[go: up one dir, main page]

JPWO2008111640A1 - Oxetane resin composition - Google Patents

Oxetane resin composition Download PDF

Info

Publication number
JPWO2008111640A1
JPWO2008111640A1 JP2009504081A JP2009504081A JPWO2008111640A1 JP WO2008111640 A1 JPWO2008111640 A1 JP WO2008111640A1 JP 2009504081 A JP2009504081 A JP 2009504081A JP 2009504081 A JP2009504081 A JP 2009504081A JP WO2008111640 A1 JPWO2008111640 A1 JP WO2008111640A1
Authority
JP
Japan
Prior art keywords
oxetane
weight
oxetane resin
cycloaliphatic
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009504081A
Other languages
Japanese (ja)
Other versions
JP5543199B2 (en
Inventor
篤彦 片山
篤彦 片山
スレスタ・ニランジャン・クマール
一雅 小林
一雅 小林
修一郎 長谷
修一郎 長谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP2009504081A priority Critical patent/JP5543199B2/en
Publication of JPWO2008111640A1 publication Critical patent/JPWO2008111640A1/en
Application granted granted Critical
Publication of JP5543199B2 publication Critical patent/JP5543199B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/06Cyclic ethers having no atoms other than carbon and hydrogen outside the ring
    • C08G65/08Saturated oxiranes
    • C08G65/10Saturated oxiranes characterised by the catalysts used
    • C08G65/105Onium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/06Cyclic ethers having no atoms other than carbon and hydrogen outside the ring
    • C08G65/16Cyclic ethers having four or more ring atoms
    • C08G65/18Oxetanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Epoxy Resins (AREA)
  • Polyethers (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

透明性、耐熱性、低吸水率性、低誘電率性に優れた硬化物を与えるオキセタン樹脂組成物及びこれから得られる硬化物を提供する。このオキセタン樹脂組成物は、環式脂肪族オキセタン樹脂(A)10〜88重量%、環状脂肪族エポキシ樹脂(B)10〜88重量%、及び熱カチオン重合開始剤(C)を環式脂肪族オキセタン樹脂(A)と環状脂肪族エポキシ樹脂(B)の合計100重量部に対し0.01〜20重量部を配合してなる。環式脂肪族オキセタン樹脂(A)としては、4,4'-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ビシクロヘキシル、1,4-ビス[(3-エチル-3-オキセタニル)メトキシメチル]シクロヘキサン又はこれらの混合物があり、環状脂肪族エポキシ樹脂(B)としては、3,4-エポキシシクロヘキシルメチル-3',4'-エポキシシクロヘキシサンカルボキシレートがある。Provided are an oxetane resin composition that gives a cured product excellent in transparency, heat resistance, low water absorption, and low dielectric constant, and a cured product obtained therefrom. This oxetane resin composition comprises cycloaliphatic oxetane resin (A) 10 to 88% by weight, cycloaliphatic epoxy resin (B) 10 to 88% by weight, and thermal cationic polymerization initiator (C). 0.01-20 weight part is mix | blended with respect to a total of 100 weight part of oxetane resin (A) and cycloaliphatic epoxy resin (B). Cycloaliphatic oxetane resins (A) include 4,4′-bis [(3-ethyl-3-oxetanyl) methoxymethyl] bicyclohexyl, 1,4-bis [(3-ethyl-3-oxetanyl) methoxy Methyl] cyclohexane or a mixture thereof, and the cycloaliphatic epoxy resin (B) includes 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexylsancarboxylate.

Description

本発明は、コーティング材、成型又は注型成形して得られる光学材料及び電気絶縁材料、半導体発光装置(LED)等の封止として有用なオキセタン樹脂組成物に関するものである。このオキセタン樹脂組成物は、透明性、耐熱性、低吸水率性、低誘電率性に優れた硬化物を与える。   The present invention relates to an oxetane resin composition useful as a sealing material for coating materials, molding or casting, optical materials and electrical insulating materials, semiconductor light emitting devices (LEDs), and the like. This oxetane resin composition gives a cured product excellent in transparency, heat resistance, low water absorption, and low dielectric constant.

従来、エポキシ化合物及びオキセタン化合物の熱硬化あるいは活性エネルギー線硬化によるカチオン硬化技術は公知であり、各種エポキシ化合物、各種オキセタン化合物、各種カチオン重合開始剤が市販されている。エポキシ化合物としては、ビスフェノールAのジグリシジルエーテル、ビスフェノールFのジグリシジルエーテル、フェノールノボラック型エポキシ樹脂などの芳香族エポキシ樹脂、シクロオレフィンの過酢酸酸化により得られる3,4−エポキシシクロヘキシルメチル-3',4'-エポキシシクロヘキサンカルボキシレート等の環状脂肪族エポキシ樹脂あるいはビスフエノールAジグリジルエーテルを水添して得られる水素化エポキシ樹脂などがある。オキセタン化合物としては、3-エチル-3-ヒドロキシメチルオキセタン、キシレンジオキセタン、ビス(3-エチル-3-オキセタニルメチル)エーテル、4,4'-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ビフェニル等がある。   Conventionally, a cationic curing technique by thermal curing or active energy ray curing of an epoxy compound and an oxetane compound is known, and various epoxy compounds, various oxetane compounds, and various cationic polymerization initiators are commercially available. Examples of the epoxy compound include aromatic epoxy resins such as diglycidyl ether of bisphenol A, diglycidyl ether of bisphenol F, phenol novolac type epoxy resin, and 3,4-epoxycyclohexylmethyl-3 ′ obtained by peracetic acid oxidation of cycloolefin. , 4′-epoxycyclohexanecarboxylate, and the like, and hydrogenated epoxy resins obtained by hydrogenating bisphenol A diglycidyl ether. Examples of oxetane compounds include 3-ethyl-3-hydroxymethyl oxetane, xylene dioxetane, bis (3-ethyl-3-oxetanylmethyl) ether, 4,4′-bis [(3-ethyl-3-oxetanyl) methoxymethyl]. Biphenyl etc.

電気用途においては、近年、電気機器の小型化により電気回路の多層化、高密化が進んでいる。これに伴い、それに使用されるエポキシ樹脂に対しては、低誘電率化、耐アーク性、耐トラッキング性が要求されている。これらの電気特性向上のためには、芳香族エポキシ樹脂よりも、芳香環を持たない環状脂肪族エポキシ樹脂あるいは水素化型エポキシ樹脂が有利であることは公知である。一方、近年、種々の表示板、画像読み取り用光源、交通信号、大型ディスプレイ用ユニット、携帯電話のバックライト等に実用化されている発光ダイオード(LED)等の発光装置は、芳香族エポキシ樹脂に硬化剤として脂環式酸無水物を用いたもので樹脂封止して製造されているのが一般的である。しかし、この樹脂系は酸無水物が変色しやすいことや、硬化に長時間を要することが知られている。また、硬化した封止樹脂が屋外に放置される場合や、紫外線を発生する光源に曝される場合に、封止樹脂が黄変色を起こすなどの問題を有している。   In electrical applications, in recent years, electrical circuits have become more multilayered and denser due to miniaturization of electrical equipment. In connection with this, the epoxy resin used for it is required to have a low dielectric constant, arc resistance, and tracking resistance. It is known that cycloaliphatic epoxy resins or hydrogenated epoxy resins having no aromatic ring are more advantageous than aromatic epoxy resins for improving these electrical characteristics. On the other hand, in recent years, light emitting devices such as light emitting diodes (LEDs) that have been put to practical use in various display boards, light sources for image reading, traffic signals, large display units, backlights for mobile phones, etc. are based on aromatic epoxy resins. In general, it is manufactured by sealing with a resin using an alicyclic acid anhydride as a curing agent. However, it is known that this resin system tends to discolor acid anhydrides and requires a long time for curing. Further, when the cured sealing resin is left outdoors or exposed to a light source that generates ultraviolet rays, the sealing resin has a problem such as yellowing.

これらの問題点を解決する手段として、特許文献1に記載のように、水素化ビスフェノールAグリシジルエーテルと脂環式エポキシモノマーを熱カチオン重合により硬化させたエポキシ樹脂が提案されている。   As means for solving these problems, as described in Patent Document 1, an epoxy resin obtained by curing hydrogenated bisphenol A glycidyl ether and an alicyclic epoxy monomer by thermal cationic polymerization has been proposed.

しかし、エポキシ化合物は、カチオン重合では、モノマーの塩基性よりも生成ポリマー鎖上の酸素原子の塩基性が高いため、活性末端であるオキソニウムカチオンと、ポリマー鎖中の酸素原子が反応し、重合停止が生じるため重合度が上がらないことが知られている。重合度が低いことは、分子鎖中の水酸基濃度が高いことを意味し、吸水率の上昇、誘電率の上昇の原因となる。また、水酸基は反応性が高いため、熱や、光による変色の要因となる。   However, in the epoxy polymerization, since the basicity of the oxygen atom on the generated polymer chain is higher than that of the monomer in the cationic polymerization, the oxonium cation at the active end reacts with the oxygen atom in the polymer chain to polymerize. It is known that the degree of polymerization does not increase due to termination. A low degree of polymerization means that the hydroxyl group concentration in the molecular chain is high, which causes an increase in water absorption and an increase in dielectric constant. Moreover, since the hydroxyl group has high reactivity, it causes discoloration due to heat or light.

また、特許文献2には、脂肪族及び環式脂肪族オキセタンと、カチオン重合開始剤からなるオキセタン樹脂組成物が提案されている。しかし、脂環式オキセタンのみの硬化物では、構造が柔軟であるため、Tgは低く、上記用途には適さない。   Patent Document 2 proposes an oxetane resin composition comprising an aliphatic and cycloaliphatic oxetane and a cationic polymerization initiator. However, a cured product containing only the alicyclic oxetane has a flexible structure and therefore has a low Tg and is not suitable for the above-mentioned use.

特開2003−73452号公報JP 2003-73452 A 特開2005−290141号公報JP 2005-290141 A

本発明は、透明性、耐熱性、低給水率性、低誘電率性に優れた硬化物を与える硬化性オキセタン樹脂組成物を提供することにある。   An object of the present invention is to provide a curable oxetane resin composition that gives a cured product excellent in transparency, heat resistance, low water supply rate, and low dielectric constant.

本発明者等は、上記課題を解決すべく鋭意研究を重ねた結果、これらの目的を達成できるオキセタン樹脂組成物を見出し本発明に到達した。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have found an oxetane resin composition capable of achieving these objects and have reached the present invention.

すなわち、本発明は、環式脂肪族オキセタン樹脂(A)10〜88重量%、環状脂肪族エポキシ樹脂(B)10〜88重量%及び熱カチオン重合開始剤(C)を環式脂肪族オキセタン樹脂(A)と環状脂肪族エポキシ樹脂(B)の合計100重量部に対し0.01〜20重量部を配合してなることを特徴とするオキセタン樹脂組成物である。   That is, the present invention relates to a cycloaliphatic oxetane resin comprising 10 to 88% by weight of a cycloaliphatic oxetane resin (A), 10 to 88% by weight of a cycloaliphatic epoxy resin (B) and a thermal cationic polymerization initiator (C). An oxetane resin composition comprising 0.01 to 20 parts by weight per 100 parts by weight in total of (A) and the cycloaliphatic epoxy resin (B).

ここで、環式脂肪族オキセタン樹脂(A)及び環状脂肪族エポキシ樹脂(B)の分子量が、いずれも100〜2000の範囲であることが好ましい。   Here, it is preferable that the molecular weights of the cycloaliphatic oxetane resin (A) and the cycloaliphatic epoxy resin (B) are both in the range of 100 to 2000.

環式脂肪族オキセタン樹脂(A)としては、4,4'-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ビシクロヘキシル、1,4-ビス[(3-エチル-3-オキセタニル)メトキシメチル]シクロヘキサン又はこれらの混合物が挙げられる。また、環状脂肪族エポキシ樹脂(B)としては、3,4-エポキシシクロヘキシルメチル-3',4'-エポキシシクロヘキシサンカルボキシレートが挙げられる。   Cycloaliphatic oxetane resins (A) include 4,4′-bis [(3-ethyl-3-oxetanyl) methoxymethyl] bicyclohexyl, 1,4-bis [(3-ethyl-3-oxetanyl) methoxy Methyl] cyclohexane or mixtures thereof. Examples of the cycloaliphatic epoxy resin (B) include 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexylsancarboxylate.

また、本発明は、上記オキセタン樹脂組成物を加熱硬化して得られる硬化物である。   Moreover, this invention is a hardened | cured material obtained by heat-curing the said oxetane resin composition.

以下、本発明のオキセタン樹脂組成物について詳細に説明する。
本発明のオキセタン樹脂組成物は、環式脂肪族オキセタン樹脂(A)、環状脂肪族エポキシ樹脂(B)及び熱カチオン重合開始剤(C)を必須成分として含有する。ここで、環式脂肪族オキセタン樹脂(A)及び環状脂肪族エポキシ樹脂(B)は、単一の化合物であってもよく、繰り返し単位の数が異なる化合物からなる混合物であってもよい。したがって、脂肪族オキセタン樹脂(A)及び環状脂肪族エポキシ樹脂(B)については、脂肪族オキセタン化合物及び環状脂肪族エポキシ化合物ということもある。そして、環式脂肪族オキセタン樹脂(A)を(A)成分と、環状脂肪族エポキシ樹脂(B)を(B)成分と、熱カチオン重合開始剤(C)を(C)成分ともいう。
Hereinafter, the oxetane resin composition of the present invention will be described in detail.
The oxetane resin composition of the present invention contains a cycloaliphatic oxetane resin (A), a cycloaliphatic epoxy resin (B), and a thermal cationic polymerization initiator (C) as essential components. Here, the cycloaliphatic oxetane resin (A) and the cycloaliphatic epoxy resin (B) may be a single compound or a mixture of compounds having different numbers of repeating units. Accordingly, the aliphatic oxetane resin (A) and the cycloaliphatic epoxy resin (B) may be referred to as an aliphatic oxetane compound and a cycloaliphatic epoxy compound. The cycloaliphatic oxetane resin (A) is also referred to as component (A), the cycloaliphatic epoxy resin (B) as component (B), and the thermal cationic polymerization initiator (C) as component (C).

本発明で用いられる環状脂肪族オキセタン樹脂(A)は、脂環構造を含むアルコールから誘導されたものや芳香環を水素化することによって得られるオキセタン樹脂である。芳香環を水素化することによって得られる水素化オキセタン樹脂である場合、芳香環の水素化率が80%以上であるオキセタン樹脂を指すが、水素化率が90%以上であるものが好ましい。オキセタン樹脂中の芳香環の水素化率は、芳香環が脂環に変化した割合であり、核磁気共鳴分析により求めることができる。この芳香環の水素化率が80%未満であると、オキセタン樹脂硬化物の電気特性や耐候性が大きく低下するため好ましくない。   The cycloaliphatic oxetane resin (A) used in the present invention is an oxetane resin derived from an alcohol containing an alicyclic structure or obtained by hydrogenating an aromatic ring. In the case of a hydrogenated oxetane resin obtained by hydrogenating an aromatic ring, it refers to an oxetane resin having an aromatic ring hydrogenation rate of 80% or more, preferably a hydrogenation rate of 90% or more. The hydrogenation rate of the aromatic ring in the oxetane resin is the ratio at which the aromatic ring is changed to the alicyclic ring, and can be determined by nuclear magnetic resonance analysis. If the hydrogenation rate of this aromatic ring is less than 80%, the electrical properties and weather resistance of the cured oxetane resin are greatly reduced, which is not preferable.

オキセタン化合物は、分子中の酸素の塩基性が高いため、カチオン重合において、高分子量のものを得ることができるという特徴を有する。このため、分子鎖中の水酸基濃度が低くなり、低吸水率、低誘電率の特徴を発現する。また、耐熱性、耐光性も向上する。   Oxetane compounds have a feature that high molecular weight compounds can be obtained in cationic polymerization because oxygen in the molecule is highly basic. For this reason, the hydroxyl group concentration in the molecular chain is lowered, and the characteristics of low water absorption and low dielectric constant are exhibited. Moreover, heat resistance and light resistance are also improved.

(A)成分の環式脂肪族オキセタン樹脂は、脂環構造とそれに結合したオキセタン基を有する化合物である。その分子量は、100以上、好ましくは1 00〜2000、より好ましくは120〜2000、更に好ましくは150〜1000の範囲であることがよい。分子量が小さすぎると環式脂肪族オキセタン化合物の揮発性が高く、作業環境や塗工時の加工特性を著しく悪化させる。分子量が大きすぎると樹脂組成物の粘度が高くなるため、所定形状に注型、成型あるいは均一に塗工することが困難となる。   The (A) component cycloaliphatic oxetane resin is a compound having an alicyclic structure and an oxetane group bonded thereto. The molecular weight is 100 or more, preferably 100 to 2000, more preferably 120 to 2000, and still more preferably 150 to 1000. If the molecular weight is too small, the cycloaliphatic oxetane compound is highly volatile, and the working environment and processing characteristics during coating are significantly deteriorated. If the molecular weight is too large, the viscosity of the resin composition increases, and it becomes difficult to cast, mold or uniformly apply the resin composition into a predetermined shape.

環式脂肪族オキセタン樹脂は、有利には芳香族オキセタン樹脂を触媒の存在下、加圧下で選択的に水素化反応を行うことにより容易に得ることができる。ここで用いられる芳香族オキセタン樹脂としては、例えば、ビスフェノールA型オキセタン樹脂、ビスフェノールF型オキセタン樹脂及びビスフェノールS型オキセタン樹脂等のビスフェノール型オキセタン樹脂、ビフェノールのオキセタニルエーテル、テトラメチルビフェノールのオキセタニルエーテル等のビフェノール型オキセタン樹脂、ナフトールのオキセタニルエーテル等のナフタレン型オキセタン樹脂、ビスヒドロキシメチルベンゼンのオキセタニルエーテル等のキシレン型オキセタン樹脂、ビスヒドロキシメチルビフェニルのオキセタニルエーテル等のジメチルビフェニル型オキセタン樹脂、ビスヒドロキシメチルナフタレンのオキセタニルエーテル等のジメチルナフタレン型オキセタン樹脂、シクロヘキサンジカルボン酸ジオキセタンエステル樹脂、フェノールノボラックオキセタン樹脂、クレゾールノボラックオキセタン樹脂、ヒドロキシベンズアルデヒドフェノールノボラックオキセタン樹脂等のノボラック型オキセタン樹脂、テトラヒドロキシフェニルメタンのオキセタニルエーテル、テトラヒドロキシベンゾフェノンのオキセタニルエーテル及びオキセタン化ポリビニルフェノール等の多官能型オキセタン樹脂等が挙げられる。   The cycloaliphatic oxetane resin can be easily obtained by selectively hydrogenating the aromatic oxetane resin under pressure in the presence of a catalyst. As the aromatic oxetane resin used here, for example, bisphenol A type oxetane resin, bisphenol F type oxetane resin, bisphenol S type oxetane resin and other bisphenol type oxetane resins, biphenol oxetanyl ether, tetramethylbiphenol oxetanyl ether and the like Biphenol-type oxetane resin, Naphtalene-type oxetane resin such as oxetaneyl ether of naphthol, xylene-type oxetane resin such as oxetanyl ether of bishydroxymethylbenzene, dimethylbiphenyl-type oxetane resin such as oxetanyl ether of bishydroxymethylbiphenyl, bishydroxymethylnaphthalene Dimethyl naphthalene type oxetane resin such as oxetanyl ether, dioxe cyclohexanedicarboxylate Polyesters such as ester resin, phenol novolak oxetane resin, cresol novolak oxetane resin, novolak oxetane resin such as hydroxybenzaldehyde phenol novolak oxetane resin, oxetanyl ether of tetrahydroxyphenylmethane, oxetanyl ether of tetrahydroxybenzophenone and oxetanilated polyvinylphenol Examples include oxetane resins.

環式脂肪族オキセタン樹脂の具体例としては、下記式(1)〜(8)で示される化合物が挙げられる。   Specific examples of the cycloaliphatic oxetane resin include compounds represented by the following formulas (1) to (8).

Figure 2008111640
Figure 2008111640

Figure 2008111640
Figure 2008111640

これらの中で、原料の入手の容易さ等から、式(1)で表される1,4-ビス[(3-エチル-3-オキセタニル)メトキシメチル]シクロヘキサン、もしくは式(2)で表される4,4'-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ビシクロヘキシルが望ましい。   Among these, due to the availability of raw materials, etc., 1,4-bis [(3-ethyl-3-oxetanyl) methoxymethyl] cyclohexane represented by the formula (1) or represented by the formula (2) 4,4′-bis [(3-ethyl-3-oxetanyl) methoxymethyl] bicyclohexyl is preferred.

(B)成分の環状脂肪族エポキシ樹脂は、有利にはシクロオレフィンをエポキシ化して得られる。   The cycloaliphatic epoxy resin as component (B) is preferably obtained by epoxidizing a cycloolefin.

(B)成分の環状脂肪族エポキシ樹脂は、脂肪族環にエポキシ基が結合している化合物である。分子量は100以上、好ましくは100〜2000、より好ましくは120〜2000、更に好ましくは120〜1000であることがよい。分子量が小さすぎると環状脂肪族エポキシ樹脂の揮発性が高く、作業環境や塗工時の加工特性を著しく悪化させる。分子量が大きすぎると、得られる組成物の粘度が高くなるため、所定形状に注型、成形あるいは均一に塗工することが困難となる。   The cycloaliphatic epoxy resin as component (B) is a compound in which an epoxy group is bonded to an aliphatic ring. The molecular weight is 100 or more, preferably 100 to 2000, more preferably 120 to 2000, and still more preferably 120 to 1000. If the molecular weight is too small, the cycloaliphatic epoxy resin has high volatility, and the working environment and processing characteristics during coating are remarkably deteriorated. If the molecular weight is too large, the viscosity of the resulting composition will be high, and it will be difficult to cast, mold or evenly apply to a predetermined shape.

環状脂肪族エポキシ樹脂の具体例としては、式(9)で表される化合物(例えば、ダイセル化学製、CEL2021Pなど)、式(10)で表される化合物(例えば、旭チバ社製、アラルダイトCY178)、式(11)で表される化合物(例えば、チッソ社製、チッソノックス206など)、式(12)で表される化合物(例えば、チッソ社製、チッソノックス205など)や、式(13)〜式(18)で表される化合物などが挙げられる。これらの中で、式(9) で表される3,4-エポキシシクロヘキシルメチル-3',4'-エポキシシクロヘキサンカルボキシレートが、本発明の組成物の低粘度化及び耐熱性の向上効果という点で好ましい。   Specific examples of the cycloaliphatic epoxy resin include a compound represented by the formula (9) (for example, CEL2021P manufactured by Daicel Chemical Industries) and a compound represented by the formula (10) (for example, Araldite CY178 manufactured by Asahi Ciba). ), A compound represented by the formula (11) (for example, Chissonox 206 manufactured by Chisso), a compound represented by the formula (12) (for example, Chissonox 205 manufactured by Chisso), and the formula (13 ) To the compound represented by formula (18). Among these, 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexanecarboxylate represented by the formula (9) is effective in reducing the viscosity and improving the heat resistance of the composition of the present invention. Is preferable.

Figure 2008111640
Figure 2008111640

Figure 2008111640
Figure 2008111640

(C)成分の熱カチオン重合開始剤としては、加熱により、ブレンステッド酸、ルイス酸等のカチオン種を発生するものであれば、いずれも使用することができる。例えば、オルガノシラン及び有機アルミニウム化合物触媒、スルホニウム塩、ホスホニウム塩等のオニウム塩、ヘテロポリ酸を使用することができる。カチオン種を発生する温度は、触媒によって異なるが、多くは50℃以上であり、常温での保存性から100℃以上のものを用いるのが好ましい。   As the thermal cationic polymerization initiator of component (C), any can be used as long as it generates cationic species such as Bronsted acid and Lewis acid by heating. For example, organosilane and organoaluminum compound catalysts, onium salts such as sulfonium salts and phosphonium salts, and heteropolyacids can be used. The temperature at which the cationic species is generated varies depending on the catalyst, but in many cases, it is 50 ° C. or higher, and it is preferable to use one having a temperature of 100 ° C. or higher because of storage stability at room temperature.

具体的には、オルガノシランとしては、メトキシトリメチルシラン、エトキシトリエチルシラン、プロポキシトリプロピルシラン、ブトキシトリブチルシラン、メトキシトリオクチルシラン、メトキシトリフェニルシラン、メトキシトリベンジルシラン、トリフェニルヒドロキシシラン等の1官能シラン化合物;ジメトキシジメチルシラン、ジメトキシジエチルシラン、ジエトキシジブチルシラン、ジプロポキシジプロピルシラン、ジメトキシジラウリルシラン、ジメトキシジフェニルシラン、ジメトキシジベンジルシラン、メトキシベンジルオキシジプロピルシラン、メトキシ2-エチルヘキシルオキシジプロピルシラン、ジフェニルシランジオール等の2官能シラン化合物;トリメトキシメチルシラン、トリエトキシエチルシラン、トリプロポキシプロピルシラン、トリメトキシステアリルシラン、トリメトキシフェニルシラン、トリメトキシベンジルシラン、メトキシジベンジルオキシプロピルシラン、メトキシトリヒドロキシシラン、フェニルトリヒドロキシシラン等の3官能シラン化合物;テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン、トリメトキシベンジルオキシシラン、ジメトキシジ2-エチルヘキシルシラン、テトラヒドロキシシラン等の4官能シラン化合物;上記した3官能シラン化合物及び/又は4官能シラン化合物の低縮合物(約2〜50量体);ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(2-メトキシエトキシ)シラン、γ-(メタ)アクリロイルオキシプロピルトリメトキシシラン、γ-(メタ)アクリロイルオキシプロピルトリエトキシシラン、γ-(メタ)アクリロイルオキシプロピルメチルジメトキシシラン、β-(メタ)アクリロイルオキシエチルプロピルトリメトキシシラン等の反応性珪素基含有エチレン性不飽和モノマー及び必要に応じて上記その他のラジカル重合性不飽和モノマーとの(共)重合体等が挙げられる。上記した化合物は1種もしくは2種以上組合せて使用することができる。上記した3官能シラン化合物及び/又は4官能シラン化合物の低縮合物(約2〜50量体)としては、SH6018(東レシリコーン(株)製:水酸基当量400、分子量1600のメチフェニルポリシロキサン)などの商品名で入手しうるシリコーン樹脂も用いることができる。反応性、入手の容易さから、好ましくは、トリフェニルシラノール、SH6018などの商品名で入手できるシリコーン樹脂である。   Specifically, the organosilane is monofunctional such as methoxytrimethylsilane, ethoxytriethylsilane, propoxytripropylsilane, butoxytributylsilane, methoxytrioctylsilane, methoxytriphenylsilane, methoxytribenzylsilane, triphenylhydroxysilane and the like. Silane compounds; dimethoxydimethylsilane, dimethoxydiethylsilane, diethoxydibutylsilane, dipropoxydipropylsilane, dimethoxydilaurylsilane, dimethoxydiphenylsilane, dimethoxydibenzylsilane, methoxybenzyloxydipropylsilane, methoxy-2-ethylhexyloxydipropyl Bifunctional silane compounds such as silane and diphenylsilanediol; trimethoxymethylsilane, triethoxyethylsilane, Trifunctional silane compounds such as lopoxypropylsilane, trimethoxystearylsilane, trimethoxyphenylsilane, trimethoxybenzylsilane, methoxydibenzyloxypropylsilane, methoxytrihydroxysilane, phenyltrihydroxysilane; tetramethoxysilane, tetraethoxysilane Tetrafunctional silane compounds such as tetrapropoxysilane, tetrabutoxysilane, trimethoxybenzyloxysilane, dimethoxydi-2-ethylhexylsilane, tetrahydroxysilane; low-condensates of the above trifunctional silane compounds and / or tetrafunctional silane compounds (about 2 to 50-mer); vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (2-methoxyethoxy) silane, γ- (meth) acryloyloxypropyltrimethoxysilane Reactive silicon group-containing ethylenically unsaturated monomers such as γ- (meth) acryloyloxypropyltriethoxysilane, γ- (meth) acryloyloxypropylmethyldimethoxysilane, β- (meth) acryloyloxyethylpropyltrimethoxysilane And if necessary, (co) polymers with the above-mentioned other radical polymerizable unsaturated monomers may be mentioned. The above compounds can be used alone or in combination of two or more. Examples of the low-condensate (about 2 to 50 mer) of the above-described trifunctional silane compound and / or tetrafunctional silane compound include SH6018 (manufactured by Toray Silicone Co., Ltd .: hydroxyl group equivalent 400, molecular weight 1600 methylphenylpolysiloxane), etc. A silicone resin available under the trade name of can also be used. From the viewpoint of reactivity and availability, a silicone resin available under trade names such as triphenylsilanol and SH6018 is preferable.

有機アルミニウム化合物としては、アルコキシド、キレート化物等を用いることができる。具体的には、例えば、アルミニウムトリエトキシド、アルミニウムトリイソプロポキシド、アルミニウム-sec-ブチレート等のアルコキシド類、エチルアセトアセテートアルミニウムジイソプロピレート、トリス(エチルアセトアセテート)アルミニウム、トリス(プロピルアセテート)アルミニウム、トリス(ブチルアセトアセテート)アルミニウム、プロポキシビス(エチルアセトアセテート)アルミニウム、トリス(アセチルアセトナト)アルミニウム、トリス(プロピオニルアセトナト)アルミニウム、トリス(アセトアセトナト)アルミニウム等のケト・エノール互変異性体のキレート化合物等が挙げられる。これらは1種もしくは2種以上組合せて使用することができる。これらの中でも、硬化性、経済性を考慮すると、アルミニウムトリイソプロポキシド、エチルアセトアセテートアルミニウムジイソプロピレート、トリス(アセトアセトナト)アルミニウムが好ましい。   As the organoaluminum compound, an alkoxide, a chelated product, or the like can be used. Specifically, for example, alkoxides such as aluminum triethoxide, aluminum triisopropoxide, aluminum-sec-butyrate, ethyl acetoacetate aluminum diisopropylate, tris (ethyl acetoacetate) aluminum, tris (propyl acetate) aluminum Of keto-enol tautomers such as tris (butylacetoacetate) aluminum, propoxybis (ethylacetoacetate) aluminum, tris (acetylacetonato) aluminum, tris (propionylacetonato) aluminum, tris (acetoacetonato) aluminum Compounds and the like. These can be used alone or in combination of two or more. Of these, aluminum triisopropoxide, ethyl acetoacetate aluminum diisopropylate, and tris (acetoacetonato) aluminum are preferred in view of curability and economy.

ホスホニウム塩としてはベンジル-4-ヒドロキシフェニルメチルスルホニウムヘキサフルオロアンチモネート、ベンジル-4-ヒドロキシフェニルメチルスルホニウムヘキサフルオロホスフェート、4-アセトキシフェニルベンジルメチルスルホニウムヘキサフルオロアンチモネート、4-アセトキシフェニルジメチルスルホニウムヘキサフルオロアンチモネート、ベンジル-4-メトキシフェニルメチルスルホニウムヘキサフルオロアンチモネート、ベンジル-2-メチル-4-ヒドロキシフェニルメチルスルホニウムヘキサフルオロアンチモネート、ベンジル-3-クロロ-4-ヒドロキシフェニルメチルスルホニウムヘキサフルオロアルセネート、ベンジル-3-メチル-4-ヒドロキシ-5-tert-ブチルフェニルメチルスルホニウムヘキサフルオロアンチモネート、4-メトキシベンジル-4-ヒドロキシフェニルメチルスルホニウムヘキサフルオロホスフェート、ジベンジル-4-ヒドロキシフェニルスルホニウムヘキサフルオロアンチモネート、ジベンジル-4-ヒドロキシフェニルスルホニウムヘキサフルオロホスフェート、4-アセトキシフェニルジベンジルスルホニウムヘキサフルオロアンチモネート、ジベンジル-4-メトキシフェニルスルホニウムヘキサフルオロアンチモネート、ニトロベンジル-4-ヒドロキシフェニルメチルスルホニウムヘキサフルオロアンチモネート、3,5-ジニトロベンジル-4-ヒドロキシフェニルメチルスルホニウムヘキサフルオロアンチモネート、β-ナフチルメチル-4-ヒドロキシフェニルメチルスルホニウムヘキサフルオロアンチモネート等が挙げられる。スルホニウム塩の市販品としては、例えば、サンエイドSI-L85、サンエイドSI-L110、サンエイドSI-L145、サンエイドSI-L160、サンエイドSI-H15、サンエイドSI-H20、サンエイドSI-H25、サンエイドSI-H40、サンエイドSI-H50、サンエイドSI-60L、サンエイドSI-80L、サンエイドSI-100L、サンエイドSI-80、サンエイドSI-100(三新化学工業株式会社製、商品名)、CP-77(株式会社ADEKA製)等が挙げられる。入手の容易さから、好ましくはサンエイドSI類、CP−77である。   Examples of phosphonium salts include benzyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate, benzyl-4-hydroxyphenylmethylsulfonium hexafluorophosphate, 4-acetoxyphenylbenzylmethylsulfonium hexafluoroantimonate, 4-acetoxyphenyldimethylsulfonium hexafluoroantimonate. Benzyl-4-methoxyphenylmethylsulfonium hexafluoroantimonate, benzyl-2-methyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate, benzyl-3-chloro-4-hydroxyphenylmethylsulfonium hexafluoroarsenate, benzyl -3-Methyl-4-hydroxy-5-tert-butylphenylmethylsulfonium hexafluoroantimonate 4-methoxybenzyl-4-hydroxyphenylmethylsulfonium hexafluorophosphate, dibenzyl-4-hydroxyphenylsulfonium hexafluoroantimonate, dibenzyl-4-hydroxyphenylsulfonium hexafluorophosphate, 4-acetoxyphenyldibenzylsulfonium hexafluoroantimonate, Dibenzyl-4-methoxyphenylsulfonium hexafluoroantimonate, nitrobenzyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate, 3,5-dinitrobenzyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate, β-naphthylmethyl-4 -Hydroxyphenylmethylsulfonium hexafluoroantimonate and the like. Examples of commercially available sulfonium salts include Sun-Aid SI-L85, Sun-Aid SI-L110, Sun-Aid SI-L145, Sun-Aid SI-L160, Sun-Aid SI-H15, Sun-Aid SI-H20, Sun-Aid SI-H25, Sun-Aid SI-H40, Sun-Aid SI-H50, Sun-Aid SI-60L, Sun-Aid SI-80L, Sun-Aid SI-100L, Sun-Aid SI-80, Sun-Aid SI-100 (manufactured by Sanshin Chemical Industry Co., Ltd., trade name), CP-77 (manufactured by ADEKA Corporation) ) And the like. From the viewpoint of availability, Sun-Aid SI, CP-77 is preferable.

ヘテロポリ酸についてであるが、例えば、モリブデン(VI)やタングステン(VI)イオンは水中ではオキソ酸になる。これらのオキソ酸は重合して、高分子のポリオキソ酸となる。このとき、同種のオキソ酸だけが重合するのではなく、あるオキソ酸の周りに別種のオキソ酸が重合することがあり。このような化合物をヘテロポリ酸という。中心のオキソ酸を形成する元素をヘテロ元素、その周りで重合するオキソ酸の元素をポリ元素と呼ぶ。ヘテロ元素としては、Si, P, As, S, Fe, Coなどがあり、ポリ元素としてはMo, W, V 等がある。重合時の、ヘテロ元素に対するポリ元素の数も多種類あるため、それらの組合わせで、多くのヘテロポリ酸が製造可能である。本発明ではこのようなヘテロポリ酸であれば、特に制限なく使用することができる。   As for heteropolyacids, for example, molybdenum (VI) and tungsten (VI) ions become oxoacids in water. These oxo acids are polymerized into high molecular polyoxo acids. At this time, not only the same kind of oxo acid is polymerized, but another kind of oxo acid may be polymerized around a certain oxo acid. Such a compound is called a heteropolyacid. The element that forms the central oxo acid is called a hetero element, and the oxo acid element that polymerizes around it is called a poly element. Examples of hetero elements include Si, P, As, S, Fe, and Co. Examples of poly elements include Mo, W, and V. Since there are a large number of polyelements relative to heteroelements at the time of polymerization, many heteropolyacids can be produced by combining them. In the present invention, such a heteropolyacid can be used without particular limitation.

硬化性能、入手の容易さから、好ましくは、リンタングステン酸、リンモリブデン酸、ケイタングステン酸、ケイモリブデン酸であり、さらに好ましくは、ケイタングステン酸、ケイモリブデン酸である。また、これらの塩、ナトリウム塩、セシウム塩、アンモニウム塩、ピリジニウム塩等も用いることができる。   From the viewpoint of curing performance and availability, phosphotungstic acid, phosphomolybdic acid, silicotungstic acid and silicomolybdic acid are preferred, and silicotungstic acid and silicomolybdic acid are more preferred. These salts, sodium salts, cesium salts, ammonium salts, pyridinium salts, and the like can also be used.

本発明の硬化性オキセタン樹脂組成物は、(A)成分10〜88重量%、好ましくは25〜75重量%、(B)成分10〜88重量%、好ましくは25〜75重量%を含み、(C)成分を、(A)成分(B)成分の合計100重量部に対し0.01〜20重量部、好ましくは0.02〜10重量部、より好ましくは0.1〜2重量部を含む。   The curable oxetane resin composition of the present invention comprises (A) component 10 to 88% by weight, preferably 25 to 75% by weight, and (B) component 10 to 88% by weight, preferably 25 to 75% by weight. Component C) is contained in an amount of 0.01 to 20 parts by weight, preferably 0.02 to 10 parts by weight, more preferably 0.1 to 2 parts by weight, based on 100 parts by weight of component (A) and component (B).

別の観点からは、(A)成分50重量部に対して、(B)成分10〜200重量部、好ましくは25〜75重量部を用いることがよい。この(B)成分は、硬化物の耐熱性を向上させるために有効である。(B)成分の環状脂肪族エポキシ樹脂が10重量%未満であると硬化物の耐熱性改良効果が減少し、また、90重量%を越えると硬化物が脆くなるため好ましくない。組成物中の(C)成分は、0.02〜10重量%、好ましくは0.1〜2重量%であることがよい。この場合、(A)成分は20〜70重量%、好ましくは25〜75重量%、(B)成分は20〜70重量%、好ましくは23〜73重量%を含むことがよい。   From another viewpoint, it is preferable to use 10 to 200 parts by weight, preferably 25 to 75 parts by weight, of component (B) with respect to 50 parts by weight of component (A). This component (B) is effective for improving the heat resistance of the cured product. When the amount of the cycloaliphatic epoxy resin as the component (B) is less than 10% by weight, the effect of improving the heat resistance of the cured product is reduced, and when it exceeds 90% by weight, the cured product becomes brittle. Component (C) in the composition is 0.02 to 10% by weight, preferably 0.1 to 2% by weight. In this case, the component (A) contains 20 to 70% by weight, preferably 25 to 75% by weight, and the component (B) contains 20 to 70% by weight, preferably 23 to 73% by weight.

(C)成分の熱カチオン重合開始剤は、(A)成分の環式脂肪族オキセタン樹脂と(B)成分の環状脂肪族エポキシ樹脂の合計100重量部に対して0.01〜20重量部配合される。熱カチオン硬化触媒の含有量が過剰になると、保存安定性が低下する可能性がある。また、熱カチオン硬化触媒が過小になると、硬化速度が低下し、組成物の硬化が十分でない。   The thermal cationic polymerization initiator of component (C) is blended in an amount of 0.01 to 20 parts by weight with respect to a total of 100 parts by weight of the cycloaliphatic oxetane resin of component (A) and the cycloaliphatic epoxy resin of component (B). . If the content of the thermal cation curing catalyst is excessive, the storage stability may be lowered. On the other hand, when the thermal cation curing catalyst is too small, the curing rate is lowered and the composition is not sufficiently cured.

本発明のオキセタン樹脂組成物には、樹脂の性質を改善する目的で必要に応じて上記(A)〜(C)成分以外の成分として、種々の硬化性モノマー、オリゴマー及び合成樹脂を配合することができる。例えば、モノエポキシ等のエポキシ樹脂用希釈剤、ジオール又はトリオール類、ビニルエーテル類、(A)成分以外のオキセタン化合物、フッ素樹脂、アクリル樹脂、シリコーン樹脂、ポリエステル樹脂等を挙げることができる。ただし、これらの成分の配合割合は、本発明の樹脂組成物の本来の性質を損なう恐れがあるので、樹脂組成物の30重量%以下であることが好ましく、特には20重量%以下の範囲での使用が好ましい。   In the oxetane resin composition of the present invention, various curable monomers, oligomers and synthetic resins may be blended as components other than the components (A) to (C) as necessary for the purpose of improving the properties of the resin. Can do. Examples include diluents for epoxy resins such as monoepoxy, diols or triols, vinyl ethers, oxetane compounds other than the component (A), fluororesins, acrylic resins, silicone resins, polyester resins, and the like. However, since the blending ratio of these components may impair the original properties of the resin composition of the present invention, it is preferably 30% by weight or less of the resin composition, particularly in the range of 20% by weight or less. Is preferred.

また、本発明のオキセタン樹脂組成物には、無機充填材を配合することもできるが、これらの使用は本発明の特徴である透明性を阻害する可能性があるので、これを害しないもの、例えば、粒子径が非常に小さい表面処理したシリカ粒子が適している。これを使用する場合も、樹脂組成物100重量部に対して、40重量部以下であることが好ましく、特には20重量部以下の範囲での使用が好ましい。なお、多量に配合される無機充填材のような増量材、溶剤のような希釈剤は、オキセタン樹脂組成物の外数として計算することがよい。   In addition, the oxetane resin composition of the present invention can be blended with an inorganic filler, but these uses may impair the transparency that is a feature of the present invention, so that this does not impair this, For example, surface-treated silica particles having a very small particle size are suitable. Also when using this, it is preferable that it is 40 weight part or less with respect to 100 weight part of resin compositions, and the use in 20 weight part or less is especially preferable. In addition, the filler such as an inorganic filler to be blended in a large amount and the diluent such as a solvent are preferably calculated as the external number of the oxetane resin composition.

また、本発明の樹脂組成物には、その目的に応じて、顔料等の着色剤、難燃剤、カップリング剤、上記以外の安定剤などその他の添加剤を配合することができる。   Further, in the resin composition of the present invention, other additives such as a colorant such as a pigment, a flame retardant, a coupling agent, and a stabilizer other than the above can be blended depending on the purpose.

本発明のオキセタン樹脂組成物は、上記(A)〜(C)成分に必要に応じて他の成分を配合して、加熱溶融混合、ロール、ニーダーによる溶融混錬、適当な有機溶剤を用いての湿式混合及び乾式混合等して製造することができる。   The oxetane resin composition of the present invention is blended with the above components (A) to (C) as necessary, using heat melting and mixing, melting and kneading with a roll and a kneader, and an appropriate organic solvent. Can be produced by wet mixing and dry mixing.

このようにして製造されたオキセタン樹脂組成物は、熱により硬化され、本発明の硬化物となる。熱カチオン重合の場合は、通常、その熱カチオン重合開始剤がカチオン種やルイス酸の発生を開始する温度以上で行われ、通常50〜200℃にて実施される。   The oxetane resin composition produced in this way is cured by heat and becomes the cured product of the present invention. In the case of thermal cationic polymerization, the thermal cationic polymerization initiator is usually performed at a temperature at which the generation of cationic species or Lewis acid is started, and is usually performed at 50 to 200 ° C.

以下に、実施例及び比較例を挙げて本発明を更に詳しく説明する。   Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.

略号を次に示す。
BMBH:4,4'-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ビシクロヘキシル
CEL2021P:3,4-エポキシシクロヘキシルメチル-3',4'-エポキシシクロヘキサンカルボキシレート(ダイセル化学製 CEL2021P)
Abbreviations are as follows:
BMBH: 4,4'-bis [(3-ethyl-3-oxetanyl) methoxymethyl] bicyclohexyl
CEL2021P: 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexanecarboxylate (Daicel Chemical CEL2021P)

実施例1
BMBH 50重量部、CEL2021P 50重量部、CP-77(株式会社アデカ製 スルホニウム塩系カチオン重合開始剤)0.335重量部を均一になるように、室温で攪拌混合した後、減圧脱泡し、オキセタン樹脂組成物を得た。
Example 1
50 parts by weight of BMBH, 50 parts by weight of CEL2021P, and 0.335 parts by weight of CP-77 (Sulphonium salt cationic polymerization initiator manufactured by Adeka Co., Ltd.) were stirred and mixed at room temperature to be uniform, then degassed under reduced pressure, and oxetane resin A composition was obtained.

実施例2
BMBH 50重量部、CEL2021P 50重量部、アルミニウムアセチルアセトナート(東京化成工業株式会社製)0.5重量部、トリフェニルシラノール(東京化成工業株式会社製)0.5重量部を均一になるように、室温で攪拌混合した後、減圧脱泡し、オキセタン樹脂組成物を得た。
Example 2
Stir at room temperature so that 50 parts by weight of BMBH, 50 parts by weight of CEL2021P, 0.5 parts by weight of aluminum acetylacetonate (Tokyo Chemical Industry Co., Ltd.) and 0.5 parts by weight of triphenylsilanol (manufactured by Tokyo Chemical Industry Co., Ltd.) can be evenly mixed. After mixing, degassed under reduced pressure to obtain an oxetane resin composition.

実施例3
1,4-ビス[(3-エチル-3-オキセタニル)メトキシメチル]シクロヘキサン50重量部、CEL2021P 50重量部、CP-77 0.67重量部を均一になるように、室温で攪拌混合した後、減圧脱泡し、オキセタン樹脂組成物を得た。
Example 3
50 parts by weight of 1,4-bis [(3-ethyl-3-oxetanyl) methoxymethyl] cyclohexane, 50 parts by weight of CEL2021P, and 0.67 parts by weight of CP-77 were stirred and mixed at room temperature. Foaming was performed to obtain an oxetane resin composition.

実施例4(比較)
水素化ビスフエノールAジグリジルエーテル(宇部興産化学株式会社製)50重量部、CEL2021P 50重量部、CP-77 0.335重量部を均一になるように、室温で攪拌混合した後、減圧脱法し、オキセタン樹脂組成物を得た。
Example 4 (comparison)
50 parts by weight of hydrogenated bisphenol A diglycidyl ether (manufactured by Ube Industries, Ltd.), 50 parts by weight of CEL2021P, and 0.335 parts by weight of CP-77 were stirred and mixed at room temperature. A resin composition was obtained.

実施例及び比較例で得られた各樹脂組成物を、金型に流し込み、60℃で4時間、更に150℃で2時間、オーブン中で加熱することにより硬化物を得た。これらの硬化物について、ガラス転移点、初期透過率、耐熱性、曲げ強度、吸湿性、比誘電率を試験した。その結果を表1に示した。   Each resin composition obtained in Examples and Comparative Examples was poured into a mold and heated in an oven at 60 ° C. for 4 hours and further at 150 ° C. for 2 hours to obtain a cured product. These cured products were tested for glass transition point, initial transmittance, heat resistance, bending strength, hygroscopicity, and dielectric constant. The results are shown in Table 1.

ガラス転移点(Tg)はDMA法による。初期透過率は、厚さ4mm硬化物の400nmの透過度を測定した。耐熱性は、硬化物を空気中で150℃24時間保持したのち、初期透過度と同様にして400nmの透過度を測定した。曲げ強度は、JIS6911に記されている方法により測定した。吸湿性は、85℃、85%RH、100時間の条件で測定した。誘電率は空洞共振器摂動法における2GHzの測定値である。   The glass transition point (Tg) is determined by the DMA method. As the initial transmittance, a 400 nm transmittance of a cured product having a thickness of 4 mm was measured. For heat resistance, the cured product was kept in air at 150 ° C. for 24 hours, and then the transmittance at 400 nm was measured in the same manner as the initial transmittance. The bending strength was measured by the method described in JIS6911. The hygroscopicity was measured under the conditions of 85 ° C., 85% RH and 100 hours. The dielectric constant is measured at 2 GHz in the cavity resonator perturbation method.

Figure 2008111640
Figure 2008111640

産業上の利用の可能性Industrial applicability

本発明によれば、透明性、耐熱性、低給水率性、低誘電率性に優れた硬化物を与えるオキセタン樹脂組成物が得られる。このオキセタン樹脂組成物は、コーティング材や成型又は注型成形して得られる光学材料及び電気絶縁材料として広範な用途に用いることができる。また、その透明性と低熱変色性の特性を生かして光半導体(LED)等の発光装置の封止樹脂として好適に用いることができる。   According to the present invention, an oxetane resin composition that provides a cured product excellent in transparency, heat resistance, low water supply rate, and low dielectric constant can be obtained. This oxetane resin composition can be used in a wide range of applications as a coating material, an optical material obtained by molding or casting, and an electrical insulating material. Moreover, it can use suitably as sealing resin of light-emitting devices, such as an optical semiconductor (LED), making use of the characteristic of the transparency and low thermochromic property.

Claims (5)

環式脂肪族オキセタン樹脂(A)10〜88重量%、環状脂肪族エポキシ樹脂(B)10〜88重量%、及び熱カチオン重合開始剤(C)を環式脂肪族オキセタン樹脂(A)と環状脂肪族エポキシ樹脂(B)の合計100重量部に対し0.01〜20重量部を配合してなることを特徴とするオキセタン樹脂組成物。   Cyclic aliphatic oxetane resin (A) 10-88% by weight, cyclic aliphatic epoxy resin (B) 10-88% by weight, and thermal cationic polymerization initiator (C) are cyclic with cyclic aliphatic oxetane resin (A). An oxetane resin composition comprising 0.01 to 20 parts by weight based on a total of 100 parts by weight of the aliphatic epoxy resin (B). 環式脂肪族オキセタン樹脂(A)及び環状脂肪族エポキシ樹脂(B)の分子量が、いずれも100〜2000の範囲である請求項1に記載のオキセタン樹脂組成物。   The oxetane resin composition according to claim 1, wherein the cycloaliphatic oxetane resin (A) and the cycloaliphatic epoxy resin (B) each have a molecular weight in the range of 100 to 2,000. 環式脂肪族オキセタン樹脂(A)が、4,4'-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ビシクロヘキシル、1,4-ビス[(3-エチル-3-オキセタニル)メトキシメチル]シクロヘキサン又はこれらの混合物である請求項1に記載のオキセタン樹脂組成物。   Cycloaliphatic oxetane resin (A) is 4,4′-bis [(3-ethyl-3-oxetanyl) methoxymethyl] bicyclohexyl, 1,4-bis [(3-ethyl-3-oxetanyl) methoxymethyl The oxetane resin composition according to claim 1, which is cyclohexane or a mixture thereof. 環状脂肪族エポキシ樹脂(B)が、3,4-エポキシシクロヘキシルメチル-3',4'-エポキシシクロヘキシサンカルボキシレートである請求項1に記載のオキセタン樹脂組成物。   The oxetane resin composition according to claim 1, wherein the cycloaliphatic epoxy resin (B) is 3,4-epoxycyclohexylmethyl-3 ', 4'-epoxycyclohexylsancarboxylate. 請求項1〜4のいずれかに記載のオキセタン樹脂組成物を加熱硬化して得られる硬化物。   Hardened | cured material obtained by heat-hardening the oxetane resin composition in any one of Claims 1-4.
JP2009504081A 2007-03-15 2008-03-13 Oxetane resin composition Expired - Fee Related JP5543199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009504081A JP5543199B2 (en) 2007-03-15 2008-03-13 Oxetane resin composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007066354 2007-03-15
JP2007066354 2007-03-15
JP2009504081A JP5543199B2 (en) 2007-03-15 2008-03-13 Oxetane resin composition
PCT/JP2008/054608 WO2008111640A1 (en) 2007-03-15 2008-03-13 Oxethane resin composition

Publications (2)

Publication Number Publication Date
JPWO2008111640A1 true JPWO2008111640A1 (en) 2010-06-24
JP5543199B2 JP5543199B2 (en) 2014-07-09

Family

ID=39759571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009504081A Expired - Fee Related JP5543199B2 (en) 2007-03-15 2008-03-13 Oxetane resin composition

Country Status (3)

Country Link
JP (1) JP5543199B2 (en)
TW (1) TWI464193B (en)
WO (1) WO2008111640A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8114567B2 (en) 2006-04-21 2012-02-14 Ndsu Research Foundation Polyol photosensitizers, carrier gas UV laser ablation sensitizers, and other additives and methods for making and using same
JP6460985B2 (en) * 2013-06-03 2019-01-30 株式会社ダイセル Curable epoxy resin composition
KR20190114042A (en) * 2013-08-27 2019-10-08 헨켈 아게 운트 코. 카게아아 Curable composition and use for electronic device
WO2018062930A2 (en) * 2016-09-30 2018-04-05 주식회사 엘지화학 Adhesive composition
KR102161444B1 (en) * 2017-06-23 2020-10-06 미쯔이가가꾸가부시끼가이샤 Image display device sealing material and image display device sealing sheet

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4350832B2 (en) * 1999-04-19 2009-10-21 Jsr株式会社 Photocurable resin composition for three-dimensional modeling and a modeled product obtained by curing the same
JP3800858B2 (en) * 1999-04-26 2006-07-26 宇部興産株式会社 Process for producing bisoxetane ether compounds
JP4836325B2 (en) * 2000-12-28 2011-12-14 昭和電工株式会社 Composition for sealing resin
JP2003096184A (en) * 2001-07-17 2003-04-03 Mitsui Chemicals Inc Photocurable resin composition
JP4382364B2 (en) * 2002-04-24 2009-12-09 株式会社東芝 Liquid ink
JP4352862B2 (en) * 2003-01-29 2009-10-28 東亞合成株式会社 Cycloaliphatic compounds having an oxetane ring
WO2005080364A1 (en) * 2004-02-23 2005-09-01 Nippon Steel Chemical Co., Ltd. Process for producing alicyclic oxetane compound
JP2005290141A (en) * 2004-03-31 2005-10-20 Nippon Steel Chem Co Ltd Oxetane resin composition
JP4582770B2 (en) * 2004-06-29 2010-11-17 スタンレー電気株式会社 Sealing resin for light emitting diode and light emitting diode using the same
JP5256570B2 (en) * 2005-06-06 2013-08-07 東洋インキScホールディングス株式会社 Sealing composition
US20100152314A1 (en) * 2005-09-29 2010-06-17 Cmet Inc. Resin composition for stereolithography

Also Published As

Publication number Publication date
TWI464193B (en) 2014-12-11
TW200904851A (en) 2009-02-01
WO2008111640A1 (en) 2008-09-18
JP5543199B2 (en) 2014-07-09

Similar Documents

Publication Publication Date Title
JP5154340B2 (en) Resin composition for optical semiconductor encapsulation
JP5014863B2 (en) Epoxy group-containing silicone resin
CN101313005B (en) Epoxy resin composition
CN102076733B (en) Epoxy resin composition
EP2067824A1 (en) Curable resin composition, optical material, and method of regulating optical material
JP4177013B2 (en) Method for curing thermosetting epoxy resin composition, cured product and use thereof
JP5543199B2 (en) Oxetane resin composition
TW201217421A (en) Production method for curing articles and curing articles
JP5522043B2 (en) Epoxy resin curing agent, epoxy resin composition, cured product thereof, and optical semiconductor device
JP2007320974A (en) Resin composition for optical semiconductor encapsulation
JPWO2015129503A1 (en) Curable composition and cured product thereof, and wafer level lens
CN110582540A (en) Photocurable epoxy composition
JP3795491B2 (en) Resin composition for optical semiconductor encapsulation and optical semiconductor device
JP2001342240A (en) Epoxy resin composition
JP2011241380A (en) Resin composition for cured molded article, and the cured molded article
KR101373035B1 (en) Ultrahigh heat resistant epoxy resin composition
JP2009007404A (en) Cationic-polymerizable composition and cured product obtained by curing the composition
JP4759793B2 (en) Epoxy resin composition and optical semiconductor sealing agent
JPWO2020080292A1 (en) Curable resin composition, cured product and sheet-shaped molded product
JP3996334B2 (en) Photo-curable epoxy resin composition
JP2022100721A (en) Curable resin composition and cured product
JP4779362B2 (en) Hydrogenated epoxy resin and epoxy resin composition
JP5778448B2 (en) Resin composition for cured molded body and cured molded body
JP4632152B2 (en) Polymerizable composition
CN1989167A (en) Thermosetting resin composition, sealing material for optical device and cured product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140508

R150 Certificate of patent or registration of utility model

Ref document number: 5543199

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees