201044038 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種導光板與背光模組,且特別是有 關於一種在出光面與反射面上設有多個延伸方向相同之凹 槽的導光板,以及應用此導光板的背光模組。 【先前技術】 習知之導光板的設計通常包括有入光面、出光面以及 〇 反射面。光源所提供之光線由導光板之入光面進入導光板 中,經過導光板之混光後,由導光板之出光面提供均勻的 面光源,其中為了使得經過導光板内部之光源能夠更均勻 地混合,通常會在導光板之入光面、出光面或反射面設置 有許許多多的微結構。而在諸多的設計中,為了使得光源 具有較佳的導向性,故在導光板之出光面以及反射面設置 有多個微溝槽,而導光板出光面距離光源的遠近,則會影 響出光面射出之光線的強度,通常出光面上距離光源越遠 〇的區域射出之光線的強度越弱,故為了調整出光面射出之 光線強度的一致性,通常設置於出光面之微溝槽的延伸方 向係不同於設置在反射面之微溝槽的延伸方向,一般出光 面以及反射面上之微溝槽的延伸方向係互相垂直。 上述之設計雖然具有較佳之光源導向性,但是卻無法 有效的將入射至導光板内部之光源均勻化。光源所提供之 光線由導光板之入光面進入導光板,假設光線與反射面設 置之微溝槽作用後,係沿著X軸方向擴散,由於設置在出 光面之微溝槽延伸方向與設置在反射面之微溝槽互相垂 201044038 直,故由反射面擴散至出光面之光線係沿著γ軸方向擴 散。由於上述之理由,光源提供至導光板的光線在X轴向 以及Υ軸向均只經過一次的擴散,故無法有效的將入射至 導光板内部之光源均勻化。 因此需要提供一種新穎之導光板,可提供較均勻的面 光源至應用此導光板的背光模組。 【發明内容】 〇 因此,本發明之目的是在提供一種導光板及採用此導 光板之背光模組,利用導光板之出光面與反射面設置同向 延伸的凹槽,並利用凹槽中多個不同深度的特性,使導光 板可提供較均勻的面光源,而採用此導光板之背光模組則 具有較佳之光學均齊度。 根據本發明之一實施例,提供一種包括出光面、反射 面以及多個微結構之導光板。出光面上設有直線延伸的多 個第一凹槽,其中多個第一凹槽的剖面輪廓係彼此相似, 〇 且多個第一凹槽具有實質相同的延伸方向。反射面係與出 光面相對,其中反射面上設有直線延伸的多個第二凹槽, 且多個第二凹槽的剖面輪廓係彼此相似,多個第二凹槽具 有實質相同的延伸方向,而第二凹槽的延伸方向實質相同 於第一凹槽的延伸方向。每個第一或第二凹槽具有多個不 同的深度。多個微結構係設置在出光面或設置在反射面。 根據本發明之另一實施例,提供一種背光模組。此背 光模組包括:殼體、設置於殼體中之導光板與一光源。導 光板包括出光面、反射面、入光面以及多個微結構。出光 5 201044038 •面上設有直線延伸的多個第一凹槽,其中多個第1槽的 剖面輪廓係彼此相似,且多個第一槽呈-、 .伸方^反射面係與出光面相對,反射面上設有 的多個槽,其中多個第二凹槽的剖面輪廊係彼“ 似,且多個第:凹槽具有實質相同的延伸方向,而第二凹 槽的延伸方向實質相同於第一凹槽的延伸方向,其中每個 第一或第二凹槽具有多個不同的深度。入光面係鄰設於出 光面與反射面。而多個微結構設置在導光板的出光面或 〇射面上。光源設置於殼體中且鄰設於導光板的入光面。 本發明之優點在於:利用既有之生產技術,藉由簡單 的結構設計變更,使得導光板可提供較均勻的面光源,同 時可避免增加額外的生產成本。 【實施方式】 請參照第1圖,其係繪示根據本發明之第一實施例之 背光模組的示意圖。背光模組100包括殼體200、導光板 〇 300與至少一光源400。殼體200係用以容設導光板3〇〇與 光源400,並提供保護之功能’因此殼體2〇〇可由金屬材 質製造而成,利用金屬具有較佳強度的機械材料特性來達 到保護之目的’另外,殼體200亦可由其他如強化塑膠等 材料製造而成,藉此減少背光模組100整體的重量。 在第一實施例中,背光模組100係屬於侧光式入光 (Edge Lighting)之背光模組’而導光板300為平板形結構, 並設置於殼體200中。在其他特定之實施例中,本發明之 背光模組亦可為直下式入光(Bottom Lighting)之背光模 6 201044038 .、组,:導,反之幾何形狀可為楔形板結構。 =同蚪參照第2A至2c圖,其係分別繪示第一實施例 t導光板的立體示意圖、側視示意圖以及俯視示意圖。在 本實施例中,Μ Ο Λ rai A - 、 、弟2A圖繪示有後續即將說明之微結構307, 而為了圖式之凊晰起見’故微結構307並未繪示於第2B 以及2C圖中。遂也4 等九板300的之出光面302設有多個直線延 =第凹槽308 ’此些第-凹槽308的剖面輪廊均為V 第2Β圖)且具有相同的夾角角度,故此些第一凹 〇槽308的剖面輪廓彼此相似,另外,多個第一凹槽308具 有實質相同的延伸方向°反射面304則設置於導光板300 之底面而與出光面3G2相對,其中反射面3G4上設有多個 直線延^的第二凹槽31〇,此些第二凹槽310的剖面輪廓 均為v字型(參見第2B圖)且具有相同的夹角角度,故此些 第一凹槽310的剖面輪廓彼此相似,此外,多個第二凹槽 310具有實質相同的延伸方向,而第二凹槽310的延伸方 向更實質相同於第一凹槽3〇8的延伸方向。在第一實施例 q 中’第一凹槽308與第二凹槽310係以實質垂直於入光面 306之延伸方向’由入光面3〇6朝相對於入光面3〇6之另 一側面延伸’但第一凹槽308與第二凹槽310之延伸方向 並不以垂直於入光面306為限。 為了使得導光板300能夠將來自於光源400之光線充 分混合’藉以產生均勻之面光源,故在第一實施例中,設 置於出光面302之每個第一凹槽308具有多個不同的深 度’如第2D圖所示之深度308a以及深度308b,其中第2D - 圖係繪示沿著第2C圖中線AA’的剖面示意圖。而在特定實 7 201044038 施例中,本發明之第二凹槽(例如第2A與2B圖所示之第 二凹槽310)亦可包括如上所述之多個不同深度。由於每個 第一凹槽308的剖面輪廓相似,故當深度308a與深度308b 不同時,第一凹槽308將在導光板300之出光面302形成 不同的凹槽寬度(參見第2C圖)。此設計之優點在於:由於 凹槽寬度的變化使得第一凹槽308形成有如第2C圖所示之 弧線,具有弧線之第一凹槽308可將與其作用之入射光線 擴散至如箭號所示之多個方向,使得光線之混合更佳均 勻。反觀第2A至2C圖所示另一凹槽312,雖同樣為V字 型凹槽,但是凹槽312之各點的深度相同,故於導光板300 之出光面302形成寬度一致之凹槽312(參見第2C圖),故 與其作用之入射光線僅能如箭號所示依單一方向擴散。 在第一實施例中,導光板300之入光面306係與出光 面302與反射面304相鄰,且光源400除設置於殼體中, 更設置在與入光面306相鄰之位置上。另外,通常導光板 出光面上距離光源越遠的區域射出之光線的強度越弱,故 為了調整出光面射出之光線強度的一致性,在本實施例 中,導光板300於出光面302上設置有多個凸起且大小一 致之微結構307,利用微結構307由導光板3〇〇之入光面 306朝相對之另一侧面漸密之排列,來使得導光板出光面 射出之光線強度能夠一致。而在特定實施例中,本發明之 導光板亦可將多個微結構設置於反射面’例如第2A圖所 示之反射面304,另外,微結構可設計成凹陷且大小不同 之結構’利用微結構之排列疏密以及微結構大小不同之設 計,來達到出光面射出之光線強度一致的目的。導光板微 8 201044038 結構製造技術一般可以分成兩大類:印刷式及非印刷式。 印刷式係利用網印方式將油墨印在導光板上,製作微結構 形狀及分佈。非印刷式則直接以射出成型技術,將微結構 設計在模具内,在製成上較為簡化,而且精密度高,係目 前導光板技術主流。另外,非印刷式製作方法更包括有精 密機械加工。 在第一實施例中,由第一凹槽308或第二凹槽310的 縱向視之,每個第一凹槽308與第二凹槽310的橫切面均 為V字型凹槽。請參照第3A圖,其係繪示根據本發明之 第二實施例之導光板的側視示意圖。在第二實施例中,由 第一凹槽308’或第二凹槽310’的縱向視之,每個第一凹槽 308’與第二凹槽310’的橫切面係實質為U字型(類U字型) 凹槽。而在第3B圖,其係繪示根據本發明之第三實施例之 導光板的側視示意圖。在第三實施例中,由第一凹槽308” 或第二凹槽310’’的縱向視之,每個第一凹槽308”與第二 凹槽310”的橫切面亦為類U字型凹槽,其中此類U字型 凹槽之輪廓係由直線314、弧線316與直線318依序接合 所形成。在第一、第二及第三實施例中,出光面之第一凹 槽與反射面之第二凹槽的剖面輪廓均相同,亦即第一凹槽 與第二凹槽均為V字型或類U字型,但並不以此為限,例 如在特定之實施例中,出光面之第一凹槽與反射面之第二 凹槽的的橫切面可分別為V字型與類U字型。在第一實施 例中,出光面之第一凹槽均為V字型,而在特定之實施例 中,第一凹槽可包括兩種不同型式之凹槽,例如同時包括 V字型凹槽與類U字型凹槽。 9 201044038 請參照第4A以及4B圖,其係分別繪示根據本發明之 第四實施例之導光板出光面以及反射面的上視圖。在第四 實施例中,導光板500包括有出光面502、反射面504以 及鄰設於出光面502與反射面504之入光面506。在出光 面502及反射面504上分別具有第一區域512及第二區域 514,其中第二區域514與第一區域512之設置位置互相對 應,亦即第二區域514與第一區域512均鄰設於入光面 506。在本實施例中,第一區域512與第二區域514之面積 更實質分別佔據出光面502與反射面504之面積的一半, 但在其他特定實施例中,第一區域與第二區域佔據出光面 與反射面之面積的比例並不相同,例如第一區域係佔據出 光面之面積的三分之一,而第二區域則佔據反射面之面積 的二分之一。 在第四實施例中,第一凹槽508係直線延伸於出光面 502之第一區域512,且第二凹槽510直線延伸於反射面 504之第二區域514,另外,根據上述之理由,為了使得導 光板出光面射出之光線強度能夠一致,故於第一區域512 或第二區域514上設置多個微結構(未繪示)。在第四實施 例中,導光板500之第一區域512之面積小於出光面502 之面積,第二區域514之面積小於反射面504之面積。而 根據上述第一區域以及第二區域係分別用以設置第一凹槽 與第二凹槽的定義,在前述第2A至2D圖所示之第一實施 例中,導光板300之第一區域之面積即為出光面302之面 積,且第二區域之面積為反射面304之面積。 