TW200830616A - Electrode assembly and non-aqueous electrolyte battery - Google Patents
Electrode assembly and non-aqueous electrolyte battery Download PDFInfo
- Publication number
- TW200830616A TW200830616A TW096134975A TW96134975A TW200830616A TW 200830616 A TW200830616 A TW 200830616A TW 096134975 A TW096134975 A TW 096134975A TW 96134975 A TW96134975 A TW 96134975A TW 200830616 A TW200830616 A TW 200830616A
- Authority
- TW
- Taiwan
- Prior art keywords
- polyethylene
- separator
- temperature
- sheet
- molecular weight
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/417—Polyolefins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/463—Separators, membranes or diaphragms characterised by their shape
- H01M50/469—Separators, membranes or diaphragms characterised by their shape tubular or cylindrical
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/025—Electrodes composed of, or comprising, active material with shapes other than plane or cylindrical
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Cell Separators (AREA)
- Secondary Cells (AREA)
Abstract
Description
200830616 九、發明說明: 【發明所屬之技術領域】 本發明係關於電池用電極複合體,其具有平衡良好的 安全性、放電容量及循環性,以及包括此電極複合體之非 水性電解液電池。 【先前技術】 鋰離子二次電池具有包括透過隔離材層合的陽極與 陰極之電極複合體。電極複合體的具體實例包括透過隔離 材將平面狀的陰極與陽極交替地層合之層合體、透過隔離 材將陽極帶與陰極帶包捆之螺旋管形電極等。隔離材通常 係由熱塑性樹脂的微多孔膜所組成。 由於電極複合體的效能影響性能、產量且電池的安全 性主要取決於隔離材的效能,已提出各種提議來提供具有 不同性質之隔離材的組合、具有改良之外型的隔離材,化 學上改良(例如親水化)的隔離材等。 關於提供良好的電池壽命之電極複合體,JP 1 0- 1 995 02 A提出了一種電極複合體,其包括第一隔離材 與第二隔離材的熔融層合體,其中,第一隔離材具有高拉 伸強度(例如聚烯羥非織物)而第二隔離材具良好的儲藏性 質與電解液吸收(例如聚對酞酸乙二酯),該複合體具有陰 極板與第一隔離材接觸,及陽極板與第二隔離材接觸的結 構。 關於不會受到活性材料自電極板脫離之影響而造成 內部短路的二次電池,JP 2000-3 1 5489 A提出了一種矩形 的非水性電解液之二次電池,其包括交替的層合平面狀的 200830616 陰極與平面狀的陽極,平面狀的陽極被放在具有良好斷路 性質的隔離袋中,平面狀的陰極被放在具有良好熔毀性質 的隔離袋中,各隔離袋係由多孔聚丙烯或多孔聚乙烯所製 成。 關於具有良好的自放電抗性與循環性之二次電池,JP 2003-257474 A提出了 一種鎳氫二次電池,其包括由平面 狀陽極與平面狀陰極透過隔離材交替的層合所構成之電 極複合體,隔離材係由第一與第二隔離材交替的配置而 成,各第一隔離材係爲以具羧酸基之乙烯基單體接枝或以 具有硫酸基的酸處理過之聚烯烴非織物,以及各第二隔離 材係爲經電暈放電或氟氣處理過之聚烯烴非織物。 關於具有良好的循環性與陽極和陰極間內部短路抗 性之非水性電解液電池,JP 2004- 1 93 1 1 6 A提出了 一種具 有螺旋管形複合結構之非水性電解液電池,其中第一隔離 材(例如,以汞侵入式細孔計測量時,具有0.3 /z m或以下 之直徑模式的多孔聚乙烯膜)係與陰極帶之外表面接觸, 以及第二隔離材(例如,以汞侵入式細孔計測量時,具有 〇· 5/zm或以上之直徑模式的多孔聚乙烯膜)係與陰極帶之 內表面接觸,第一隔離材的鋰離子透過性係小於第二隔離 材。 關於不會受到充電過量或非正常加熱而造成熱失控 之非水性電解液電池,JP 2005-93077 A提出了一種非水性 電解液電池,其包括螺旋管形電極複合體與非水性電解 液,該螺旋管形電極複合體係透過具有不同透過性之第一 與第二隔離材(例如,微多孔聚乙烯膜)層合陽極與陰極並 200830616 加以捲繞而成,與陰極之外表面接觸的第一隔離材具有 180秒/100 cm3或以上之透過性,而與陰極之內表面接觸 的第二隔離材具有12 0秒/100 cm3或以下之透過性。 關於不會受到充電過量或非正常加熱而造成熱失控 之非水性電解液電池,JP 2005-93078 A提出了一種非水 性電解液電池,其包括螺旋管形電極複合體與非水性電解 液,該螺旋管形電極複合體係透過具有不同性質之第一與 第二隔離材(例如,微多孔聚乙烯膜)層合陽極與陰極並加 以捲繞而成,與陰極之外表面接觸的第一隔離材具有400 秒/100 cm3或以上之透過性,而與陰極之內表面接觸的第 二隔離材在150°C下量測3小時係具有30%或以下之熱收 縮率。 然而,在揭示於 JP 10-199502 A、JP 2000-315489 A、 JP 2003 -257474 A、JP 2004- 1 93 1 1 6 A、JP 2005-93077 A 與 JP 2005 -93078 A中的任何包括電極複合體之電池皆不具 有平衡良好的安全性、放電容量以及循環性。於是,期望 能有提供電池平衡良好的安全性、放電容量以及循環性之 電極複合體。 【發明内容】 因此,本發明之一個目的係提供能給與電池平衡良好 的安全性、放電容量以及循環性之電極複合體。 本發明之另一個目的係提供包括此種電極複合體之 非水性電解液電池。 從上述目的深入硏究的結果,發明人發現到: (1)具平衡良好的透過性、機械強度、熱收縮抗性、斷路 200830616 性質、熔毀性質以及壓縮抗性之複合隔離材,可藉由包括 高密度聚乙烯A之第一微多孔膜與包括高密度聚乙烯B之 第二微多孔膜組合而成,其中,高密度聚乙烯 A具有每 1 0,000個碳原子0.3或以上的末端乙烯基濃度(藉紅外線光 譜測量)並具有重量平均分子量1x1 06或以上的超高分子量 聚乙烯,高密度聚乙烯B具有每10,000個碳原子0.2或以 下的末端乙烯基濃度及超高分子量聚乙烯。(2)具平衡良 好的安全性、放電容量以及循環性之電池可藉由使用一種 電極複合體而得到,該電極複合體係透過兩種上述之微多 孔膜交替的層合陽極片與陰極片而成的。本發明係基於上 述發現而完成。 於是,本發明之電池複合體所具有的結構爲將包括高 密度聚乙烯A之第一與包括高密度聚乙烯B之第二隔離材 交替地以陽極片與陰極片包夾,且第一與第二隔離材的斷 路溫度差係在5 °C以內,其中,高密度聚乙烯A具有每 10,〇〇〇個碳原子0.3或以上的末端乙烯基濃度(藉紅外線光 譜測量),並具有重量平均分子量爲lxlO6或以上的超高分 子量聚乙烯,以及,高密度聚乙烯B具有每1 0,000個碳原 子0.2或以下的末端乙烯基濃度(藉紅外線光譜測量),及 超高分子量聚乙烯。 於本發明之較佳實施例中電池複合體係爲螺旋管形 式。爲了提供電池較佳的針穿安全度,較佳係將第一微多 孔膜隔離材配置在該陰極片的內表面,同時將第二微多孔 隔離材配置於該陰極片之外側。 本發明之非水性電解液電池係包括上述電極複合體。 200830616 【實施方式】 較佳實施例之說明 [1 ]隔離材之組成 第一隔離材係由第一聚烯烴所製成之微多孔膜所形 成,而第二隔離材係由第二聚烯烴所製成之微多孔膜所形 成。 (A)第一聚烯烴 第一聚烯烴係爲(a)具有每10,〇〇〇個碳原子0.3或以 上的末端乙烯基濃度(藉紅外線光譜測量)之高密度聚乙烯 A以及具有重量平均分子量(Mw)lxl〇6或以上之超高分子 量聚乙烯的混合物(聚乙烯組成物A),或(b)聚乙烯組成 物A與除了高密度聚乙烯A及超高分子量聚乙烯以外之聚 乙烯的混合物(聚乙烯組成物A’ )。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode assembly for a battery which has a well-balanced safety, discharge capacity and cycleability, and a non-aqueous electrolyte battery including the electrode assembly. [Prior Art] A lithium ion secondary battery has an electrode composite including an anode and a cathode laminated through a separator. Specific examples of the electrode composite include a laminate in which a planar cathode and an anode are alternately laminated through a separator, a spiral tubular electrode in which an anode tape and a cathode tape are coated through a separator, and the like. The separator is usually composed of a microporous film of a thermoplastic resin. Since the effectiveness of the electrode composite affects performance, yield, and the safety of the battery is mainly determined by the effectiveness of the spacer, various proposals have been made to provide a combination of spacers having different properties, a spacer having an improved profile, and a chemical improvement. (for example, hydrophilized) separator or the like. Regarding an electrode assembly which provides a good battery life, JP 1 0- 1 995 02 A proposes an electrode composite comprising a molten laminate of a first separator and a second separator, wherein the first separator has a high Tensile strength (for example, polyene hydroxy non-woven fabric) and the second separator has good storage properties and electrolyte absorption (for example, polyethylene terephthalate), the composite has a cathode plate in contact with the first separator, and The structure in which the anode plate is in contact with the second separator. A secondary battery that does not suffer from an internal short circuit caused by the detachment of the active material from the electrode plate, JP 2000-3 1 5489 A proposes a rectangular non-aqueous electrolyte secondary battery including alternating laminated planar 200830616 Cathode and planar anode, planar anodes are placed in isolation pockets with good breaking properties, planar cathodes are placed in isolation pockets with good meltdown properties, each is made of porous polypropylene Or made of porous polyethylene. Regarding a secondary battery having good self-discharge resistance and cycleability, JP 2003-257474 A proposes a nickel-hydrogen secondary battery comprising a laminate in which a planar anode and a planar cathode are passed through a separator. In the electrode assembly, the separator is formed by alternately arranging the first and second separators, and each of the first separators is grafted with a vinyl monomer having a carboxylic acid group or treated with an acid having a sulfate group. The polyolefin non-woven fabric, and each of the second separators is a polyolefin non-woven fabric treated by corona discharge or fluorine gas. Regarding a non-aqueous electrolyte battery having good cycleability and internal short-circuit resistance between an anode and a cathode, JP 2004- 1 93 1 1 6 A proposes a non-aqueous electrolyte battery having a spiral tubular composite structure, the first of which The separator (for example, a porous polyethylene film having a diameter mode of 0.3 /zm or less when measured by a mercury intrusive pore meter) is in contact with the outer surface of the cathode strip, and the second separator (for example, intrusion with mercury) When the pore meter is measured, the porous polyethylene film having a diameter mode of 〇·5/zm or more is in contact with the inner surface of the cathode strip, and the lithium ion permeability of the first separator is smaller than that of the second separator. Regarding a non-aqueous electrolyte battery that does not cause thermal runaway due to excessive charging or abnormal heating, JP 2005-93077 A proposes a non-aqueous electrolyte battery including a spiral tubular electrode composite and a non-aqueous electrolyte, The spiral tubular electrode composite system is formed by laminating anode and cathode through first and second separators (for example, microporous polyethylene film) having different permeability and 200830616, and first contacting the outer surface of the cathode The separator has a permeability of 180 sec/100 cm3 or more, and the second separator in contact with the inner surface of the cathode has a permeability of 120 sec/100 cm3 or less. Regarding a non-aqueous electrolyte battery which is not subjected to thermal runaway due to excessive charging or abnormal heating, JP 2005-93078 A proposes a non-aqueous electrolyte battery comprising a spiral tubular electrode composite and a non-aqueous electrolyte, The spiral tubular electrode composite system is formed by laminating an anode and a cathode through first and second separators (for example, microporous polyethylene membranes) having different properties, and the first separator is in contact with the outer surface of the cathode. It has a permeability of 400 sec/100 cm3 or more, and the second separator which is in contact with the inner surface of the cathode has a heat shrinkage ratio of 30% or less after being measured at 150 ° C for 3 hours. However, any of the electrode composites disclosed in JP 10-199502 A, JP 2000-315489 A, JP 2003 -257474 A, JP 2004- 1 93 1 1 6 A, JP 2005-93077 A and JP 2005-93078 A are disclosed. The battery of the body does not have a well-balanced safety, discharge capacity and cycle. Therefore, it is desirable to have an electrode composite which provides good balance of battery balance, discharge capacity, and cycleability. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide an electrode composite which can provide a good balance of safety, discharge capacity and cycleability in a battery. Another object of the present invention is to provide a non-aqueous electrolyte battery comprising such an electrode composite. From the above-mentioned results, the inventors found that: (1) composite separators with well-balanced permeability, mechanical strength, heat shrinkage resistance, open circuit 200830616 properties, meltdown properties, and compression resistance can be borrowed The first microporous membrane comprising high density polyethylene A is combined with a second microporous membrane comprising high density polyethylene B, wherein the high density polyethylene A has a terminal ethylene of 0.3 or more per 10,000 carbon atoms The base concentration (measured by infrared spectroscopy) and having an ultrahigh molecular weight polyethylene having a weight average molecular weight of 1x1 06 or more, the high density polyethylene B having a terminal vinyl concentration of 0.2 or less per 10,000 carbon atoms and an ultrahigh molecular weight polyethylene. (2) A battery having a well-balanced safety, discharge capacity, and cyclability can be obtained by using an electrode composite which alternately laminates an anode sheet and a cathode sheet through two kinds of the above-mentioned microporous membranes. Into. The present invention has been completed based on the above findings. Therefore, the battery composite of the present invention has a structure in which the first separator including the high-density polyethylene A and the second separator including the high-density polyethylene B are alternately sandwiched between the anode sheet and the cathode sheet, and the first The second separator has a shutdown temperature difference of less than 5 ° C, wherein the high density polyethylene A has a terminal vinyl concentration of 0.3 or more per 10 carbon atoms (measured by infrared spectroscopy) and has a weight The ultrahigh molecular weight polyethylene having an average molecular weight of 1x10 or more, and the high density polyethylene B having a terminal vinyl concentration of 0.2 or less per 10,000 carbon atoms (measured by infrared spectroscopy), and ultrahigh molecular weight polyethylene. In a preferred embodiment of the invention the battery composite system is in the form of a spiral tube. In order to provide better needle penetration safety of the battery, it is preferred to dispose the first microporous membrane separator on the inner surface of the cathode sheet while disposing the second microporous separator on the outer side of the cathode sheet. The non-aqueous electrolyte battery of the present invention includes the above electrode composite. 200830616 [Embodiment] Description of the preferred embodiment [1] Composition of the spacer material The first spacer material is formed of a microporous film made of the first polyolefin, and the second spacer material is made of the second polyolefin. The resulting microporous membrane is formed. (A) The first polyolefin first polyolefin is (a) a high-density polyethylene A having a terminal vinyl concentration of 0.3 or more per 10 carbon atoms (measured by infrared spectroscopy) and having a weight average a mixture of ultrahigh molecular weight polyethylene (polyethylene composition A) having a molecular weight (Mw) of 1 x 16 or more, or (b) a polyethylene composition A and a polymerization other than high density polyethylene A and ultra high molecular weight polyethylene a mixture of ethylene (polyethylene composition A').
(1)聚乙烯組成物A(1) Polyethylene composition A
(i)高密度聚乙烯A 高密度聚乙烯 A具有每10,〇〇〇個碳原子(下面以 「/10,000 C」表示)0·3或以上的末端乙烯基濃度(藉紅外線 光譜測量)。當末端乙烯基濃度小於0.3/1 0,000 C,第一隔 離材之斷路性質不足。高密度聚乙烯Α之末端乙烯基濃度 較佳爲0.4/10,000 C或以上,更佳爲0.5/10,〇〇〇 C或以上。 末端乙烯基濃度係以高密度聚乙烯A中每1〇,〇〇〇個碳 原子中末端乙烯基的數量表示。末端乙烯基濃度係藉由紅 外線光譜術測量。具體的說,測量係藉由(1)藉由熱加壓 高密度聚乙烯A的九粒形成厚度約1 mm的樣品,(2)測量 在910CHT1的吸收度A = log(I〇/I),其中藉由傅立葉轉換紅 200830616 外光譜計所測得之〗。表示空白槽之透射光的強度’以及1 表示樣品槽的透射光之強度’以及(3)計算末端乙燃基濃 度之方程式(/10,000 C) = (1.14x吸收度A)/(高密度聚乙嫌A 的密度(g/cm3)x樣品的厚度(mm)) ° 高密度聚乙烯A的重量平均分子量(Mw)較佳爲lxl〇4 至 5xl05,更佳爲 1χ1〇5 至 5xl05’ 最佳爲 2xl05 至 4xl05° 當高密度聚乙嫌A的M w小於5 X 1 05時’第一隔離材具有 大的平均孔隙直徑。高密度聚乙烯 Α的密度通常爲 0.90-0.98g/cm3’ 較佳 0.93-0.97g/cm3,更佳 0.94-0.96g/cm3。 高密度聚乙烯A並不限於乙烯同元聚合物,而可以爲 含有少量其他^ -烯烴的共聚物。乙烯以外的^ -烯烴較佳 爲丙烯、丁烯-1、戊烯-1、己烯-1、4-甲基戊烯-1、辛烯-1、 乙酸乙烯酯、甲基丙烯酸甲酯以及苯乙烯。 高密度聚乙烯A可藉由將負載有鉻化合物之觸媒與 揭示於例如JP 1 - 1 2777 B之有機金屬化合物組合使用之懸 浮聚合、溶液聚合或氣相聚合而製得。 (ii) 超高分子量聚乙烯 超高分子量聚乙烯具有lx 1〇6或以上的Mw。超高分子 量聚乙烯可爲乙烯同元聚合物,或是含有少量其他 烯 烴之乙烯· α -烯烴共聚物。乙烯以外的^ -烯烴較佳爲丙 烯、丁烯-1、戊烯-1、己烯-1、4-甲基戊烯-1、辛烯-1、乙 酸乙烯酯、甲基丙烯酸甲酯或苯乙烯。超高分子量聚乙烯 的Mw較佳爲IxlO6至15χ106,更佳爲lxl〇6至5xl〇6,最 佳爲 1x1 06 至 3x1 06。 (iii) 配方以及重量平均分子量 -10- 200830616 聚乙烯組成物A中的超高分子量聚乙烯的百分比較 佳爲1質量%或以上,更佳爲2至60質量%,最佳爲2至 50質量%。聚乙烯組成物A的Mw較佳爲IxlO4至5xl06, 更佳爲lxlO5至4xl06,最佳爲2xl05至1.5xl06。當聚乙烯 組成物A的Mw小於1.5xlO6,第一隔離材具有大的平均孔 隙直徑。 (b) 聚乙烯組成物Α’ 聚乙烯組成物A’爲聚乙烯組成物A與除了高密度聚 乙烯 A及超高分子量聚乙烯以外之其他聚乙烯的混合 物。聚乙烯組成物A可與前述者相同。除了高密度聚乙烯 A及超高分子量聚乙烯以外之其他聚乙烯較佳爲由下列所 組成之群組的至少之一:中密度聚乙烯、分枝低密度聚乙 烯、與線形低密度聚乙烯,其Mw較佳爲lxl 04至5x105。 除了高密度聚乙烯 A及超高分子量聚乙烯以外之其他聚 乙烯不限於乙烯同元聚合物,而亦可爲含有少量其他α-烯烴(例如丙烯、丁烯-1、己烯-1等)之共聚物。聚乙烯組 成物Α’中,除了高密度聚乙烯Α及超高分子量聚乙烯以 外之其他聚乙烯的百分比,較佳爲50質量%或以下,更佳 爲20質量%或以下。 (c) 分子量分布Mw/Mn(i) High-density polyethylene A High-density polyethylene A has a terminal vinyl concentration (measured by infrared spectroscopy) of 0·3 or more per 10,000 carbon atoms (hereinafter referred to as "/10,000 C"). When the terminal vinyl concentration is less than 0.3/1 0,000 C, the breaking property of the first separator is insufficient. The terminal vinyl group concentration of the high density polyethylene crucible is preferably 0.4/10,000 C or more, more preferably 0.5/10, 〇〇〇 C or more. The terminal vinyl concentration is expressed as the number of terminal vinyl groups per one 〇 of one carbon atom in the high-density polyethylene A. The terminal vinyl concentration is measured by infrared spectroscopy. Specifically, the measurement is performed by (1) forming a sample having a thickness of about 1 mm by thermally pressing high-density polyethylene A, and (2) measuring the absorbance at 910 CHT1 A = log (I 〇 / I) , which is measured by Fourier transform red 200830616 external spectrometer. The intensity of the transmitted light indicating the blank groove 'and the intensity of the transmitted light of the sample cell' and (3) the equation for calculating the concentration of the terminal ethyl group (/10,000 C) = (1.14x absorbance A) / (high density poly B Density of A (g/cm3) x Thickness of Sample (mm) ° The weight average molecular weight (Mw) of high-density polyethylene A is preferably lxl〇4 to 5xl05, more preferably 1χ1〇5 to 5xl05' Good for 2xl05 to 4xl05° When the Mw of high density polyethylene is less than 5 X 1 05, the first spacer has a large average pore diameter. The density of the high density polyethylene crucible is usually from 0.90 to 0.98 g/cm3', preferably from 0.93 to 0.97 g/cm3, more preferably from 0.94 to 0.96 g/cm3. The high density polyethylene A is not limited to the ethylene homopolymer, but may be a copolymer containing a small amount of other olefin. The olefin other than ethylene is preferably propylene, butene-1, pentene-1, hexene-1, 4-methylpentene-1, octene-1, vinyl acetate, methyl methacrylate, and Styrene. The high-density polyethylene A can be obtained by suspension polymerization, solution polymerization or gas phase polymerization using a catalyst loaded with a chromium compound in combination with an organometallic compound disclosed, for example, in JP 1 - 1 2777 B. (ii) Ultrahigh molecular weight polyethylene Ultrahigh molecular weight polyethylene has a Mw of 1 x 1 〇 6 or more. The ultrahigh molecular weight polyethylene may be an ethylene homopolymer or an ethylene·α-olefin copolymer containing a small amount of other olefins. The olefin other than ethylene is preferably propylene, butene-1, pentene-1, hexene-1, 4-methylpentene-1, octene-1, vinyl acetate, methyl methacrylate or Styrene. The Mw of the ultrahigh molecular weight polyethylene is preferably from IxlO6 to 15χ106, more preferably from 1x1〇6 to 5xl〇6, most preferably from 1x1 06 to 3x1 06. (iii) Formulation and weight average molecular weight -10- 200830616 The percentage of the ultrahigh molecular weight polyethylene in the polyethylene composition A is preferably 1% by mass or more, more preferably 2 to 60% by mass, most preferably 2 to 50% quality%. The Mw of the polyethylene composition A is preferably from 1 x 10 4 to 5 x 106, more preferably from 1 x 10 5 to 4 x 106, most preferably from 2 x 105 to 1.5 x 106. When the Mw of the polyethylene composition A is less than 1.5 x 10 6 , the first separator has a large average pore diameter. (b) Polyethylene composition Α' The polyethylene composition A' is a mixture of the polyethylene composition A and polyethylene other than the high-density polyethylene A and the ultrahigh molecular weight polyethylene. The polyethylene composition A can be the same as the foregoing. The polyethylene other than the high density polyethylene A and the ultra high molecular weight polyethylene is preferably at least one of the group consisting of medium density polyethylene, branched low density polyethylene, and linear low density polyethylene. Its Mw is preferably lxl 04 to 5x105. Other polyethylenes other than high-density polyethylene A and ultra-high molecular weight polyethylene are not limited to ethylene homopolymers, but may also contain small amounts of other α-olefins (for example, propylene, butene-1, hexene-1, etc.). Copolymer. In the polyethylene composition, the percentage of the polyethylene other than the high density polyethylene crucible and the ultrahigh molecular weight polyethylene is preferably 50% by mass or less, more preferably 20% by mass or less. (c) Molecular weight distribution Mw/Mn
Mw/Mn爲分子量分布的量測;此數値越大’分子量的 分布越廣。第一聚烯烴的Mw/Mn ’在超高分子量聚乙烯與 其他聚乙烯中較佳爲5-300,更佳爲5-100,最佳爲5-30。 當Mw/Mn小於5,高分子量成分的百分比過高而無法輕易 的進行熔融擠壓。另一方面,當Mw/Mn大於30〇,低分子 200830616 量成分的百分比過高,造成微多孔膜的強度減低。聚乙烯 (同元聚合物或乙烯· α-烯烴共聚物)的Mw/Μη可藉由多 階段聚合而適當的控制。多階段聚合法較佳爲二階段聚合 反應法,包括在第一階段形成高分子量聚合物成分,以及 在第二階段形成低分子量聚合物成分。在聚乙烯組成物的 情形,Mw/Mn越大,存在於超高分子量聚乙烯與其他聚乙 烯之間的Mw的差越大,反之亦然。乙烯組成物的Mw/Mn 可藉由成分的分子量與混合比例適當的控制。 φ (2) 其他成分 第一聚烯烴除了前述成分(1)之外可含有總量不惡化 隔離材之性質的除了第一聚烯烴以外之其他聚烯烴,或具 有170°C或以上之熔點或玻璃轉移溫度(Tg)的抗熱性樹 (a) 其他聚烯烴 除了第一聚烯烴以外之其他聚烯烴可爲由下列組成 之群組的至少之一 :U)聚丙烯、聚丁烯-1、聚戊烯-1、 ^ 聚-4-甲基戊烯-1、聚己烯-1、聚辛烯-1、聚乙酸乙烯酯、 聚甲基丙烯酸甲酯、聚苯乙烯以及乙烯· α-烯烴共聚物, 其各具有lxl〇4至4χ106之Mw,與(b)具有Mw爲lxlO3 至lxlO4之Mw。聚丙烯、聚丁烯-1、聚戊烯-1、聚-4-甲基 戊烯· 1、聚己烯-1、聚辛烯-1、聚乙酸乙烯酯、聚甲基丙 烯酸甲酯以及聚苯乙烯,其他聚烯烴不限於同元聚合物’ 而亦可爲含有其他α -烯烴之共聚物。 (b) 抗熱性樹脂 抗熱性樹脂較佳爲具有17CTC或以上之熔點的晶性樹 -12- 200830616 脂,其可爲部分結晶,與具有170°C或以上之Tg的非晶 性樹脂。熔點與Tg係依據ns K7 121藉由微差掃瞄熱量法 (DSC)進行測量。抗熱性樹脂的具體實例包括聚酯(例如聚 對酞酸伸丁酯(熔點:約160-230°C)、聚對酞酸伸乙酯(熔 點:約250-270°〇等)、氟樹脂、聚醯胺(熔點:2 1 5-265°〇、 聚環芳硫醚、聚醯亞胺(Tg: 280 °C或以上)、聚醯胺醯亞胺 (Tg : 28 0 °C )、聚醚颯(Tg : 223°C )、聚醚醚酮(熔點:334 °C )、聚碳酸酯(熔點:220-240°C )、乙醯纖維素(熔點:220 φ °C )、三乙醯纖維素(熔點:300°C )、聚颯(Tg : 19CTC )、聚 醚醯亞胺(熔點:216°C )等。 (B)第二聚烯烴Mw/Mn is a measure of molecular weight distribution; the larger the number, the wider the distribution of molecular weight. The Mw/Mn' of the first polyolefin is preferably from 5 to 300, more preferably from 5 to 100, most preferably from 5 to 30, in the ultrahigh molecular weight polyethylene and the other polyethylene. When Mw/Mn is less than 5, the percentage of the high molecular weight component is too high to be easily melt-extruded. On the other hand, when Mw/Mn is more than 30 Å, the percentage of the low molecular weight 200830616 component is too high, resulting in a decrease in the strength of the microporous membrane. The Mw/Μη of the polyethylene (the homopolymer or the ethylene·α-olefin copolymer) can be appropriately controlled by multistage polymerization. The multistage polymerization process is preferably a two-stage polymerization process comprising forming a high molecular weight polymer component in the first stage and forming a low molecular weight polymer component in the second stage. In the case of the polyethylene composition, the larger the Mw/Mn, the greater the difference in Mw present between the ultrahigh molecular weight polyethylene and the other polyethylene, and vice versa. The Mw/Mn of the ethylene composition can be appropriately controlled by the molecular weight and mixing ratio of the components. Φ (2) Other components The first polyolefin may contain, in addition to the aforementioned component (1), a polyolefin other than the first polyolefin which does not deteriorate the properties of the separator, or has a melting point of 170 ° C or higher or Heat resistance of glass transition temperature (Tg) (a) Other polyolefins Other than the first polyolefin may be at least one of the group consisting of: U) polypropylene, polybutene-1, Polypentene-1, ^ poly-4-methylpentene-1, polyhexene-1, polyoctene-1, polyvinyl acetate, polymethyl methacrylate, polystyrene, and ethylene·α- The olefin copolymers each having an Mw of from 1 x 4 to 4 χ 106, and (b) having a Mw of Mx from 1 x 10 3 to 1 x 10 4 . Polypropylene, polybutene-1, polypentene-1, poly-4-methylpentene-1, polyhexene-1, polyoctene-1, polyvinyl acetate, polymethyl methacrylate, and Polystyrene, other polyolefins are not limited to the homopolymers' but may also be copolymers containing other α-olefins. (b) Heat-resistant resin The heat-resistant resin is preferably a crystalline tree -12-200830616 grease having a melting point of 17 CTC or more, which may be partially crystallized, and an amorphous resin having a Tg of 170 ° C or more. The melting point and Tg are measured by the differential scanning calorimetry (DSC) according to ns K7 121. Specific examples of the heat resistant resin include polyester (for example, polybutylene terephthalate (melting point: about 160 to 230 ° C), poly(p-butyl phthalate) (melting point: about 250-270 ° 〇, etc.), fluororesin , polydecylamine (melting point: 2 1 5-265 ° 〇, polycyclic aryl sulfide, polyimine (Tg: 280 ° C or above), polyamidimide (Tg: 28 0 ° C), Polyether oxime (Tg: 223 ° C), polyether ether ketone (melting point: 334 ° C), polycarbonate (melting point: 220-240 ° C), acetonitrile cellulose (melting point: 220 φ ° C), three Ethylene cellulose (melting point: 300 ° C), polyfluorene (Tg: 19CTC), polyether quinone (melting point: 216 ° C), etc. (B) second polyolefin
第一聚烯烴係爲U)具有每10,000個碳原子0.2或以 下的末端乙烯基濃度(藉紅外線光譜測量)之高密度聚乙烯 B以及超高分子量聚乙烯的混合物(聚乙烯組成物B),或(b) 聚乙烯組成物B與除了高密度聚乙烯B及超高分子量聚乙 烯以外之聚乙烯的混合物(聚乙烯組成物B ’)。 φ (1)聚乙烯組成物BThe first polyolefin is U) a mixture of high density polyethylene B having a terminal vinyl concentration of 0.2 or less per 10,000 carbon atoms (measured by infrared spectroscopy) and ultra high molecular weight polyethylene (polyethylene composition B), Or (b) a mixture of polyethylene composition B and polyethylene other than high density polyethylene B and ultra high molecular weight polyethylene (polyethylene composition B '). Φ (1) polyethylene composition B
(i)高密度聚乙烯B 高密度聚乙烯B具有0.2/1 0,000(:或以下的末端乙烯 基濃度(藉紅外線光譜測量)。當末端乙烯基濃度大於 0.2/1 0,000 C,第二隔離材具有不良的機械強度與熔毀性 質。高密度聚乙烯B之末端乙烯基濃度較佳爲0.15/10,000 C或以下。高密度聚乙烯B之末端乙烯基濃度係以如在高 密度聚乙烯A之相同方式進行測量。 高密度聚乙烯B之Mw與密度可與高密度聚乙烯A的 -13- 200830616 相同。當高密度聚乙烯B的Mw小於5x1 Ο5,第二隔離材 具有大的平均孔隙直徑。高密度聚乙烯Β較佳爲乙烯同元 聚合物,但亦可爲含有少量其他α-烯烴之共聚物。其他 α-烯烴可與前述者相同。 前述之高密度聚乙烯Β可藉由使用揭示於例如JP 1 - 1 2777 Β之含有錳化合物的戚格勒觸媒之懸浮聚合、溶 液聚合或氣相聚合而製得。 (ii)超高分子量聚乙烯(i) High-density polyethylene B High-density polyethylene B has a terminal vinyl concentration of 0.2/1 0,000 (or below) (measured by infrared spectroscopy). When the terminal vinyl concentration is greater than 0.2/1 0,000 C, the second spacer It has poor mechanical strength and meltdown properties. The terminal vinyl concentration of high density polyethylene B is preferably 0.15/10,000 C or less. The terminal vinyl concentration of high density polyethylene B is as in high density polyethylene A. The measurement is performed in the same manner. The Mw and density of high density polyethylene B can be the same as that of high density polyethylene A-13-200830616. When the Mw of high density polyethylene B is less than 5x1 Ο5, the second separator has a large average pore diameter. The high-density polyethylene crucible is preferably an ethylene homopolymer, but may also be a copolymer containing a small amount of other α-olefins. Other α-olefins may be the same as the foregoing. The aforementioned high-density polyethylene crucible may be used by using It is disclosed, for example, in suspension polymerization, solution polymerization or gas phase polymerization of a ruthenium catalyst containing a manganese compound of JP 1 - 2 2777. (ii) Ultrahigh molecular weight polyethylene
