KR100881053B1 - Nitride-based light emitting device - Google Patents
Nitride-based light emitting device Download PDFInfo
- Publication number
- KR100881053B1 KR100881053B1 KR20070096079A KR20070096079A KR100881053B1 KR 100881053 B1 KR100881053 B1 KR 100881053B1 KR 20070096079 A KR20070096079 A KR 20070096079A KR 20070096079 A KR20070096079 A KR 20070096079A KR 100881053 B1 KR100881053 B1 KR 100881053B1
- Authority
- KR
- South Korea
- Prior art keywords
- layer
- indium
- light emitting
- nitride
- emitting device
- Prior art date
Links
- 150000004767 nitrides Chemical class 0.000 title claims abstract description 57
- 229910052738 indium Inorganic materials 0.000 claims abstract description 61
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims abstract description 61
- 230000002265 prevention Effects 0.000 claims abstract description 33
- 230000004888 barrier function Effects 0.000 claims abstract description 32
- 239000004065 semiconductor Substances 0.000 claims abstract description 26
- 238000004519 manufacturing process Methods 0.000 claims abstract description 7
- 238000000034 method Methods 0.000 claims description 12
- 239000012535 impurity Substances 0.000 claims description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- 229910002601 GaN Inorganic materials 0.000 claims 2
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims 2
- 238000001704 evaporation Methods 0.000 abstract 1
- 239000000758 substrate Substances 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 239000007789 gas Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- DIIIISSCIXVANO-UHFFFAOYSA-N 1,2-Dimethylhydrazine Chemical compound CNNC DIIIISSCIXVANO-UHFFFAOYSA-N 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000002017 high-resolution X-ray diffraction Methods 0.000 description 2
- 238000001451 molecular beam epitaxy Methods 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- RGGPNXQUMRMPRA-UHFFFAOYSA-N triethylgallium Chemical compound CC[Ga](CC)CC RGGPNXQUMRMPRA-UHFFFAOYSA-N 0.000 description 2
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
Images
Landscapes
- Led Devices (AREA)
- Semiconductor Lasers (AREA)
Abstract
본 발명은 버퍼층, n형 질화물 반도체층, 활성층 및 p형 질화물 반도체층 순으로 이루어진 질화물계 발광소자 제작에 관한 것으로, 양자우물층과 양자장벽층으로 이루어진 활성층 내에 인듐이탈방지층을 삽입시키는 것을 특징으로 한다. 이를 통해 양자우물층내의 인듐 재증발(re-evaporaion)을 억제하는 동시에 양자우물층과 양자장벽층의 경계면 개선을 통해 고휘도의 특성을 가지는 질화물계 발광소자를 구현할 수 있다.The present invention relates to the manufacture of a nitride-based light emitting device consisting of a buffer layer, an n-type nitride semiconductor layer, an active layer and a p-type nitride semiconductor layer, characterized in that the indium escape prevention layer is inserted into the active layer consisting of a quantum well layer and a quantum barrier layer. do. Through this, indium re-evaporation in the quantum well layer can be suppressed, and a nitride-based light emitting device having high brightness can be realized by improving the interface between the quantum well layer and the quantum barrier layer.
Description
본 발명은 질화물계 발광 소자에 관한 것으로서, 양자우물층 및 양자장벽층으로 이루어진 활성층 내에 인듐이탈방지층을 삽입함으로써, 다량의 인듐을 함유하고 있는 양자우물층에 포함되어 있는 인듐의 이탈을 방지하는 동시에 양자우물층과 양자장벽 경계면의 특성 개선을 통해 고휘도 특성을 가지는 질화물계 발광 소자의 제작에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nitride-based light emitting device, wherein an indium escape prevention layer is inserted into an active layer consisting of a quantum well layer and a quantum barrier layer, thereby preventing the indium from being contained in the quantum well layer containing a large amount of indium. The present invention relates to the fabrication of a nitride-based light emitting device having high brightness through improved properties of the quantum well layer and the quantum barrier interface.