由於本發明出光面之第一凹槽與反射面之第二凹槽具 201044038 有相同之變化’故為了說明方便起見,以下僅以出光面之 第一凹槽為例來說明凹槽幾何形狀以及配置之變化。而每 個第一凹槽之變化亦具有有相同之變化,故以下僅以單一 第一凹槽來說明凹槽幾何形狀之變化,第一凹槽設置之數 量與位置可視導光板所需之光學特性加以調整變化。 請參照第5A圖,其係繪示根據本發明第五實施例之 第一凹槽之縱切面的剖面示意圖,其中第五實施例之剖切 方向係相同於第2D圖所示之剖切方向。在第五實施例之 ❹第一凹槽之中,第一凹槽602之深度呈週期性變化。 第一凹槽602包括有四個相對低陷的凹陷區,此四個凹陷 區之深度依序分別為深度602a、深度602b、深度6〇2a以 及深度602b,故第一凹槽6〇2之深度係由第5A圖之一侧 朝另一侧做週期性變化。在第五實施例之第一凹槽6〇2 中’分別具有深度602a及深度602b之相鄰二凹陷區之間, 第一凹槽602之深度係呈現平滑地變化,且由於深度的變 化,第一凹槽602之底部形成如第5A圖所示之曲線,其 Q 中此曲線包括有弧線602c。 請參照第5B圖,其係繪示根據本發明第六實施例之第 一凹槽之縱切面的剖面示意圖,其中第六實施例之剖切方 ^係相同於帛2D圖所示之剖切方向。在f 5B ®所示之在 第六實施例的第一凹槽604中,其深度由第5B圖之二側朝 另一側做非週期性變化。而在第一凹槽604之中,包括有 相對低陷的凹陷區6〇4a、凹陷區6〇4b以及凹陷區1。 在相鄰之凹陷區6〇4a與凹陷區6〇4b之間,第一 之深度呈現平滑地變化,且位在此—區間之第—凹槽曰謝 11 201044038 之底部形成如第5B圖所示的曲線,此一曲線包括互相鄰接 的弧線604d與直線604e。另外,在凹陷區604b與凹陷區 604c之間,第一凹槽604之深度則呈現非平滑地變化,且 第一凹槽604之底部所形成之曲線包括互相鄰接之直線 604f與直線604g。 請參照第5C圖,其係繪示根據本發明第七實施例之第 一凹槽之縱切面的剖面示意圖,其中第七實施例之剖切方 向係相同於第2D圖所示之剖切方向。在第七實施例之第 一凹槽606中,其深度由一側端朝另一侧端做非週期性變 化,其中特定之相鄰二凹陷區之間,第一凹槽606之底部 形成如第5 C圖所示的曲線,此曲線包括依序接合之直線 606a、直線606b與直線606c,且直線606b係實質垂直於 直線606a與直線606c,形成一非平滑地變化的方形波曲 線。而在另外二相鄰凹陷區之間,直線606d並未與直線 606c以即直線606e互相垂直,直線606d為一傾斜直線。 在以上第5A至5C圖中所述之第五至七實施例之相鄰二凹 陷區之間,第一凹槽602、604及606之底部所形成之曲線 的各種變化均可應用於深度做週期性變化或非週期性變化 的第一凹槽中,而不侷限在相對應之實施例中。 請參照第6A圖,其係繪示根據本發明第八實施例之 第一凹槽的俯視示意圖。在第八實施例中,導光板700設 置第一凹槽之第一區域的面積等於出光面702之面積,亦 即出光面702整體均定義為第一區域。在本實施例中,多 個第一凹槽708沿著第一區域上的多條直線704設置,且 每條直線704上分布有二第一凹槽708,而反觀第2C圖所 12 201044038 示之第一實施例,其中單一第一凹槽3〇8延伸貫穿整個出 光面302(第一區域),亦即在出光面302之一直線上僅設置 •單一第一凹槽308。 在第八實施例中,沿著相鄰二直線704上所設置的多 個第一凹槽708係以一對一方式設置在相對應的位置上, 且在此些第一凹槽7〇8中,互相對應的第一凹槽7〇8係實 質相同’在第八實施例中,第一凹槽708具有兩種不同之 型式’而在特定之實施例中,第一凹槽708可包括更多不 同之型式或僅包括單一之型式。 言月參照第6B圖,其係繪示根據本發明第九實施例之第 一凹槽的俯視示意圖。第九實施例中,導光板7〇〇,之多個 第一凹槽708’沿著出光面7〇2,(第一區域)之多條直線704, 設置’其中分設於第6B圖左右之二直線704,上的第一凹 槽708’係以一對一方式設置在相對應的位置,且互相對應 之第一凹槽708’係實質相同。在上述第6A及6B圖之第八 與第九實施例中’直線之設置數量可視所需加以調整,而 不侷限於圖式所繪示之數量。 〇 請參照第7圖,其係繪示根據本發明第十實施例之第 一凹槽的俯視示意圖。在導光板800之出光面802上設置 有三個第一凹槽808,其中分部於第7圖左邊之二個第一 凹槽808彼此中心之間距離較為接近,故形成如虛線所圈 示之互相干涉的結構。 請參照第8圖,其係繪示根據本發明第十一實施例之 第一凹槽的俯視示意圖。在導光板900之出光面902上設 置有二個第一凹槽908,其中分部於第8圖左邊之第一凹 13 201044038 槽908之延伸方向係實質垂直於導光板900之入光面906, 而分部於第8圖右邊之第一凹槽908之延伸方向則與導光 •板900之入光面906夾有一夾角0,其中夾角Θ係大於等 於45度,且小於等於135度。 在特定之實施例中,本發明之背光模組更包括至少一 光學膜片(未繪示),藉由光學膜的設置來改善背光模組整 體的光學特性,其中光學膜片係設置在導光板的出光面之 上。而因應不同之光學目的的考量,光學膜片可為擴散片、 0 稜鏡片、增亮膜、反射式增亮膜、非多層膜式反射偏光片 或上述之任意組合。 雖然本發明已以實施方式揭露如上,然其並非用以限 定本發明,任何熟習此技藝者,在不脫離本發明之精神和 範圍内,當可作各種之更動與潤飾,因此本發明之保護範 圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 Q 為了能夠對本發明之觀點有較佳之理解,請參照上述 之詳細說明並配合相應之圖式。要強調的是,根據工業之 標準常規,附圖中之各種特徵並未依比例繪示。事實上, 為清楚說明上述實施例,可任意地放大或縮小各種特徵之 尺寸。相關圖式内容說明如下: 第1圖係繪示根據本發明之第一實施例之背光模組的 示意圖。 第2A圖係繪示第1圖中導光板的立體示意圖。 第2B圖係繪示第1圖中導光板的側視示意圖。 14 201044038 第2C圖係繪示第1圖中導光板的俯視示意圖。 第2D圖係繪示沿著第2C圖中線AA’的剖面示意圖; 第3A圖係繪示根據本發明之第二實施例之導光板的 側視不意圖。 第3B圖係繪示根據本發明之第三實施例之導光板的 側視示意圖。 第4A及4B圖係分別繪示根據本發明之第四實施例之 導光板出光面與反射面的上視圖。 〇 第5A至5C圖係繪示根據本發明第五至第七實施例之 第一凹槽之縱向剖切的剖面示意圖。 第6A及6B圖係繪示根據本發明第八與第九實施例之 第一凹槽的俯視示意圖。 第7圖係繪示根據本發明第十實施例之第一凹槽的俯 視示意圖。 第8圖係繪示根據本發明第十一實施例之第一凹槽的 俯視示意圖。 〇 200 :殼體 302 :出光面 306 :入光面 308 :第一凹槽 308” :第一凹槽 308b :深度 310’ :第二凹槽 【主要元件符號說明 100 :背光模組 300 :導光板 304 :反射面 307 :微結構 308’ :第一凹槽 308a :深度 310 :第二凹槽 15 201044038201044038 VI. Description of the Invention: [Technical Field] The present invention relates to a light guide plate and a backlight module, and more particularly to a plurality of grooves having the same extending direction on the light emitting surface and the reflecting surface. a light guide plate, and a backlight module to which the light guide plate is applied. [Prior Art] Conventional light guide plates are generally designed to include a light incident surface, a light exit surface, and a 反射 reflective surface. The light provided by the light source enters the light guide plate from the light incident surface of the light guide plate, and after being mixed by the light guide plate, the light exit surface of the light guide plate provides a uniform surface light source, wherein the light source passing through the light guide plate can be more evenly distributed. Mixing, usually there are many microstructures on the light entrance surface, light exit surface or reflective surface of the light guide plate. In many designs, in order to make the light source have better guiding property, a plurality of micro-grooves are disposed on the light-emitting surface and the reflecting surface of the light guiding plate, and the light-emitting surface of the light guiding plate is far from the light source, which affects the light-emitting surface. The intensity of the emitted light is generally weaker than the intensity of the light emitted from the region farther from the