TW202246767A - Wafer inspection method capable of simplifying the judgment of the processing state of the wafer - Google Patents
Wafer inspection method capable of simplifying the judgment of the processing state of the wafer Download PDFInfo
- Publication number
- TW202246767A TW202246767A TW111118322A TW111118322A TW202246767A TW 202246767 A TW202246767 A TW 202246767A TW 111118322 A TW111118322 A TW 111118322A TW 111118322 A TW111118322 A TW 111118322A TW 202246767 A TW202246767 A TW 202246767A
- Authority
- TW
- Taiwan
- Prior art keywords
- wafer
- laser beam
- reflected light
- image
- unit
- Prior art date
Links
- 238000012545 processing Methods 0.000 title claims abstract description 121
- 238000000034 method Methods 0.000 title claims abstract description 29
- 238000007689 inspection Methods 0.000 title claims abstract description 21
- 238000003384 imaging method Methods 0.000 claims abstract description 40
- 238000010801 machine learning Methods 0.000 claims abstract description 7
- 238000013528 artificial neural network Methods 0.000 claims description 33
- 230000000149 penetrating effect Effects 0.000 claims description 7
- 238000012800 visualization Methods 0.000 claims description 3
- 235000012431 wafers Nutrition 0.000 description 259
- 239000010410 layer Substances 0.000 description 127
- 238000010586 diagram Methods 0.000 description 14
- 210000002569 neuron Anatomy 0.000 description 14
- 230000003287 optical effect Effects 0.000 description 14
- 238000012360 testing method Methods 0.000 description 11
- 230000006870 function Effects 0.000 description 10
- 230000007246 mechanism Effects 0.000 description 8
- 238000013527 convolutional neural network Methods 0.000 description 7
- 238000007493 shaping process Methods 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 230000004913 activation Effects 0.000 description 5
- 230000001678 irradiating effect Effects 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 239000002313 adhesive film Substances 0.000 description 3
- 238000011176 pooling Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 230000001537 neural effect Effects 0.000 description 2
- 238000010606 normalization Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000012706 support-vector machine Methods 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 241000270295 Serpentes Species 0.000 description 1
- 229910009372 YVO4 Inorganic materials 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 210000004508 polar body Anatomy 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/10—Measuring as part of the manufacturing process
- H01L22/12—Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/50—Working by transmitting the laser beam through or within the workpiece
- B23K26/53—Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/09—Supervised learning
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67092—Apparatus for mechanical treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/20—Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Data Mining & Analysis (AREA)
- Software Systems (AREA)
- Mathematical Physics (AREA)
- Optics & Photonics (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- General Health & Medical Sciences (AREA)
- Evolutionary Computation (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Plasma & Fusion (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Laser Beam Processing (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Dicing (AREA)
- Image Analysis (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
Description
本發明關於一種將在內部形成有改質層之晶圓進行檢查之晶圓的檢查方法。The present invention relates to a wafer inspection method for inspecting a wafer with a modified layer formed inside.
在元件晶片的製程中,使用在藉由排列成網格狀之多條分割預定線(切割道)所劃分之多個區域分別形成有元件之晶圓。藉由將此晶圓沿著分割預定線進行分割,而獲得分別具備元件之多個元件晶片。元件晶片組裝於行動電話、個人電腦等各種電子設備。In the manufacturing process of device wafers, a wafer in which devices are respectively formed in a plurality of regions divided by a plurality of dividing lines (dicing lines) arranged in a grid pattern is used. By dividing this wafer along planned dividing lines, a plurality of element wafers respectively provided with elements are obtained. Component chips are assembled in various electronic devices such as mobile phones and personal computers.
在晶圓的分割中,使用以環狀的切割刀片將晶圓進行切割之切割裝置。另一方面,近年來,亦正進行藉由雷射加工而分割晶圓之程序的開發。例如在專利文獻1,揭露有一種使晶圓的內部改質(變質)之手法,其使對於晶圓具有穿透性之雷射光束聚光在晶圓的內部。若利用此手法,則在晶圓的內部沿著分割預定線形成有改質層(變質層),且裂痕(龜裂)從改質層朝向晶圓的正面側伸展。Wafer dicing uses a dicing device that dices the wafer with a ring-shaped dicing blade. On the other hand, in recent years, the development of a program for dividing a wafer by laser processing is also progressing. For example, Patent Document 1 discloses a method of modifying (modifying) the inside of a wafer, which focuses a laser beam penetrating the wafer inside the wafer. According to this method, a modified layer (modified layer) is formed inside the wafer along the planned division line, and cracks (cracks) extend from the modified layer toward the front side of the wafer.
晶圓的形成有改質層或裂痕之區域較其他區域脆弱。因此,若對晶圓施加外力,則晶圓會沿著形成有改質層或裂痕之區域斷裂,並沿著分割預定線被分割。亦即,改質層及裂痕發揮作為分割起點(分割的契機)之功能。The area of the wafer formed with modified layers or cracks is more fragile than other areas. Therefore, when an external force is applied to the wafer, the wafer is broken along the region where the modified layer or the crack is formed, and is divided along the planned dividing line. That is, the reformed layer and the crack function as a starting point for division (a trigger for division).
此外,在形成改質層之際,若裂痕未從改質層朝向晶圓的正面適當地伸展,則之後即使對晶圓施加外力,晶圓亦無法如同期望地被分割,會有產生加工不良之疑慮。因此,在形成改質層後,有時會實施確認裂痕是否適當地形成於晶圓的內部之檢查。In addition, when the modified layer is formed, if the cracks do not properly extend from the modified layer toward the front side of the wafer, even if an external force is applied to the wafer afterwards, the wafer cannot be divided as expected, and processing defects may occur. doubts. Therefore, after the modified layer is formed, an inspection may be performed to confirm whether cracks are properly formed inside the wafer.
例如,在專利文獻2揭露一種手法,其一邊從形成有改質層之晶圓的背面側照射觀察用的雷射光束,一邊以攝像單元拍攝雷射光束的反射光,藉此取得雷射光束的反射光的影像(反射光影像)。已射入晶圓之雷射光束會因形成於晶圓的內部之裂痕而受影響。因此,藉由觀察反射光影像所顯現之反射光的圖案,可判定裂痕是否適當地形成於晶圓的內部。
[習知技術文獻]
[專利文獻]
For example,
[專利文獻1]日本特開2005-86161號公報 [專利文獻2]日本特開2020-68316號公報 [Patent Document 1] Japanese Patent Laid-Open No. 2005-86161 [Patent Document 2] Japanese Patent Laid-Open No. 2020-68316
[發明所欲解決的課題] 如上述,晶圓的加工狀態可基於照射於晶圓之觀察用的雷射光束的反射光的影像(反射光影像)而判定。然而,依據雷射光束的照射條件、拍攝條件、晶圓的狀態等各種要因,在反射光影像所顯現之反射光的像會產生形狀、濃淡的偏差。因此,為了適當地判定晶圓的加工狀態,變得需要備齊拍攝雷射光束的反射光之際的條件之作業、因應反射光影像而變更用於判定晶圓的加工狀態的影像處理的設定之作業等,晶圓的檢查會變得繁雜。 [Problems to be Solved by the Invention] As described above, the processing state of the wafer can be determined based on the reflected light image (reflected light image) of the observation laser beam irradiated on the wafer. However, depending on various factors such as the irradiation conditions of the laser beam, the imaging conditions, and the state of the wafer, the reflected light image displayed in the reflected light image will have deviations in shape and shade. Therefore, in order to properly determine the processing state of the wafer, it is necessary to prepare the conditions for capturing the reflected light of the laser beam, and to change the setting of the image processing for determining the processing state of the wafer according to the reflected light image. The inspection of the wafer will become complicated.
本發明係鑑於此問題而完成者,其目的為提供一種能簡化晶圓的加工狀態的判定之晶圓的檢查方法。The present invention was made in view of this problem, and an object of the present invention is to provide a wafer inspection method that can simplify judgment of the processing state of the wafer.
[解決課題的技術手段] 根據本發明的一態樣,提供一種晶圓的檢查方法,其將在內部沿著分割預定線形成有改質層之晶圓進行檢查,且包含:雷射光束照射步驟,其以輸出未超過該晶圓的加工閾值,且將對於該晶圓具有穿透性之雷射光束的聚光點定位在該晶圓的正面或內部,該晶圓的背面之中照射該雷射光束之區域的形狀以該改質層為基準地成為非對稱之方式,將該雷射光束從該晶圓的背面側進行照射;攝像步驟,其藉由拍攝該雷射光束的反射光,而取得該反射光的影像;以及判定步驟,其基於該影像而判定該晶圓的加工狀態,其中,在該判定步驟中,利用以輸入該影像與輸出該晶圓的加工狀態之方式藉由機械學習所構成之學習完成模型,判定該晶圓的加工狀態。 [Technical means to solve the problem] According to one aspect of the present invention, there is provided a wafer inspection method, which inspects a wafer having a modified layer formed therein along a planned dividing line, and includes: a laser beam irradiation step, which outputs an output not exceeding The processing threshold of the wafer, and the focus point of the laser beam penetrating to the wafer is positioned on the front or inside of the wafer, and the area on the back of the wafer where the laser beam is irradiated irradiating the laser beam from the back side of the wafer in such a manner that the shape becomes asymmetric with respect to the modified layer; an imaging step of obtaining the reflected light by photographing the reflected light of the laser beam an image of the wafer; and a determination step, which determines the processing state of the wafer based on the image, wherein, in the determination step, using the method formed by machine learning by inputting the image and outputting the processing state of the wafer The model is learned and the processing status of the wafer is judged.
