.
12. The method of claim 10, wherein the mode converter includes a first spatial light modulator (SLM) having a spiral phase hologram, wherein converting or setting the signal into the first OAM mode includes converting the signal onto the first OAM mode for the first symbol period using the first spatial light modulator (SLM) having the spiral phase hologram to convert or set the signal.
13. A system for data encoding or channel hopping, comprising:
a signal source for providing a signal;
a data stream device or a hopping controller;
a spatial light modulator (SLM) having a spiral phase hologram configured to perform data encoding or channel hopping;
an optical switch coupled to the SLM and one of the data stream device or the hopping controller, and configured to:
receive the signal,
determine whether the signal is a continuous wave (CW) light or a data signal,
set the SLM to perform data encoding when the signal is the continuous wave (CW) light,
set the SLM to perform channel hopping when the signal is the data signal, and route the signal to an output path of a plurality output paths;
wherein the SLM having the spiral phase hologram is further configured to:
modulate the signal from the optical switch when data encoding,
place bits of information on a phase and amplitude of the signal received from the optical switch when channel hopping, and
convert or set the signal using a first orbital angular momentum (OAM) mode during a first symbol time period and using a second OAM mode during a second symbol time period;
a beam splitter that is connected to the SLM and configured to combine signals on the plurality of output paths and propagate the combined signal over-the-air;
a receiver that is configured to receive the combined signal; and
a second SLM to decouple the combined signal.
14. The system of claim 13, further comprising a processor that is configured to perform data detection and recovery from the decoupled signal.
15. The system of claim 13, wherein the data stream device is configured to select the first OAM mode during the first symbol time period and the second OAM mode during the second symbol time period from among a plurality of OAM modes for data encoding or channel hopping.
16. The system of claim 13, wherein the optical switch is formed from a plurality of optical switches that are cascaded together, wherein the signals on the plurality of output paths have different OAM modes.
17. The system of claim 13, further comprising a transmitter that is configured to propagate the combined signal to the receiver.
18. The system of claim 13, wherein converting or setting the signal using the first OAM mode during the first symbol time period and using the second OAM mode during the second symbol time period includes switching from the first OAM mode to the second OAM mode to secure transmission of the signal.
US15/838,120 2016-12-09 2017-12-11 Data encoding and channel hopping using orbital angular momentum modes Active US10750257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/838,120 US10750257B2 (en) 2016-12-09 2017-12-11 Data encoding and channel hopping using orbital angular momentum modes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662432484P 2016-12-09 2016-12-09
US15/838,120 US10750257B2 (en) 2016-12-09 2017-12-11 Data encoding and channel hopping using orbital angular momentum modes

Publications (2)

Publication Number Publication Date
US20180167703A1 US20180167703A1 (en) 2018-06-14
US10750257B2 true US10750257B2 (en) 2020-08-18

Family

ID=62490426

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/838,120 Active US10750257B2 (en) 2016-12-09 2017-12-11 Data encoding and channel hopping using orbital angular momentum modes

Country Status (1)

Country Link
US (1) US10750257B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10891555B2 (en) * 2018-08-07 2021-01-12 Nxgen Partners Ip, Llc Universal quantum computer, communication, QKD security and quantum networks using OAM Qu-dits with digital light processing
US10726353B2 (en) 2015-08-03 2020-07-28 Nxgen Partners Ip, Llc Quantum mechanical framework for interaction of OAM with matter and applications in solid states, biosciences and quantum computing
US10432307B2 (en) * 2017-07-27 2019-10-01 Nec Corporation Free-space optical communication using Hermite-Gaussian modes
CN112235019B (en) * 2020-09-28 2023-08-01 西安理工大学 A wireless encrypted green transmission system based on vortex electromagnetic wave technology
CN112564792A (en) * 2020-12-01 2021-03-26 中国科学院半导体研究所 Free space optical communication safety system
CN112910551B (en) * 2021-01-21 2022-03-11 淮阴工学院 Multi-channel orbital angular momentum coding and decoding method based on hologram
TWI762299B (en) * 2021-05-03 2022-04-21 國立臺灣科技大學 Asymmetric bidirectional optical wireless communication system based on orbital angular momentum
CN113411126B (en) * 2021-06-12 2022-05-20 中国人民解放军国防科技大学 An Anti-Atmospheric Turbulence Method for Wireless Optical Communication Based on OAM Mode Hopping
CN113411127A (en) * 2021-06-24 2021-09-17 中国科学院半导体研究所 Optical frequency hopping communication system based on OAM multiplexing
US12261686B2 (en) * 2022-03-03 2025-03-25 Nec Corporation Control apparatus, OAM mode-multiplexing transmitting apparatus, OAM mode-multiplexing receiving apparatus, control method, and non-transitory computer readable medium
WO2024011637A1 (en) * 2022-07-15 2024-01-18 北京小米移动软件有限公司 Orbital angular momentum oam mode switching method and apparatus, device and storage medium

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050259914A1 (en) * 2002-05-30 2005-11-24 The University Court Of The University Of Glasgow Photonic switch working in momentum-division-multiple-access (mdma) mode for microwave and optical wavelengths based upon the measurement of the spin, the orbital angular momentum and the total angular momentum of the involved photo
US20130223351A1 (en) * 2012-02-23 2013-08-29 George H. Flammer, III System and method for multi-channel frequency hopping spread spectrum communication
US20130235744A1 (en) * 2012-03-11 2013-09-12 Broadcom Corporation Communication system using orbital angular momentum
US20150200704A1 (en) * 2014-01-10 2015-07-16 Raytheon Company Mode hopping spread spectrum modulation
US20150349910A1 (en) * 2014-03-19 2015-12-03 University Of Southern California Systems and Techniques for Orbital Angular Momentum Based Reconfigurable Switching
US20160094305A1 (en) * 2014-09-30 2016-03-31 Fujitsu Limited Optical transmission apparatus and optical transmission system
US20160198954A1 (en) * 2015-01-08 2016-07-14 Nec Laboratories America, Inc. Method and apparatus for photoacoustic tomography using optical orbital angular momentum (oam)
US20160202283A1 (en) * 2015-01-08 2016-07-14 Nec Laboratories America, Inc. Remote Wind Turbulence Sensing
US20160212510A1 (en) * 2013-08-21 2016-07-21 Telefonaktiebolaget L M Erisson (Publ) Optical Switching
US20160254897A1 (en) * 2013-11-05 2016-09-01 Eutelsat S A System for transmitting and receiving radio frequency signals carrying complex harmonic modes
US20170012732A1 (en) * 2015-07-07 2017-01-12 Raytheon Company Methods and apparatus for orbital angular momentum (oam) system
US20170026095A1 (en) * 2014-10-13 2017-01-26 Nxgen Partners Ip, Llc System and method for combining mimo and mode-division multiplexing
US20170126460A1 (en) * 2014-06-10 2017-05-04 Eutelsat S A Radio communications system and method with increased transmission capacity based on frequency twisted waves
US20170187442A1 (en) * 2015-03-16 2017-06-29 Lockheed Martin Corporation Apparatus and method for increased data rates in underwater communications using orbital angular momentum
US20170201324A1 (en) * 2014-09-28 2017-07-13 Huawei Technologies Co., Ltd. Optical switching apparatus, optical cross-connect node, and optical signal switching method
US20170353265A1 (en) * 2016-06-02 2017-12-07 Mohammad Mehdi Mansouri Rad Spatial Mode Multiplexer With Optical Reference Path
US20190020434A1 (en) * 2016-01-20 2019-01-17 Panasonic Intellectual Property Management Co. Ltd. Transmission device, reception device, and communication method