light source on the light-emitting surface. Therefore, in order to adjust the uniformity of the intensity of the light emitted from the light surface, it is usually disposed in the extending direction of the micro-groove of the light-emitting surface. It is different from the extending direction of the micro-grooves disposed on the reflecting surface, and the extending directions of the micro-grooves on the general light-emitting surface and the reflecting surface are perpendicular to each other. Although the above design has better light source directivity, it cannot effectively homogenize the light source incident inside the light guide plate. The light provided by the light source enters the light guide plate from the light incident surface of the light guide plate. After the light and the micro-groove provided on the reflective surface act, the light diffuses along the X-axis direction, and the micro-groove extending direction and setting provided on the light-emitting surface The micro-grooves on the reflecting surface are perpendicular to each other 201044038, so the light diffused from the reflecting surface to the light-emitting surface diffuses along the γ-axis direction. For the above reasons, the light supplied from the light source to the light guide plate is diffused only once in the X-axis direction and the x-axis direction, so that the light source incident on the inside of the light guide plate cannot be effectively made uniform. Therefore, it is desirable to provide a novel light guide plate that provides a relatively uniform surface light source to a backlight module to which the light guide plate is applied. SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a light guide plate and a backlight module using the same, which utilizes a groove extending in the same direction as the light-emitting surface of the light guide plate, and utilizes a plurality of grooves. The characteristics of different depths enable the light guide plate to provide a relatively uniform surface light source, and the backlight module using the light guide plate has better optical uniformity. According to an embodiment of the present invention, a light guide plate including a light exit surface, a reflective surface, and a plurality of microstructures is provided. The light-emitting surface is provided with a plurality of first grooves extending in a straight line, wherein the cross-sectional profiles of the plurality of first grooves are similar to each other, and the plurality of first grooves have substantially the same extending direction. The reflecting surface is opposite to the light emitting surface, wherein the reflecting surface is provided with a plurality of second grooves extending in a straight line, and the cross-sectional profiles of the plurality of second grooves are similar to each other, and the plurality of second grooves have substantially the same extending direction And the extending direction of the second groove is substantially the same as the extending direction of the first groove. Each of the first or second grooves has a plurality of different depths. A plurality of microstructures are disposed on the light exit surface or on the reflective surface. According to another embodiment of the present invention, a backlight module is provided. The backlight module includes a housing, a light guide plate disposed in the housing, and a light source. The light guide plate includes a light emitting surface, a reflecting surface, a light incident surface, and a plurality of microstructures. Light-emitting 5 201044038 • The surface is provided with a plurality of first grooves extending in a straight line, wherein the cross-sectional profiles of the plurality of first grooves are similar to each other, and the plurality of first grooves are -, the extension surface, the reflection surface and the light-emitting surface In contrast, the plurality of grooves provided on the reflecting surface, wherein the plurality of second grooves have a cross-sectional rim, and the plurality of grooves have substantially the same extending direction, and the extending direction of the second groove Substantially the same as the extending direction of the first groove, wherein each of the first or second grooves has a plurality of different depths. The light incident surface is adjacent to the light emitting surface and the reflecting surface, and the plurality of microstructures are disposed on the light guiding plate. The light source is disposed on the light-emitting surface or the light-emitting surface. The light source is disposed in the housing and adjacent to the light-incident surface of the light guide plate. The invention has the advantages of: using the existing production technology, the light guide plate is changed by a simple structural design. A more uniform surface light source can be provided, and an additional production cost can be avoided. [Embodiment] Please refer to FIG. 1 , which is a schematic diagram of a backlight module according to a first embodiment of the present invention. The housing 200 and the light guide plate 30 are included 0 and at least one light source 400. The housing 200 is for accommodating the light guide plate 3 and the light source 400, and provides a function of protection. Therefore, the housing 2 can be made of a metal material, and the metal has better strength. The mechanical material is used for the purpose of protection. In addition, the housing 200 can also be made of other materials such as reinforced plastic, thereby reducing the overall weight of the backlight module 100. In the first embodiment, the backlight module 100 belongs to The backlight module of the edge illumination is a flat panel structure and is disposed in the housing 200. In other specific embodiments, the backlight module of the present invention may also be a direct type. Bottom Lighting backlight module 6 201044038 ., group,: guide, and vice versa, the geometry can be a wedge-shaped plate structure. Referring to Figures 2A to 2c, the first embodiment shows the light guide plate of the first embodiment. A three-dimensional diagram, a side view, and a top view. In this embodiment, the Μ Ο rai rai A - , , and 2A diagrams show the microstructure 307 to be described later, and for the sake of clarity Structure 307 is not painted In the 2B and 2C diagrams, the light-emitting surface 302 of the nine-plate 300 such as the 遂4 is provided with a plurality of linear extensions = the first groove 308'. The cross-sectional porches of the first-grooves 308 are V. The cross-sectional profiles of the first recessed grooves 308 are similar to each other. In addition, the plurality of first recesses 308 have substantially the same extending direction. The reflective surface 304 is disposed on the bottom surface of the light guide plate 300. The light-emitting surface 3G2 is opposite to each other, wherein the reflective surface 3G4 is provided with a plurality of second grooves 31〇 extending in a straight line, and the cross-sectional profiles of the second grooves 310 are all v-shaped (see FIG. 2B) and have the same The angle of the angle of the first groove 310 is similar to each other. In addition, the plurality of second grooves 310 have substantially the same extending direction, and the extending direction of the second groove 310 is substantially the same as the first groove. 3〇8 extension direction. In the first embodiment q, the first groove 308 and the second groove 310 are substantially perpendicular to the direction in which the light incident surface 306 extends from the light incident surface 3〇6 toward the light incident surface 3〇6. One side extends 'but the direction in which the first groove 308 and the second groove 310 extend is not limited to the light incident surface 306. In order to enable the light guide plate 300 to sufficiently mix the light from the light source 400 to generate a uniform surface light source, in the first embodiment, each of the first grooves 308 disposed on the light exit surface 302 has a plurality of different depths. 'Deepness 308a and depth 308b as shown in FIG. 2D, wherein the 2D- diagram is a schematic cross-sectional view along line AA' in FIG. 2C. In the specific embodiment 7, 201044038, the second recess of the present invention (e.g., the second recess 310 shown in Figures 2A and 2B) may also include a plurality of different depths as described above. Since the cross-sectional profile of each of the first grooves 308 is similar, when the depth 308a is different from the depth 308b, the first grooves 308 will form different groove widths on the light exiting surface 302 of the light guide plate 300 (see Fig. 2C). The advantage of this design is that the first groove 308 is formed with an arc as shown in FIG. 2C due to the change of the groove width, and the first groove 308 having an arc can diffuse the incident light that acts therewith as indicated by the arrow. The multiple directions make the mixing