일반적으로, 질화물계 반도체는 풀컬러 디스플레이, 교통 신호등, 일반조명 및 광통신기기의 광원으로 청/녹색 발광 다이오드(light emitting diode) 또는 레이져 다이오드(laser diode)에 널리 이용되고 있다. 이러한 질화물계 발광 소자는 n형 및 p형 질화물반도체층 사이에 위치한 InGaN 계열의 다중양자우물 구조의 활성층을 포함하며, 상기 활성층에서 전자와 정공이 재결합하는 원리로 빛을 생성시켜 방출시킨다.In general, nitride-based semiconductors are widely used in blue / green light emitting diodes or laser diodes as light sources for full-color displays, traffic lights, general lighting, and optical communication devices. The nitride-based light emitting device includes an InGaN-based multi-quantum well structured active layer disposed between n-type and p-type nitride semiconductor layers, and generates and emits light based on the principle of recombination of electrons and holes in the active layer.
일반적으로 최적의 양자우물층의 성장온도는 GaN 내에서의 InN의 혼화성 (miscibility) 때문에 양자장벽층의 성장온도보다 낮은 온도를 가지게 된다. 이러한 낮은 성장온도에서의 GaN이나 InGaN층은 NH3의 분해율(decomposition rate)이 줄어들기 때문에 질소원자가 부족한 박막이 형성하게 된다. 또한, 질소원자는 높은 평형상태증기압(equilibrium vapor pressure) 특성을 가지고 있으므로 낮은 온도에서 성장되어진 InGaN층에서는 인듐 용적(droplet)이 발생하게 된다.In general, the optimal growth temperature of the quantum well layer is lower than the growth temperature of the quantum barrier layer due to the miscibility of InN in GaN. The GaN or InGaN layer at such low growth temperature reduces the decomposition rate of NH3, thereby forming a thin film lacking nitrogen atoms. In addition, since nitrogen atoms have a high equilibrium vapor pressure characteristic, indium droplets are generated in the InGaN layer grown at a low temperature.
상기의 이유로 고품질의 발광소자를 제작하기 위해서는 다량의 인듐을 함유하고있는 양자우물층을 성장한 후에 보다 고온의 온도에서 양자장벽층을 성장해야만 한다. 하지만, 양자우물층을 성장한 후에 고온의 양자장벽층을 성장하기 위해 온도를 상승하는 동안 양자우물층에서는 다량의 인듐이 이탈하여 상분리 현상 (phase segregation) 및 조성 분균일(composition fluctuation) 현상들이 발생되어 계획했던 파장보다 짧은영역의 파장을 얻게되는 동시에 선명도가 떨어지는 발광소자가 제작될 수 있다. 또한, 양자우물층과 양자장벽층의 계면이 손상되면서 누설 (leakage) 특성이 증가되어 내부양자효율을 저하시키게 되는 문제를 발생시키게 된다.For the above reason, in order to manufacture a high quality light emitting device, a quantum barrier layer must be grown at a higher temperature after growing a quantum well layer containing a large amount of indium. However, after the quantum well layer is grown, a large amount of indium is released from the quantum well layer while the temperature is increased to grow a high temperature quantum barrier layer, resulting in phase segregation and composition fluctuation. The light emitting device having a shorter wavelength than the planned wavelength can be obtained, and the light emitting device can be manufactured. In addition, as the interface between the quantum well layer and the quantum barrier layer is damaged, the leakage characteristic is increased, thereby causing a problem of lowering the internal quantum efficiency.
본 발명은 상술되어진 종래 기술의 문제를 해결하기 위한 것으로, 활성층의 양자우물층과 양자장벽층 내에, 보다 바람직하게는 양자우물층 성장 직후에 인듐이탈방지층을 삽입하여 양자우물층에 포함되어있는 인듐의 이탈을 방지하는 동시에 양자우물층과 양자장벽 경계면의 개선을 통한 고휘도의 특성을 가지는 질화물계 발광 소자의 제작에 관한 것이다.The present invention is to solve the problems of the prior art described above, indium contained in the quantum well layer by inserting the indium escape prevention layer in the quantum well layer and quantum barrier layer of the active layer, more preferably immediately after the growth of the quantum well layer The present invention relates to the fabrication of a nitride-based light emitting device having a high brightness characteristic by preventing the separation of the quantum well layer and the quantum barrier interface.