此外,較佳為,在該攝像步驟中,一邊使該晶圓及該雷射光束沿著與該分割預定線平行的方向相對地移動,一邊多次拍攝該反射光。並且,較佳為,在該攝像步驟中,一邊使該晶圓及該雷射光束沿著與該分割預定線垂直的方向相對地移動,一邊多次拍攝該反射光。並且,較佳為,在該攝像步驟中,一邊使該雷射光束的聚光點沿著該晶圓的厚度方向相對地移動,一邊多次拍攝該反射光。In addition, it is preferable that in the imaging step, the reflected light is photographed a plurality of times while relatively moving the wafer and the laser beam in a direction parallel to the planned dividing line. Furthermore, it is preferable that in the imaging step, the reflected light is photographed a plurality of times while relatively moving the wafer and the laser beam in a direction perpendicular to the planned division line. In addition, it is preferable that in the imaging step, the reflected light is photographed a plurality of times while relatively moving the focusing point of the laser beam along the thickness direction of the wafer.
並且,較佳為,該學習完成模型係包含輸入層及輸出層之類神經網路,該類神經網路將該影像輸入該輸入層與從該輸出層輸出該晶圓的加工狀態。並且,較佳為,該類神經網路係藉由使用多個學習用影像之監督式學習而學習,該學習用影像包含該反射光的像並依據該晶圓的加工狀態而被分類,該學習用影像被分類成以下的任一者:第一反射光影像,其對應裂痕從該改質層朝向該晶圓的正面側正常地伸展之情形;第二反射光影像,其對應裂痕未從該改質層朝向該晶圓的正面側伸展之情形;或除了該第一反射光影像及該第二反射光影像以外的第三反射光影像。並且,較佳為,進一步包含可視化步驟,其將藉由該類神經網路所抽出之該影像的特徵進行可視化。Also, preferably, the learned model includes an input layer and an output layer such as a neural network, the neural network inputs the image into the input layer and outputs the processing status of the wafer from the output layer. And, preferably, the neural network is learned by supervised learning using a plurality of learning images including the image of the reflected light and classified according to the processing state of the wafer, the The image for learning is classified into any one of the following: a first reflected light image corresponding to the situation where the crack normally extends from the modified layer toward the front side of the wafer; a second reflected light image corresponding to the crack not extending from the modified layer A condition in which the modified layer extends toward the front side of the wafer; or a third reflected light image other than the first reflected light image and the second reflected light image. And, preferably, further comprising a visualization step, which visualizes the features of the image extracted by the neural network.
[發明功效] 在本發明的一態樣之晶圓的檢查方法中,利用以輸入雷射光束的反射光的影像與輸出晶圓的加工狀態之方式藉由機械學習所構成之學習完成模型,判定晶圓的加工狀態。藉此,變得能將在各種條件下所拍攝之雷射光束的反射光的影像使用於判定晶圓的加工條件,而簡化晶圓的檢查。 [Efficacy of the invention] In the inspection method of a wafer according to an aspect of the present invention, the quality of the wafer is judged by using a learned model formed by machine learning by inputting an image of the reflected light of the laser beam and outputting the processed state of the wafer. processing state. Thereby, it becomes possible to use the image of the reflected light of the laser beam captured under various conditions to determine the processing conditions of the wafer, thereby simplifying inspection of the wafer.
以下,參閱隨附圖式說明本發明的一態樣之實施方式。首先,針對能使用於實施本實施方式之晶圓的檢查方法之雷射加工裝置的構成例進行說明。圖1係表示雷射加工裝置2之立體圖。此外,在圖1中,X軸方向(加工進給方向、第一水平方向)與Y軸方向(分度進給方向、第二水平方向)係互相垂直的方向。並且,Z軸方向(高度方向、垂直方向、上下方向)係與X軸方向及Y軸方向垂直的方向。Hereinafter, an embodiment of one aspect of the present invention will be described with reference to the accompanying drawings. First, a configuration example of a laser processing apparatus that can be used for implementing the wafer inspection method of this embodiment will be described. FIG. 1 is a perspective view showing a
雷射加工裝置2具備基台4,所述基台4支撐構成雷射加工裝置2之各構成要素。基台4的上表面係與水平方向(XY平面方向)大致平行的平坦面,在基台4的上表面上設有移動單元(移動機構)6。移動單元6具備Y軸移動單元(Y軸移動機構、分度進給單元)8、X軸移動單元(X軸移動機構、加工進給單元)18、及Z軸移動單元(Z軸移動機構)30。The
Y軸移動單元8具備一對Y軸導軌10,所述一對Y軸導軌10係沿著Y軸方向而配置於基台4的上表面上。平板狀的Y軸移動台12係能沿著Y軸導軌10滑動地裝設於一對Y軸導軌10。The Y-
在Y軸移動台12的背面(下表面)側設有螺帽部(未圖示)。在此螺帽部螺合有Y軸滾珠螺桿14,所述Y軸滾珠螺桿14係沿著Y軸方向而配置於一對Y軸導軌10之間。並且,在Y軸滾珠螺桿14的端部連結有使Y軸滾珠螺桿14旋轉之Y軸脈衝馬達16。若以Y軸脈衝馬達16使Y軸滾珠螺桿14旋轉,則Y軸移動台12會沿著Y軸導軌10而在Y軸方向移動。A nut portion (not shown) is provided on the back (lower surface) side of the Y-axis moving table 12 . A Y-
X軸移動單元18具備一對X軸導軌20,所述一對X軸導軌20係沿著X軸方向而配置於Y軸移動台12的正面(上表面)上。板狀的X軸移動台22係能沿著X軸導軌20滑動地裝設於一對X軸導軌20。The
在X軸移動版22的背面(下表面)側設有螺帽部(未圖示)。在此螺帽部螺合有X軸滾珠螺桿24,所述X軸滾珠螺桿24係沿著X軸方向而配置於一對X軸導軌20之間。並且,在X軸滾珠螺桿24的端部連結有使X軸滾珠螺桿24旋轉之X軸脈衝馬達26。若以X軸脈衝馬達26使X軸滾珠螺桿24旋轉,則X軸移動台22會沿著X軸導軌20而在X軸方向移動。A nut portion (not shown) is provided on the back (lower surface) side of the X-axis
在X軸移動台22的正面(上表面)上設有保持晶圓11之卡盤台(保持台)28,所述晶圓11成為由雷射加工裝置2所進行之加工的對象(參閱圖2)。卡盤台28的上表面係與水平方向(XY平面方向)大致平行的平坦面,並構成保持晶圓11之保持面28a。保持面28a係透過形成於卡盤台28的內部之流路(未圖示)、閥(未圖示)等而與噴射器等吸引源(未圖示)連接。On the front (upper surface) of the X-axis moving table 22, a chuck table (holding table) 28 for holding the
若使Y軸移動台12沿著Y軸方向移動,則卡盤台28會沿著Y軸方向移動。並且,若使X軸移動台22沿著X軸方向移動,則卡盤台28會沿著X軸方向移動。亦即,藉由Y軸移動單元8及X軸移動單元18而控制卡盤台28在X軸方向及Y軸方向中之移動。並且,在卡盤台28連結有使卡盤台28繞著與Z軸方向大致平行的旋轉軸進行旋轉之馬達等旋轉驅動源(未圖示)。When the Y-axis moving table 12 is moved in the Y-axis direction, the chuck table 28 moves in the Y-axis direction. Furthermore, when the X-axis moving table 22 is moved in the X-axis direction, the chuck table 28 is moved in the X-axis direction. That is, the movement of the chuck table 28 in the X-axis direction and the Y-axis direction is controlled by the Y-
在基台4的後端部(Y軸移動單元8、X軸移動單元18、卡盤台28的後方)設有Z軸移動單元30。Z軸移動單元30具備配置於基台4的上表面上之支撐構造32。支撐構造32包含:固定於基台4之長方體狀的基部32a、與從基部32a的端部往上方突出之柱狀的支撐部32b。支撐部32b的正面(側面)係沿著Z軸方向形成為平面狀。A Z-
在支撐部32b的正面沿著Z軸方向設有一對Z軸導軌34。平板狀的Z軸移動台36係能沿著Z軸導軌34滑動地裝設於一對Z軸導軌34。A pair of Z-axis guide rails 34 are provided along the Z-axis direction on the front surface of the
在Z軸移動台36的背面側設有螺帽部(未圖示)。在此螺帽部螺合有Z軸滾珠螺桿(未圖示),所述Z軸滾珠螺桿係沿著Z軸方向而配置於一對Z軸導軌34之間。並且,在Z軸滾珠螺桿的端部連結有使Z軸滾珠螺桿旋轉之Z軸脈衝馬達38。再者,在Z軸移動台36的正面側固定有支撐構件40。若以Z軸脈衝馬達38使Z軸滾珠螺桿旋轉,則Z軸移動台36及支撐構件40會沿著Z軸導軌34而在Z軸方向移動。A nut portion (not shown) is provided on the back side of the Z-axis moving table 36 . A Z-axis ball screw (not shown) is screwed to the nut portion, and the Z-axis ball screw is arranged between a pair of Z-axis guide rails 34 along the Z-axis direction. Furthermore, a Z-
並且,在雷射加工裝置2裝配有雷射照射單元42,所述雷射照射單元42對被卡盤台28保持之晶圓11(參閱圖2)照射雷射光束。雷射照射單元42的至少一部分的構成要素(雷射加工頭44等)係被支撐構件40支撐。Furthermore, the
此外,雷射照射單元42具備:加工用雷射照射單元46A,其照射用於加工晶圓11之雷射光束(加工用雷射光束)(參閱圖3);以及觀察用雷射照射單元46B,其照射用於觀察晶圓11的內部之雷射光束(觀察用雷射光束)(參閱圖5)。針對加工用雷射照射單元46A及觀察用雷射照射單元46B的構成、功能、用途等,將於後敘述。In addition, the
在雷射照射單元42的前端部設有攝像單元(攝影機)48。攝影單元48具備CCD(Charged-Coupled Devices,電荷耦合元件)感測器、CMOS(Complementary Metal-Oxide-Semiconductor,互補式金屬氧化物半導體)感測器等影像感測器,並拍攝被卡盤台28保持之晶圓11(參閱圖2)等。例如,基於藉由攝像單元48所取得之晶圓11的影像,進行卡盤台28與雷射加工頭44的對位。An imaging unit (camera) 48 is provided at the front end of the
若使Z軸移動台36沿著Z軸方向移動,則雷射加工台44及攝像單元48會沿著Z軸方向移動(升降)。藉此,進行從雷射照射單元42所照射之雷射光束的聚光點的高度的調節、攝像單元48的對焦等。When the Z-axis moving table 36 is moved in the Z-axis direction, the laser processing table 44 and the
並且,雷射加工裝置2具備顯示關於雷射加工裝置2之各種的資訊之顯示單元(顯示部、顯示裝置)50。例如,使用觸控面板作為顯示單元50。此情形,操作者可藉由顯示單元50的觸碰操作而對雷射加工裝置2輸入加工條件等資訊。亦即,顯示單元50亦發揮作為用於對雷射加工裝置2輸入各種資訊的輸入單元(輸入部、輸入裝置)之功能,而被使用作為使用者界面。但是,輸入單元亦可為獨立於顯示單元50另外設置之操作面板、滑鼠、鍵盤等。Furthermore, the
再者,雷射加工裝置2具備控制單元(控制部、控制裝置)52。控制單元52係與構成雷射加工裝置2之各構成要素(移動單元6、卡盤台28、雷射照射單元42、攝像單元48、顯示單元50等)連接。控制單元52藉由對雷射加工裝置2的構成要素輸出控制訊號,而控制雷射加工裝置2的運行。Furthermore, the
例如,控制單元52係藉由電腦所構成。具體而言,控制單元52係包含以下所構成:進行雷射加工裝置2的運行所需要的演算之CPU(Central Processing Unit,中央處理器)等處理器;以及記憶用於雷射加工裝置2的運行之各種資訊(資料、程式等)之ROM(Read Only Memory,唯獨記憶體)、RAM(Random Access Memory,隨機存取記憶體)等記憶體。For example, the
藉由雷射加工裝置2而對晶圓11施以雷射加工。圖2係表示晶圓11之立體圖。例如晶圓11係以矽等半導體材料而成之圓盤狀的晶圓,且具備互相大致平行的正面11a及背面11b。晶圓11係藉由以互相交叉之方式排列成網格狀之多條分割預定線(切割道)13而被劃分成多個矩形狀的區域。Laser processing is performed on the
在藉由分割預定線13所劃分之多個區域的正面11a,分別形成有IC(Integrated Circuit,積體電路)、LSI(Large Scale Integration,大型積體電路)、LED(Light Emitting Diode,發光二極體)、MEMS(Micro Electro Mechanical Systems,微機電系統)元件等元件15。藉由沿著分割預定線13分割晶圓11,而獲得分別具備元件15之多個元件晶片。IC (Integrated Circuit), LSI (Large Scale Integration, large scale integrated circuit), LED (Light Emitting Diode, light emitting diode polar bodies), MEMS (Micro Electro Mechanical Systems, micro electro mechanical systems) components and other components15. By dividing the
此外,晶圓11的種類、材質、形狀、構造、大小等並無限制。例如晶圓11亦可為以矽以外的半導體(GaAs、InP、GaN、SiC等)、藍寶石、玻璃、陶瓷、樹脂、金屬等而成之任意的形狀及大小的晶圓。並且,元件15的種類、數量、形狀、構造、大小、配置等亦無限制,晶圓11亦可未形成有元件15。In addition, the type, material, shape, structure, size, etc. of the
在晶圓11形成分割起點,所述分割起點在分割晶圓11之際發揮作為分割的契機之功能。例如,藉由沿著分割預定線13照射雷射光束,而在晶圓11的內部形成發揮作為分割起點之功能的改質層。之後,以改質層作為分割起點而沿著分割預定線13分割晶圓11,製造元件晶片。以下,針對將晶圓11分割成多個元件晶片之晶圓的加工方法(元件晶片的製造方法)的具體例進行說明。Dividing origins are formed on the
圖3係表示在晶圓11形成改質層(變質層)17之雷射加工裝置2之局部剖面前視圖。在藉由雷射加工裝置2將晶圓11進行加工之際,首先,藉由卡盤台28而保持晶圓11(保持步驟)。FIG. 3 is a partial cross-sectional front view of a
例如晶圓11係以正面11a側面對保持面28a且背面11b側在上方露出之方式配置於卡盤台28上。若在此狀態下使吸引源的吸引力(負壓)作用於保持面28a,則晶圓11會被卡盤台28吸引保持。For example, the