of light better and even. In contrast, the other grooves 312 shown in FIGS. 2A to 2C are similarly V-shaped grooves, but the depths of the points of the grooves 312 are the same, so that the light-emitting surface 302 of the light guide plate 300 forms the groove 312 having the same width. (See Figure 2C), so the incident light that interacts with it can only diffuse in a single direction as indicated by the arrow. In the first embodiment, the light incident surface 306 of the light guide plate 300 is adjacent to the light exit surface 302 and the reflective surface 304, and the light source 400 is disposed in the housing, and is disposed adjacent to the light incident surface 306. . In addition, in the present embodiment, the light guide plate 300 is disposed on the light-emitting surface 302 in order to adjust the intensity of the light emitted from the light-emitting surface in the light-emitting surface of the light-guide plate. The microstructure 307 having a plurality of protrusions and uniform sizes is arranged by the light-emitting surface 306 of the light guide plate 3 toward the opposite side surface by the microstructure 307, so that the light intensity of the light-emitting surface of the light guide plate can be emitted. Consistent. In a specific embodiment, the light guide plate of the present invention may also have a plurality of microstructures disposed on the reflective surface 'such as the reflective surface 304 shown in FIG. 2A. In addition, the microstructure may be designed to be recessed and different in size. The arrangement of the microstructures is dense and the microstructures are different in size, so as to achieve the same intensity of light emitted from the light surface. Light guide plate micro 8 201044038 Structure manufacturing technology can generally be divided into two categories: printed and non-printed. The printing type uses a screen printing method to print ink on a light guide plate to produce a microstructure shape and distribution. The non-printing type directly uses the injection molding technology to design the microstructure in the mold, which is simplified in production and high in precision, and is the mainstream of the light guide plate technology. In addition, non-printing methods include precision machining. In the first embodiment, the cross-section of each of the first groove 308 and the second groove 310 is a V-shaped groove as viewed in the longitudinal direction of the first groove 308 or the second groove 310. Referring to Fig. 3A, there is shown a side view of a light guide plate according to a second embodiment of the present invention. In the second embodiment, the cross-section of each of the first recess 308' and the second recess 310' is substantially U-shaped by the longitudinal direction of the first recess 308' or the second recess 310'. (Class U-shaped) Groove. In Fig. 3B, there is shown a side view of a light guide plate according to a third embodiment of the present invention. In the third embodiment, the cross-section of each of the first recess 308" and the second recess 310" is also U-like by the longitudinal direction of the first recess 308" or the second recess 310". a groove in which the contour of such a U-shaped groove is formed by sequential joining of a straight line 314, an arc 316 and a straight line 318. In the first, second and third embodiments, the first groove of the light exiting surface The cross-sectional profile of the second groove of the reflective surface is the same, that is, the first groove and the second groove are both V-shaped or U-shaped, but not limited thereto, for example, in a specific embodiment. The cross-section of the first groove of the light-emitting surface and the second groove of the reflecting surface may be V-shaped and U-shaped, respectively. In the first embodiment, the first groove of the light-emitting surface is V. The font, and in a particular embodiment, the first groove may comprise two different types of grooves, for example including both a V-shaped groove and a U-shaped groove. 