상기의 기술적 과제를 해결하기 위해서, 본 발명의 질화물계 발광소자는 n형 질화물 반도체층, 활성층 및 p형 질화물 반도체층으로 이루어지며, 상기 활성층은 양자우물층, 인듐이탈방지층 및 양자장벽층을 각각 적어도 하나 포함한다.In order to solve the above technical problem, the nitride-based light emitting device of the present invention is composed of an n-type nitride semiconductor layer, an active layer and a p-type nitride semiconductor layer, the active layer is a quantum well layer, indium escape layer and quantum barrier layer, respectively At least one.
이때 상기 인듐이탈방지층은 양자우물층 바로 다음에 형성되는 것이 바람직하다.In this case, the indium escape prevention layer is preferably formed immediately after the quantum well layer.
상기 인듐이탈방지층은 양자우물층 두께의 1/2 내지 2배일 수 있다.The indium escape prevention layer may be 1/2 to 2 times the thickness of the quantum well layer.
또한, 상기 양자우물층은 700~800℃에서 성장될 수 있으며, 상기 양자장벽층은 상기 양자우물층 보다 50~200℃ 높은 온도에서 성장될 수 있고, 상기 인듐이탈방지층은 상기 양자우물층과 동일한 온도에서 성장될 수 있다.In addition, the quantum well layer may be grown at 700 ~ 800 ℃, the quantum barrier layer may be grown at a temperature 50 ~ 200 ℃ higher than the quantum well layer, the indium escape layer is the same as the quantum well layer Can be grown at a temperature.
또한, 본 발명의 일실시예에서 상기 인듐이탈방지층은 인듐을 함유하지 않을 수 있으며, 상기 인듐이탈방지층의 인듐 함량이 양자장벽층의 인듐 함량과 동일할 수도 있다.In addition, in one embodiment of the present invention, the indium escape prevention layer may not contain indium, and the indium content of the indium escape prevention layer may be the same as the indium content of the quantum barrier layer.
또한, 본 발명의 다른 실시예에서 상기 인듐이탈방지층에 수소를 첨가할 수 있다.In another embodiment of the present invention, hydrogen may be added to the indium escape prevention layer.
또한, 본 발명의 다른 실시예에서 상기 인듐이탈방지층은 n형 불순물을 함유할 수 있으며, 이때 상기 인듐이탈방지층중 n층에 인접한 인듐이탈방지층이 p층에 인접한 인듐이탈방지층 보다 n형 불순물을 많이 함유하는 것이 바람직하고, 이때 상기 인듐이탈방지층은 n형 불순물 농도는 1×1017/㎤~5×1018/㎤의 범위를 가질 수 있다.In addition, in another embodiment of the present invention, the indium escape prevention layer may contain an n-type impurity, wherein the indium escape prevention layer adjacent to the n layer of the indium escape prevention layer has more n-type impurities than the indium escape prevention layer adjacent to the p layer. Preferably, the indium escape prevention layer may have an n-type impurity concentration in a range of 1 × 10 17 / cm 3 to 5 × 10 18 / cm 3.
상술한 바와 같이, 본 발명에 따르면, 인듐이탈방지층은 양자우물층에 포함되어 있는 인듐의 이탈을 방지하는 동시에 양자우물층과 양자장벽층 경계면의 특성 개선을 통해 고휘도 특성을 가지는 질화물계 발광 소자를 제작할 수 있다.As described above, according to the present invention, the indium escape prevention layer is a nitride-based light emitting device having a high brightness characteristics by preventing the separation of indium contained in the quantum well layer and at the same time improve the characteristics of the interface between the quantum well layer and the quantum barrier layer I can make it.
이하, 첨부된 도면을 참조하여 본 발명을 보다 상세히 설명한다.Hereinafter, with reference to the accompanying drawings will be described the present invention in more detail.
도 1은 본 발명의 실시형태에 따른 질화물 반도체 소자의 단면도이다.1 is a cross-sectional view of a nitride semiconductor device according to an embodiment of the present invention.
도 1을 참조하면, 상기 질화물계 반도체소자는 상기 기판(2-1)상에 버퍼층 (2-2)을 형성한 다음 순차적으로 형성된 n형 질화물 반도체층(2-3), 활성층(2-4) 및 p형 질화물 반도체층(2-5)을 포함한다. 본 발명에 따른 질화물계 반도체소자는 양자우물층(2-b)과 양자장벽층(2-c)으로 이루어진 상기 활성층(2-4)을 포함한다.Referring to FIG. 1, in the nitride-based semiconductor device, an n-type nitride semiconductor layer 2-3 and an active layer 2-4 are sequentially formed after forming a buffer layer 2-2 on the substrate 2-1. ) And a p-type nitride semiconductor layer 2-5. The nitride semiconductor device according to the present invention includes the active layer 2-4 including the quantum well layer 2-b and the quantum barrier layer 2-c.
본 발명의 구체적인 실시형태에서, 상기 활성층은 InxGa1 -xN(0.1<x<1)인 양자 우물층과 InyGa1 -yN(0<y<0.5)인 양자장벽층이 적어도 2회 반복하여 형성된 다중양자우물구조일 수 있으며, 물론 단일양자우물구조일 수도 있다. 여기서 양자우물층의 In 함량 x는 양자장벽층의 In 함량 y보다 큰 값을 가진다. 이 경우에 양자우물층 다음에 위치하는 인듐이탈방지층은 양자장벽층의 In 함량 y과 같거나 인듐을 포함하지 않는 두 경우의 값을 가진다.In a specific embodiment of the invention, the active layer comprises at least a quantum well layer of In x Ga 1- x N (0.1 <x <1) and a quantum barrier layer of In y Ga 1- y N (0 <y <0.5). It may be a multi-quantum well structure formed by repeating twice, of course, may be a single quantum well structure. The In content x of the quantum well layer has a larger value than the In content y of the quantum barrier layer. In this case, the indium escape prevention layer next to the quantum well layer has the same value as the In content y of the quantum barrier layer or does not contain indium.
본 발명에 따른 질화물계 발광 소자의 제 1 실시예는 다음과 같다.A first embodiment of the nitride based light emitting device according to the present invention is as follows.
질화물계 발광소자의 성장 방법으로는 유기금속 화학 증착법(MOCVD; Metal Organic Chemical Vapor Deposition), 분자선 성장법(MBE; Molecular Beam Epitaxy) 및 수소화물 기상 성장법(HVPE; Hydride Vapor Phase Epitaxy)등을 포함한 다양한 방법을 사용할 수 있으며, 본 실시예에서는 유기금속 화학 증착법(MOCVD)을 사용한다.Growth methods of nitride-based light emitting devices include metal organic chemical vapor deposition (MOCVD), molecular beam growth (MBE; Molecular Beam Epitaxy) and hydride vapor phase growth (HVPE). Various methods can be used, and the present embodiment uses organometallic chemical vapor deposition (MOCVD).
도 2를 참조하면, 기판(2-1)상에 버퍼층(2-2), n형 질화물반도체층(2-3), 활성층(2-4), p형 질화물반도체층(2-5)을 순차적으로 형성한다. 여기서 활성층은 양자우물층(2-b), 인듐이탈방지층(2-a), 양자장벽층(2-c)의 순서로 구성되어 있다.Referring to FIG. 2, a buffer layer 2-2, an n-type nitride semiconductor layer 2-3, an active layer 2-4, and a p-type nitride semiconductor layer 2-5 are formed on a substrate 2-1. Form sequentially. In this case, the active layer is composed of a quantum well layer 2-b, an indium escape prevention layer 2-a, and a quantum barrier layer 2-c.
상기 기판은 질화물계 발광소자를 제작하기 위한 웨이퍼를 지칭하는 것으로 사파이어(Al2O3), 실리콘카바이드(SiC), 실리콘(Si), 갈륨아세나이드(GaAs) 등의 이종기판을 사용하거나, GaN와 같은 동종기판 중 적어도 하나의 기판을 사용한다. 본 실시 예에서는 사파이어로 구성된 결정 성장 기판을 사용한다.The substrate refers to a wafer for fabricating a nitride-based light emitting device, and uses a heterogeneous substrate such as sapphire (Al 2 O 3), silicon carbide (SiC), silicon (Si), gallium arsenide (GaAs), or the like. At least one of the substrates is used. In this embodiment, a crystal growth substrate made of sapphire is used.