此外,在晶圓11的正面11a側,亦可貼附保護元件15(參閱圖2)之保護片。例如,保護片包含圓形的基材、與設於基材上之黏著層(糊層)。此情形,晶圓11隔著保護片被卡盤台28吸引保持。In addition, a protective sheet of the protective element 15 (refer to FIG. 2 ) may also be pasted on the
接著,在晶圓11的內部形成改質層17(改質層形成步驟)。在改質層步驟中,藉由從加工用雷射照射單元46A對晶圓11照射雷射光束,而在晶圓11形成改質層17。Next, modified
加工用雷射照射單元46A具備:YAG雷射、YVO
4雷射、YLF雷射等的雷射振盪器60;以及光學系統62,其將從雷射振盪器60所射出之雷射光束導往被卡盤台28保持之晶圓11。光學系統62係包含多個光學元件(透鏡、鏡子等)所構成,並控制雷射光束的行進方向、形狀等。
The
例如光學系統62包含鏡子64與凸透鏡等聚光透鏡66。由雷射振盪器60所射出之雷射光束會在鏡子64反射而射入聚光透鏡66,並藉由聚光透鏡66而聚光於預定的位置。而且,從加工用雷射照射單元46A所照射之雷射光束被使用作為用於加工晶圓11的雷射光束(加工用雷射光束、第一雷射光束)68。For example, the
在改質層形成步驟中,首先,使卡盤台28旋轉,將預定的分割預定線13(參閱圖2)的長度方向對齊X軸方向。並且,使卡盤台28沿著Y軸方向移動,而對齊分割預定線13與雷射光束68的聚光點68a在Y軸方向的位置。再者,將雷射光束68的聚光點68a定位於比晶圓11的上表面(背面11b)更下方且比晶圓11的下表面(正面11a)更上方。In the modified layer forming step, first, the chuck table 28 is rotated to align the longitudinal direction of the predetermined dividing line 13 (see FIG. 2 ) with the X-axis direction. Then, the chuck table 28 is moved along the Y-axis direction, and the positions of the planned
之後,一邊從加工用雷射照射單元46A照射雷射光束68,一邊使卡盤台28沿著X軸方向移動。藉此,晶圓11與雷射光束68會沿著X軸方向相對地移動,並沿著分割預定線13照射雷射光束68。Thereafter, while irradiating the
此外,雷射光束68的照射條件被設定成晶圓11的內部的定位有聚光點68a之區域會因多光子吸收而被改質(變質)。具體而言,雷射光束68的波長被設定成至少雷射光束68的一部分會穿透晶圓11。亦即,雷射光束68係對於晶圓11具有穿透性之雷射光束。並且,其他的雷射光束68的照射條件亦被設定成晶圓11的內部會適當地被改質。例如,在晶圓11為矽晶圓之情形中,雷射光束68的照射條件可如以下般設定。
波長:1064nm
平均輸出:1W
重複頻率:100kHz
加工進給速度:800mm/s
In addition, the irradiation conditions of the
若沿著分割預定線13照射雷射光束68,則晶圓11的內部因多光子吸收而被改質。其結果,在晶圓11的內部沿著分割預定線13而形成改質層17。之後,藉由重複同樣的程序,沿著全部的分割預定線13而形成改質層17。When the
圖4(A)係表示晶圓11的局部之放大剖面圖。若對晶圓11照射雷射光束68,則在晶圓11的定位有聚光點68a之區域及其附近的區域形成改質層17。並且,形成從改質層17伸展之裂痕19(龜裂)。裂痕19從改質層17沿著晶圓11的厚度方向伸展,並到達晶圓11的正面11a。FIG. 4(A) is an enlarged cross-sectional view showing a part of the
接著,藉由對晶圓11施加外力,而沿著分割預定線13分割晶圓11(分割步驟)。例如在分割步驟中,將能藉由施加外力而擴張之圓形的膠膜(擴張膠膜)貼附於晶圓11的正面11a側或背面11b側。然後,藉由將貼附於晶圓11之擴張膠膜朝向半徑方向外側拉伸並進行擴張,而對晶圓11施加外力。Next, by applying an external force to the
此外,擴張膠膜的擴張可由操作者手動進行,亦可藉由專用的擴張裝置而實施。並且,往晶圓11的外力的施加亦可藉由擴張膠膜的擴張以外的方法而進行。In addition, the expansion of the expansion film can be performed manually by the operator, and can also be implemented by a special expansion device. In addition, the application of external force to the
在此,晶圓11之中形成有改質層17或裂痕19之區域變得比晶圓11的其他區域更脆弱。因此,若對晶圓11施加外力,則以改質層17及裂痕19作為起點而沿著分割預定線13分割晶圓11。亦即,改質層17及裂痕19發揮作為分割起點之功能。藉此,製造分別包含元件15(參閱圖2)之多個元件晶片。Here, the area of the
但是,若在改質層形成步驟中未適當地設定雷射光束68的照射條件(平均輸出等),則有時即使形成改質層17亦無法適當地形成裂痕19。例如,會未產生裂痕19、或裂痕19會一邊往非期望之方向蛇行一邊伸展。圖4(B)係表示未形成有裂痕19之晶圓11的局部之放大剖面圖,圖4(C)係表示形成有蛇行之裂痕19之晶圓11的局部之放大剖面圖。However, if the irradiation conditions (average output, etc.) of the
若在晶圓11的內部未適當地形成裂痕19,則即使對晶圓11施加外力,晶圓11亦不會如同期望地被分割,有產生加工不良之疑慮。因此,較佳為在實施改質層形成步驟後且實施分割步驟前,檢查晶圓11的加工狀態,確認在晶圓11的內部是否適當地形成有裂痕19。以下,針對晶圓11的檢查方法的具體例進行說明。If the
圖5係表示檢查晶圓11之雷射加工裝置2之局部剖面前視圖。檢查晶圓11之際,首先,對晶圓照射用於觀察晶圓11的雷射光束(雷射光束照射步驟)。在雷射光束照射步驟中,從觀察用雷射照射單元46B對晶圓11照射雷射光束。FIG. 5 is a partial cross-sectional front view showing the
觀察用雷射照射單元46B具備:YAG雷射、YVO
4雷射、YLF雷射等的雷射振盪器70;以及光學系統72,其將從雷射振盪器70所射出之雷射光束導往被卡盤台28保持之晶圓11。此外,亦可使用加工用雷射照射單元46A的雷射振盪器60(參照圖3)作為雷射振盪器70。並且,光學系統72係包含多個光學元件(透鏡、鏡子等)所構成,並控制雷射光束的行進方向、形狀等。
Observation
具體而言,光學系統72具備將從雷射振盪器60所射出之雷射光束進行成形之光束成形單元74。可使用板狀的構件(遮光板)作為光束成形單元74,所述板狀的構件包含雷射光束會穿透之穿透部與將雷射光束進行遮光之遮光部。若雷射光束通過光束成形單元74,則雷射光束會因應穿透部的形狀而成形。此外,光束成形單元74亦可藉由繞射光學素子(DOE:Diffractive Optical Element)或LCOS-SLM(Liquid Crystal On Silicon - Spatial Light Modulator,液晶覆矽-空間光調變器)所構成。Specifically, the
並且,光學系統72包含雙色鏡76與凸透鏡等聚光透鏡78。藉由光束成形單元74所成形之雷射光束係在雙色鏡76反射而射入聚光透鏡78,並藉由聚光透鏡78而聚光於預定的位置。此外,亦可使用加工用雷射照射單元46A的聚光透鏡66(參照圖3)作為聚光透鏡78。然後,將從觀察用雷射照射單元46B所照射之雷射光束使用作為用於觀察晶圓11的雷射光束(觀察用雷射光束、第二雷射光束)80。Further, the
並且,觀察用雷射照射單元46B具備攝像單元(攝影機)82。攝像單元82具備CCD感測器、CMOS感測器等影像感測器,並拍攝雷射光束80的反射光。Furthermore, the observation
從觀察用雷射照射單元46B所照射之雷射光束80係在晶圓11的正面11a等反射,並射入觀察用雷射照射單元46B。然後,雷射光束80的反射光會通過聚光透鏡78及雙色鏡76而到達攝像單元82,並被攝像單元82拍攝。藉此,取得雷射光束80的反射光的影像(反射光影像)。The
在雷射光束照射步驟中,首先,以雷射光束80的聚光點80a與分割預定線13(改質層17)重疊之方式,調節卡盤台28與觀察用雷射照射單元46B的位置關係。並且,將雷射光束80的聚光點80a定位於晶圓11的正面11a或內部(正面11a與背面11b之間)。在此狀態,從觀察用雷射照射單元46B對晶圓11的背面11b側照射雷射光束80。In the laser beam irradiation step, first, the positions of the chuck table 28 and the observation
此外,雷射光束80的照射條件被設定成雷射光束80的反射光會射入聚光透鏡78。具體而言,雷射光束80的波長被設定成至少雷射光束80的一部分會穿透晶圓11。亦即,雷射光束80係對於晶圓11具有穿透性之雷射光束。In addition, the irradiation conditions of the
並且,雷射光束80的輸出被設定成未超過晶圓11的加工閾值。具體而言,雷射光束80的輸出被設定成在晶圓11的經照射雷射光束80之區域未形成發揮作為分割起點的功能之改質層、裂痕等。因此,即使將雷射光束80照射於晶圓11,亦不會對晶圓11施以會影響晶圓11的品質之雷射加工。例如,雷射光束80的平均輸出可設定成雷射光束68(參閱圖3)的平均輸出的1/1000以上且1/10以下,其他的雷射光束80的照射條件(重複頻率、加工進給速度等)亦可與雷射光束68的照射條件同樣地設定。Also, the output of the
圖6係表示照射雷射光束80之晶圓11的局部之俯視圖。以晶圓11的背面11b之中照射雷射光束80之區域的形狀以改質層17為基準地成為非對稱之方式照射雷射光束80。具體而言,晶圓11的背面11b之中與分割預定線13重疊之區域係藉由改質層17而被劃分成兩個區域21A、21B。然後,區域21A的照射雷射光束80之區域的形狀與區域21B的照射雷射光束80之區域的形狀係以改質層17為軸而成為非對稱。FIG. 6 is a partial plan view showing the
例如雷射光束80係以與從聚光透鏡78(參閱圖5)所射出之雷射光束80的行進方向(Z軸方向)垂直的方向(XY平面方向)中之剖面形狀成為半圓形狀之方式,藉由光束成形單元74(參照圖5)而被成形。然後,若將雷射光束80的聚光點80a以與改質層17重疊之方式進行定位,則成為對區域21A照射半圓形狀的雷射光束80而不對區域21B照射雷射光束80之狀態。但是,雷射光束80的剖面形狀並無限制。例如,雷射光束80的剖面形狀亦可為三角形、四角形等多角形狀,亦可為扇形狀。For example, the cross-sectional shape of the
圖7(A)係表示對形成有裂痕19之晶圓11照射雷射光束80之情況之剖面圖。若從形成有裂痕19之晶圓11的背面11b側照射雷射光束80,則雷射光束80會在晶圓11的內部行進,並在晶圓11的正面11a側反射。FIG. 7(A) is a cross-sectional view showing a state where a
在此,若在晶圓11的內部形成有從改質層17至正面11a之裂痕19,則晶圓11的比改質層17更下側的區域係藉由裂痕19的內側的些許空間(空氣層)而被斷開。而且,雷射光束80即使在已到達裂痕19之際亦會反射。其結果,雷射光束80的反射光會通過與雷射光束80的入射光大致相同的路徑而在晶圓11的內部行進,並從晶圓11的背面11b射出。Here, if a
圖7(B)係表示對未形成有裂痕19之晶圓11照射雷射光束80之情況之剖面圖。在晶圓11未形成有裂痕19之情形中,雷射光束80的行進不會被裂痕19妨礙。因此,已射入改質層17的一側面側之雷射光束80會一邊在晶圓11的正面11a側反射一邊通過改質層17的下側的區域,並從改質層17的另一側面側射出。其結果,雷射光束80的入射光的路徑與反射光的路徑係以改質層17為軸而成為大致對稱。FIG. 7(B) is a cross-sectional view showing a state where a
如上所述,雷射光束80的反射光的路徑係依據晶圓11的加工狀態(裂痕19的狀態)而變化。然後,如圖5所示,從晶圓11的背面11b側所射出之雷射光束80的反射光會通過聚光透鏡78及雙色鏡76而到達攝像單元82。As described above, the path of the reflected light of the
接著,藉由拍攝雷射光束80的反射光,而取得雷射光束80的反射光的影像(攝像步驟)。在攝像步驟中,藉由攝像單元82而拍攝雷射光束80的反射光。藉此,取得雷射光束80的反射光的影像(反射光影像)。將藉由攝像單元82所取得之反射光影像90的例子揭示於圖8(A)~圖8(C)。Next, by photographing the reflected light of the
圖8(A)係表示藉由拍攝從形成有裂痕19之晶圓11所射出之雷射光束80的反射光而得之反射光影像90(第一反射光影像90A)之影像圖。在晶圓11形成有裂痕19之情形中,雷射光束80的反射光會從雷射光束80的入射光側射出(參閱圖7(A))。其結果,在第一反射光影像90A的上側表現與半圓形狀的雷射光束80的反射光對應之圖案。FIG. 8(A) is an image diagram showing a reflected light image 90 (first reflected
圖8(B)係表示藉由拍攝從未形成有裂痕19之晶圓11所射出之雷射光束80的反射光而得之反射光影像90(第二反射光影像90B)之影像圖。在晶圓11未形成有裂痕19之情形中,雷射光束80的反射光從與雷射光束80的入射光相反的側射出(參閱圖7(B))。其結果,在第二反射光影像90B的下側表現與半圓形狀的雷射光束80的反射光對應之圖案。FIG. 8(B) is an image diagram showing a reflected light image 90 (second reflected
圖8(C)係表示藉由拍攝從形成有蛇行之裂痕19之晶圓11所射出之雷射光束80的反射光而得之反射光影像90(第三反射光影像90C)之影像圖。在晶圓11的內部形成有蛇行之裂痕19之情形中(參閱圖4(C)),已到達裂痕19之雷射光束80會不規則地反射,雷射光束80的反射光從雷射光束80的入射光側射出。其結果,在第三反射光影像90C的上側表現與第一反射光影像90A不同之圖案。FIG. 8(C) is an image diagram showing a reflected light image 90 (third reflected
接著,基於反射光影像90而判定晶圓11的加工狀態(判定步驟)。如同上述,反射光影像90會顯現反映有晶圓11的加工狀態(裂痕19的有無、裂痕19的形狀等)之圖案。亦即,在反射光影像90與晶圓11的加工狀態之間存在相關關係。因此,可基於反射光影像90而判定晶圓11的加工狀態。Next, the processing state of the
但是,依據雷射光束80的照射條件、拍攝條件、晶圓11的狀態等的各種要因,在反射光影像所顯現之反射光的像會產生形狀、濃淡的偏差。因此,為了適當地判定晶圓11的加工狀態,變得需要備齊拍攝雷射光束80的反射光之際的條件之作業、因應反射光影像90而變更用於判定晶圓的加工狀態的影像處理的設定之作業等,晶圓的檢查會變得繁雜。However, depending on various factors such as irradiation conditions of the
於是,在本實施方式中,使用以輸入反射光影像90與輸出晶圓11的加工狀態之方式藉由機械學習所構成之學習完成模型。藉此,變得能抽出反射光影像90的特徵而分類反射光影像90。其結果,變得能將在各種條件下所攝影之雷射光束80的反射光的影像使用於判定晶圓11的加工條件,而簡化晶圓11的檢查。Therefore, in the present embodiment, a learned model configured by machine learning by inputting the reflected
圖9係表示控制單元52之方塊圖。圖9除了表示控制單元52的功能性構成之方塊以外,亦圖示有顯示單元50與觀察用雷射照射單元46B(參照圖5)的攝像單元82。基於雷射光束80的反射光的影像之晶圓11的加工狀態的判定係藉由控制單元52而執行。FIG. 9 is a block diagram showing the
控制單元52包含基於雷射光束80的反射光的影像而判定晶圓11的加工狀態之判定部100。對判定部100輸入藉由攝像單元82所取得之反射光影像90。然後,判定部100基於反射光影像90而判定晶圓11的加工狀態,並輸出判定結果。並且,控制單元52包含能記憶各種資訊(資料、程式等)的記憶部102、與將由判定部100所進行之判定的結果進行通知之通知部104。The
判定部100具備以輸入反射光影像90與輸出晶圓11的加工狀態之方式藉由機械學習所構成之學習完成模型110。學習完成模型110的種類並無限制,例如可使用支持向量機(SVM)、類神經網路等。作為本實施方式中的一例,針對學習完成模型110為類神經網路NN之情形進行說明。The judging
類神經網路NN為階層型的類神經網路,且包含:輸入資料之輸入層112、輸出資料之輸出層114、及設於輸入層112與輸出層114之間之多個隱藏層(中間層)116。輸入層112、輸出層114、隱藏層116分別包含多個神經元(單元、節點)。輸入層112的神經元係與第一層的隱藏層116的神經元連接,輸出層114的神經元係與最終層的隱藏層116的神經元連接。並且,隱藏層116的神經元係與輸入層112或前層的隱藏層116的神經元、與輸出層114或後層的隱藏層116的神經元連接。The neural network NN is a hierarchical neural network, and includes: an
輸入層112、輸出層114、隱藏層116所含之神經元的數量、各神經元的激活函數,可自由地設定。並且,隱藏層116的層數亦無限制。包含兩層以上的隱藏層116之類神經網路NN亦可稱為深度類神經網路(DNN)。並且,深度類神經網路的學習可稱為深層學習。The number of neurons contained in the
類神經網路NN以輸入反射光影像90與輸出晶圓11的加工狀態之方式而學習。此外,類神經網路NN的學習方法並無限制。例如,類神經網路NN的學習係藉由使用多個學習用影像(反射光影像)之監督式學習而進行,所述學習用影像包含雷射光束80的反射光的像。The neural network NN learns by inputting the reflected
學習用影像係例如藉由使用學習用影像的蒐集用的晶圓(測試晶圓)並實施前述的雷射光束照射步驟及攝影步驟而取得。具體而言,首先,在與晶圓11同樣地構成之測試晶圓形成改質層(參閱圖3)。之後,對形成有改質層之測試晶圓照射雷射光束80,藉由攝像單元82拍攝雷射光束80的反射光(參閱圖5)。藉此,獲得能使用作為學習用影像之反射光影像。圖10(A)~圖10(C)表示學習用影像12。The learning image is obtained, for example, by using a learning image collection wafer (test wafer) and performing the aforementioned laser beam irradiation step and imaging step. Specifically, first, a modified layer was formed on a test wafer having the same configuration as wafer 11 (see FIG. 3 ). Afterwards, a
此外,藉由一邊改變雷射光束80的照射條件、雷射光束80的照射位置、拍攝條件等,一邊以攝像單元82多次拍攝雷射光束80的反射光80,而獲得多個學習用影像。並且,亦可使用以不同之加工條件而形成有改質層之多個測試晶圓,獲得多個學習用影像。In addition, by changing the irradiation conditions of the
接著,將多個學習用影像120進行分類(標籤化)。例如,多個學習用影像120分別被分類成第一反射光影像120A、第二反射光影像120B、第三反射光影像120C的任一者。圖10(A)係表示被分類成第一反射光影像120A之學習用影像120之影像圖,圖10(B)係表示被分類成第二反射光影像120B之學習用影像120之影像圖,圖10(C)係表示被分類成第三反射光影像120C之學習用影像120之影像圖。Next, the plurality of learning
第一反射光影像120A係在下述情形所取得之反射光影像:裂痕從形成於測試晶圓之改質層沿著測試晶圓的厚度方向直線狀地伸展並到達測試晶圓的正面(參閱圖4(A))。並且,第二反射光影像120B係在測試晶圓未形成有改質層之情形所取得之反射光影像(參閱圖4(B))。The first reflected
第三反射光影像120C係第一反射光影像120A及第二反射光影像120B以外的反射光影像。例如,在裂痕一邊蛇行一邊伸展之情形(參閱圖4(C))所取得之反射光影像被分類成第三反射光影像120C。The third reflected
學習用影像120的分類,例如藉由能基於反射光影像而判定裂痕19的狀態之操作者而進行。並且,亦可在取得學習用影像120後切斷測試晶圓,觀察存在於剖面之改質層及裂痕,藉此直接確認裂痕19的狀態。在此情形中,可基於實際的裂痕19的狀態而將學習用影像120進行分類。Classification of the
並且,亦可準備預先以三種類的加工條件(正常地形成裂痕之加工條件、未形成裂痕之加工條件、其他加工條件)而形成有改質層之三種類的測試晶圓,並使用各測試晶圓而取得反射光影像。此情形,可省略將學習用影像120一片一片地進行確認並分類之作業。In addition, it is also possible to prepare three types of test wafers in which modified layers are formed in advance under three types of processing conditions (processing conditions under which cracks are normally formed, processing conditions under which no cracks are formed, and other processing conditions), and each test wafer may be used. The reflected light image of the wafer is obtained. In this case, the work of confirming and classifying the learning
接著,使用所分類之學習用影像120,進行圖9所示之類神經網路NN的學習。具體而言,進行將學習用影像120及學習用影像120的分類結果(晶圓的加工狀態)使用作為訓練資料之監督式學習。例如,使用第一反射光影像120A、第二反射光影像120B、第三反射光影像130C各一百張,總計三百張的學習用影像120,進行類神經網路NN的學習。作為學習的演算法,例如可使用倒傳遞法。Next, learning of the neural network NN shown in FIG. 9 is performed using the classified
若實施上述的學習,則以在對輸入層112輸入反射光影像90之際從輸出層114輸出晶圓11的加工狀態(裂痕19的狀態)的判定結果之方式,更新類神經網路NN的參數(神經元的權重及偏差)。藉此,基於反射光影像90而生成能判定晶圓11的加工狀態之類神經網路NN。When the above learning is carried out, when the reflected
此外,如同上述,類神經網路NN處理反射光影像90的分類問題。因此,較佳為使用卷積類神經網路(CNN:Convolutional Neural Network)作為類神經網路NN。在此情形中,作為隱藏層116,設有卷積層、池化層、區域性響應歸一化(Local contrast Normalization,LCN)層、全連接層等。然後,藉由使用學習用影像120之監督式學習,而更新卷積層的過濾值、全連接層的神經元的權重及偏差。Furthermore, as mentioned above, the neural network-like NN handles the classification problem of the reflected
若對如上述般所構成之類神經網路NN輸入藉由攝像單元82所取得之反射光影像90,則藉由類神經網路NN的推論而判定晶圓11的加工狀態。具體而言,將反射光影像90使用作為輸入資料之演算係在輸入層112、隱藏層116、輸出層114中依序進行,從輸出層114輸出與晶圓11的加工狀態對應之資料。If the reflected
在類神經網路NN為卷積類神經網路之情形中,藉由在卷積層中之卷積演算(特徵地圖的生成)與在池化層中之池化處理,而進行反射光影像90的特徵抽出。並且,在全連接層中進行分類反射光影像90之演算。然後,從輸出層114輸出與反射光影像90的分類結果對應之數值。In case the neural network NN is a convolutional neural network, the reflected
例如,輸出層114包含將歸一化指數函式(Softmax function)應用作為激活函數之三個神經元。然後,各神經元分別輸出:與反射光影像90屬於第一反射光影像120A(參閱圖10(A))之機率對應之數值(第一輸出值)、與反射光影像90屬於第二反射光影像120B(參閱圖10(B))之機率對應之數值(第二輸出值)、以及與反射光影像90屬於第三反射光影像120C(參閱圖10(C))之機率對應之數值(第三輸出值)。For example, the
並且,判定部100包含將由學習完成模型110所進行之判定的結果進行輸出之判定結果輸出部118。例如判定結果輸出部118會將與從類神經網路NN的輸出層114所輸出之三個輸出值之中最大值的輸出值對應之晶圓11的加工狀態作為判定部100的判定結果,並輸出至外部。Furthermore, the
具體而言,在第一輸出值為最大之情形中,判定結果輸出部118輸出表示在晶圓11形成有適當的裂痕19之要旨之訊號。並且,在第二輸出值為最大之情形中,判定結果輸出部118輸出表示在晶圓11未形成有裂痕19之要旨之訊號。並且,在第三輸出值為最大之情形中,判定結果輸出部118輸出表示在晶圓11形成有不適當的裂痕19之要旨之訊號。但是,判定結果輸出部118亦可將第一輸出值、第二輸出值、第三輸出值直接輸出至外部。Specifically, when the first output value is the maximum, the determination
此外,在從類神經網路NN所輸出之判定結果的機率為預定的閾值以下之情形中,亦可重新取得使用於判定之反射光影像90。例如,在判定結果的機率為60%以下,較佳為80%以下之情形中,改變雷射光束80(參閱圖5)的照射條件後,以攝像單元82拍攝雷射光束80的反射光而再取得反射光影像90。之後,基於新取得之反射光影像90,而判定晶圓11的加工狀態。In addition, when the probability of the judgment result output from the neural network NN is equal to or less than a predetermined threshold, the reflected
由判定部100所進行之判定的結果被輸出至記憶部102及通知部104。然後,記憶部102將判定部100的判定結果與反射光影像90一起進行記憶。藉此,晶圓11的加工狀態的判定結果被積存於記憶部102。並且,通知部104將判定部100的判定結果通知操作員。The result of determination by the
例如通知部104生成用於使判定部100的判定結果顯示於顯示單元50之控制訊號,並輸出至顯示單元50。藉此,在顯示單元50顯示判定部100的判定結果,亦即,表示晶圓11的加工狀態之訊息等。For example, the
此外,在顯示單元50亦可顯示類神經網路NN的輸出值(第一~第三輸出值)。並且,在顯示單元50亦可同時顯示使用於判定之反射光影像90與判定部100的判定結果。此情形,操作者可比較反射光影像90與判定部100的判定結果,考察由判定部100所進行之判定是否妥當。In addition, the output values (first to third output values) of the neural network NN can also be displayed on the
並且,通知部104亦可因應判定部100的判定結果而使加工裝置2(參閱圖1)發送警告。例如在雷射加工裝置2裝配警告燈(未圖示)、揚聲器(未圖示)。然後,若藉由判定部100而判定晶圓11的加工狀態為異常,則通知部104對警告燈及揚聲器輸出控制訊號,使警告燈以預定的顏色或圖案進行點燈且使揚聲器發送告知發生異常之聲響或聲音。藉此,將晶圓11的加工狀態的異常通知操作者。In addition, the
發出警告之基準可適當設定。例如,判定在晶圓11未形成有裂痕19之情形、判定在晶圓11形成有不適當的裂痕19(蛇行之裂痕19等)之情形,發送警告。並且,在晶圓11形成有適當的裂痕19之機率低於預定的閾值之際,亦可發送警告。The basis for issuing a warning can be set appropriately. For example, when it is determined that no
如以上,藉由判定部100而判定晶圓11的加工狀態。然後,若判定晶圓11的加工狀態為適當,則對於晶圓11實施下一個處理(分割步驟等)。另一方面,在判定晶圓11的加工狀態為不適當之情形中,中斷由雷射加工裝置2所進行之其他的晶圓11的加工。然後,確定雷射光束68(參閱圖3)的照射條件、加工用雷射照射單元46A的光學系統62(參閱圖3)的狀態、加工完畢的晶圓11的狀態等。之後,以在晶圓11適當地形成改質層17及裂痕19之方式,進行加工條件的調節、零件交換等。As above, the processing state of the
判定部100的功能亦可藉由軟體與硬體的任一者所實現。例如,在類神經網路NN的輸入層112、輸出層114、隱藏層116中之演算係由程式所撰寫,此程式記憶於記憶部102。然後,在進行晶圓11的檢查之際,從記憶部102讀取程式,並藉由控制單元52而執行。The function of the determining
此外,在晶圓11的加工狀態的判定中或判定後,亦可將藉由類神經網路NN所抽出之反射光影像90的特徵進行可視化(可視化步驟)。例如,在類神經網路NN為卷積類神經網路之情形中,藉由將Grad-CAM(Gradient-weighted Class Activation Mapping,梯度加權類別活化映射)應用於卷積類神經網路,而獲得表示對卷積類神經網路輸入反射光影像90之際的卷積層的活化的狀態之熱圖。然後,通知部104對顯示單元50輸出控制訊號,在顯示單元50顯示可視化的結果(熱圖)。藉此,操作者可掌握由類神經網路NN所進行之判定的根據。In addition, during or after the determination of the processing state of the
如同以上,在本實施方式之晶圓的檢查方法中,利用以輸入雷射光束80的反射光的影像與輸出晶圓11的加工狀態之方式藉由機械學習所構成之學習完成模型110,判定晶圓11的加工狀態。藉此,變得能將在各種條件下所拍攝之雷射光束80的反射光的影像使用於晶圓11的加工條件的判定,而簡化晶圓11的檢查。As above, in the wafer inspection method of the present embodiment, the learned
此外,在攝像步驟(參閱圖5)中,亦可一邊使晶圓11與雷射光束80相對地移動,一邊藉由攝像單元82多次拍攝雷射光束80的反射光。In addition, in the imaging step (refer to FIG. 5 ), the reflected light of the
圖11(A)係表示沿著X軸方向相對地移動之晶圓11及雷射光束80之俯視圖。在攝像步驟中,若使卡盤台28(參閱圖5)沿著X軸方向移動,則晶圓11與雷射光束80會沿著與分割預定線13平行的方向(X軸方向)相對地移動。若在此狀態下藉由攝像單元82(參閱圖5)以預定的時間間隔多次拍攝雷射光束80的反射光,則取得多張照射於分割預定線13的長度方向中不同區域之雷射光束80的反射光的影像。FIG. 11(A) is a top view showing the
若將如此所取得之多個反射光影像依序輸入判定部100(參閱圖9),則連續地判定在經照射雷射光束80之多個區域中是否分別適當地形成有裂痕19(參閱圖7(A)等)。藉此,可迅速地判定裂痕19是否沿著分割預定線13適當地形成。If a plurality of reflected light images obtained in this way are sequentially input into the determination unit 100 (refer to FIG. 9 ), it is continuously determined whether
圖11(B)係表示沿著Y軸方向相對地移動之晶圓11及雷射光束80之俯視圖。在攝像步驟中,若使卡盤台28(參閱圖5)沿著Y軸方向移動,則以雷射光束80跨越改質層17之方式,晶圓11與雷射光束80沿著與分割預定線13垂直的方向(Y軸方向)相對地移動。若在此狀態下藉由攝像單元82(參閱圖5)以預定的時間間隔多次拍攝雷射光束80的反射光,則取得多張照射於分割預定線13的寬度方向中不同區域之雷射光束80的反射光的影像。FIG. 11(B) is a top view showing the
若將如此所取得之多個反射光影像依序輸入判定部100(參閱圖9),則連續地判定在經照射雷射光束80之多個區域中是否分別適當地形成有裂痕19(參閱圖7(A)等)。藉此,可迅速地特定裂痕19形成於分割預定線13的寬度方向的何處。If a plurality of reflected light images obtained in this way are sequentially input into the determination unit 100 (refer to FIG. 9 ), it is continuously determined whether
此外,在攝像步驟中,亦可將觀察用雷射照射單元46B(參閱圖5)的光學系統72所含之光學元件的位置、角度進行變更以取代使卡盤台28(參閱圖5)移動,藉此使晶圓11與雷射光束80沿著X軸方向或Y軸方向相對地移動。In addition, in the imaging step, instead of moving the chuck table 28 (see FIG. 5 ), the positions and angles of the optical elements included in the
並且,在攝像步驟中,亦可一邊使雷射光束80的聚光點80a(參閱圖5)沿著晶圓11的厚度方向(Z軸方向)相對地移動,一邊多次拍攝雷射光束80的反射光。藉此,亦確認裂痕19從改質層17伸展至何處。In addition, in the imaging step, the
圖12(A)係表示將雷射光束80的聚光點80a定位在形成有裂痕19之區域之情況之剖面圖。若在聚光點80a已定位於存在裂痕19之區域之狀態下將雷射光束80照射於晶圓11,則雷射光束80會在裂痕19反射,雷射光束80的反射光會通過雷射光束80的入射光側而從晶圓11的背面11b射出。其結果,取得反射光影像90,所述反射光影像90係與裂痕19到達晶圓11的正面11a之情形(參閱圖7(A))對應,且與第一反射光影像90A(參閱圖8(A))類似。FIG. 12(A) is a cross-sectional view showing the case where the focusing
圖12(B)係表示將雷射光束80的聚光點80a定位在未形成有裂痕19之區域之情況之剖面圖。若在聚光點80a已定位於未存在裂痕19之區域之狀態下將雷射光束80照射於晶圓11,則雷射光束80會一邊在晶圓11的正面11a側反射一邊通過裂痕19的下側的區域。然後,雷射光束80的反射光會通過與雷射光束80的入射光相反的側而從晶圓11的背面11b射出。其結果,取得反射光影像90,所述反射光影像90係與未形成有裂痕19之情形(參閱圖7(B))對應,且與第二反射光影像90B(參閱圖8(B))類似。FIG. 12(B) is a cross-sectional view showing a case where the focusing
因此,若一邊使雷射光束80的聚光點80a沿著晶圓11的厚度方向(Z軸方向)移動,一邊以攝像單元82(參閱圖5)多次拍攝雷射光束80的反射光,則獲得反映裂痕19的伸展狀態之多個反射光影像90。然後,將多個反射光影像90依序輸入判定部100(參閱圖9),判定有無裂痕19。藉此,可確認裂痕19從改質層17伸展至何處。Therefore, if the converging
此外,在取得使用於類神經網路NN的學習之學習用影像120(參閱圖10(A)~圖10(C))之際,亦可如上述般一邊使晶圓11與雷射光束80相對地移動,一邊藉由攝像單元82而多次拍攝雷射光束80的反射光。藉此,可有效率地蒐集多數的學習用影像120。In addition, when obtaining the learning image 120 (see FIGS. 10(A) to 10(C)) used for learning of the neural network NN, the
另外,上述實施方式之結構、方法等,在不脫離本發明的目的之範圍內可進行適當變更並實施。In addition, the structure, method, etc. of the said embodiment can be changed suitably and implemented in the range which does not deviate from the object of this invention.
11:晶圓 11a:正面 11b:背面 13:預定分割線(切割道) 15:元件 17:改質層(變質層) 19:裂痕(龜裂) 21A,21B:區域 2:雷射加工裝置 4:基台 6:移動單元(移動機構) 8:Y軸移動單元(Y軸移動機構、分度進給單元) 10:Y軸導軌 12:Y軸移動台 14:Y軸滾珠螺桿 16:Y軸脈衝馬達 18:X軸移動單元(X軸移動機構、加工進給單元) 20:X軸導軌 22:X軸移動台 24:X軸滾珠螺桿 26:X軸脈衝馬達 28:卡盤台(保持台) 28a:保持面 30:Z軸移動單元(Z軸移動機構) 32:支撐構造 32a:基部 32b:支撐部 34:Z軸導軌 36:Z軸移動台 38:Z軸脈衝馬達 40:支撐構件 42:雷射照射單元 44:雷射加工頭 46A:加工用雷射照射單元 46B:觀察用雷射照射單元 48:攝像單元(攝影機) 50:顯示單元(顯示部、顯示裝置) 52:控制單元(控制部、控制裝置) 60:雷射振盪器 62:光學系統 64:鏡子 66:聚光透鏡 68:雷射光束(加工用雷射光束、第一雷射光束) 68a:聚光點 70:雷射振盪器 72:光學系統 74:光束成形單元 76:雙色鏡 78:聚光透鏡 80:雷射光束(觀察用雷射光束、第二雷射光束) 80a:聚光點 82:攝像單元(攝影機) 90:反射光影像 90A:第一反射光影像 90B:第二反射光影像 90C:第三反射光影像 100:判定部 102:記憶部 104:通知部 110:學習完成模型 112:輸入層 114:輸出層 116:隱藏層(中間層) 118:判定結果輸出部 120:學習用影像 120A:第一反射光影像 120B:第二反射光影像 120C:第三反射光影像 11:Wafer 11a: front 11b: back 13: Predetermined dividing line (cutting road) 15: Element 17: modified layer (modified layer) 19: crack (crack) 21A, 21B: area 2: Laser processing device 4: Abutment 6: Mobile unit (mobile mechanism) 8: Y-axis moving unit (Y-axis moving mechanism, indexing feed unit) 10: Y-axis guide rail 12: Y-axis moving stage 14: Y-axis ball screw 16:Y-axis pulse motor 18: X-axis moving unit (X-axis moving mechanism, processing feed unit) 20: X-axis guide rail 22: X-axis moving stage 24: X-axis ball screw 26: X-axis pulse motor 28: Chuck table (holding table) 28a: Hold surface 30: Z-axis moving unit (Z-axis moving mechanism) 32: Support structure 32a: base 32b: support part 34: Z-axis guide rail 36: Z-axis moving stage 38: Z axis pulse motor 40: Support member 42:Laser irradiation unit 44:Laser processing head 46A: Laser irradiation unit for processing 46B: Laser irradiation unit for observation 48: Camera unit (camera) 50: Display unit (display unit, display device) 52: Control unit (control unit, control device) 60:Laser oscillator 62: Optical system 64: Mirror 66: Concentrating lens 68: Laser beam (laser beam for processing, first laser beam) 68a: Spotlight 70:Laser oscillator 72: Optical system 74: Beam shaping unit 76: dichroic mirror 78: Concentrating lens 80: Laser beam (observation laser beam, second laser beam) 80a: spotlight 82: Camera unit (camera) 90: reflected light image 90A: First reflected light image 90B: Second reflected light image 90C: The third reflected light image 100: judgment department 102: memory department 104: Notification Department 110: Learning Completion Models 112: Input layer 114: output layer 116: Hidden layer (middle layer) 118: Judgment result output unit 120: Videos for Learning 120A: first reflected light image 120B: Second reflected light image 120C: The third reflected light image
圖1係表示雷射加工裝置之立體圖。 圖2係表示晶圓之立體圖。 圖3係表示在晶圓形成改質層之雷射加工裝置之局部剖面前視圖。 圖4(A)係表示形成有裂痕之晶圓的局部之放大剖面圖,圖4(B)係表示未形成有裂痕之晶圓的局部之放大剖面圖,圖4(C)係表示形成有蛇行之裂痕之晶圓的局部之放大剖面圖。 圖5係表示檢查晶圓之雷射加工裝置之局部剖面前視圖。 圖6係表示照射雷射光束之晶圓的局部之俯視圖。 圖7(A)係表示對形成有裂痕之晶圓照射雷射光束之情況之剖面圖,圖7(B)係表示對未形成有裂痕之晶圓照射雷射光束之情況之剖面圖。 圖8(A)係表示第一反射光影像之影像圖,圖8(B)係表示第二反射光影像之影像圖,圖8(C)係表示第三反射光影像之影像圖。 圖9係表示控制單元之方塊圖。 圖10(A)係表示被分類成第一反射光影像之學習用影像之影像圖,圖10(B)係表示被分類成第二反射光影像之學習用影像之影像圖,圖10(C)係表示被分類成第三反射光影像之學習用影像之影像圖。 圖11(A)係表示沿著X軸方向相對地移動之晶圓及雷射光束之俯視圖,圖11(B)係表示沿著Y軸方向相對地移動之晶圓及雷射光束之俯視圖。 圖12(A)係表示將雷射光束的聚光點定位在形成有裂痕之區域之情況之剖面圖,圖12(B)係表示將雷射光束的聚光點定位在未形成有裂痕之區域之情況之剖面圖。 Fig. 1 is a perspective view showing a laser processing device. FIG. 2 is a perspective view showing a wafer. Fig. 3 is a partial cross-sectional front view showing a laser processing device for forming a modified layer on a wafer. Figure 4(A) is an enlarged cross-sectional view of a part of a wafer with cracks formed, Figure 4(B) is an enlarged cross-sectional view of a part of a wafer without cracks formed, and Figure 4(C) shows a partial enlarged cross-sectional view of a wafer with cracks formed An enlarged cross-sectional view of a portion of a wafer with a snaking crack. Fig. 5 is a partial sectional front view showing a laser processing device for inspecting wafers. FIG. 6 is a partial plan view showing a wafer irradiated with a laser beam. 7(A) is a cross-sectional view showing a case where a cracked wafer is irradiated with a laser beam, and FIG. 7(B) is a cross-sectional view showing a case where a cracked wafer is irradiated with a laser beam. 8(A) is an image diagram showing the first reflected light image, FIG. 8(B) is an image diagram showing the second reflected light image, and FIG. 8(C) is an image diagram showing the third reflected light image. Fig. 9 is a block diagram showing a control unit. FIG. 10(A) is an image diagram showing images for learning classified as first reflected light images, FIG. 10(B) is an image diagram showing images for learning classified as second reflected light images, and FIG. 10(C ) is an image diagram representing an image for learning that is classified into the third reflected light image. FIG. 11(A) is a top view of the wafer and laser beam relatively moving along the X-axis direction, and FIG. 11(B) is a top view of the wafer and laser beam relatively moving along the Y-axis direction. Fig. 12(A) is a cross-sectional view showing the case where the laser beam is positioned at a region where a crack is formed, and Fig. 12(B) is a cross-sectional view showing that the laser beam is positioned at a region where no crack is formed. Sectional view of the situation in the area.
50:顯示單元(顯示部、顯示裝置) 50: Display unit (display unit, display device)
52:控制單元(控制部、控制裝置) 52: Control unit (control unit, control device)
82:攝像單元(攝影機) 82: Camera unit (camera)
90:反射光影像 90: reflected light image
100:判定部 100: judgment department
102:記憶部 102: memory department
104:通知部 104: Notification Department
110:學習完成模型 110: Learning Completion Models
112:輸入層 112: Input layer
114:輸出層 114: output layer
116:隱藏層(中間層) 116: Hidden layer (middle layer)
118:判定結果輸出部 118: Judgment result output unit
Claims (7)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021086279A JP2022179050A (en) | 2021-05-21 | 2021-05-21 | Wafer inspection method |
JP2021-086279 | 2021-05-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW202246767A true TW202246767A (en) | 2022-12-01 |
Family
ID=84060852
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111118322A TW202246767A (en) | 2021-05-21 | 2022-05-17 | Wafer inspection method capable of simplifying the judgment of the processing state of the wafer |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP2022179050A (en) |
KR (1) | KR20220157883A (en) |
CN (1) | CN115376947A (en) |
TW (1) | TW202246767A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116698753B (en) * | 2023-07-25 | 2024-03-26 | 广州纳动半导体设备有限公司 | Mini-LED panel defect detection equipment and method based on machine vision |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4398686B2 (en) | 2003-09-11 | 2010-01-13 | 株式会社ディスコ | Wafer processing method |
JP7214308B2 (en) | 2018-10-25 | 2023-01-30 | 株式会社ディスコ | Wafer processing method |
-
2021
- 2021-05-21 JP JP2021086279A patent/JP2022179050A/en active Pending
-
2022
- 2022-05-11 KR KR1020220057535A patent/KR20220157883A/en active Pending
- 2022-05-17 TW TW111118322A patent/TW202246767A/en unknown
- 2022-05-18 CN CN202210538403.6A patent/CN115376947A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
CN115376947A (en) | 2022-11-22 |
JP2022179050A (en) | 2022-12-02 |
KR20220157883A (en) | 2022-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4752488B2 (en) | Laser internal scribing method | |
JP6281328B2 (en) | Laser dicing apparatus and laser dicing method | |
CN105689888A (en) | Laser beam machining apparatus and wafer processing method | |
WO2020071455A1 (en) | Laser processing method, semiconductor device manufacturing method, and examination device | |
TWI844735B (en) | Wafer processing method | |
TW202246767A (en) | Wafer inspection method capable of simplifying the judgment of the processing state of the wafer | |
US9149886B2 (en) | Modified layer forming method | |
KR102312237B1 (en) | Pulse laser beam spot shape detection method | |
TWI553981B (en) | Laser processing apparatus and method | |
KR102743217B1 (en) | Imaging device, laser processing device, and imaging method | |
KR20210106890A (en) | Wafer processing method | |
JP7442939B2 (en) | Wafer inspection method | |
CN114430706A (en) | Inspection apparatus and inspection method | |
JP6552948B2 (en) | Wafer processing method and processing apparatus | |
TWI876060B (en) | Wafer Inspection Method | |
JP7427337B2 (en) | Wafer inspection method | |
JP7550022B2 (en) | Laser processing equipment | |
JP2021169102A (en) | Laser lift off device and laser lift off method | |
KR20210066846A (en) | Imaging apparatus, laser processing apparatus, and imaging method | |
JP7526923B2 (en) | Laser processing method and laser processing device | |
TWI842749B (en) | Imaging device, laser processing device, and imaging method | |
JP2024034298A (en) | Inspection method of wafer | |
CN113172048A (en) | Method and device for simultaneous detection of pulsed laser-induced shock wave particle removal | |
JP2024112113A (en) | Laser processing device and laser processing method | |
TW202026084A (en) | Laser processing method, semiconductor device manufacturing method, and examination device |