9 201044038 Please refer to Figures 4A and 4B It is a top view of the light-emitting surface and the reflecting surface of the light guide plate according to the fourth embodiment of the present invention. In the fourth embodiment, the light guide plate 500 is provided. The light-emitting surface 502, the reflective surface 504, and the light-incident surface 506 adjacent to the light-emitting surface 502 and the reflective surface 504. The light-emitting surface 502 and the reflective surface 504 respectively have a first region 512 and a second region 514, wherein the second region 514 and the first region 512 are disposed corresponding to each other, that is, the second region 514 and the first region 512 are adjacent to the light incident surface 506. In the embodiment, the first region 512 and the second region 514 are more Substantially occupying half of the area of the light-emitting surface 502 and the reflective surface 504, respectively, but in other specific embodiments, the ratio of the area occupied by the first area and the second area to the light-emitting surface and the reflective surface is not the same, for example, the first area is occupied. One third of the area of the light exiting surface, and the second area occupies one-half of the area of the reflective surface. In the fourth embodiment, the first recess 508 extends linearly across the first area 512 of the light exiting surface 502. The second groove 510 extends in a straight line on the second region 514 of the reflective surface 504. In addition, for the reason described above, the intensity of the light emitted from the light exit surface of the light guide plate can be consistent, so that the first region 512 or the second region 514 Set on a microstructure (not shown). In the fourth embodiment, the area of the first region 512 of the light guide plate 500 is smaller than the area of the light exit surface 502, and the area of the second region 514 is smaller than the area of the reflective surface 504. A region and a second region are respectively used to define the first groove and the second groove. In the first embodiment shown in the above 2A to 2D, the area of the first region of the light guide plate 300 is The area of the light-emitting surface 302, and the area of the second area is the area of the reflective surface 304. Since the first groove of the light-emitting surface of the present invention has the same change as the second groove of the reflection surface 201044038, it is convenient for the sake of explanation. In the following, the first groove of the light-emitting surface is taken as an example to illustrate the change of the groove geometry and the configuration. The change of each first groove also has the same change. Therefore, only the single first groove is used to describe the change of the groove geometry. The number and position of the first groove are set to be visible to the optical plate. The characteristics are adjusted and changed. Please refer to FIG. 5A, which is a cross-sectional view showing a longitudinal section of a first groove according to a fifth embodiment of the present invention, wherein the cutting direction of the fifth embodiment is the same as the cutting direction shown in FIG. 2D. . In the first groove of the fifth embodiment, the depth of the first groove 602 changes periodically. The first recess 602 includes four relatively depressed recessed regions, and the depths of the four recessed regions are respectively depth 602a, depth 602b, depth 6〇2a, and depth 602b, so the first recess 6〇2 The depth is periodically changed from one side of the 5A to the other side. Between the adjacent two recessed regions having the depth 602a and the depth 602b, respectively, in the first recess 6〇2 of the fifth embodiment, the depth of the first recess 602 exhibits a smooth change, and due to the change in depth, The bottom of the first recess 602 forms a curve as shown in Fig. 5A, in which the curve in Q includes an arc 602c. Please refer to FIG. 5B, which is a cross-sectional view showing a longitudinal section of a first groove according to a sixth embodiment of the present invention, wherein the section of the sixth embodiment is the same as the section shown in FIG. direction. In the first groove 604 of the sixth embodiment shown by f 5B ® , the depth thereof is aperiodically changed from the two sides of Fig. 5B toward the other side. Among the first grooves 604, there are included recessed regions 6〇4a, recessed regions 6〇4b, and recessed regions 1 which are relatively depressed. Between the adjacent recessed area 6〇4a and the recessed area 6〇4b, the first depth exhibits a smooth change, and the bottom of the section-the groove is formed at the bottom of the section 10 201044038 as shown in FIG. 5B. The curve shown includes an arc 604d and a line 604e adjacent to each other. In addition, between the recessed area 604b and the recessed area 