상기 버퍼층(2-2)은 상기 기판 상에 결정 성장시 기판과 후속층들간의 격자 부정합을 줄이기 위한 것으로, InAlGaN 계열이나 SiC 또는 ZnO을 포함하여 형성할 수 있다. 본 실시 예에서는 InAlGaN 계열로 구성된 버퍼층을 사용한다.The buffer layer 2-2 is to reduce lattice mismatch between the substrate and subsequent layers during crystal growth on the substrate, and may include InAlGaN series, SiC, or ZnO. In this embodiment, a buffer layer composed of InAlGaN series is used.
상기 n형 질화물계반도체층(2-3)은 전자가 생성되어지는 층으로, Si이 도핑된 n형 질화물계 반도체층을 사용한다. 본 실시예는 상기 n형 질화물반도체층으로 SiH4 이나 Si2H4 등의 불활성 기체를 사용하거나, 혹은 DTBSi와 같은 MO 소스(source)를 이용하여 1×1017/㎤~5×1019/㎤의 불순물농도를 가지는 n형 질화물반도체층을 1.0~5.0㎛의 두께로 형성할 수 있다.The n-type nitride semiconductor layer 2-3 is a layer in which electrons are generated, and an n-type nitride semiconductor layer doped with Si is used. In this embodiment, an impurity concentration of 1 × 10 17 / cm 3 to 5 × 10 19 / cm 3 is used as an n-type nitride semiconductor layer by using an inert gas such as SiH 4 or Si 2 H 4, or by using an MO source such as DTBSi. It is possible to form an n-type nitride semiconductor layer having a thickness of 1.0 ~ 5.0㎛.
다음으로, 상기 활성층(2-4)을 형성하였다. 상기 활성층(2-4)은 인듐 혼성(incorporation)의 향상을 위해서 질소분위기에서 InxGa11 -xN(0.1<x<1) 양자우물층(2-a)과 InyGa1 -yN(0<y<0.5) 양자장벽층(2-b)이 2회 이상 10회 이하의 반복으로 이루어진 다중양자우물구조를 형성하였다. 좀 더 바람직하게 양자우물층(2-b)은 1-4nm 두께 및 In 함량(0.1<x<0.4)를 가지고 성장온도 700-800도 사이에서 성장하게 된다.Next, the active layer 2-4 was formed. The active layer (2-4) is In x Ga1 1- x N (0.1 <x <1) quantum well layer (2-a) and In y Ga 1 -y N in nitrogen atmosphere to improve indium incorporation (0 <y <0.5) The quantum barrier layer 2-b formed a multi-quantum well structure consisting of two or more repetitions of 10 times or less. More preferably, the quantum well layer 2-b has a thickness of 1-4 nm and an In content (0.1 <x <0.4), and grows at a growth temperature of 700-800 degrees.
다음으로 성장온도는 그대로 유지한 상태에서 인듐을 상기 양자장벽층(2-c)과 동일하게 하거나 혹은 인듐을 끊은 상태에서 상기 양자우물층(2-b)내의 인듐을 골고루 펴주기 위해 수소를 첨가하면서 인듐이탈방지층(2-a)을 양자우물층(2-b)의 1/2에서 2배에 해당하는 두께로 성장하게 된다.Next, hydrogen is added to make indium the same as that of the quantum barrier layer (2-c) while maintaining the growth temperature, or to evenly spread the indium in the quantum well layer (2-b) while the indium is interrupted. While the indium escape prevention layer (2-a) is grown to a thickness corresponding to twice the 1/2 of the quantum well layer (2-b).
다음으로 성장온도를 양자장벽층 대비 50-200℃ 높은 온도로 일정한 가열비율(ting-rate)을 가지고 올려준 다음에 양자장벽층(2-c)을 5~20nm 두께 및 인듐 함 량(0<y<0.2)으로 형성하였다. 또한, 상기 인듐이탈방지층(2-a)을 포함한 활성층(2-4)에는 질화물계 발광 소자의 작동전압을 낮추는 동시에 막질(cryal quality)을 개선하기 위해서 n형 불순물 도핑을 할 수 있는데, 이때 도핑 농도는 1×1017/㎤~5×1018/㎤일 수 있다.Next, the growth temperature is raised to 50-200 ℃ higher than the quantum barrier layer with a constant heating rate (ting-rate), and then the quantum barrier layer (2-c) is 5-20 nm thick and indium content (0 < y <0.2). In addition, the active layer 2-4 including the indium escape preventing layer 2-a may be n-type impurity doped to reduce the operating voltage of the nitride-based light emitting device and to improve the quality of the film. The concentration may be 1 × 10 17 / cm 3 to 5 × 10 18 / cm 3.
다음으로, 상기 활성층(2-4) 위에 Mg이 도핑된 p형 질화물반도체층(2-5)을 형성한다. 여기서, Ga를 위한 소스 가스로는 트리메틸갈륨(TMGa) 또는 트리에틸갈륨(TEGa)을 사용할 수 있고, N을 위한 소스 가스로는 암모니아(NH3), 디메틸히드라진(DMHy)을 사용할 수 있고, Mg을 위한 소스 가스로는 CP2Mg 혹은 DMZn을 사용할 수 있다. 이를 이용하여 3~8×1017/㎤의 Mg 1~3㎛의 두께를 가지는 p형 질화물반도체층(2-5)을 형성한다. Next, a p-type nitride semiconductor layer 2-5 doped with Mg is formed on the active layer 2-4. Here, trimethylgallium (TMGa) or triethylgallium (TEGa) may be used as a source gas for Ga, and ammonia (NH 3), dimethylhydrazine (DMHy) may be used as a source gas for N, and a source for Mg. As gas, CP 2 Mg or DMZn may be used. By using this, a p-type nitride semiconductor layer 2-5 having a thickness of Mg 1 to 3 µm of 3 to 8 x 10 17 / cm 3 is formed.
(비교예)(Comparative Example)
상기한 실시예와 동일한 조건으로 질화물 발광소자를 제조하되, 본 발명에서 채용한 인듐이탈방지층을 제외하였다. A nitride light emitting device was manufactured under the same conditions as in the above embodiment, except for the indium escape preventing layer employed in the present invention.
상기의 실시예와 비교예에서 얻어진 질화물 발광소자의 상온에서의 PL(photo-luminesence) 측정 결과를 도 2의 그래프로 도시하였다. 도 2에 도시된 바와 같이, 실시예의 PL 반폭치가 비교예의 반폭치 보다 샤프한 동시에 장파장쪽으로 PL 피크치가 이동되었음을 확인하였다. 이는 양자우물층에 포함되어있는 인듐의 이탈 및 인듐 혼성등의 현상들이 인듐이탈방지층에 의해 억제되어 나타나는 현상으 로 이해할 수 있다. 본 전자문서에는 포함하지 않았으나 상기의 실시예와 비교예의 HRXRD(high resolution x-ray diffraction) 측정을 한 결과 실시예의 2nd-5th 인터페이스 반폭치가 비교예보다 더욱 샤프한 동시에 평균 인듐함량이 증가하는 것으로 보아 인듐이탈방지층이 실제로 양자우물층과 양자장벽층의 경계면 개선에 도움을 주는 것으로 사료되어진다.2 shows the results of the measurement of PL (photo-luminesence) at room temperature of the nitride light emitting device obtained in Examples and Comparative Examples. As shown in FIG. 2, it was confirmed that the PL half-width of the example was sharper than the half-width of the comparative example and at the same time, the PL peak value was shifted toward the longer wavelength. This may be understood as a phenomenon in which phenomena such as indium separation and indium hybridization contained in the quantum well layer are suppressed by the indium escape prevention layer. Although not included in this electronic document, high resolution x-ray diffraction (HRXRD) measurements of the above examples and the comparative examples resulted in the 2nd-5th interface half width of the examples being sharper than the comparative example, and increasing the average indium content. It is thought that the anti-separation layer actually helps to improve the interface between the quantum well layer and the quantum barrier layer.
이와 같이, 본 발명에 따른 인듐이탈방지층을 양자우물층 및 양자장벽층으로 이루어진 활성층 사이에 삽입함으로써, 양자우물층에 포함되어있는 인듐의 이탈을 방지하는 동시에 양자우물층과 양자장벽 경계면의 개선을 통한 고휘도의 특성을 크게 향상시킬 수 있다.As such, by inserting the indium escape prevention layer according to the present invention between the active layer consisting of the quantum well layer and the quantum barrier layer, the separation of the indium contained in the quantum well layer is prevented and the improvement of the interface between the quantum well layer and the quantum barrier layer is improved. It can greatly improve the characteristics of high brightness.
상기한 실시예에서는 질화물계 발광소자를 중심으로 예시하여 설명하였으나, 본 발명이 반도체 레이저소자와 같이 유사한 구조를 갖는 다른 질화물계 광소자에도 유익하게 채용될 수 있다는 것은 당업자에게 자명한 사실이다.In the above embodiment, a nitride-based light emitting device has been described as an example, but it is apparent to those skilled in the art that the present invention can be advantageously employed in other nitride-based optical devices having a similar structure, such as semiconductor laser devices.
이상으로, 본 발명에 대해서 바람직한 실시예를 통하여 상세히 설명하였으나, 본 발명의 범위는 특정 실시예에 한정되는 것은 아니며, 첨부된 특허 청구범위에 의하여 해석되어야 할 것이다. 또한, 이 기술 분야에서 통상의 지식을 습득한 자라면, 본 발명의 범위에서 벗어나지 않으면서도 많은 수정과 변형이 가능함을 이해하여야 할 것이다As described above, the present invention has been described in detail through preferred embodiments, but the scope of the present invention is not limited to the specific embodiments and should be interpreted by the appended claims. In addition, those of ordinary skill in the art should understand that many modifications and variations are possible without departing from the scope of the present invention.
도 1은 본 발명에 따른 질화물계 발광 소자의 단면도이다.1 is a cross-sectional view of a nitride-based light emitting device according to the present invention.
도 2는 본 발명에 따른 질화물계 발광 소자와 종래의 질화물계 발광 소자의 PL(photo-luminesence) 측정 결과를 나타내는 그래프이다.FIG. 2 is a graph showing a PL (photo-luminesence) measurement result of the nitride-based light emitting device and the conventional nitride-based light emitting device according to the present invention.
<도면의 주요부분에 대한 부호설명><Code Description of Main Parts of Drawing>
2-1: 기판, 2-2: 버퍼층2-1: substrate, 2-2: buffer layer
2-3: n형 질화물 반도체층 2-3: n-type nitride semiconductor layer
2-4: 활성층2-4: active layer
2-a: 인듐이탈방지층, 2-b:양자우물층, 2-c:양자장벽층2-a: indium escape prevention layer, 2-b: quantum well layer, 2-c: quantum barrier layer
2-5: p형 질화물 반도체층 2-5: p-type nitride semiconductor layer
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20070096079A KR100881053B1 (en) | 2007-09-20 | 2007-09-20 | Nitride-based light emitting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20070096079A KR100881053B1 (en) | 2007-09-20 | 2007-09-20 | Nitride-based light emitting device |
Publications (1)
Publication Number | Publication Date |
---|---|
KR100881053B1 true KR100881053B1 (en) | 2009-02-27 |
Family
ID=40680916
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR20070096079A KR100881053B1 (en) | 2007-09-20 | 2007-09-20 | Nitride-based light emitting device |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100881053B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103066174A (en) * | 2013-01-10 | 2013-04-24 | 合肥彩虹蓝光科技有限公司 | Epitaxial structure and growing method for improving gallium nitride (GaN) based light-emitting diode (LED) lighting efficiency |
CN117410406A (en) * | 2023-12-14 | 2024-01-16 | 江西兆驰半导体有限公司 | Light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010008570A (en) * | 1999-07-02 | 2001-02-05 | 조장연 | GaN Semiconductor Device of Quantum Well structure |
KR20060044241A (en) * | 2004-11-11 | 2006-05-16 | 엘지이노텍 주식회사 | Nitride semiconductor light emitting device and manufacturing method |
KR20070007785A (en) * | 2004-02-24 | 2007-01-16 | 쇼와 덴코 가부시키가이샤 | Gallium nitride compound semiconductor multilayer structure and manufacturing method thereof |
KR20070071905A (en) * | 2005-12-30 | 2007-07-04 | (주)더리즈 | Method of manufacturing gallium nitride based light emitting device |
-
2007
- 2007-09-20 KR KR20070096079A patent/KR100881053B1/en active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010008570A (en) * | 1999-07-02 | 2001-02-05 | 조장연 | GaN Semiconductor Device of Quantum Well structure |
KR20070007785A (en) * | 2004-02-24 | 2007-01-16 | 쇼와 덴코 가부시키가이샤 | Gallium nitride compound semiconductor multilayer structure and manufacturing method thereof |
KR20060044241A (en) * | 2004-11-11 | 2006-05-16 | 엘지이노텍 주식회사 | Nitride semiconductor light emitting device and manufacturing method |
KR20070071905A (en) * | 2005-12-30 | 2007-07-04 | (주)더리즈 | Method of manufacturing gallium nitride based light emitting device |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103066174A (en) * | 2013-01-10 | 2013-04-24 | 合肥彩虹蓝光科技有限公司 | Epitaxial structure and growing method for improving gallium nitride (GaN) based light-emitting diode (LED) lighting efficiency |
CN117410406A (en) * | 2023-12-14 | 2024-01-16 | 江西兆驰半导体有限公司 | Light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode |
CN117410406B (en) * | 2023-12-14 | 2024-02-20 | 江西兆驰半导体有限公司 | Light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100448662B1 (en) | Nitride semiconductor device and method for manufacturing the same | |
US6630692B2 (en) | III-Nitride light emitting devices with low driving voltage | |
US8486807B2 (en) | Realizing N-face III-nitride semiconductors by nitridation treatment | |
US8174042B2 (en) | Method of growing semiconductor heterostructures based on gallium nitride | |
KR102191213B1 (en) | Uv light emitting device | |
KR101308130B1 (en) | Light emitting device and method for fabricating the same | |
JP5279006B2 (en) | Nitride semiconductor light emitting device | |
CN106057988A (en) | Preparation method for epitaxial wafer of GaN-based light emitting diode | |
JP2713094B2 (en) | Semiconductor light emitting device and method of manufacturing the same | |
CN110364595B (en) | Light-emitting diode epitaxial structure and preparation method thereof | |
KR100881053B1 (en) | Nitride-based light emitting device | |
KR20090030652A (en) | Nitride-based light emitting device | |
KR100925164B1 (en) | A method of forming a nitride nitride semiconductor layer and a light emitting device having the same | |
KR100906972B1 (en) | Nitride-based light emitting device | |
US20160365474A1 (en) | Group iii nitride semiconductor light-emitting device and production method therefor | |
KR100728132B1 (en) | Light Emitting Diode Using Current Diffusion Layer | |
KR20140074516A (en) | Method of grawing gallium nitride based semiconductor layers and method of fabricating light emitting device therewith | |
US20240120440A1 (en) | Semiconductor structure | |
KR100911775B1 (en) | Nitride-based light emitting device | |
KR100974924B1 (en) | Nitride-based light emitting device | |
KR20120131147A (en) | Light emitting device and method for fabricating the same | |
KR20150133622A (en) | Light emitting device and method of fabricating the same | |
KR101423719B1 (en) | Light emitting device and method for fabricating the same | |
KR100722819B1 (en) | Nitride semiconductor light emitting diode and method for manufacturing same | |
KR20030053290A (en) | Nitrogen-Compound Semiconductor Device and Method for manufacturing a Nitrogen-Compound Semiconductor Device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20070920 |
|
PA0201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20080722 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20090119 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20090122 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20090123 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20111222 Start annual number: 4 End annual number: 4 |
|
FPAY | Annual fee payment |
Payment date: 20121217 Year of fee payment: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20121217 Start annual number: 5 End annual number: 5 |
|
FPAY | Annual fee payment |
Payment date: 20131211 Year of fee payment: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20131211 Start annual number: 6 End annual number: 6 |
|
FPAY | Annual fee payment |
Payment date: 20150112 Year of fee payment: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20150112 Start annual number: 7 End annual number: 7 |
|
FPAY | Annual fee payment |
Payment date: 20160104 Year of fee payment: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20160104 Start annual number: 8 End annual number: 8 |
|
FPAY | Annual fee payment |
Payment date: 20161212 Year of fee payment: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20161212 Start annual number: 9 End annual number: 9 |
|
FPAY | Annual fee payment |
Payment date: 20171211 Year of fee payment: 10 |
|
PR1001 | Payment of annual fee |
Payment date: 20171211 Start annual number: 10 End annual number: 10 |
|
PC1903 | Unpaid annual fee |
Termination category: Default of registration fee Termination date: 20201102 |