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050259914A1 (en) * 2002-05-30 2005-11-24 The University Court Of The University Of Glasgow Photonic switch working in momentum-division-multiple-access (mdma) mode for microwave and optical wavelengths based upon the measurement of the spin, the orbital angular momentum and the total angular momentum of the involved photo
US20130223351A1 (en) * 2012-02-23 2013-08-29 George H. Flammer, III System and method for multi-channel frequency hopping spread spectrum communication
US20130235744A1 (en) * 2012-03-11 2013-09-12 Broadcom Corporation Communication system using orbital angular momentum
US20160212510A1 (en) * 2013-08-21 2016-07-21 Telefonaktiebolaget L M Erisson (Publ) Optical Switching
US20160277173A1 (en) * 2013-11-05 2016-09-22 Eutelsat S A Radio communications system and method based on time twisted waves
US20160254897A1 (en) * 2013-11-05 2016-09-01 Eutelsat S A System for transmitting and receiving radio frequency signals carrying complex harmonic modes
US20150200704A1 (en) * 2014-01-10 2015-07-16 Raytheon Company Mode hopping spread spectrum modulation
US20150349910A1 (en) * 2014-03-19 2015-12-03 University Of Southern California Systems and Techniques for Orbital Angular Momentum Based Reconfigurable Switching
US20170126460A1 (en) * 2014-06-10 2017-05-04 Eutelsat S A Radio communications system and method with increased transmission capacity based on frequency twisted waves
US20170201324A1 (en) * 2014-09-28 2017-07-13 Huawei Technologies Co., Ltd. Optical switching apparatus, optical cross-connect node, and optical signal switching method
US20160094305A1 (en) * 2014-09-30 2016-03-31 Fujitsu Limited Optical transmission apparatus and optical transmission system
US20170026095A1 (en) * 2014-10-13 2017-01-26 Nxgen Partners Ip, Llc System and method for combining mimo and mode-division multiplexing
US20160202283A1 (en) * 2015-01-08 2016-07-14 Nec Laboratories America, Inc. Remote Wind Turbulence Sensing
US20160198954A1 (en) * 2015-01-08 2016-07-14 Nec Laboratories America, Inc. Method and apparatus for photoacoustic tomography using optical orbital angular momentum (oam)
US20170187442A1 (en) * 2015-03-16 2017-06-29 Lockheed Martin Corporation Apparatus and method for increased data rates in underwater communications using orbital angular momentum
US20170012732A1 (en) * 2015-07-07 2017-01-12 Raytheon Company Methods and apparatus for orbital angular momentum (oam) system
US20190020434A1 (en) * 2016-01-20 2019-01-17 Panasonic Intellectual Property Management Co. Ltd. Transmission device, reception device, and communication method
US20170353265A1 (en) * 2016-06-02 2017-12-07 Mohammad Mehdi Mansouri Rad Spatial Mode Multiplexer With Optical Reference Path

Also Published As

Publication number Publication date
US20180167703A1 (en) 2018-06-14

Similar Documents

Publication Publication Date Title
US10750257B2 (en) Data encoding and channel hopping using orbital angular momentum modes
Yousif et al. Atmospheric turbulence mitigation using spatial mode multiplexing and modified pulse position modulation in hybrid RF/FSO orbital-angular-momentum multiplexed based on MIMO wireless communications system
Kikuchi Phase-diversity homodyne detection of multilevel optical modulation with digital carrier phase estimation
Tsukamoto et al. Coherent demodulation of 40-Gbit/s polarization-multiplexed QPSK signals with 16-GHz spacing after 200-km transmission
US9100085B2 (en) High speed multi-mode fiber transmissions via orthogonal wavefronts
US7167651B2 (en) System and method for code division multiplexed optical communication
US10404378B2 (en) Optical communication system
US9729229B2 (en) Optical spatial-division multiplexed transmission system and transmission method
JP5437858B2 (en) Optical transmission system
JP2009509366A (en) Quantum key distribution method and system on multi-user WDM network using wavelength routing
WO2013039968A1 (en) Performance enhancement through optical variants
JP2004511128A (en) System and method for code division multiplexed optical communication
JP2019513314A (en) Original key recovery apparatus and method
Shahpari et al. Coherent ultra dense wavelength division multiplexing passive optical networks
KR20170133245A (en) Method, apparatus and system for code based quantum key distribution
EP3160062A1 (en) Device and system for optical signal detection and demodulation
Karlsson et al. Multidimensional optimized optical modulation formats
US10263724B2 (en) Wavelength-division multiplexing using shared process information
Singh et al. Novel security enhancement technique against eavesdropper for OCDMA system using 2-D modulation format with code switching scheme
Cao et al. Performance analysis of IM, DPSK and DQPSK payload signals with frequency swept coherent detected spectral amplitude code labelling
JP2011019198A (en) Transmission circuit for optical code division multiplexing and reception circuit for optical code division multiplexing
JP5334747B2 (en) Optical code division multiplexing transmission system and optical code division multiplexing transmission method
Ferreira et al. Field-trial of a real-time bidirectional UDWDM-PON coexisting with GPON, RF video overlay and NG-PON2 systems
Aldouri et al. FSO optical system utilizing DPSK advance modulation technique
JP5020999B2 (en) Quantum cryptographic communication device and quantum cryptographic communication method

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

AS Assignment

Owner name: UNIVERSITY OF SOUTHERN CALIFORNIA, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WILLNER, ALAN E.;REN, YONGXIONG;XIE, GUODONG;AND OTHERS;SIGNING DATES FROM 20171207 TO 20171212;REEL/FRAME:044402/0865

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: AWAITING TC RESP, ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 4