604c, the depth of the first recess 604 changes non-smoothly, and the curve formed by the bottom of the first recess 604 includes a line 604f and a line 604g adjacent to each other. Please refer to FIG. 5C, which is a cross-sectional view showing a longitudinal section of a first groove according to a seventh embodiment of the present invention, wherein the cutting direction of the seventh embodiment is the same as the cutting direction shown in FIG. 2D. . In the first recess 606 of the seventh embodiment, the depth thereof is aperiodically changed from one side end to the other side end, wherein between the adjacent adjacent two recessed areas, the bottom of the first recess 606 is formed as The curve shown in Fig. 5C includes a line 606a, a line 606b and a line 606c which are sequentially joined, and the line 606b is substantially perpendicular to the line 606a and the line 606c, forming a non-smoothly varying square wave curve. Between the other two adjacent recessed regions, the straight line 606d is not perpendicular to the straight line 606c, that is, the straight line 606e, and the straight line 606d is an oblique straight line. Between the adjacent two recessed regions of the fifth to seventh embodiments described in the above 5A to 5C, various changes in the curve formed by the bottoms of the first recesses 602, 604, and 606 can be applied to the depth The first groove that changes periodically or non-periodically is not limited to the corresponding embodiment. Referring to Figure 6A, there is shown a top plan view of a first recess in accordance with an eighth embodiment of the present invention. In the eighth embodiment, the area of the first region of the first groove is set to be equal to the area of the light-emitting surface 702, that is, the light-emitting surface 702 is defined as a first region as a whole. In this embodiment, a plurality of first grooves 708 are disposed along a plurality of straight lines 704 on the first area, and two first grooves 708 are distributed on each of the straight lines 704, and FIG. 2C is shown in FIG. In a first embodiment, a single first groove 3〇 extends through the entire light exit surface 302 (first region), that is, only a single first groove 308 is provided on one of the light exit surfaces 302. In the eighth embodiment, the plurality of first grooves 708 disposed along the adjacent two straight lines 704 are disposed at corresponding positions in a one-to-one manner, and in the first grooves 7〇8 The first grooves 7〇8 corresponding to each other are substantially identical. In the eighth embodiment, the first grooves 708 have two different types. In a specific embodiment, the first grooves 708 may include More different types or only a single type. Referring to Figure 6B, there is shown a top plan view of a first recess in accordance with a ninth embodiment of the present invention. In the ninth embodiment, the light guide plate 7A, the plurality of first grooves 708' are disposed along the light exiting surface 7〇2, and the plurality of straight lines 704 (the first region) are disposed in the left and right sides of FIG. The second groove 704, the first groove 708' is disposed at a corresponding position in a one-to-one manner, and the first grooves 708' corresponding to each other are substantially identical. In the eighth and ninth embodiments of the above-described sixth and sixth embodiments, the number of straight lines can be adjusted as needed, and is not limited to the number shown in the drawings. 〇 Referring to Figure 7, there is shown a top plan view of a first recess in accordance with a tenth embodiment of the present invention. Three first grooves 808 are disposed on the light-emitting surface 802 of the light guide plate 800. The distance between the centers of the two first grooves 808 on the left side of the seventh figure is relatively close to each other, so that it is formed as a dotted line. Structure that interferes with each other. Referring to Figure 8, there is shown a top plan view of a first recess in accordance with an eleventh embodiment of the present invention. Two first recesses 908 are disposed on the light-emitting surface 902 of the light guide plate 900. The first recesses 13 201044038 on the left side of the eighth figure are extended substantially perpendicular to the light-incident surface 906 of the light guide plate 900. The extending direction of the first groove 908 on the right side of the eighth figure is at an angle 0 with the light incident surface 906 of the light guiding plate 900, wherein the angle Θ is greater than or equal to 45 degrees and less than or equal to 135 degrees. In a specific embodiment, the backlight module of the present invention further includes at least one optical film (not shown), and the optical characteristics of the backlight module are improved by the arrangement of the optical film, wherein the optical film is disposed in the guide. Above the light exit surface of the light panel. The optical film may be a diffusion sheet, a 0-sheet, a brightness enhancement film, a reflective brightness enhancement film, a non-multilayer film reflection polarizer, or any combination thereof, in consideration of different optical purposes. Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and the present invention can be modified and modified without departing from the spirit and scope of the present invention. The scope is subject to the definition of the scope of the patent application attached. BRIEF DESCRIPTION OF THE DRAWINGS In order to provide a better understanding of the present invention, reference is made to the above detailed description and the accompanying drawings. It is emphasized that the various features in the drawings are not drawn to scale in accordance with the standard of the industry. In fact, the dimensions of the various features may be arbitrarily enlarged or reduced in order to clearly illustrate the above embodiments. The related drawings are described as follows: Fig. 1 is a schematic view showing a backlight module according to a first embodiment of the present invention. FIG. 2A is a perspective view showing the light guide plate in FIG. 1 . 2B is a side view showing the light guide plate of FIG. 1. 14 201044038 Figure 2C is a schematic plan view of the light guide plate in Fig. 1. 2D is a schematic cross-sectional view taken along line AA' of FIG. 2C; and FIG. 3A is a side view showing the light guide plate according to the second embodiment of the present invention. Fig. 3B is a side elevational view showing a light guide plate according to a third embodiment of the present invention. 4A and 4B are top views respectively showing a light-emitting surface and a reflecting surface of a light guide plate according to a fourth embodiment of the present invention. 〇 5A to 5C are schematic cross-sectional views showing longitudinal cross-sections of the first grooves according to the fifth to seventh embodiments of the present invention. 6A and 6B are schematic plan views showing the first grooves according to the eighth and ninth embodiments of the present invention. Fig. 7 is a schematic plan view showing a first groove according to a tenth embodiment of the present invention. Figure 8 is a top plan view showing a first recess in accordance with an eleventh embodiment of the present invention. 〇200: housing 302: light-emitting surface 306: light-incident surface 308: first groove 308": first groove 308b: depth 310': second groove [main component symbol description 100: backlight module 300: guide Light plate 304: reflective surface 307: microstructure 308': first groove 308a: depth 310: second groove 15 201044038
310” :第二凹槽 312 : 凹槽 314 : 直線 316 : 弧線 318 : 直線 400 : 光源 500 : 導光板 502 : 出光面 504 : 反射面 506 : 入光面 508 : 第一凹槽 510 : 第二凹槽 512 : 第一區域 514 : 第一區域 602 : 第一凹槽 602a :深度 602b :深度 602c :弧線 604 : 第一凹槽 604a :凹陷部 604b :凹陷部 604c :凹陷部 604d :弧線 604e :直線 604f :直線部 604g :直線 606 : 第一凹槽 606a :直線 606b :直線 606c :直線 606d :直線 606e :直線 700 導光板 700, :導光板 702 出光面 702, :出光面 704 直線 704, :直線 708 第一凹槽 708, :第一凹槽 800 導光板 802 : 出光面 808 第一凹槽 900 : 導光板 902 出光面 906 入光面 908 :第一凹槽 AA, :線 Θ : 夾角 16310": second groove 312: groove 314: line 316: arc 318: line 400: light source 500: light guide plate 502: light exit surface 504: reflection surface 506: light incident surface 508: first groove 510: second Groove 512: first region 514: first region 602: first groove 602a: depth 602b: depth 602c: arc 604: first groove 604a: recess portion 604b: recess portion 604c: recess portion 604d: arc 604e: Straight line 604f: straight line portion 604g: line 606: first groove 606a: line 606b: line 606c: line 606d: line 606e: line 700 light guide plate 700, light guide plate 702 light exit surface 702, light exit surface 704 straight line 704, : Straight line 708 first groove 708, first groove 800 light guide plate 802: light exit surface 808 first groove 900: light guide plate 902 light exit surface 906 light entrance surface 908: first groove AA, : line Θ : angle 16