φ 超高分子量聚乙烯可與前述者相同。聚乙烯組成物B 中的超高分子量聚乙烯之百分比可與在聚乙烯組成物 A 者相同。聚乙烯組成物B的Mw可與聚乙烯組成物A者相 同。 (b) 聚乙烯組成物B’ 聚乙烯組成物B ’爲聚乙烯組成物B與除了高密度聚 乙烯B及超高分子量聚乙烯以外之其他聚乙烯的混合物。 聚乙烯組成物B可與前述者相同。除了高密度聚乙烯B及 0 超高分子量聚乙烯以外之其他聚乙烯可與前述在聚乙烯 組成物A’中之除了高密度聚乙烯A及超高分子量聚乙烯 以外之其他聚乙烯相同。除了高密度聚乙烯B及超高分子 量聚乙烯以外之其他聚乙烯的百分比,較佳爲50質量%或 以下,更佳爲20質量%或以下。 (c) 分子量分布Mw/Mn 第二聚烯烴之Mw/Mn可與第一聚烯烴的相同。 (2)其他成分 第二聚烯烴除了前述成分(1)之外可含有總量不惡化 -14- 200830616 隔離材之性質的除了第二聚烯烴以外之其他聚烯烴,或具 有170°C或以上之熔點或玻璃轉移溫度(Tg)的抗熱性樹 脂。除了第二聚烯烴以外之其他聚烯烴可與前述之除了第 一聚烯烴以外之其他聚烯烴相同。抗熱性樹脂可與前述者 相同。 [2]隔離材之製造方法 (A)第一隔離材之製造方式 製造第一隔離材之方式包括步驟(1)將第一聚烯烴與 φ 膜形成溶劑熔融摻合以製備第一聚烯烴溶液,(2)將第一 聚烯烴溶液擠壓通過模,(3)冷卻擠壓物以形成膠狀片, (4)拉伸膠狀片,(5)自膠狀片移除膜形成劑,以及(6)乾 燥所得之膜。如果需要,膜可爲條狀(條化步驟(7))。步驟 (6)之後,如果需要,可進行微多孔膜之拉伸步驟(8)、熱 處理步驟(9)、使用游離輻射之交聯步驟(1 0)、親水化步驟 (11)等。 (1)聚乙烯溶液之製備 Φ 第一聚烯烴與膜形成溶劑熔融摻合以製備第一聚烯 烴溶液。第一聚烯烴在不惡化本發明之效果的範圍內,如 果需要,可含各種添加劑例如抗氧化劑、矽酸鹽細粉(孔 隙形成劑)等。 膜形成溶劑在室溫較佳爲液態。使用液態溶劑使得高 倍率之拉伸成爲可能。液態溶劑可爲脂肪族、脂環族或芳 香族之烴(例如壬烷、癸烷、十氫萘、對二甲苯、十一烷、 十二烷、液體石鱲等)、具有沸點類似前述烴之無機油餾 出物,與室溫下的酞酸液體(例如酞酸二丁酯、酞酸二辛 -15- 200830616 酯等)。爲得到具有穩定液體溶劑含量之膠狀層合片,較 佳使用非揮發性液體溶劑例如液體石躐。在熔融摻合狀態 可與聚乙烯混合,但在室溫爲固態之溶劑可與液態溶劑混 合。此種固態溶劑包括硬脂醇、二十六醇、石躐等。然而, 當單獨使用石蠘時,可能發生非均勻的拉伸。 液態溶劑的黏度在25°C較佳爲30-500 cSt,更佳爲 30-200 cSt。當在25°C之黏度小於30 cSt時,第一聚烯烴 溶液容易起泡,造成摻合的困難。另一方面,當黏度大於 φ 500 cSt時,液態溶劑的移除會有困難。 雖然沒有特別限定,第一聚烯烴溶液的均勻熔融摻合 較佳使用雙螺桿擠壓機進行以製備高濃度聚烯烴溶液。膜 形成溶劑可在摻合前加入,或在摻合期間在中間部分注入 雙螺桿擠壓機,雖然後者爲更佳。 聚烯烴溶液的熔融摻合溫度較佳在第一聚烯烴之熔 點Tma+10°C至Tma+120°C的範圍以內。熔點係依據JIS K7 121藉由微差掃瞄熱量法(DSC)量測。具體的說,因爲上 φ 述聚乙烯組成物A與A’具有約1 30- 1 40°C之熔點,熔融 摻合溫度較佳爲140-250°C,更佳爲170-240°C。 雙螺桿擠壓機中螺桿長度L對螺桿直徑D的L/D 比,較佳在20- 1 00之範圍,更佳在3 5 -70的範圍。當L/D 小於20,熔融摻合係不充分的。當L/D大於100,聚烯烴 溶液在雙螺桿擠壓機的停留時間過長。雙螺桿擠壓機的汽 缸較佳具有40- 100 mm的內徑。 每100質量%之聚烯烴溶液之第一聚烯烴的百分比, 較佳爲1-75質量%,更佳爲20-70質量%。當聚烯烴小於1 -16· 200830616 質量%,產量低。此外,在形成膠狀片期間,發生在模出 口的大膨脹或頸縮,造成膠狀片的成形度與自支撐度下 降。另一方面,當聚烯烴大於75質量%,膠狀片的成形度 惡化。 (2) 擠壓 熔融摻合於擠壓機之聚烯烴溶液立即地或在九粒化 之後自模擠壓。所使用的模通常爲具有矩形截面開孔之片 形成模,但是亦可使用雙圓筒空心模充氣模唇等。在片形 φ 成模的情形,模間隙通常爲0.1-5mm,且其在擠壓期間加 熱至1 40-250°C。加熱溶液的擠壓速度較佳爲0.2至15 m/ 分鐘。 (3) 膠狀片的形成 自模擠壓出的聚烯烴溶液被冷卻以形成膠狀片。冷卻 較佳以至少50° C/分鐘或以上之速度的凝結溫度進行。冷 卻較佳在25°C或以下進行。這樣的冷卻將膜形成溶劑所 隔離之聚烯烴的微相固定。一般說來,冷卻速度越低會提 I 供膠狀片大的假晶格單元,造成轉變爲更高等結構。另一 方面,冷卻速度越高造成更密的晶格單元。小於50°C /分 鐘的冷卻速度導致結晶度的增加,使其不具有適當的拉伸 性來提供膠狀片。可用的冷卻方式爲將擠壓物直接與冷卻 介質(例如冷卻空氣、冷卻水等)接觸之方式、將擠壓物與 被冷卻介質等冷卻之輥接觸之方法。 (4) 膠狀片之拉伸 所得之膠狀片係在至少一個方向進行拉伸。膠狀片由 於其含有膜形成溶劑而可均勻的拉伸。膠狀片在加熱後, -17- 200830616 藉由拉幅機法、輥法、充氣法或其組合,拉伸至預定的倍 數。拉伸可以單軸地或雙軸地進行’雖然雙軸拉伸係爲較 佳。在雙軸拉伸的情形,可使用任何的同步雙軸拉伸、連 續拉伸或多階段拉伸(例如,同步雙軸拉伸與連續拉伸的 組合),雖然同步雙軸拉伸係爲較佳。 在單軸拉伸,拉伸倍率較佳爲2倍或以上,更佳爲3 · 3 0 倍。在雙軸拉伸,拉伸倍率較佳在任何方向爲3倍或以上 (在面積倍率較佳爲9倍或以上,更佳爲1 6倍或以上,最 φ 佳爲25倍或以上)。當面積倍率爲9倍或以上時,微多孔 膜的針穿強度得到改善。當面積倍率大於400倍時,拉伸 設備、拉伸條件等會被限制。 拉伸溫度較佳爲第一聚烯烴的熔點 Tnu+10 °C或以 下,更佳在第一聚烯烴的晶體分散溫度Tcda或以上與小於 Tma之範圍。當拉伸溫度高於Tma+10°C,第一聚烯烴熔化, 無法藉由拉伸來排列分子鏈。當拉伸溫度低於Tcda,第一 聚烯烴軟化不充分,使得微多孔膜容易在拉伸時破裂,無 φ 法達到高倍率的拉伸。 聚乙烯組成物A與A’具有約1 30- 140°C的Tma與約 90- 1 00°C的Tcda。Tcda係依據ASTM D 4065對聚乙烯樹脂 的動力黏彈性之溫度性質測量而決定。因此,拉伸溫度爲 9 0 - 1 4 0 °C,較佳爲 1 〇 〇 -1 3 0 °C。 這樣的拉伸造成聚乙烯層間的分裂,使得聚乙烯相更 細並形成大量纖絲。纖絲形成三維的網路結構(三維的不 規則連結網路結構)。拉伸改善微多孔膜的機械強度,並 擴大其孔隙,使得微多孔膜特別地適於用在電池隔離材。 -18- 200830616 依所期望的性質,拉伸可在厚度方向以一溫度分布進 行,以提供具有極佳的機械強度之微多孔聚烯烴膜。此方 式之細節敘述在日本專利3 347 854號。 (5) 膜形成溶劑之移除 爲了移除(洗掉)膜形成溶液之目的,係使用洗液。由 於第一聚烯烴相係與膜形成溶劑相分離,膜形成溶劑的移 除提供了微多孔膜。膜形成溶劑的移除(洗掉)可藉由使 用已知的洗液進行。洗液包括揮發性溶劑,例如飽和烴(例 φ 如戊烷、己烷、庚烷等),氯化烴(例如二氯甲烷、四氯化 碳等)、醚(例如二乙醚、二噁烷等)、酮(例如甲乙酮等)、 線形氟化碳(例如三氟乙烷、C6Fm、C7F16等)、環狀氫氟化 碳(例如C5H3F7等)、氫氟醚(例如C4F9〇CH3、C4F9〇C2H5等)、 全氟醚(例如C4F9〇CF3、C4F9〇C2F5等)。 拉伸後微多孔膜的清洗可藉由浸漬於洗液中及/或以 洗液沖洗而進行。所使用的洗液較佳對每100質量份的拉 伸膜爲300-30,000質量份。清洗溫度通常爲15-3(TC,且 φ 如果需要,在清洗期間可進行加熱。清洗期間的加熱溫度 較佳爲8 0 °C或以下。洗液的清洗較佳進行直到殘留的膜形 成溶劑的總量小於加入量的1質量%以下。 (6) 乾燥 藉由拉伸以及膜形成溶劑的移除所得到的微多孔聚 烯烴膜藉由加熱乾燥法、風乾法等乾燥。乾燥溫度較佳等 漁獲低於前述的Tcda,特別是Tcda的5。(:或以下。乾燥係 進行至殘留的洗液變成較佳每100質量%(以乾燥計)的微 多孔膜爲5質量%或以下,更佳爲3質量%。不充分的乾燥 -19· 200830616 會由於後續的熱處理導致不期望的減少微多孔膜的孔隙 度造成穿透率不良。 (7) 微多孔膜的條化 乾燥的微多孔膜被條化。可使用已知的切割器。如果 需要,可適當的控制分離器的寬度,分離器的寬度較佳爲 5 至 2 00mm 〇 (8) 微多孔膜的拉伸 乾燥的微多孔膜可於至少單軸拉伸(再拉伸)。再拉伸 φ 可在如前述加熱微多孔膜時藉由拉幅機法等進行。再拉伸 可爲單軸或雙軸。在雙軸拉伸的情形,可使甩同步雙軸拉 伸或連續雙軸拉伸,雖然較佳爲同步雙軸拉伸。附帶地, 由於再拉伸通常對長片形式的微多孔膜進行,其係藉由拉 伸膠狀片而得,再拉伸於縱向及橫向之方向係與拉伸膠狀 片時的相同。此於其他製造方式中亦相同。 微多孔膜的拉伸溫度較佳爲第一聚烯烴的熔點Tma或 以下,更佳在Tcda至Tnu的範圍內。聚乙烯組成物A與A’ φ 具有約1 30- 1 40°C之Tma。因此拉伸溫度爲90- 1 3 5 °C,較佳 爲 95- 1 30°C。 單軸再拉伸倍率爲1.1 -1. 8倍。在單軸拉伸的情形, 在縱向或橫向方向之再拉伸倍率爲1 . 1 -1 · 8倍。在雙軸拉 伸的情形,在縱向與橫向方向之再拉伸倍率皆爲1.1-1.8 倍,在縱向與橫向方向之再拉伸倍率可爲相同或不同,雖 然再拉伸倍率較佳在兩方向相同。 當微多孔膜的拉伸倍率小於1.1倍,所得到的膜具有不 充分的穿透率、電解液吸收與壓縮抗性。當此倍率大於1.8 -20- 200830616 倍,形成太細的纖絲,而減少熱收縮抗性與電解液吸收。 (9) 熱處理 乾燥的微多孔膜較佳經過熱處理以穩定結晶以得到 均勻薄層。熱處理可包括熱固定及/或退火。熱固定較佳藉 由拉幅機法或輥法進行。熱固定溫度較佳在前述結晶分散 溫度Tcda至熔點Tma的範圍內,更佳在微多孔膜的拉伸溫 度土5 °C的範圍內,最佳在微多孔膜的拉伸溫度±3 °C的範圍 內。 φ 退火爲沒有施加負載在微多孔膜上的熱處理,可藉由 使用具有輸送帶之加熱室或吹氣式加熱室而進行。退火可 於拉幅機放鬆的熱固定後連續的進行。退火溫度較佳爲熔 點Tnu或以下。這樣的退火提供微多孔膜高穿透率與強度。 (10) 微多孔膜之交聯 微多孔膜可藉由游離輻射(例如 α -射線、/3 -射線、 r -射線、電子束等)進行交聯。在放射電子束的情形,電 子束的總量較佳爲 0.1-100Mrad,加速電壓較佳爲 φ 1 00-300kV。交聯處理提升了微多孔聚烯烴膜的熔毀溫度。 (11) 親水化處理 微多孔膜可接受親水化處理(添加親水性質的處理)。 親水化處理可爲單體接枝處理、界面活性劑處理、電暈放 電處理等。單體接枝處理較佳係在交聯處理後進行。 在界面活性劑處理的情形,可使用任何的非離子界面 活性劑、陽離子界面活性劑、陰離子介面活性劑、兩性界 面活性劑,而以非離子界面活性劑爲較佳。微多孔膜係浸 漬在水或低級醇(例如甲醇、乙醇、異丙醇等)的介面活性 -21 - 200830616 劑溶液中或藉由刮刀法塗布。 (B)第二隔離材之製造方式 除了使用第二聚烯烴以外,製造第二隔離材之方式可 與製造第一隔離材之方式相同。在步驟(1)中’第二聚烯烴 溶液的熔融摻合溫度,較佳在第二聚烯烴的熔點Tnu+10 至Tnu+120°C的範圍內。在步驟(4)中,拉伸溫度較佳爲 前述之Τπη+10°C或以下,更佳爲第二聚烯烴的結晶分散溫 度Tech至Tnu以下之範圍。在步驟(6)中,乾燥溫度較佳 φ 等於或小於前述的Tcdb,特別是小於Tech達5°C或更多。 在步驟(8)中,微多孔膜的拉伸溫度較佳爲前述的Tnu或以 下,更佳在前述之Tech至Tnu之範圍內。在步驟(9)中, 熱固定溫度較佳在前述之Tech至Tnu的範圍內,更佳在微 多孔膜的拉伸溫度±5 °C的範圍內,最佳在微多孔膜的拉伸 溫度±3 °C的範圍內。退火溫度較佳爲前述之Tnu或以下。 聚乙烯組成物 B與 B’具有約 1 30- 140 °C之 Tnu與約 90-10CTC 之 Tech。 0 在製造第二隔離材的方式中,爲了進一步改善熔毀性 質,可在微多孔聚乙烯膜的至少一面上形成氟樹脂(聚偏 二氟乙烯、聚四氟乙烯等)、聚丙烯、聚醯胺、聚環芳硫 醚等的多孔塗布層。 [3]電極片 陽極片包括電流收集器與陽極活性材料層,而陰極片 包括電流收集器與陰極活性材料層。取決於二次電池的形 式(鋰離子二次電池、鎳氫二次電池、鎳鎘二次電池、鎳 鋅二次電池、銀鋅二次電池等),可使用已知的材料作爲 -22- 200830616 電流收集器、陽極活性材料與陰極活性材料。下面將會解 釋鋰離子二次電池中的陽極片與陰極片及其製造方式。 (A) 陽極片 陽極片之電流收集器的具體實例包括鋁、銅、鎳、不 鏽鋼、鈦等的金屬箔,而以鋁箔爲較佳。陽極活性材料爲 可吸收與放出鋰離子的材料。陽極活性材料的具體實例可 爲無機化合物,例如過渡金屬氧化物、鋰與過渡金屬的複 合氧化物(鋰複合氧化物)、過渡金屬硫化物等。過渡金屬 肇 可爲V、Μ η、F e、C 〇、N i等。較佳之鋰複合氧化物的實例 爲含有至少一種過渡金屬之片狀的鋰複合氧化物。片狀的 鋰複合氧化物的具體實例包括鎳酸鋰、鈷酸鋰、錳酸鋰、 LiMn2〇4、Li(Ni-Mn-Co)〇2 等。 陽極片係藉由在電流收集器上塗布陽極活性材料 糊、黏結劑與溶劑,乾燥並壓製而製得。糊較佳含有導電 性添加劑,其可爲片狀石墨、碳黑等。黏結劑可爲氟化化 合物例如聚偏二氟乙烯、聚四氟乙烯等。溶劑可爲,例如 φ N-甲基-2-吡咯酮等。雖然沒有特別限制,塗布法可爲例如 刮刀法等。 陽極活性材料層係形成於電流收集器的單面或雙面 上’取決於所期望的電極複合體之結構。雖然沒有特別限 制’電流收集器的厚度較佳爲5至6 0 // m,更佳爲8至 40 // m,而陽極活性材料層的厚度較佳在陽極片的每一側 爲 20 至 300/zm,更佳爲 40 至 150/ζιη。 (B) 陰極片 用於陰極片的電流收集器之材料可與前述之金屬箔 -23- 200830616 相同,而以銅箔爲較佳。陰極活性材料的具體實例可爲含 碳材料例如介穩相碳微粒、天然石墨、人造石墨、煤焦、 碳黑等。另外的實例可爲Si、Sn、Si-C等。 陰極片係藉由在電流收集器上塗布陰極活性材料 糊、黏結劑與溶劑,乾燥並壓製而製得。糊較佳含有導電 性添加劑,其可爲片狀石墨、碳黑等。黏結劑、導電性添 加劑與溶劑可與在陽極片者相同。用於陰極片的黏結劑可 爲橡膠(苯乙烯-丁二烯橡膠等)的水性分散液。雖然沒有特 φ 別限制,塗布法可爲例如刮刀法等。 陰極活性材料層係形成於電流收集器的單面或雙面 上’取決於所期望的電極複合體之結構。陰極片的電流收 集器的厚度可與在陽極片者相同。陰極活性材料層的厚度 可與陽極在活性材料層者相同。在陽極片與陰極片的電流 收集器可不具有相同之厚度。陽極活性材料層與陰極活性 材料層可不具有相同之厚度。 [4]電極複合體之結構 φ 第1至4圖顯示包括本發明之電極複合體的圓柱形鋰 離子二次電池實例。此電池具有螺旋管形電極複合體1, 包括第二隔離材11、陰極片13、第一隔離材10與陽極片 1 2。爲了提供電池改善的針穿安全性,螺旋管形電極複合 體1較佳爲以使第二隔離材11配置在陰極片13的外側表 面,同時使第一隔離材10配置在陰極片13的內側表面之 方式捲繞。如第2圖所示,本實例中第二隔離材11係配 置於螺旋管形電極組合件1的內側表面。’ 如第3圖所示,本實例中陽極活性材料層1 2b係形成 -24- 200830616 在電流收集器1 2 a的雙面上,而陰極活性材料層1 3 b係形 成在電流收集器13a的雙面上。如第2圖與第4圖所示, 陽極導線20將陽極片1 2的終端連接至電池蓋27,而陰極 導線2 1將陰極片1 3的終端連接至電池殻23。 當螺旋管形電極複合體1用於長方形的鋰離子二次電 池時’複合體1被捲繞成長圓柱。在具有包括交替配置之 平面的陽極1 2與陰極1 3之層合結構的鋰離子二次電池之 情形,第一與第二隔離材1 〇、11交替地被平面的陽極i 2 ^ 與陰極1 3所包夾。 電極複合體1包括(a)包括具有極佳停機性質之高密 度聚乙烯A的第一隔離材1〇,以及(b)包括具有極佳機械 強度與熔毀性質之高密度聚乙烯B的第二隔離材。此外, 桌一與桌一隔離材1 〇、11在透過性、熱收縮抗性、壓縮 抗性亦爲極佳。第一與第二隔離材1 〇、11間的停機溫度 差在5°C以內。當此差距大於5°C,電池具有低安全性。 第一與第二隔離材料10、Η的停機溫度較佳爲125。^或以 φ 上以得到極佳的電池安全性。 [5]非水性電解液電池 具有前述電極複合體1之鋰離子二次電池。第一與第 二隔離材含有電解質溶液 電解質溶液係藉由將鋰鹽溶於有機溶劑中所得到。鋰 鹽可爲 LiCICU、LiPF6、LiAsF6、LiSbF6、LiBF4、LiCFsSCh、 LiN(CF3S〇2)2、LiC(CF3S〇2)3、Li2Bi〇Cl1〇、LiN(C2F5S〇2)2、 L i P F 4 (C F 3) 2、L i P F 3 (C 2 F 5) 3、鋰的低級脂肪殘酸鹽、l i A 1 C14 等。鋰鹽可單獨使用或組合使用。有機溶劑可爲具有高沸 -25- 200830616 點與高介電常數之有機溶劑,例如碳酸乙二酯、碳@爱丙二 酯、碳酸乙基甲酯、r -丁內酯等;具有低沸點及低黏度 之有機溶劑,例如四氫呋喃、2-甲基四氫呋喃、二甲氧基 乙烷、二氧戊環、碳酸二甲酯、碳酸二乙酯等。這些有機 溶劑可單獨使用亦可混合使用。由於具有高介電常數之有 機溶劑具有局黏度,而具有低黏度之有機溶劑具有低介電 常數,較佳使用其混合物。 在組裝電池時,陽極片1 2、陰極片1 3與第一及第二 隔離材1 〇、11係浸漬於電解質溶液中,所以隔離材1 〇、 11 (微多孔膜)提供離子透過性。浸漬處理通常藉由將電極 複合體1在室溫下浸漬於電解質溶液而進行。圓柱型鋰離 子二次電池可藉由將螺旋管形電極複合體1 (參見第1至4 圖)導入在底部具有絕緣板2 2之電池殼2 3,將電解質溶液 注入電池殼23 ’以絕緣板22覆蓋電極複合體1,透過墊 片28用電池蓋27將電池殼23封住而製得。電池蓋27具 有電流中斷裝置24、彎曲板25與PTC裝置26,藉此具有 φ 陽極電極之功能。 包括本發明之電解質電池的非水性電解液電池具有 1,500 mAh或以上之放電容量,與60 %或以上的容量回復 率,較佳容量回復率爲75%或以上。 雖然本發明之電極複合體與非水性電解液電池已使 用鋰離子二次電池作爲實例解釋過,但本發明之電極並不 限制於此,而可用於其他形式的非水性電解液電池。本發 明之電極複合體與非水性電解液電池並不限於前述實 例,除非偏離本發明之宗旨,可在其中加入任何的改良。 -26- 200830616 【實施例】 本發明將以下列實例做更詳細說明,但本發明並不受 限於此。 實例1 (1)製備第一隔離材 乾燥摻合100質量份聚乙烯組成物A與0.2質量份做 爲抗氧化劑之肆[亞甲基-3-(3,5-二第三丁基-4-羥基苯基) 丙酸酯]甲烷,其中聚乙烯組成物A係包括20質量%的重 量平均分子量(Mw)爲2·0χ106、分子量分布Mw/Mn爲8之 超高分子量聚乙烯(UHMWPE),與80質量%的末端乙烯基 濃度爲 0.6/1 0,000 C、Mw 爲 3.5xl05、Mw/Mn 爲 13.5 之高 密度聚乙烯A(HDPE-A)。HDPE-A的末端乙烯基濃度藉由 測量在910CHT1的吸收度A = log(I〇/I),其中藉由傅立葉轉 換紅外光譜計(得自Horiba,Ltd之FREEXACT-II)所測得之 I。表示空白槽之透射光的強度,而I表示樣品槽之透射光 的強度,然後計算末端乙烯基濃度之公式(/1〇,〇〇〇 C) = (1.14x吸收度A)/(高密度聚乙烯A之密度(g/cm3)x樣品 之厚度(mm))而決定。聚乙烯組成物A具有6.8x1 05之Mw、 21.5 之 Mw/Mn、134°C 之 Tma 與 100°C 之 TccU。 UHMWPE、HDPE與聚乙烯組成物之Mw與Mw/Mn係 於下列條件藉由凝膠穿透層析術(GPC)測量: 測量儀器:得自 W a t e r s C 〇 r ρ 〇 r a t i ο η 之 G P C -1 5 0 C 管柱:得自 Showa Denko Κ·Κ·之 Shodex UT806M 管柱溫度:135t: 溶劑(移動相):鄰二氯苯 -27- 200830616 溶劑流速:1.0 ml/分鐘 樣本濃度:0.1重量% (溶於135°C歷1小時), 注入量:500 // 1 偵測器:得自Waters Corp·之微差折射器 檢量曲線:產生自使用預定轉換常數的標準聚乙烯樣 本的單分散減量曲線。 將3 0質量份所得到的混合物裝入具有內徑5 8mm與 L/D爲52.5之強力摻合雙螺桿擠壓器,然後透過側進料器 φ 將70質量份的液體石蠟[50 cst (40°C )]供應至雙螺桿擠壓 器。熔融摻合在23 (TC與250 rpm進行以製備聚乙烯溶液。 此聚乙烯溶液自裝設在雙螺桿擠壓器的尖端之T-模擠壓 出來,並藉由控制在5 °C之冷卻輥在捲取同時拉伸以及冷 卻,以形成膠狀片。使用拉幅-拉伸機器,膠狀片在1 1 5 °C 同步雙軸拉伸,使拉伸倍率在縱向(MD)與橫向(TD)二者皆 爲5倍。 將經拉伸之膠狀片浸漬於控制在25 °C之二氯乙燒的 ^ 洗浴中,並以10 0 rp m的振動清洗歷3分鐘以移除液體石 鱲。所得到的膜在室溫風乾。乾燥膜於被固定在拉幅_拉 伸機器同時在124°C熱固定歷30秒,以製得微多孔聚乙嫌 膜。所得到的微多孔聚乙烯膜被條化以製得具有寬度爲6〇 mm之第一隔離材1〇(參見第1圖)。 (2)第二隔離材之製備 1〇〇質量份的聚乙烯組成物B與0.2質量份前述之抗 氧化劑乾燥摻合,其中聚乙烯組成物B係包括3〇質量% 之前述UHMWPE與70質量%末端乙烯基濃度爲〇1/1〇,〇〇〇 -28- 200830616 C、Mw 爲 3 · Ox 105、M w/Mn 爲 8.6 B(HDPE-B)。聚乙烯組成物B具有135° °C之結晶分散溫度Tcdb、8.U105之 Mw/Mn。具有60Inm的寬度之微多孔聚 材11,除了係使用聚乙烯組成物B以及 度爲1 27 °C之外,係以與前述相同之方 (3) 陽極片之製備 將9 2.7質量份之鋰鈷複合氧化物 φ 份之乙炔碳以及3 .1質量份之聚偏二氟 N-甲基-2-吡咯酮,並藉由攪拌混合歷1 性材料糊。 藉由刮刀法將陽極活性材料糊施用 厚度的鋁箔電流收集器以製得厚度均勻 燥以製得在電流收集器的兩面上皆有f 陽極片12。 (4) 陰極片之製備 φ 將8 8質量份之介穩相碳微粒、1 0 及2質量份之PVDF加入至N-甲基- 2-¾) 以製備陰極活性材料糊。藉由刮刀法將 用於具有10/zm之厚度的銅箔電流收 勻之層。該等層被乾燥以製得在電流收 陰極活性材料層之陰極片1 3。 (5) 電極複合體之製備 依序層合60 mm寬之第二隔離材1 ,片13、60 mm寬之第一隔離材10及55 之高密度聚乙烯 ::之熔點Tnu、100 Mw以及 17.2之 乙烯膜的第二隔離 微多孔膜之固定溫 式製得。 (LiCoCh)、4.2 質量 乙烯(PVDF)加入至 小時以製備陽極活 於具有20 // m之 之層。該等層被乾 慕極活性材料層之 質量份之乙炔碳以 :咯酮,並加以混合 陰極活性材料糊施 集器以製得厚度均 集器的兩面上皆有 1、57 mm寬之陰極 mm寬之陽極片12 -29- 200830616 以製備電極複合體1。電極複合體1以將第二隔離材1 1配 製在陰極片13之外表面之方式捲繞。 (6) 電解質溶液之製備 將1莫耳/公升之LiPF6加入至碳酸乙二酯(EC)與碳酸 甲乙酯(EMC)之體積比率爲40/60的混合溶劑中以製備電 解質溶液。 (7) 電池之組裝 將陽極導線20接至螺旋管形電極複合體1中之陽極 φ 片1 2的末端,並將陰極導線2 1接至螺旋管形電極複合體 1中之陰極片1 3的末端。將螺旋管形電極複合體1置入底 部有絕緣板22之電池殼23時,陽極導線20與電池蓋27 連接,而電池殼23與陰極導線20連接。在製備於前述之 步驟(6)的電解質溶液注入電池殼23之後,螺旋管形電極 複合體1以絕緣板22覆蓋,而電池蓋27透過墊片28將 電池殼23封住,以製備1 8650型具有直徑18mm與高度 6 5 m m之圓柱型鋰離子二次電池。 φ 實例2 除了聚乙烯溶液的濃度爲25質量%、拉伸溫度爲1 1 7 °C、以及在125 °C進行退火使橫向長度爲0.9倍之外,係 以如實例1之方式製備第一隔離材1 0。此第一隔離材1 0 係用以與實例1相同之方式製備鋰離子二次電池。 實例3 100質量份的聚乙烯組成物A,其包括30質量%之前 述UHMWPE與70質量%前述之HDPE-A,係與0.2質量份 前述之抗氧化劑乾燥摻合。聚乙烯組成物A具有134°(:之 -30 - 200830616 熔點Tnu、100°C之結晶分散溫度TccU、8.4xl05之Mw以及 2 3.8之Mw/Μ η。第一隔離材10除了使用聚乙烯組成物A、 拉伸溫度爲114°C、微多孔膜於123°C藉由拉幅-拉伸機器 在橫向方向拉伸1.1倍、以及微多孔膜之固定溫度爲123 °C之外,係以與實例1相同之方式製得。使用此第一隔離 材10以與實例1相同之方式製備鋰離子二次電池。 實例4 100質量份的聚乙烯組成物A,其包括5質量%之前述 φ UHMWPE與95質量%前述之HDPE-A,係與0.2質量份前 述之抗氧化劑乾燥摻合。聚乙烯組成物A具有133°C之熔 點Tma、100°C之結晶分散溫度TccL、4·3χ105之Mw及15.9 之Mw/Mn。除了使用此聚乙烯組成物A、聚乙烯溶液之濃 度爲35質量%、拉伸溫度爲116°C、微多孔膜於126°C藉 由拉幅-拉伸機器在橫向方向拉伸1.3倍、以及微多孔膜之 固定溫度爲126°C之外,係以與實例1相同之方式製備第 一隔離材1 0。鋰離子二次電池係使用此第一隔離材1 〇以 φ 與實例1相同之方式而製得。 實例5 除了聚乙烯溶液之濃度爲 25質量%、微多孔膜於 1 27°C藉由拉幅-拉伸機器在橫向方向拉伸1.1倍、以及在 1 27 °C進行退火使得橫向方向之長度變成〇 . 9倍之外,係 以與實例1相同之方式製備第二隔離材11。鋰離子二次電 池係使用此第二隔離材11以與實例1相同之方式而製得。 實例6 以與實例2相同之方式製備第一隔離材10,並以與實 -31- 200830616 例5相同之方式製備第二隔離材11。鋰離子二次電池 此第一與第二隔離材1〇、11以與實例1相同之方式製 實例7 1 00質量份的聚乙烯組成物B,其包括5質量%之 UHMWPE與95質量%前述之HDPE-B,係與0.2質量 述之抗氧化劑乾燥摻合。聚乙烯組成物B具有134 °C 點Tnu、100°C之結晶分散溫度Tcdb、3.8xl05之Mw及 之Mw/Mn。除了使用此聚乙烯組成物B、拉伸溫度爲 φ °C、微多孔膜於130°C藉由拉幅-拉伸機器在橫向方向 1.4倍、以及微多孔膜之固定溫度爲1 30°C之外,係以 例1相同之方式製備第二隔離材Π。鋰離子二次電池 用此第二隔離材1 1以與實例1相同之方式而製得。 實例8 除了拉伸溫度爲1 14°c以外,係以與實例1相同 式製得第一隔離材1 0。除了拉伸溫度爲1 1 3 °C以外, 與實例1相同之方式製得第一隔離材11。鋰離子二次 φ 使用此第一與第二隔離材1 0、11以與實例1相同之 製得。 比較例1 除了以第一隔離材1 〇、陰極片1 3、第一隔離材 以及陽極片1 2之順序層合形成電極複合體之外,係 實例1相同之方式製備鋰離子二次電池。 比較例2 除了以第二隔離材1 1、陰極片13、第二隔離材 以及陽極片1 2之順序層合形成電極複合體之外,係 使用 得。 前述 份前 之熔 10.6 117 拉伸 與實 係使 之方 係以 電池 方式 10、 以與 11 > 以與 -32- 200830616 實例1相同之方式製備鋰離子二次電池。 比較例3 除了僅使用前述之HDPE-B、聚乙烯溶液之濃度爲40 質量%、拉伸溫度爲114°C、微多孔薄膜於128°C藉由拉幅 -拉伸機器在橫向方向拉伸1.4倍、以及微多孔膜之固定溫 度爲128 °C之外,係以與實例1中第二隔離材1 1相同之方 式製備隔離材。除了使用此隔離材而非第二隔離材11之 外,係以與實例1相同之方式製備鋰離子二次電池。 φ 比較例4 1 00質量份的聚乙烯組成物B,其包括3質量%之前述 UHMWPE與97質量%前述之HDPE-B,係與0.2質量份前 述之抗氧化劑乾燥摻合。聚乙烯組成物B具有135 °C之熔 點Tnu、100°C之結晶分散溫度Tech、3·5χ105之Mw及9,8 之Mw/Mn。除了使用此聚乙烯組成物B、聚乙烯溶液濃度 爲40質量%、拉伸溫度爲119°C、微多孔膜於130°C藉由 拉幅-拉伸機器在橫向方向拉伸1.4倍、以及微多孔膜之固 φ 定溫度爲130°C之外,係以與實例1相同之方式製備第二 隔離材11。鋰離子二次電池係使用此第二隔離材1 1以與 實例1相同之方式而製得。 比較例5 除了以第一隔離材1〇、陰極片13、第二隔離材11、 陽極片1 2之順序層合形成電極複合體、以及將第一隔離 材1 0配置於陰極片1 3之外表面之外’係以與實例1相同 之方式製備鋰離子二次電池。 由實例1 -8與比較例1 -5所得之微多孔聚乙烯膜的性 -33- 200830616 質係以下列方式測量。結果示於表1。 (1) 平均厚度(// m) 各微多孔膜之厚度係藉由接觸厚度計,以5mm之長度 間距測量30cm之寬度,加以平均而得。 (2) 透氣性(秒 /100cm3/20 // m) 依據〗IS P8 117對具有厚度Ti之各微多孔膜測量透氣 性P!,再藉由方程式P2 = (PlX20)/Ti換算成厚度20 μ m時之 透氣性P2。 • (3)多孔性(%) 藉由重量法測量。 (4)銷衝強度(mN/20 // m) 對具有厚度Ti之各微多孔膜使用直徑1 mm具有圓端 表面的針(曲率半徑R: 〇.5mm)以2mm/秒之速度穿刺,測 量其最大負載。所測得的最大負載 以方程式 = 換算成厚度20 μ m時的最大負載L2,並以此 作爲銷衝強度。 φ (5 )熱收縮率(%) 各(三層)微多孔膜於長度與寬度方向之收縮率係在曝 於1 05 t:歷8小時後測量三次再加以平均而得到熱收縮率。 (6) 孔隙半徑 藉由汞侵入式細孔計測量。 (7) 停機溫度(它) 如第5圖所示,於拉伸方向MD與TD分別具有3mm 與10mm之大小之測試件τρ係自微多孔膜10〇切除。使用 熱機械分析器(得自 Seiko Instrument sine.之 TMA/SS 6000) -34- 200830616 將測試件自室溫以5\:/分鐘之速度加熱,其上端100a以 支撐器3夾住,下端100b連著2g之重物4。接近熔點時 觀測到反曲的溫度點即定義爲停機溫度。 (8)熔毀溫度(°C ) 使用前述之熱機械分析器,將10mm(TD)與3mm(MD) 之測試件依據第5圖所示之方式施加2g的負載,自室溫 以5 °C/分鐘之速度加熱。測試件TP由於熔化而破裂時的 溫度即作爲「熔毀溫度」。 φ (9)熱壓縮後之透氣性(秒/100cm3/20 # m) 微多孔膜樣本以一對高度平坦的板包夾,藉由加壓機 於90°C以2.2MPa(22kgf/cm2)之壓力熱壓縮歷5分鐘。具 有厚度T!’的經熱壓縮之微多孔膜依據nS P8117測量透氣 性P!’。所測得之透氣性Pi’以方程式P^WPi’xaOVIV換算 成厚度20 /z m時的透氣性P2’。 實例卜8與比較例1 -5所得之電池的性質係以下列方 式測量。結果示於表1。 m (10)放電容量 藉由使用充電/放電測試器將電池以900mA的定電流 充電到4.2V,進一步充電直到充電電流降至在4.2V之定 電壓下爲10mA,然後於25 °C以260mA之定電流放電降至 3.0V。所測得的最初容量即作爲放電容量(mAh)。 (1 1)充電過量測試 藉由使用充電/放電測試器將電池於25 °C以800mA之 定電流(電量:0.5 C)充電到5V,以檢驗是否發生冒煙與燃 燒0 -35- 200830616 (12)針穿測試 藉由使用充電/放電測試器將電池以900mA之定電流· 充電到4.2V,進一步充電直到於充電電流降至25 °C時在 4.2V之定電壓下爲10mA。將直徑3mm之不鏽鋼釘加熱至 25 °C,以9mm/秒之速度於徑向中心穿刺,以驗證是否發生 冒煙與燃燒。 (1 3)回復性測試後之容量回復率(回復性) 藉由使用充電/放電測試器將電池以l,600mA(電量: φ 1C)之定電流充電到4.2V,進一步充電直到於充電電流降 至在4.2V之定電壓下爲i〇mA,然後以l,600mA(電量:1C) 之定電流放電降至3.0V,以檢驗25°C時之放電容量(最初 容量)。重覆此充電/放電操作1〇〇次(回復性測試)。以相 同方式測量放電容量以決定回復性測試後之容量回復率 (%) °電池之容量回復率(%)藉由下式決定: 容量回復率(%)=[(回復度測試後之容量)/(最初容量)]xl〇〇The φ ultrahigh molecular weight polyethylene may be the same as the foregoing. The percentage of the ultrahigh molecular weight polyethylene in the polyethylene composition B may be the same as in the polyethylene composition A. The Mw of the polyethylene composition B can be the same as that of the polyethylene composition A. (b) Polyethylene composition B' The polyethylene composition B' is a mixture of polyethylene composition B and polyethylene other than high-density polyethylene B and ultrahigh molecular weight polyethylene. The polyethylene composition B can be the same as the foregoing. The polyethylene other than the high-density polyethylene B and 0 ultrahigh molecular weight polyethylene may be the same as the polyethylene other than the high-density polyethylene A and the ultra-high molecular weight polyethylene in the polyethylene composition A' described above. The percentage of the polyethylene other than the high-density polyethylene B and the ultrahigh molecular weight polyethylene is preferably 50% by mass or less, more preferably 20% by mass or less. (c) Molecular Weight Distribution Mw/Mn The Mw/Mn of the second polyolefin may be the same as that of the first polyolefin. (2) Other components The second polyolefin may contain, in addition to the aforementioned component (1), a polyolefin other than the second polyolefin, or having a temperature of 170 ° C or more, in which the total amount does not deteriorate the properties of the separator - 14 to 30,306,606. A heat-resistant resin having a melting point or a glass transition temperature (Tg). The polyolefin other than the second polyolefin may be the same as the other polyolefins except the first polyolefin described above. The heat resistant resin may be the same as the foregoing. [2] Method for producing spacer material (A) Method for manufacturing first spacer material The method for manufacturing the first spacer material includes the step (1) of melt-blending the first polyolefin and the φ film forming solvent to prepare a first polyolefin solution. (2) extruding the first polyolefin solution through the die, (3) cooling the extrudate to form a gel-like sheet, (4) stretching the gel-like sheet, and (5) removing the film-forming agent from the gel-like sheet, And (6) drying the obtained film. The film may be in the form of a strip if necessary (striping step (7)). After the step (6), if necessary, a stretching step (8) of the microporous film, a heat treatment step (9), a crosslinking step (10) using free radiation, a hydrophilization step (11), and the like can be carried out. (1) Preparation of Polyethylene Solution Φ The first polyolefin was melt-blended with a film forming solvent to prepare a first polyolefin solution. The first polyolefin may contain various additives such as an antioxidant, a cerium fine powder (a pore former), and the like, as long as the effects of the present invention are not deteriorated. The film forming solvent is preferably liquid at room temperature. The use of a liquid solvent enables high-rate stretching. The liquid solvent may be an aliphatic, alicyclic or aromatic hydrocarbon (for example, decane, decane, decahydronaphthalene, p-xylene, undecane, dodecane, liquid sarcophagus, etc.) having a boiling point similar to that of the aforementioned hydrocarbon An inorganic oil distillate, and a citric acid liquid at room temperature (for example, dibutyl phthalate, dioctyl phthalate-15-200830616, etc.). In order to obtain a colloidal laminate having a stable liquid solvent content, a nonvolatile liquid solvent such as liquid sarcophagus is preferably used. The solvent may be mixed with polyethylene in a melt blending state, but a solvent which is solid at room temperature may be mixed with a liquid solvent. Such solid solvents include stearyl alcohol, hexadecanol, sarcophagus and the like. However, when the sarcophagus is used alone, non-uniform stretching may occur. The viscosity of the liquid solvent is preferably from 30 to 500 cSt at 25 ° C, more preferably from 30 to 200 cSt. When the viscosity at 25 ° C is less than 30 cSt, the first polyolefin solution is easily foamed, causing difficulty in blending. On the other hand, when the viscosity is greater than φ 500 cSt, the removal of the liquid solvent may be difficult. Although not particularly limited, the uniform melt blending of the first polyolefin solution is preferably carried out using a twin-screw extruder to prepare a high-concentration polyolefin solution. The film forming solvent may be added before blending, or may be injected into the twin screw extruder at the intermediate portion during blending, although the latter is more preferred. The melt blending temperature of the polyolefin solution is preferably within the range of the melting point Tma + 10 ° C to Tma + 120 ° C of the first polyolefin. The melting point is measured by a differential scanning calorimetry (DSC) according to JIS K7121. Specifically, since the polyethylene compositions A and A' of the above φ have a melting point of about 1 30 to 40 ° C, the melt blending temperature is preferably from 140 to 250 ° C, more preferably from 170 to 240 ° C. The L/D ratio of the screw length L to the screw diameter D in the twin-screw extruder is preferably in the range of 20 to 100, more preferably in the range of 3 5 to 70. When L/D is less than 20, the melt blending system is insufficient. When the L/D is greater than 100, the residence time of the polyolefin solution in the twin-screw extruder is too long. The cylinder of the twin screw extruder preferably has an inner diameter of 40 to 100 mm. The percentage of the first polyolefin per 100% by mass of the polyolefin solution is preferably from 1 to 75% by mass, more preferably from 20 to 70% by mass. When the polyolefin is less than 1 -16·200830616% by mass, the yield is low. In addition, during the formation of the gel-like sheet, a large expansion or necking of the die exit occurs, causing the degree of formation and self-supporting of the gel-like sheet to decrease. On the other hand, when the polyolefin is more than 75% by mass, the formability of the gel-like sheet is deteriorated. (2) Extrusion The polyolefin solution melt-blended into the extruder was extruded from the mold immediately or after nine-granulation. The mold to be used is usually a sheet forming mold having a rectangular cross section opening, but a double cylinder hollow mold inflatable lip or the like can also be used. In the case where the sheet shape φ is molded, the mode gap is usually 0. 1-5 mm and it is heated to 1 40-250 ° C during extrusion. The pressing speed of the heated solution is preferably 0. 2 to 15 m/min. (3) Formation of gel-like sheet The polyolefin solution extruded from the mold was cooled to form a gel-like sheet. Cooling is preferably carried out at a condensation temperature of at least 50 ° C / min or more. The cooling is preferably carried out at 25 ° C or below. Such cooling fixes the microphase of the polyolefin isolated by the film forming solvent. In general, the lower the cooling rate, the larger the lattice unit of the colloidal sheet, resulting in a transition to a higher structure. On the other hand, the higher the cooling rate, the denser the lattice unit. A cooling rate of less than 50 ° C /min results in an increase in crystallinity such that it does not have suitable stretchability to provide a gel-like sheet. The cooling method that can be used is a method in which the extrudate is directly contacted with a cooling medium (e.g., cooling air, cooling water, etc.), and the extrudate is brought into contact with a cooled roll such as a cooling medium. (4) Stretching of the gel-like sheet The obtained gel-like sheet is stretched in at least one direction. The gel-like sheet can be uniformly stretched because it contains a film forming solvent. After the gelatinized sheet is heated, -17-200830616 is stretched to a predetermined multiple by a tenter method, a roll method, an aeration method, or a combination thereof. Stretching can be carried out uniaxially or biaxially, although a biaxial stretching system is preferred. In the case of biaxial stretching, any simultaneous biaxial stretching, continuous stretching or multi-stage stretching (for example, a combination of simultaneous biaxial stretching and continuous stretching) may be used, although the synchronous biaxial stretching system is Preferably. In the uniaxial stretching, the stretching ratio is preferably 2 times or more, more preferably 3 · 30 times. In the biaxial stretching, the stretching ratio is preferably 3 times or more in any direction (preferably, the area magnification is 9 times or more, more preferably 16 times or more, and most φ is preferably 25 times or more). When the area ratio is 9 times or more, the pinhole strength of the microporous film is improved. When the area magnification is more than 400 times, stretching equipment, stretching conditions, and the like are limited. The stretching temperature is preferably the melting point of the first polyolefin Tnu + 10 ° C or less, more preferably in the range of the crystal dispersion temperature Tcda of the first polyolefin or more and less than Tma. When the stretching temperature is higher than Tma + 10 ° C, the first polyolefin melts and the molecular chains cannot be aligned by stretching. When the stretching temperature is lower than Tcda, the first polyolefin is insufficiently softened, so that the microporous film is easily broken at the time of stretching, and the high-magnification stretching is achieved without the φ method. The polyethylene compositions A and A' have a Tma of about 1 30 to 140 ° C and a Tcda of about 90 to 100 ° C. Tcda is determined by measuring the temperature properties of the dynamic viscoelasticity of the polyethylene resin in accordance with ASTM D 4065. Therefore, the stretching temperature is from 90 to 140 ° C, preferably from 1 〇 〇 -1 30 °C. Such stretching causes splitting between the polyethylene layers, making the polyethylene phase finer and forming a large number of filaments. The filaments form a three-dimensional network structure (a three-dimensional irregular network structure). Stretching improves the mechanical strength of the microporous membrane and enlarges its pores, making the microporous membrane particularly suitable for use in battery separators. -18- 200830616 According to the desired properties, the stretching can be carried out in a thickness distribution in the thickness direction to provide a microporous polyolefin film having excellent mechanical strength. The details of this method are described in Japanese Patent No. 3,347,854. (5) Removal of film forming solvent For the purpose of removing (washing off) the film forming solution, a lotion was used. Since the first polyolefin phase is separated from the film forming solvent phase, the removal of the film forming solvent provides a microporous film. The removal (washing off) of the film forming solvent can be carried out by using a known washing liquid. The washing liquid includes volatile solvents such as saturated hydrocarbons (such as φ such as pentane, hexane, heptane, etc.), chlorinated hydrocarbons (such as dichloromethane, carbon tetrachloride, etc.), ethers (such as diethyl ether, dioxane). Etc.), ketone (such as methyl ethyl ketone, etc.), linear fluorinated carbon (such as trifluoroethane, C6Fm, C7F16, etc.), cyclic hydrofluorocarbon (such as C5H3F7, etc.), hydrofluoroether (such as C4F9〇CH3, C4F9〇) C2H5, etc.), perfluoroether (for example, C4F9〇CF3, C4F9〇C2F5, etc.). The cleaning of the microporous membrane after stretching can be carried out by immersing in a washing liquid and/or rinsing with a washing liquid. The washing liquid to be used is preferably from 300 to 30,000 parts by mass per 100 parts by mass of the stretched film. The cleaning temperature is usually 15-3 (TC, and φ can be heated during the cleaning if necessary. The heating temperature during the cleaning is preferably 80 ° C or less. The washing of the washing liquid is preferably carried out until the residual film forming solvent The total amount is less than 1% by mass of the added amount. (6) Drying The microporous polyolefin film obtained by stretching and removal of the film forming solvent is dried by a heat drying method, an air drying method, or the like. The amount of the micro-porous film is less than or equal to or less than the above-mentioned Tcda, in particular, Tcda (: or below). The drying system is carried out until the residual washing liquid becomes preferably 5% by mass or less per 100% by mass (dry). More preferably, it is 3% by mass. Insufficient drying -19·200830616 may result in undesirably reducing the porosity of the microporous membrane due to subsequent heat treatment, resulting in poor transmittance. (7) Strip-dried microporous of microporous membrane The film is stripped. A known cutter can be used. If necessary, the width of the separator can be appropriately controlled. The width of the separator is preferably 5 to 200 mm. (8) Tensile dry microporous of microporous membrane The film can be pulled at least in a single axis (re-stretching). The re-stretching φ can be carried out by a tenter method or the like when the microporous film is heated as described above. The re-stretching can be uniaxial or biaxial. In the case of biaxial stretching, 甩 can be obtained. Synchronous biaxial stretching or continuous biaxial stretching, although synchronous biaxial stretching is preferred. Incidentally, since re-stretching is usually performed on a microporous film in the form of a long sheet, it is by stretching a gel sheet. Therefore, the direction of stretching in the longitudinal direction and the transverse direction is the same as that in the case of stretching the gelatinous sheet. This is also the same in other manufacturing methods. The stretching temperature of the microporous film is preferably the melting point Tma or less of the first polyolefin. More preferably, it is in the range of Tcda to Tnu. The polyethylene compositions A and A' φ have a Tma of about 1 30 - 40 ° C. Therefore, the stretching temperature is 90 - 1 3 5 ° C, preferably 95 - 1 30 ° C. The uniaxial re-stretching ratio is 1. 1 -1. 8 times. In the case of uniaxial stretching, the re-stretching ratio in the longitudinal or transverse direction is 1. 1 -1 · 8 times. In the case of biaxial stretching, the re-stretching magnification in both the longitudinal and transverse directions is 1. 1-1. 8 times, the re-drawing magnification in the longitudinal direction and the transverse direction may be the same or different, although the re-drawing magnification is preferably the same in both directions. When the microporous film has a draw ratio of less than 1. At 1 time, the obtained film had insufficient transmittance, electrolyte absorption and compression resistance. When this magnification is greater than 1. 8 -20- 200830616 times, forming too fine filaments, reducing heat shrinkage resistance and electrolyte absorption. (9) Heat treatment The dried microporous film is preferably subjected to heat treatment to stabilize the crystal to obtain a uniform thin layer. The heat treatment can include heat setting and/or annealing. The heat setting is preferably carried out by a tenter method or a roll method. The heat setting temperature is preferably in the range of the aforementioned crystal dispersion temperature Tcda to the melting point Tma, more preferably in the range of the stretching temperature of the microporous film of 5 ° C, preferably at the stretching temperature of the microporous film ± 3 ° C In the range. The annealing of φ to the heat treatment without applying a load on the microporous film can be carried out by using a heating chamber having a conveyor belt or a blowing type heating chamber. Annealing can be carried out continuously after the thermal relaxation of the tenter relaxation. The annealing temperature is preferably a melting point Tnu or less. Such annealing provides high penetration and strength of the microporous membrane. (10) Crosslinking of microporous membrane The microporous membrane can be crosslinked by free radiation (e.g., α-ray, /3 -ray, r-ray, electron beam, etc.). In the case of a radiation electron beam, the total amount of electron beams is preferably 0. The 1-100 Mrad acceleration voltage is preferably φ 1 00-300 kV. The cross-linking treatment increases the meltdown temperature of the microporous polyolefin film. (11) Hydrophilization treatment The microporous membrane can be subjected to a hydrophilization treatment (treatment of adding a hydrophilic property). The hydrophilization treatment may be a monomer graft treatment, a surfactant treatment, a corona discharge treatment, or the like. The monomer graft treatment is preferably carried out after the crosslinking treatment. In the case of surfactant treatment, any nonionic surfactant, cationic surfactant, anionic surfactant, and amphoteric surfactant may be used, and a nonionic surfactant is preferred. The microporous membrane is impregnated in an aqueous surfactant or a surfactant solution of a lower alcohol (e.g., methanol, ethanol, isopropanol, etc.) or by a doctor blade method. (B) Method of Manufacturing Second Separator In addition to the use of the second polyolefin, the second spacer can be manufactured in the same manner as the first spacer. The melt blending temperature of the second polyolefin solution in the step (1) is preferably in the range of the melting point Tnu + 10 to Tnu + 120 ° C of the second polyolefin. In the step (4), the stretching temperature is preferably 前述πη + 10 ° C or less as described above, more preferably in the range of the crystal dispersion temperature Tech to Tnu of the second polyolefin. In the step (6), the drying temperature is preferably φ equal to or less than the aforementioned Tcdb, particularly less than Tech by 5 ° C or more. In the step (8), the stretching temperature of the microporous film is preferably Tnu or less as described above, more preferably in the range of Tech to Tnu described above. In the step (9), the heat setting temperature is preferably in the range of the aforementioned Tech to Tnu, more preferably in the range of the stretching temperature of the microporous film ± 5 ° C, preferably in the stretching temperature of the microporous film. Within the range of ±3 °C. The annealing temperature is preferably Tnu or less as described above. The polyethylene compositions B and B' have a Tnu of about 1 30-140 ° C and a Tech of about 90-10 CTC. 0 In the method of manufacturing the second separator, in order to further improve the meltdown property, a fluororesin (polyvinylidene fluoride, polytetrafluoroethylene, etc.), polypropylene, poly can be formed on at least one side of the microporous polyethylene film. A porous coating layer of guanamine, polyarylene sulfide or the like. [3] Electrode Sheet The anode sheet includes a current collector and an anode active material layer, and the cathode sheet includes a current collector and a cathode active material layer. Depending on the form of the secondary battery (lithium ion secondary battery, nickel-hydrogen secondary battery, nickel-cadmium secondary battery, nickel-zinc secondary battery, silver-zinc secondary battery, etc.), a known material can be used as -22- 200830616 Current collector, anode active material and cathode active material. The anode and cathode sheets in a lithium ion secondary battery and the manner of manufacturing the same will be explained below. (A) Anode sheet Specific examples of the current collector of the anode sheet include metal foils of aluminum, copper, nickel, stainless steel, titanium, etc., and aluminum foil is preferred. The anode active material is a material that can absorb and release lithium ions. Specific examples of the anode active material may be inorganic compounds such as transition metal oxides, composite oxides of lithium and transition metals (lithium composite oxides), transition metal sulfides, and the like. The transition metal 肇 may be V, η η, F e, C 〇, N i or the like. An example of a preferred lithium composite oxide is a sheet-like lithium composite oxide containing at least one transition metal. Specific examples of the sheet-like lithium composite oxide include lithium nickelate, lithium cobaltate, lithium manganate, LiMn2〇4, Li(Ni-Mn-Co)〇2 and the like. The anode sheet is obtained by coating an anode active material paste, a binder and a solvent on a current collector, drying and pressing. The paste preferably contains a conductive additive, which may be flake graphite, carbon black or the like. The binder may be a fluorinated compound such as polyvinylidene fluoride, polytetrafluoroethylene or the like. The solvent may be, for example, φ N-methyl-2-pyrrolidone or the like. Although not particularly limited, the coating method may be, for example, a doctor blade method or the like. The anode active material layer is formed on one or both sides of the current collector' depending on the desired structure of the electrode composite. Although not particularly limited, the thickness of the current collector is preferably 5 to 60 // m, more preferably 8 to 40 // m, and the thickness of the anode active material layer is preferably 20 to each side of the anode sheet. 300/zm, more preferably 40 to 150/ζιη. (B) Cathode Sheet The material of the current collector for the cathode sheet can be the same as the above-mentioned metal foil -23-200830616, and copper foil is preferred. Specific examples of the cathode active material may be carbonaceous materials such as metastable phase carbon particles, natural graphite, artificial graphite, coal char, carbon black, and the like. Further examples may be Si, Sn, Si-C, and the like. The cathode sheet is obtained by coating a cathode active material paste, a binder and a solvent on a current collector, drying and pressing. The paste preferably contains a conductive additive, which may be flake graphite, carbon black or the like. The binder, conductive additive and solvent can be the same as those in the anode sheet. The binder for the cathode sheet may be an aqueous dispersion of rubber (styrene-butadiene rubber or the like). Although there is no particular limitation, the coating method may be, for example, a doctor blade method or the like. The cathode active material layer is formed on one or both sides of the current collector' depending on the desired structure of the electrode composite. The thickness of the current collector of the cathode sheet can be the same as that of the anode sheet. The thickness of the cathode active material layer may be the same as that of the anode in the active material layer. The current collectors of the anode and cathode sheets may not have the same thickness. The anode active material layer and the cathode active material layer may not have the same thickness. [4] Structure of electrode composite φ Figs. 1 to 4 show an example of a cylindrical lithium ion secondary battery including the electrode composite of the present invention. This battery has a spiral tubular electrode composite 1 including a second separator 11, a cathode sheet 13, a first separator 10 and an anode sheet 12. In order to provide improved needle penetration safety of the battery, the spiral tubular electrode assembly 1 is preferably such that the second spacer 11 is disposed on the outer side surface of the cathode sheet 13, while the first spacer 10 is disposed on the inner side of the cathode sheet 13. Winding on the surface. As shown in Fig. 2, the second spacer 11 in this example is disposed on the inner side surface of the spiral tubular electrode assembly 1. As shown in Fig. 3, in the present example, the anode active material layer 12b is formed on -24-200830616 on both sides of the current collector 12a, and the cathode active material layer 13b is formed on the current collector 13a. On both sides. As shown in Figs. 2 and 4, the anode lead 20 connects the terminal end of the anode tab 12 to the battery cover 27, and the cathode lead 21 connects the terminal end of the cathode tab 13 to the battery can 23. When the spiral tubular electrode assembly 1 is used for a rectangular lithium ion secondary battery, the composite 1 is wound into a cylindrical shape. In the case of a lithium ion secondary battery having a laminated structure including an anode 12 and a cathode 13 which are alternately arranged, the first and second separators 1 and 11 are alternately planar anodes i 2 ^ and cathode 1 3 folders. The electrode composite 1 includes (a) a first separator 1 including a high density polyethylene A having excellent shutdown properties, and (b) a high density polyethylene B including excellent mechanical strength and meltdown properties. Two spacers. In addition, the table 1 and the table-separator 1 〇, 11 are also excellent in permeability, heat shrinkage resistance, and compression resistance. The shutdown temperature difference between the first and second separators 1 and 11 is within 5 °C. When this difference is greater than 5 ° C, the battery has low safety. The shutdown temperature of the first and second insulation materials 10, Η is preferably 125. ^ or on φ for excellent battery safety. [5] Non-aqueous electrolyte battery A lithium ion secondary battery having the electrode assembly 1 described above. The first and second separators contain an electrolyte solution. The electrolyte solution is obtained by dissolving a lithium salt in an organic solvent. The lithium salt may be LiCICU, LiPF6, LiAsF6, LiSbF6, LiBF4, LiCFsSCh, LiN(CF3S〇2)2, LiC(CF3S〇2)3, Li2Bi〇Cl1〇, LiN(C2F5S〇2)2, L i PF 4 ( CF 3) 2, L i PF 3 (C 2 F 5) 3. Low-grade fatty acid salt of lithium, li A 1 C14, and the like. The lithium salts may be used singly or in combination. The organic solvent may be an organic solvent having a high boiling range of -25,306,016 points and a high dielectric constant, such as ethylene carbonate, carbon@爱丙酯, ethyl methyl carbonate, r-butyrolactone, etc.; having a low boiling point And a low viscosity organic solvent such as tetrahydrofuran, 2-methyltetrahydrofuran, dimethoxyethane, dioxolane, dimethyl carbonate, diethyl carbonate, and the like. These organic solvents may be used singly or in combination. Since an organic solvent having a high dielectric constant has a local viscosity, and an organic solvent having a low viscosity has a low dielectric constant, a mixture thereof is preferably used. When the battery is assembled, the anode piece 1 2, the cathode piece 13 and the first and second separators 1 and 11 are immersed in the electrolyte solution, so that the separators 1 and 11 (microporous film) provide ion permeability. The immersion treatment is usually carried out by immersing the electrode assembly 1 in an electrolyte solution at room temperature. The cylindrical lithium ion secondary battery can be insulated by injecting the electrolyte solution into the battery can 23' by insulating the spiral tubular electrode assembly 1 (see FIGS. 1 to 4) at the bottom of the battery case 23 having the insulating plate 2 2 . The plate 22 covers the electrode assembly 1, and is formed by sealing the battery case 23 with the battery cover 27 through the spacer 28. The battery cover 27 has a current interrupting device 24, a curved plate 25 and a PTC device 26, thereby having the function of a φ anode electrode. The non-aqueous electrolyte battery including the electrolyte battery of the present invention has a discharge capacity of 1,500 mAh or more, and a capacity recovery rate of 60% or more, and a preferable capacity recovery rate of 75% or more. Although the electrode composite of the present invention and the non-aqueous electrolyte battery have been explained using a lithium ion secondary battery as an example, the electrode of the present invention is not limited thereto, and can be applied to other forms of non-aqueous electrolyte batteries. The electrode composite and the non-aqueous electrolyte battery of the present invention are not limited to the foregoing examples, and any modifications may be added thereto unless departing from the gist of the present invention. -26-200830616 [Embodiment] The present invention will be explained in more detail by way of the following examples, but the invention is not limited thereto. Example 1 (1) Preparation of the first separator Dry blending 100 parts by mass of the polyethylene composition A and 0. 2 parts by mass of antimony [methylene-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate]methane, wherein the polyethylene composition A includes 20% by mass The ultrahigh molecular weight polyethylene (UHMWPE) having a weight average molecular weight (Mw) of 2.0 χ 106 and a molecular weight distribution Mw/Mn of 8, and a terminal vinyl concentration of 80% by mass of 0. 6/1 0,000 C, Mw is 3. 5xl05, Mw/Mn is 13. 5 high density polyethylene A (HDPE-A). The terminal vinyl concentration of HDPE-A was measured by measuring the absorbance at 910 CHT1 A = log (I 〇 / I), which was measured by a Fourier transform infrared spectroscopy (FREEXACT-II from Horiba, Ltd). . Indicates the intensity of the transmitted light in the blank slot, and I represents the intensity of the transmitted light in the sample cell, and then calculates the formula for the terminal vinyl concentration (/1〇, 〇〇〇 C) = (1. The 14x absorbance A) / (the density of the high density polyethylene A (g / cm3) x the thickness (mm) of the sample) is determined. Polyethylene composition A has 6. 8x1 05 Mw, 21. Mw/Mn of 5, Tma of 134 °C and TccU of 100 °C. Mw and Mw/Mn of UHMWPE, HDPE and polyethylene compositions were measured by gel permeation chromatography (GPC) under the following conditions: Measuring instrument: GPC from Warers C 〇r ρ 〇rati ο η 1 5 0 C Column: obtained from Showa Denko S·Κ·Shodex UT806M Column temperature: 135t: Solvent (mobile phase): o-dichlorobenzene-27- 200830616 Solvent flow rate: 1. 0 ml/min Sample concentration: 0. 1% by weight (dissolved in 135 ° C for 1 hour), Injection: 500 // 1 Detector: Differential refractive index calibration curve from Waters Corp.: from standard polyethylene samples using predetermined conversion constants The monodisperse reduction curve. 30 parts by mass of the obtained mixture was charged with an inner diameter of 5 8 mm and an L/D of 52. A vigorously blended twin-screw extruder of 5 was then supplied with 70 parts by mass of liquid paraffin [50 cst (40 ° C)] through a side feeder φ to a twin-screw extruder. Melt blending was carried out at 23 (TC and 250 rpm to prepare a polyethylene solution. This polyethylene solution was extruded from a T-die mounted at the tip of a twin-screw extruder and controlled by cooling at 5 °C. The rolls are stretched and cooled while being taken up to form a gel-like sheet. Using a tenter-stretching machine, the gel-like sheets are simultaneously biaxially stretched at 1 15 ° C, so that the stretching ratio is in the machine direction (MD) and the transverse direction. (TD) Both are 5 times. The stretched gel-like piece is immersed in a bath controlled at 25 ° C in dichloroethene, and washed with a vibration of 10 0 rp m for 3 minutes to remove Liquid sarcophagus. The obtained film was air-dried at room temperature, and the dried film was fixed in a tenter-stretching machine while being thermally fixed at 124 ° C for 30 seconds to prepare a microporous polyethylene film. The porous polyethylene film was striped to obtain a first separator 1 having a width of 6 mm (see Fig. 1). (2) Preparation of the second separator 1 part by mass of the polyethylene composition B With 0. 2 parts by mass of the aforementioned antioxidant dry blending, wherein the polyethylene composition B comprises 3 〇 mass% of the aforementioned UHMWPE and 70% by mass of the terminal vinyl group concentration is 〇1/1 〇, 〇〇〇-28- 200830616 C, Mw is 3 · Ox 105 and M w/Mn is 8. 6 B (HDPE-B). The polyethylene composition B has a crystal dispersion temperature Tcdb of 135 ° C, 8. Mw/Mn of U105. The microporous polymer 11 having a width of 60 Inm is prepared in the same manner as described above except that the polyethylene composition B is used and the degree is 1 27 °C. (3) Preparation of the anode sheet will be 2. 7 parts by mass of lithium cobalt composite oxide φ parts of acetylene carbon and 3 . 1 part by mass of polyvinylidene fluoride N-methyl-2-pyrrolidone, and the raw material paste was mixed by stirring. The anode active material paste was applied to the thickness of the aluminum foil current collector by a doctor blade method to obtain a uniform thickness to obtain an anode sheet 12 on both sides of the current collector. (4) Preparation of cathode sheet φ 8 8 parts by mass of metastable phase carbon particles, 10 parts by mass and 2 parts by mass of PVDF were added to N-methyl-2-3⁄4) to prepare a cathode active material paste. A layer for smoothing the copper foil current having a thickness of 10/zm by a doctor blade method. The layers are dried to produce a cathode sheet 13 which is in the current collecting cathode active material layer. (5) Preparation of the electrode composite sequentially laminating the second spacer 1 of 60 mm width, the high density polyethylene of the first spacers 10 and 55 of the sheet 13, 60 mm wide: the melting point Tnu, 100 Mw and 17. 2 The second isolated microporous membrane of the vinyl membrane is prepared by a fixed temperature method. (LiCoCh), 4. 2 Mass Ethylene (PVDF) was added to the hour to prepare the anode to have a layer of 20 // m. The layers are dried to a mass fraction of acetylene carbon of the active material layer: ketone, and mixed with a cathode active material paste applicator to obtain a cathode having a width of 1, 57 mm on both sides of the thickness concentrator The mm wide anode sheet 12 -29- 200830616 was used to prepare the electrode composite 1. The electrode assembly 1 is wound so that the second separator 1 1 is disposed on the outer surface of the cathode sheet 13. (6) Preparation of electrolyte solution 1 mol/liter of LiPF6 was added to a mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) in a volume ratio of 40/60 to prepare an electrolyte solution. (7) Assembly of the battery The anode lead 20 is attached to the end of the anode φ sheet 12 in the spiral tubular electrode assembly 1, and the cathode lead 2 1 is attached to the cathode sheet 13 in the spiral tubular electrode assembly 1. The end. When the spiral tubular electrode assembly 1 is placed in the battery case 23 having the insulating plate 22 at the bottom, the anode lead 20 is connected to the battery cover 27, and the battery case 23 is connected to the cathode lead 20. After the electrolyte solution prepared in the above step (6) is injected into the battery can 23, the spiral tubular electrode composite 1 is covered with an insulating plate 22, and the battery cover 27 is sealed by the gasket 28 to prepare the battery case 23 to prepare 1 8650. A cylindrical lithium ion secondary battery having a diameter of 18 mm and a height of 6 5 mm. φ Example 2 except that the concentration of the polyethylene solution was 25% by mass, the stretching temperature was 1 17 ° C, and the annealing was performed at 125 ° C to make the lateral length 0. The first separator 10 was prepared in the same manner as in Example 1 except for 9 times. This first separator 10 was used to prepare a lithium ion secondary battery in the same manner as in Example 1. Example 3 100 parts by mass of the polyethylene composition A, which comprises 30% by mass of the aforementioned UHMWPE and 70% by mass of the aforementioned HDPE-A, with 0. 2 parts by mass The aforementioned antioxidant was dry blended. Polyethylene composition A has 134 ° (: -30 - 200830616 melting point Tnu, 100 ° C crystal dispersion temperature TccU, 8. Mw of 4xl05 and 2 3. 8 of Mw / Μ η. The first separator 10 was stretched in the transverse direction by a tenter-stretching machine by using a polyethylene composition A, a stretching temperature of 114 ° C, and a microporous film at 123 ° C. It was obtained in the same manner as in Example 1 except that the fixing temperature of the microporous film was 123 °C. A lithium ion secondary battery was prepared in the same manner as in Example 1 using this first separator 10. Example 4 100 parts by mass of the polyethylene composition A, which comprises 5% by mass of the aforementioned φ UHMWPE and 95% by mass of the aforementioned HDPE-A, with 0. 2 parts by mass of the aforementioned antioxidant was dry blended. The polyethylene composition A has a melting point Tma of 133 ° C, a crystal dispersion temperature TccL of 100 ° C, Mw of 4. 3 χ 105, and 15. 9 Mw / Mn. Except that the polyethylene composition A, the polyethylene solution had a concentration of 35 mass%, the stretching temperature was 116 ° C, and the microporous film was stretched in the transverse direction by a tenter-stretching machine at 126 ° C. The first separator 10 was prepared in the same manner as in Example 1 except that the fixing temperature of the microporous film was 126 °C. A lithium ion secondary battery was produced in the same manner as in Example 1 using this first separator 1 φ. Example 5 Except that the concentration of the polyethylene solution was 25 mass%, the microporous film was stretched in the transverse direction by a tenter-stretching machine at 1 27 °C. One time, and annealing at 1 27 °C, the length of the transverse direction becomes 〇. A second separator 11 was prepared in the same manner as in Example 1 except for 9 times. A lithium ion secondary battery was produced in the same manner as in Example 1 using this second separator 11. Example 6 A first separator 10 was prepared in the same manner as in Example 2, and a second separator 11 was prepared in the same manner as in Example No. 31-200830616. Lithium Ion Secondary Battery This first and second separators 1 and 11 were produced in the same manner as in Example 1 to prepare 10,000 parts by mass of the polyethylene composition B, which included 5% by mass of UHMWPE and 95% by mass of the foregoing. HDPE-B, with 0. 2 mass The antioxidant is described as dry blending. The polyethylene composition B has a Tnu of 134 ° C, a crystal dispersion temperature of 100 ° C, Tcdb, 3. Mw of 8xl05 and Mw/Mn of. In addition to using this polyethylene composition B, the stretching temperature was φ ° C, and the microporous film was at 130 ° C in the transverse direction by a tenter-stretching machine. A second spacer Π was prepared in the same manner as in Example 1 except that the fixing temperature of the microporous film was 1 30 °C. Lithium ion secondary battery This second separator 1 was produced in the same manner as in Example 1. Example 8 A first separator 10 was obtained in the same manner as in Example 1 except that the stretching temperature was 1 14 °C. The first separator 11 was obtained in the same manner as in Example 1 except that the stretching temperature was 1 1 3 °C. The lithium ion secondary φ was produced in the same manner as in Example 1 using this first and second separators 10, 11. Comparative Example 1 A lithium ion secondary battery was prepared in the same manner as in Example 1 except that the electrode assembly was laminated in the order of the first separator 1 〇, the cathode sheet 13 , the first separator, and the anode sheet 1 2 . Comparative Example 2 was used except that the second separator 1 1 , the cathode sheet 13, the second separator, and the anode sheet 1 2 were laminated in this order to form an electrode composite. The previous melt. 6 117 Stretching and solidification in a battery mode 10, a lithium ion secondary battery was prepared in the same manner as in Example 1 and -32-200830616. Comparative Example 3 In addition to using only the aforementioned HDPE-B, the concentration of the polyethylene solution was 40% by mass, the stretching temperature was 114 ° C, and the microporous film was stretched in the transverse direction by a tenter-stretching machine at 128 ° C. 1. A separator was prepared in the same manner as the second separator 1 in Example 1, except that the fixing temperature of the microporous film was 128 °C. A lithium ion secondary battery was prepared in the same manner as in Example 1 except that this separator was used instead of the second separator 11. Φ Comparative Example 4 100 parts by mass of the polyethylene composition B, which comprises 3% by mass of the aforementioned UHMWPE and 97% by mass of the aforementioned HDPE-B, with 0. 2 parts by mass of the aforementioned antioxidant was dry blended. The polyethylene composition B had a melting point Tnu of 135 ° C, a crystal dispersion temperature Tech of 100 ° C, Mw of 3.5 χ 105, and Mw / Mn of 9,8. In addition to the use of the polyethylene composition B, the polyethylene solution concentration was 40% by mass, the stretching temperature was 119 ° C, and the microporous film was stretched in the transverse direction by a tenter-stretching machine at 130 ° C. A second separator 11 was prepared in the same manner as in Example 1 except that the solidification temperature of the microporous film was 130 °C. A lithium ion secondary battery was produced in the same manner as in Example 1 using this second separator 11. Comparative Example 5 The electrode composite was laminated in the order of the first separator 1 , the cathode sheet 13 , the second separator 11 , and the anode sheet 1 2 , and the first separator 10 was placed on the cathode sheet 13 A lithium ion secondary battery was prepared in the same manner as in Example 1 except for the outer surface. The properties of the microporous polyethylene film obtained in Examples 1-8 and Comparative Examples 1 - 5 were measured in the following manner. The results are shown in Table 1. (1) Average thickness (//m) The thickness of each microporous film was obtained by averaging the width of 30 cm by a contact length gauge at a pitch of 5 mm. (2) Gas permeability (sec/100cm3/20 // m) According to IS P8 117, the gas permeability P! is measured for each microporous film having a thickness Ti, and then converted into a thickness of 20 by the equation P2 = (PlX20)/Ti. Breathability P2 at μ m. • (3) Porosity (%) is measured by the gravimetric method. (4) Pin punching strength (mN/20 // m) For each microporous film having a thickness Ti, a needle having a round end surface having a diameter of 1 mm is used (curvature radius R: 〇. 5mm) puncture at 2mm/sec and measure its maximum load. The measured maximum load is converted to the maximum load L2 at a thickness of 20 μm using the equation = and used as the pinning strength. φ (5 ) Thermal Shrinkage Ratio (%) The shrinkage ratio of each (three-layer) microporous film in the length and width directions was measured by exposure to 10 5 t: 8 hours, and then averaged to obtain a heat shrinkage ratio. (6) Pore radius is measured by a mercury intrusive pore meter. (7) Shutdown temperature (it) As shown in Fig. 5, the test piece τρ having a size of 3 mm and 10 mm in the stretching direction MD and TD, respectively, was cut from the microporous film 10〇. Use thermomechanical analyzer (available from Seiko Instrument sine. TMA/SS 6000) -34- 200830616 The test piece was heated from room temperature at a rate of 5\:/min, the upper end 100a was clamped by the support 3, and the lower end 100b was attached to the 2 g weight 4. The temperature point at which the recursion is observed near the melting point is defined as the shutdown temperature. (8) Melting temperature (°C) Using a thermomechanical analyzer as described above, test pieces of 10 mm (TD) and 3 mm (MD) were applied with a load of 2 g according to the method shown in Fig. 5, at room temperature of 5 °C. /min to speed. The temperature at which the test piece TP is broken due to melting is referred to as "melting temperature". Φ (9) Gas permeability after hot compression (sec/100 cm3/20 # m) The microporous film sample was sandwiched between a pair of highly flat plates, and pressed at 90 ° C by a press machine. The pressure of 2 MPa (22 kgf/cm2) was heat-compressed for 5 minutes. The heat-compressed microporous film having a thickness T!' was measured for gas permeability P!' in accordance with nS P8117. The measured gas permeability Pi' is converted into a gas permeability P2' at a thickness of 20 / z m by the equation P^WPi'xaOVIV. The properties of the battery obtained in Example 8 and Comparative Example 1 - 5 were measured in the following manner. The results are shown in Table 1. m (10) Discharge capacity The battery is charged to 4. at a constant current of 900 mA by using a charge/discharge tester. 2V, further charging until the charging current drops to 4. 2V is 10mA at voltage, and then discharged at a constant current of 260mA at 25 °C. 0V. The measured initial capacity is taken as the discharge capacity (mAh). (1 1) Overcharge test The battery is charged at a current of 800 mA at 25 °C by using a charge/discharge tester (charge: 0. 5 C) Charge to 5V to check for smoke and burning. 0 -35- 200830616 (12) Needle-punch test Charge the battery to a constant current of 900 mA by using a charge/discharge tester. 2V, further charging until the charging current drops to 25 °C. 10V at a constant voltage of 2V. A stainless steel nail having a diameter of 3 mm was heated to 25 ° C and pierced at a radial center at a speed of 9 mm/sec to verify whether smoke and combustion occurred. (1 3) Capacity recovery rate after recovery test (recovery) The battery is charged to 4. with a constant current of 1,600 mA (amount of electricity: φ 1 C) by using a charge/discharge tester. 2V, further charging until the charging current drops to 4. Under the constant voltage of 2V, i〇mA, then discharge at a constant current of 1,600mA (electricity: 1C) to 3. 0V to check the discharge capacity (initial capacity) at 25 °C. Repeat this charging/discharging operation 1 time (recovery test). The discharge capacity was measured in the same manner to determine the capacity recovery rate after the resilience test (%). The capacity recovery rate (%) of the battery was determined by the following formula: Capacity recovery rate (%) = [(recovery capacity after test) / (initial capacity)]xl〇〇
-36- 200830616-36- 200830616
表1 編號 實例1 實例2 隔離材種類 第一 第二 第一 第二 聚乙烯組成物 UHMWPE Mw⑴ Mw/Mn ⑵ 質量% 2.0 xlO6 8 20 2.0 X 106 8 30 2.0 X 106 8 20 2.0 X 106 8 20 HDPE-A 末端乙烯基含量⑶ (/10,000 C) Mw Mw/Mn 質量% 0.6 3.5 X 105 13.8 80 - 0.6 3.5 X 105 13.5 80 - HDPE-B 末端乙烯基含量 (/10,000 C) Mw Mw/Mn 質量% - 0.1 3.0 X 105 8.6 70 - • 0.1 3.0 X 105 8.6 70 Mw 6.8 X 105 8,1 X 105 6.8 X 105 8.1 X 105 Mw/Mn 21.5 17.2 21.5 17.2 TmfC)⑷ 134 135 134 135 Tcd(°C)(5) 100 100 100 100 製造條件 濃度(6)(質量%) 30 30 25 30 膠狀片之拉伸 溫度ΓΟ 倍率(MD X TD)i7) 115 5x5 115 5x5 117 5x5 115 5x5 微多孔片之拉伸 溫度(°C)/方向/倍率 -1-1- -AA ·/·/_ 加熱固定 溫度rc)/時間(秒) 124/30 127/30 127/30 退火 溫度rc)/方向/倍率 125/TD/0.9 微多孔膜之性質 平均厚度(//m) 20 20 20 20 透氣性(秒/100cm3/20“m) 500 550 450 550 多孔性(%) 38 38 36 38 銷衝強度(mN/20/m) 4,508 5,880 3,920 5,880 MD/TD熱收縮率(%) 6/5 6/5 6/3 6/5 孔隙半徑(nm) 40 40 40 40 斷路溫度(。C) 斷路溫度差ΓΟ 、129 132 130 132 3 2 熔毀溫度ΓΟ 148 152 153 152 熱壓縮後透氣性 (秒/100cm3/20/zm) 1,100 1,000 1,200 1,000 電池性質 螺旋管形電極複合體之層構造⑻ (II)/陰極/(IV陽極 (II)/陰極/(I)/陽極 針穿測試 無冒煙與無燃燒 無冒煙與無燃燒 充電過量測試 無冒煙與無燃燒 無冒煙與無燃燒 放電容量(mAh) 1,590 1,580 電池容量回復率(%) 80 80 -37- 200830616Table 1 No. Example 1 Example 2 Type of spacer material First second first second polyethylene composition UHMWPE Mw (1) Mw/Mn (2) Mass % 2.0 xlO6 8 20 2.0 X 106 8 30 2.0 X 106 8 20 2.0 X 106 8 20 HDPE -A terminal vinyl content (3) (/10,000 C) Mw Mw/Mn mass % 0.6 3.5 X 105 13.8 80 - 0.6 3.5 X 105 13.5 80 - HDPE-B terminal vinyl content (/10,000 C) Mw Mw/Mn mass% - 0.1 3.0 X 105 8.6 70 - • 0.1 3.0 X 105 8.6 70 Mw 6.8 X 105 8,1 X 105 6.8 X 105 8.1 X 105 Mw/Mn 21.5 17.2 21.5 17.2 TmfC)(4) 134 135 134 135 Tcd(°C)( 5) 100 100 100 100 Manufacturing conditions Concentration (6) (% by mass) 30 30 25 30 Stretching temperature of gelatinous sheet ΓΟ Magnification (MD X TD) i7) 115 5x5 115 5x5 117 5x5 115 5x5 Stretching of microporous sheet Temperature (°C) / direction / magnification -1 - 1 - -AA ·/·/_ Heating fixed temperature rc) / time (seconds) 124/30 127/30 127/30 Annealing temperature rc) / direction / magnification 125 / TD/0.9 Microporous film Properties Average thickness (//m) 20 20 20 20 Gas permeability (seconds/100cm3/20"m) 500 550 450 550 Porosity (%) 38 38 36 38 Pin punch strength (mN/20 /m) 4,508 5, 880 3,920 5,880 MD/TD heat shrinkage (%) 6/5 6/5 6/3 6/5 Pore radius (nm) 40 40 40 40 Breaking temperature (.C) Breaking temperature difference ΓΟ , 129 132 130 132 3 2 Melting temperature ΓΟ 148 152 153 152 Gas permeability after heat compression (sec/100cm3/20/zm) 1,100 1,000 1,200 1,000 Layer structure of battery-shaped spiral tubular electrode composite (8) (II) / cathode / (IV anode (II) / Cathode / (I) / Anode needle penetration test No smoke and no burning No smoke and no combustion Overcharge test No smoke and no combustion No smoke and no combustion discharge capacity (mAh) 1,590 1,580 Battery capacity recovery rate ( %) 80 80 -37- 200830616
衣U檟) 編號 實例3 實例4 隔離材種類 第一 第二 第一 第二 聚乙烯組成物 UHMWPE Mw⑴ Mw/Mn ⑵ 質量% 2.0 X 106 8 30 2.0 X 106 8 30 2.0 X 106 8 5 2.0 X 106 8 30 HDPE-A 末端乙烯基含量⑶ (/10,000 C) Mw Mw/Mn 質量% 0.6 3.5 X 105 13.5 70 - 0.6 3.5 X 105 13.5 95 - HDPE-B 末端乙烯基含量 (/10,000 0 Mw Mw/Mn 質量% - 0.1 3.0 X 105 8.6 70 - 0.1 3.0 X 105 8.6 70 Mw 8.4 X 105 8.1 X 105 4.3 X 105 8.1 X 105 Mw/Mn 23.8 17.2 15.9 17.2 Tm(〇C)⑷ 134 135 133 135 TccTCf 100 100 100 100 製造條件 濃度⑹(質量%) 30 30 35 30 膠狀片之拉伸 溫度(。〇 倍率(MD X TD)(7) 114 5x5 115 5x5 116 5x5 115 5x5 微多孔片之拉伸 溫度(°C)/方向/倍率 123/TD/1.1 126/TD/I.3 -1-1- 加熱固定 溫度(°C)/時間(秒) 123/30 127/30 126/30 127/30 退火 溫度(°C)/方向/倍率 -1-1- ·/-/- 微多孔膜之性質 平均厚度(//m) 20 20 20 20 透氣性(秒/l〇〇cm3/20/zm) 330 550 320 550 多孔性(%) 43 38 41 38 銷衝強度(mN/20/zm) 5,194 5,880 3,626 5,880 MDm)熱收縮率(%) 8/10 6/5 7/5 6/5 孔隙半徑(nm) 45 40 43 40 斷路溫度(。〇 斷路溫度差ΓΟ 131 132 133 132 1 熔毀溫度(。〇 152 152 149 152 熱壓縮後透氣性 (#/l00cm3/20 β m) 950 1,000 950 1,000 電池性質 螺旋管形電極複合體之層構造⑻ (Π)/陰極/(I)/陽極 (II)/陰極/(I)/陽極 針穿測試 無冒煙與無燃燒 無冒煙與無燃燒 充電過量測試 無冒煙與無燃燒 無冒煙與無燃燒 放電容量(mAh) 1,600 1,580 電池容量回復率(%) 85 82 -38 - 200830616 表1 (續)Clothing U槚) No. Example 3 Example 4 Type of spacer material First second first second polyethylene composition UHMWPE Mw(1) Mw/Mn (2) Mass% 2.0 X 106 8 30 2.0 X 106 8 30 2.0 X 106 8 5 2.0 X 106 8 30 HDPE-A End Vinyl Content (3) (/10,000 C) Mw Mw/Mn Mass % 0.6 3.5 X 105 13.5 70 - 0.6 3.5 X 105 13.5 95 - HDPE-B End Vinyl Content (/10,000 0 Mw Mw/Mn Mass % - 0.1 3.0 X 105 8.6 70 - 0.1 3.0 X 105 8.6 70 Mw 8.4 X 105 8.1 X 105 4.3 X 105 8.1 X 105 Mw/Mn 23.8 17.2 15.9 17.2 Tm(〇C)(4) 134 135 133 135 TccTCf 100 100 100 100 Manufacturing condition concentration (6) (% by mass) 30 30 35 30 Stretching temperature of gelatinous sheet (.〇 magnification (MD X TD) (7) 114 5x5 115 5x5 116 5x5 115 5x5 Microporous sheet stretching temperature (°C ) / direction / magnification 123 / TD / 1.1 126 / TD / I.3 - 1-1 - heating fixed temperature ( ° C) / time (seconds) 123 / 30 127 / 30 126 / 30 127 / 30 annealing temperature ( ° C)/direction/magnification-1-1- ·/-/- Properties of microporous film Average thickness (//m) 20 20 20 20 Gas permeability (sec/l〇〇cm3/20/zm) 330 550 320 550 Porosity (%) 43 38 41 38 pin Strength (mN/20/zm) 5,194 5,880 3,626 5,880 MDm) Heat shrinkage rate (%) 8/10 6/5 7/5 6/5 Pore radius (nm) 45 40 43 40 Breaking temperature (. 〇 Breaking temperature difference ΓΟ 131 132 133 132 1 Melting temperature (.〇152 152 149 152 Gas permeability after heat compression (#/l00cm3/20 β m) 950 1,000 950 1,000 Layer structure of battery-shaped spiral tubular electrode composite (8) (Π) / cathode /(I)/Anode (II)/Cathode/(I)/Anode Needle Penetration Test No smoke and no combustion No smoke and no combustion Overcharge test No smoke and no combustion No smoke and no combustion discharge capacity ( mAh) 1,600 1,580 Battery capacity recovery rate (%) 85 82 -38 - 200830616 Table 1 (continued)
編號 實例5 實例6 隔離材種類 第一 第一 - 第一 1 第二 聚乙烯組成物 UHMWPE Mw⑴ Mw/Mn ⑵ 質量% 2.0 xlO6 8 20 2.0 X 106 8 30 2.0 X 106 8 20 2.0 xlO6 8 20 HDPE-A 末端乙烯基含量(3) (/10,000 C) Mw Mw/Mn 質量% 0.6 3.5 X 105 13.5 80 - 0.6 3.5 X 105 13.5 80 - HDPE-B 末端乙烯基含量 (/10,000 C) Mw Mw/Mn 質量% - 0.1 3.0 X 105 8.6 70 - 0.1 3.0 X 105 8.6 70 Mw 6.8 X 105 8.1 X 105 6.8 X 105 8.1 X 105 Mw/Mn 2L5 17.2 21.5 17.2 TmfC)⑷ 134 135 134 135 TcdfCf 100 100 100 100 製造條件 濃度⑹(質量%) 30 25 25 25 膠狀片之拉伸 溫度(。〇 倍率(MD X TD)(7) 115 5x5 115 5x5 117 5x5 115 5x5 微多孔片之拉伸 溫度(。〇/方向/倍率 -1-1- 127/TD/1.1 127ΠΌ/1.1 加熱固定 溫度rev時間(秒) 124/30 -Α 退火 溫度(°C)/方向/倍率 127/TD/0.9 I 125ΠΌ/0.9 127TO0.9 微多孔膜之性質 平均厚度(“m) 20 20 20 20 透氣性(秒/lOOcm^O/zm) 500 350 450 350 多孔性(%) 38 41 36 41 銷衝強度(mN/20/zm) 4,508 4,214 3,920 4,214 MM3熱收縮率(%) . 6/5 7/3 6/3 7/3 孔隙半徑(_) 40 40 40 40 斷路溫度ΓΟ 斷路溫度差(°C) 129 132 130 132 3 2 熔毀溫度(。C) 148 150 153 150 熱壓縮後透氣性 (秒/100cm3/20_) 1,100 1,000 1,200 1,000 電池性質 螺旋管形電極複合體之層構造⑻ (II)/陰極/(I)/陽極 (II)/陰極/(I)/陽極 針穿測試 無冒煙與無燃燒 無冒煙與無燃燒 充電過量測試 無冒煙與無燃燒 無冒煙與無燃燒 放電容量(mAh) 1,580 1,580 電池容量回復率(%) 81 80 -39- 200830616No. Example 5 Example 6 Type of separator material First first - First 1 Second polyethylene composition UHMWPE Mw (1) Mw / Mn (2) Mass % 2.0 xlO6 8 20 2.0 X 106 8 30 2.0 X 106 8 20 2.0 xlO6 8 20 HDPE- A terminal vinyl content (3) (/10,000 C) Mw Mw/Mn mass % 0.6 3.5 X 105 13.5 80 - 0.6 3.5 X 105 13.5 80 - HDPE-B terminal vinyl content (/10,000 C) Mw Mw/Mn mass % - 0.1 3.0 X 105 8.6 70 - 0.1 3.0 X 105 8.6 70 Mw 6.8 X 105 8.1 X 105 6.8 X 105 8.1 X 105 Mw/Mn 2L5 17.2 21.5 17.2 TmfC)(4) 134 135 134 135 TcdfCf 100 100 100 100 Manufacturing condition concentration (6) (% by mass) 30 25 25 25 Stretching temperature of gelatinous sheet (. 〇 magnification (MD X TD) (7) 115 5x5 115 5x5 117 5x5 115 5x5 stretching temperature of microporous sheet (.〇/direction/magnification -1-1- 127/TD/1.1 127ΠΌ/1.1 Heating fixed temperature rev time (seconds) 124/30 -Α Annealing temperature (°C)/direction/magnification 127/TD/0.9 I 125ΠΌ/0.9 127TO0.9 Microporous Membrane properties Average thickness ("m) 20 20 20 20 Gas permeability (sec/lOOcm^O/zm) 500 350 450 350 Porosity (%) 38 41 36 41 Pin punch strength ( mN/20/zm) 4,508 4,214 3,920 4,214 MM3 heat shrinkage rate (%) . 6/5 7/3 6/3 7/3 Pore radius (_) 40 40 40 40 Breaking temperature 断 Breaking temperature difference (°C) 129 132 130 132 3 2 Meltdown temperature (.C) 148 150 153 150 Gas permeability after hot compression (sec/100cm3/20_) 1,100 1,000 1,200 1,000 Cell layer structure of spiral tubular electrode composite (8) (II) / Cathode / (I) / anode (II) / cathode / (I) / anode needle penetration test no smoke and no combustion no smoke and no combustion overcharge test no smoke and no combustion no smoke and no combustion discharge capacity (mAh ) 1,580 1,580 Battery capacity recovery rate (%) 81 80 -39- 200830616
…衣U績) 編號 實例7 實例8 隔離材種類 第一 第二 第一 第二 聚乙烯組成物 UHMWPE Mw⑴ Mw/Mn ⑵ 質量% 2.0 X 106 8 20 2.0 xlO6 8 5 2.0 X 106 8 20 2.0 xlO6 8 30 HDPE-A 末端乙烯基含量⑶ (/10,000 C) Mw Mw/Mn 質量% 0.6 3.5 X 105 13.5 80 - 0.6 3.5 X 105 13.5 80 - HDPE-B 末端乙烯基含量 (/10,000 C) Mw Mw/Mn 質量% - 0.1 3.0 xlO5 8.6 95 - 0.1 3.0 X 105 8.6 70 Mw 6.8 X 105 3.8 x 105 6.8 X 105 8.1 X 105 Mw/Mn 21.5 10.6 21.5 17.2 TmfC)⑷ 134 134 134 135 Tcd(°C)(5) 100 100 100 100 製造條件 濃度⑹(質量%) 30 30 30 30 膠狀片之拉伸 溫度(。〇 倍率(MD X TD)(7) 115 5x5 117 5x5 114 5x5 113 5x5 微多孔片之拉伸 溫度(。C)/方向/倍率 -ΛΑ 130ATD/L4 -1-1- 加熱固定 溫度(。〇/時間(秒) 124/30 130/30 124/30 * 127/30 退火 溫度(°C)/方向/倍率 -1-1- -/-/- -1-1- 微多孔膜之性質 平均厚度(#m) 20 20 16 16 透氣 秒/100cm3/20//m) 500 240 380 430 多孔性(%) 38 38 38 38 銷衝強度(mN/20“m) 4,508 4,508 4,655 4,900 MDATD熱收縮率(%) 6/5 2/2 6/6. 7/6 孔隙半徑(nm) 40 45 40 40 斷路溫度ΓΟ 斷路溫度差(°C) 129 133 128 131 /. 3 熔毀溫度ΓΟ 148 147 148 149 熱壓縮後透氣性 (秒/100cm3/20/zm) 1,100 900 1,000 900 電池性質 螺旋管形電極複合體之層構造⑻ ω)/陰極肋腸極 ⑻/陰極/(I)/陽極 針穿測試 無冒煙與無燃燒 無冒煙與無燃燒 充電過量測試 無冒煙與無燃燒 無冒煙與無燃燒 放電容量(mAh) 1,580 1,610 電池容量回復率(%) 80 83 -40- 200830616... U" Example No. 7 Example 8 Type of spacer material First second first second polyethylene composition UHMWPE Mw (1) Mw / Mn (2) Mass % 2.0 X 106 8 20 2.0 xlO6 8 5 2.0 X 106 8 20 2.0 xlO6 8 30 HDPE-A End Vinyl Content (3) (/10,000 C) Mw Mw/Mn Mass % 0.6 3.5 X 105 13.5 80 - 0.6 3.5 X 105 13.5 80 - HDPE-B End Vinyl Content (/10,000 C) Mw Mw/Mn Mass % - 0.1 3.0 xlO5 8.6 95 - 0.1 3.0 X 105 8.6 70 Mw 6.8 X 105 3.8 x 105 6.8 X 105 8.1 X 105 Mw/Mn 21.5 10.6 21.5 17.2 TmfC)(4) 134 134 134 135 Tcd(°C)(5) 100 100 100 100 Manufacturing conditions Concentration (6) (% by mass) 30 30 30 30 Stretching temperature of gelatinous sheet (. 〇 magnification (MD X TD) (7) 115 5x5 117 5x5 114 5x5 113 5x5 stretching temperature of microporous sheet (.C)/direction/magnification-ΛΑ130ATD/L4 -1-1- Heating fixed temperature (.〇/time (seconds) 124/30 130/30 124/30 * 127/30 Annealing temperature (°C)/direction /magnification-1-1- -/-/- -1-1- Properties of microporous membranes Average thickness (#m) 20 20 16 16 Ventilation seconds / 100cm3/20//m) 500 240 380 430 Porosity (% ) 38 38 38 38 pin punch Strength (mN/20"m) 4,508 4,508 4,655 4,900 MDATD heat shrinkage (%) 6/5 2/2 6/6. 7/6 Pore radius (nm) 40 45 40 40 Breaking temperature 断 Breaking temperature difference (°C ) 129 133 128 131 /. 3 Melting temperature ΓΟ 148 147 148 149 Gas permeability after heat compression (seconds / 100cm3 / 20 / zm) 1,100 900 1,000 900 Battery layer structure of spiral tubular electrode composite (8) ω) / cathode Rib pole (8) / cathode / (I) / anode needle penetration test no smoke and no burning no smoke and no combustion overcharge test no smoke and no combustion no smoke and no combustion discharge capacity (mAh) 1,580 1,610 battery Capacity recovery rate (%) 80 83 -40- 200830616
表ι(續) 編號 比較例1 比較例2 隔離材種類 第一 第二 第一 第二 聚乙烯組成物 UHMWPE Mw⑴ Mw/Mn(2) 質量% 2.0 X 106 8 20 2.0 X 106 8 20 2.0 X 106 8 30 2.0 xlO6 8 30 HDPE-A 末端乙烯基含量(3) (/10,000 C) Mw Mw/Mn 質量% 0.6 3.5 X 105 13.5 80 0.6 3.5 X 105 13.5 80 - - HDPE-B 末端乙烯基含量 (/10,000 C) Mw Mw/Mn 質量% - - 0.1 3.0 X 105 8.6 70 0.1 3.0 X 105 8.6 70 Mw 6.8 X 105 6,8 X 105 8.1 X 105 8.1 X 105 Mw/Mn 21.5 21.5 17.2 17.2 ΤιηΓΟ ⑷ 134 134 135 135 Tcd(°C)(5) 100 100 100 v100 製造條件 濃度⑹償量%) 30 30 30 30 膠狀片之拉伸 溫度fc) 倍率(MD X TD)⑺ 115 5x5 115 5x5 115 5x5 115 5x5 微多孔片之拉伸 溫度(。〇/方向/倍率 -1-1- _/一/_ -1-1- 加熱固定 溫度(°C)/時間(秒) 124/30 124/30 127/30 127/30 退火 溫度ΓΟ/方向/倍率 -1-1- -1-1- -1-1- 微多孔膜之性質 平均厚度(#m) 20 20 20 20 透氣性(秒/100cm3/20//m) 500 500 550 550 多孔性(%) 38 38 38 38 銷衝強度(mN/20/zm) 4,508 4,508 5,880 5,880 MDATD熱收縮率(%) 6/5 6/5 6/5 6/5 孔隙半徑(nm) 40 40 40 40 斷路溫度(。〇 斷路溫度差(°C) 129 129 132 132 0 0 熔毀溫度(。C) 148 148 152 152 熱壓縮後透氣性 (秒/100cm3/20 // m) 1,100 1,100 1,000 1,000 電池性質 螺旋管形電極複合體之層構造⑻ (I)/陰極/0)腸極 (II)/陰極/⑻/陽極 針穿測試 冒煙 無冒煙與無燃燒 充電過量測試 無冒煙與無燃燒 冒煙 放電容量(mAh) 1,590 1,580 電池容量回復率(%) 79 80 -41 - 200830616Table 1 (continued) No. Comparative Example 1 Comparative Example 2 Type of separator material First second first second polyethylene composition UHMWPE Mw (1) Mw / Mn (2) Mass % 2.0 X 106 8 20 2.0 X 106 8 20 2.0 X 106 8 30 2.0 xlO6 8 30 HDPE-A End Vinyl Content (3) (/10,000 C) Mw Mw/Mn Mass % 0.6 3.5 X 105 13.5 80 0.6 3.5 X 105 13.5 80 - - HDPE-B End Vinyl Content (/ 10,000 C) Mw Mw/Mn mass % - - 0.1 3.0 X 105 8.6 70 0.1 3.0 X 105 8.6 70 Mw 6.8 X 105 6,8 X 105 8.1 X 105 8.1 X 105 Mw/Mn 21.5 21.5 17.2 17.2 ΤιηΓΟ (4) 134 134 135 135 Tcd(°C)(5) 100 100 100 v100 Manufacturing Condition Concentration (6) Reimbursement %) 30 30 30 30 Colloidal sheet stretching temperature fc) Magnification (MD X TD) (7) 115 5x5 115 5x5 115 5x5 115 5x5 Micro Stretching temperature of porous sheet (.〇/direction/magnification-1-1- _/一/_ -1-1- Heating fixed temperature (°C)/time (seconds) 124/30 124/30 127/30 127 /30 Annealing temperature ΓΟ/direction/magnification-1-1-1-11-1-1-1-- Properties of microporous film Average thickness (#m) 20 20 20 20 Gas permeability (seconds/100cm3/20//m ) 500 500 550 550 Porosity (%) 38 38 38 38 Impact strength (mN/20/zm) 4,508 4,508 5,880 5,880 MDATD heat shrinkage rate (%) 6/5 6/5 6/5 6/5 Pore radius (nm) 40 40 40 40 Breaking temperature (. 〇 Breaking temperature difference ( °C) 129 129 132 132 0 0 Melting temperature (.C) 148 148 152 152 Gas permeability after heat compression (sec/100cm3/20 // m) 1,100 1,100 1,000 1,000 Battery-like spiral tubular electrode composite Layer structure (8) (I) / cathode / 0) intestinal pole (II) / cathode / (8) / anode needle penetration test smoke no smoke and no combustion overcharge test no smoke and no combustion smoke discharge capacity (mAh) 1,590 1,580 battery capacity recovery rate (%) 79 80 -41 - 200830616
表ι(續) 編號 比較例3 比較例4 隔離材種類 第一 第一⑼ 第一 第二 聚乙烯組成物 UHMWPE Mw⑴ Mw/Mn ⑵ 質量% 2.0 X 106 8 20 - 2.0 X 106 8 20 2.0 X 106 8 3 HDPE-A 末端乙烯基含量(3) (/10,000 0 Mw Mw/Mn 質量% 0.6 3.5 X 105 13.5 80 _ 0.6 3.5 X 105 13.5 80 - HDPE-B 末端乙烯基含量 (/10,000 C) Mw Mw/Mn 質量% - 0.1 3.0 xlO5 8.6 100 - 0.1 3.0 X 105 8.6 97 Mw 6.8 X 105 - 6.8 X 105 3.5 X 105 Mw/Mn 21.5 - 21.5 9.8 Tm(°C)(4> 134 134 134 135 TcdfCf) 100 100 100 100 製造條件 濃度i6)(質量%) 30 40 30 40 膠狀片之拉伸 溫度(。C) 倍率(MD X TD)(7) 115 5x5 114 5x5 115 5x5 119 5x5 微多孔片之拉伸 溫度(°C)/方向/倍率 mfTO/ΙΛ -1-1- 130/TD/1.4 加熱固定 溫度(°C)/時間(秒) 124/30 128/30 124/30 130/30 退火 溫度(。〇/方向/倍率 -/-/- -1-1- 微多孔膜之性質 平均厚度(#m) 20 20 20 20 透氣性(秒/100cm3/20/zm) 500 280 500 260 多孔性(%) 38 42 38 39 銷衝強度(mN/20/zm) 4,508 5,684 4,508 4,802 MD/TD熱收縮率(%) 6/5 3/4 6/5 3/3 孔隙半徑(nm) 40 43 40 43 斷路溫度(。〇 斷路溫度差(。〇 129 134 129 135 5 6 熔毀溫度(。〇 148 145 148 145 熱壓縮後透氣性 (秒/100cm3/20 " m) 1,100 900 1,100 900 電池性質 螺旋管形電極複合體之層構造⑻ (II)/陰極/(I)/陽極 ⑼/陰極/⑽/陽極 針穿測試 冒煙 冒煙 充電過量測試 無冒煙與無燃燒 冒煙 放電容量(mAh) 1,580 1,590 電池容量回復率(%) 81 80 -42- 200830616Table 1 (continued) No. Comparative Example 3 Comparative Example 4 Type of separator material First first (9) First second polyethylene composition UHMWPE Mw (1) Mw / Mn (2) Mass % 2.0 X 106 8 20 - 2.0 X 106 8 20 2.0 X 106 8 3 HDPE-A End Vinyl Content (3) (/10,000 0 Mw Mw/Mn Mass % 0.6 3.5 X 105 13.5 80 _ 0.6 3.5 X 105 13.5 80 - HDPE-B End Vinyl Content (/10,000 C) Mw Mw /Mn mass % - 0.1 3.0 xlO5 8.6 100 - 0.1 3.0 X 105 8.6 97 Mw 6.8 X 105 - 6.8 X 105 3.5 X 105 Mw/Mn 21.5 - 21.5 9.8 Tm (°C) (4> 134 134 134 135 TcdfCf) 100 100 100 100 Manufacturing condition Concentration i6) (% by mass) 30 40 30 40 Stretching temperature of gelatinous sheet (.C) Magnification (MD X TD) (7) 115 5x5 114 5x5 115 5x5 119 5x5 Extrusion of microporous sheet Temperature (°C)/direction/magnification mfTO/ΙΛ -1-1- 130/TD/1.4 Heating fixed temperature (°C)/time (seconds) 124/30 128/30 124/30 130/30 Annealing temperature (. 〇/direction/magnification-/-/- -1-1- Properties of microporous membrane Average thickness (#m) 20 20 20 20 Gas permeability (sec/100cm3/20/zm) 500 280 500 260 Porosity (%) 38 42 38 39 Pin punch strength (mN/20/zm 4,508 5,684 4,508 4,802 MD/TD heat shrinkage rate (%) 6/5 3/4 6/5 3/3 Pore radius (nm) 40 43 40 43 Breaking temperature (. 〇 Breaking temperature difference (.〇129 134 129 135 5 6 Meltdown temperature (.〇148 145 148 145 Gas permeability after heat compression (sec/100cm3/20 " m) 1,100 900 1,100 900 Cell layer structure of spiral tubular electrode composite (8) (II) / cathode /(I)/anode (9)/cathode/(10)/anode needle penetration test smoke and smoke charge overcharge test no smoke and no smoke smoke discharge capacity (mAh) 1,580 1,590 battery capacity recovery rate (%) 81 80 -42- 200830616
表ι(續) 編號 比較例5 隔離材種類 第一 第二 聚乙烯組成物 UHMWPE Mw⑴ 2.0 X 106 2.0 X 106 Mw/Mn ⑵ 8 8 質量% 20 30 HDPE-A 末端乙烯基含量(3) 0.6 - (/10,000 C) Mw 3.5 X 105 - Mw/Mn 13.8 - 質量% 80 - HDPE-B 末端乙烯基含量 - 0.1 (/10,000 C) Mw - 3.0 X 105 Mw/Mn - 8.6 質量% - 70 Mw 6.8 X 105 8.1 X 105 Mw/Mn 21.5 17.2 TmfC)⑷ 134 135 Tcd(r)i5> 100 100 製造條件 濃度(6)(質量%) 30 30 膠狀片之拉伸 溫度(。〇 115 115 倍率(MD X TD)(7) 5x5 5x5 微多孔片之拉伸 溫度(。〇/方向/倍率 •1-1- 加熱固定 溫度(°C)/時間(秒) 124/30 127/30 退火 溫度(°C)/方向/倍率 微多孔膜之性質 平均厚度(//m) 20 20 透氣性(秒/100cm3/20/zm) 500 550 多孔性(%) 38 38 銷衝強度(mN/20/m) 4,508 5,880 MDATD熱收縮率(%) 6/5 6/5 孔隙半徑(nm) 40 40 斷路溫度ΓΟ 129 132 斷路溫度差(。〇 3 熔毀溫度rc) 148 152 熱壓縮後透氣性 1,100 1 ΠΠΠ (秒/100cm3/20“m) 1 ,υυυ 電池性質 螺旋管形電極複合體之層構造⑻ (I)/陰極/⑼/陽極 針穿測試 冒煙 充電過量測試 無冒煙與無燃燒 放電容量(mAh) 1,590 電池容量回復率(%) 80 -43 - 200830616 附註:(1) M w表示重量平均分子量。 (2) Mw/Mn表示由重量平均分子量/#量平均分子量所 決定之分子量分布。 (3) 每1 0,000個碳原子中之末端乙烯基的數量(數量 /10,000C)。 (4) Tm表示聚乙烯組成物之熔點。 (5) Ted表示聚乙烯組成物之結晶分散溫度。 (6) 第一聚乙烯溶液之濃度與第二聚乙烯溶液之濃度 (7) MD表示縱向方向,以及TD表示橫向方向。 (8) 自外側的層合結構,其中(I)表示第一隔離材、(II) 表示第二隔離材、「陰極」表示陰極片、以及「陽極」表 示陽極片。 (9) 雖然比較例3中由HDPE-B所組成之隔離材不歸類 爲第一或第二隔離材,其係列於「第二隔離材」的欄位中。 如表1中所清楚表示的,實例1至8之包括第一與第 二隔離材的電極複合體具有平衡良好的穿透性、機械強 度、熱收縮耐性、停機性質、熔毀性質、壓縮抗性。特別 是第一隔離材具有極佳的停機性質、第二隔離材具有極佳 的機械強度與熔毀性質。因此,所得的電池提供極佳的安 全性、放電容量與回復性。 比較例1中.,具有兩片含HDPE-A之第一隔離材而沒 有含HDPE-B之第二隔離材的電池於針穿測試中冒煙,表 示其安全性較實例1至8者差。比較例2中,具有兩片含 HDPE-B之第二隔離材而沒有含HDPE-A之第一隔離材的電 池於充電過量測試中冒煙,表示其安全性較實例1至8者 -44- 200830616 差。比較例2中’具有一片第一隔離材與其他僅由hdPE-B 而不含UHMWPE所製得的隔離材的電池於針穿測試中冒 煙’表示其安全性較實例1至8者差。比較例4中,具有 包括第一與第二隔離材之電極複合體的電池,其停機溢度 差大於5 °C,於針穿測試與充電過量測試中冒煙,表示其安 全性較實例1至8者差。比較例5中,具有在陰極片外表 面有第一隔離材以及在陰極片內表面有第二隔離材的電極 複合體之電池,於針穿測試中冒煙,表示其安全性較實例 1至8者差。 本發明之影響 具有平衡良好之安全性、放電容量與回復性的電池可 藉由使用本發明之電極複合體獲得。此電極複合體適用於 非水性電解液電池。 【圖式簡單說明】 第1圖爲包含本發明之電極複合體的圓柱型鋰離子二 次電池的部分剖面透視圖。 第2圖爲第1圖之電池的橫向剖面圖。 第3圖爲第2圖之A部分的放大剖面圖。 第4 (a)圖爲第1圖之電極複合體中的陽極片末端部分 的部分剖面圖。 第4(b)圖爲第1圖之電極複合體中的陰極片末端部分 的部分剖面圖。 第5圖爲測量斷路溫度與熔毀溫度之方法圖示。 【主要元件符號說明】 1 螺旋管形電極複合體 -45- 200830616 3 4 10 11 12 支撐器 重物 第一隔離材 第二隔離材 陽極片 12a 電流收集器 12b 陽極活性材料層Table 1 (continued) No. Comparative Example 5 Type of separator First and second polyethylene composition UHMWPE Mw (1) 2.0 X 106 2.0 X 106 Mw/Mn (2) 8 8% by mass 20 30 HDPE-A Terminal vinyl content (3) 0.6 - (/10,000 C) Mw 3.5 X 105 - Mw/Mn 13.8 - Mass % 80 - HDPE-B End Vinyl Content - 0.1 (/10,000 C) Mw - 3.0 X 105 Mw/Mn - 8.6 % by mass - 70 Mw 6.8 X 105 8.1 X 105 Mw/Mn 21.5 17.2 TmfC)(4) 134 135 Tcd(r)i5> 100 100 Manufacturing conditions Concentration (6) (% by mass) 30 30 Stretching temperature of gelatinous sheet (.〇115 115 magnification (MD X TD)(7) Stretching temperature of 5x5 5x5 microporous sheet (.〇/direction/magnification•1-1- Heating fixed temperature (°C)/time (seconds) 124/30 127/30 Annealing temperature (°C) /direction/magnification Microporous film Properties Average thickness (//m) 20 20 Gas permeability (sec/100cm3/20/zm) 500 550 Porosity (%) 38 38 Pin punch strength (mN/20/m) 4,508 5,880 MDATD heat shrinkage rate (%) 6/5 6/5 Pore radius (nm) 40 40 Breaking temperature ΓΟ 129 132 Breaking temperature difference (.〇3 meltdown temperature rc) 148 152 After hot compression Gasity 1,100 1 ΠΠΠ (sec/100cm3/20"m) 1 , 层 Battery layer structure of spiral tubular electrode composite (8) (I) / cathode / (9) / anode needle wear test smoke charge over test without risk Smoke and non-combustion discharge capacity (mAh) 1,590 Battery capacity recovery rate (%) 80 -43 - 200830616 Note: (1) M w represents the weight average molecular weight. (2) Mw / Mn represents the weight average molecular weight / # quantity average molecular weight Determined molecular weight distribution (3) The number of terminal vinyl groups per 10,000 carbon atoms (quantity / 10,000 C) (4) Tm represents the melting point of the polyethylene composition. (5) Ted represents the polyethylene composition The crystal dispersion temperature. (6) The concentration of the first polyethylene solution and the concentration of the second polyethylene solution (7) MD indicates the longitudinal direction, and TD indicates the lateral direction. (8) A laminate structure from the outside, wherein (I) represents a first separator, (II) represents a second separator, "cathode" represents a cathode sheet, and "anode" represents an anode sheet. (9) Although the spacer composed of HDPE-B in Comparative Example 3 is not classified as the first or second spacer, the series is in the field of the "second spacer". As clearly shown in Table 1, the electrode composites of Examples 1 to 8 including the first and second separators have well-balanced penetration, mechanical strength, heat shrinkage resistance, shutdown properties, meltdown properties, and compression resistance. Sex. In particular, the first spacer has excellent shutdown properties and the second spacer has excellent mechanical strength and meltdown properties. Therefore, the resulting battery provides excellent safety, discharge capacity and recovery. In Comparative Example 1, a battery having two sheets of HDPE-A-containing first separator and no HDPE-B-containing separator was smoked in the needle-punching test, indicating that the safety was worse than those of Examples 1 to 8. . In Comparative Example 2, a battery having two sheets of HDPE-B-containing second separator and no HDPE-A-containing separator was smoked in the overcharge test, indicating that it was safer than Examples 1 to 8 - 44 - 200830616 Poor. In Comparative Example 2, a battery having a piece of the first separator and other separators made only of hdPE-B and not containing UHMWPE smoked in the needle penetration test showed that the safety was inferior to those of Examples 1 to 8. In Comparative Example 4, the battery having the electrode assembly including the first and second spacers has a shutdown overflow difference of more than 5 ° C, and smokes in the needle penetration test and the overcharge test, indicating that the safety is compared with the example 1 To 8 is poor. In Comparative Example 5, a battery having an electrode composite having a first separator on the outer surface of the cathode sheet and a second separator on the inner surface of the cathode sheet smoked in the needle penetration test, indicating that the safety was compared with that of Example 1 to 8 is poor. EFFECTS OF THE INVENTION A battery having a well-balanced safety, discharge capacity and recovery can be obtained by using the electrode composite of the present invention. This electrode composite is suitable for non-aqueous electrolyte batteries. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a partially cutaway perspective view showing a cylindrical lithium ion secondary battery including an electrode assembly of the present invention. Fig. 2 is a transverse sectional view of the battery of Fig. 1. Fig. 3 is an enlarged cross-sectional view showing a portion A of Fig. 2. Fig. 4(a) is a partial cross-sectional view showing the end portion of the anode piece in the electrode assembly of Fig. 1. Fig. 4(b) is a partial cross-sectional view showing the end portion of the cathode sheet in the electrode assembly of Fig. 1. Figure 5 is a graphical representation of the method of measuring the temperature of the circuit breaker and the temperature of the meltdown. [Main component symbol description] 1 Spiral tubular electrode composite -45- 200830616 3 4 10 11 12 Support weight First spacer Second spacer Anode sheet 12a Current collector 12b Anode active material layer
13 13a 13b 20 21 陰極片 電流收集器 陰極活性材料層 ,陽極導線 陰極導線 22 絕緣板 2313 13a 13b 20 21 Cathode sheet Current collector Cathode active material layer, anode wire Cathode wire 22 Insulation plate 23
24 25 26 27 電池殼 電流中斷裝置 彎曲板 PTC裝置 電池蓋 2 8 100 100a 100b 墊片 微多孔膜 測試件上端 測試件下端 46-24 25 26 27 Battery case Current interrupter Bending plate PTC device Battery cover 2 8 100 100a 100b Gasket Microporous membrane Upper end of test piece Lower part of test piece 46-
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006253575 | 2006-09-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW200830616A true TW200830616A (en) | 2008-07-16 |
Family
ID=39200625
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW096134975A TW200830616A (en) | 2006-09-19 | 2007-09-19 | Electrode assembly and non-aqueous electrolyte battery |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW200830616A (en) |
WO (1) | WO2008035806A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3933995B1 (en) * | 2019-02-28 | 2025-02-12 | Panasonic Intellectual Property Management Co., Ltd. | Non-aqueous electrolyte secondary battery |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW412542B (en) * | 1995-12-25 | 2000-11-21 | Asahi Chemical Ind | Short-resistant micro-porous polyethylene membrane |
JP4986199B2 (en) * | 2001-05-18 | 2012-07-25 | 旭化成イーマテリアルズ株式会社 | Polyethylene microporous membrane and battery using the same |
JP5073916B2 (en) * | 2004-02-10 | 2012-11-14 | 旭化成イーマテリアルズ株式会社 | Polyolefin microporous membrane for lithium-ion battery separators |
JP5057654B2 (en) * | 2005-05-17 | 2012-10-24 | 旭化成イーマテリアルズ株式会社 | Polyethylene microporous membrane |
JP5213443B2 (en) * | 2005-08-03 | 2013-06-19 | 旭化成イーマテリアルズ株式会社 | Polyolefin microporous membrane |
JP5148093B2 (en) * | 2005-09-28 | 2013-02-20 | 東レバッテリーセパレータフィルム株式会社 | Polyethylene multilayer microporous membrane, method for producing the same, and battery separator |
-
2007
- 2007-09-19 TW TW096134975A patent/TW200830616A/en unknown
- 2007-09-19 WO PCT/JP2007/068735 patent/WO2008035806A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2008035806A1 (en) | 2008-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5403633B2 (en) | Microporous membrane, battery separator and battery | |
JP5403634B2 (en) | Microporous membrane, battery separator and battery | |
KR101143106B1 (en) | Microporous polymer membrane | |
JP5497635B2 (en) | Polyolefin microporous membrane, method for producing the same, battery separator and battery | |
TWI402172B (en) | Microporous polyolefin membrane, its production method, battery separator, and battery | |
KR101347460B1 (en) | Microporous membranes and methods for making and using such membranes | |
JP5453272B2 (en) | Microporous membranes and methods of making and using such membranes | |
JP5250262B2 (en) | Polyolefin microporous membrane and method for producing the same, battery separator and battery | |
CN110431176B (en) | Polyolefin microporous membrane, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery | |
US8304114B2 (en) | Microporous polyolefin membrane and manufacturing method | |
JP6823718B2 (en) | Polyolefin microporous membranes, separators for power storage devices, and power storage devices | |
KR101843806B1 (en) | Polyolefin microporous membrane, separator for battery, and battery | |
JPWO2007052663A1 (en) | Polyolefin microporous membrane and battery separator and battery using the same | |
JP6895570B2 (en) | Polyolefin microporous membrane and method for producing polyolefin microporous membrane | |
CN101568575A (en) | Polyolefin microporous membrane | |
JPWO2007060991A1 (en) | Polyolefin microporous membrane and method for producing the same, battery separator and battery | |
JP6886839B2 (en) | Polyolefin microporous membrane | |
US8273279B2 (en) | Microporous polyolefin membrane and manufacturing method | |
JP5450944B2 (en) | Polyolefin microporous membrane, battery separator and battery | |
US8021789B2 (en) | Microporous membrane and manufacturing method | |
JP4220329B2 (en) | Polyolefin microporous membrane and method for producing the same | |
WO2020137336A1 (en) | Microporous polyolefin membrane and method for producing microporous polyolefin membrane | |
EP3960813A1 (en) | Heat-resistant polyolefin-based microporous film and method for producing same | |
JP2019102126A (en) | Battery separator and non-aqueous electrolyte secondary battery | |
WO2021065283A1 (en) | Polyolefin microporous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery |