[go: up one dir, main page]

JPS62143366A - Zinc alkaline battery - Google Patents

Zinc alkaline battery

Info

Publication number
JPS62143366A
JPS62143366A JP60230160A JP23016085A JPS62143366A JP S62143366 A JPS62143366 A JP S62143366A JP 60230160 A JP60230160 A JP 60230160A JP 23016085 A JP23016085 A JP 23016085A JP S62143366 A JPS62143366 A JP S62143366A
Authority
JP
Japan
Prior art keywords
zinc
zinc alloy
mercury
battery
indium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60230160A
Other languages
Japanese (ja)
Other versions
JPH0622119B2 (en
Inventor
Akira Miura
三浦 晃
Kanji Takada
寛治 高田
Ryoji Okazaki
良二 岡崎
Toyohide Uemura
植村 豊秀
Keiichi Kagawa
賀川 恵市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Panasonic Holdings Corp
Original Assignee
Mitsui Mining and Smelting Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP60230160A priority Critical patent/JPH0622119B2/en
Publication of JPS62143366A publication Critical patent/JPS62143366A/en
Publication of JPH0622119B2 publication Critical patent/JPH0622119B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To aim at reduction in an amalgamating rate without entailing any deterioration in corrosion resistance and discharge capacity of a negative zinc as well as to form such a zinc alkaline battery that is excellent in integral performance, by using a zinc alloy containing the specified quantity of more than one kind among indium, strontium and aluminum, calcium, magnesium, respectively. CONSTITUTION:A zinc alloy containing 0.05-0.5wt% of indium, 0.005-0.2wt% of strontium and 0.005-0.2wt% of more than one kind among aluminum, calcium and magnesium is used for a negative active material. Thus, various zinc alloys adding various elements to zinc base metal are produced, melted, sprayed by compressed air, and pulverized, then sieved in a grain size range of 50-150 mesh. Next, powder is projected into a 10wt% aqueous solution of caustic potash, mercury of the specified quantity is dropped while stirring it and amalgamated. Afterward, washing it with water, and substitution takes place with acetone and dried up, thus amalgamated zinc alloy powder is produced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、負(モ活物質として亜鉛、電解液としてアル
カリ水溶vに1正極活物質として二酸化マンガン、酸化
銀、酸化水銀、酸素、水酸化ニッケル等を用いる亜鉛ア
ルカリ電池の負極の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention utilizes zinc as a negative active material, alkaline aqueous solution as an electrolyte, manganese dioxide, silver oxide, mercury oxide, oxygen, and nickel hydroxide as positive electrode active materials. The present invention relates to improvements in negative electrodes for zinc-alkaline batteries using, etc.

従来の技fltlF 亜鉛アルカリ電池の共通した開明点として、保存中の1
’l 11亜X)の電解液による腐食が挙げられる。
Conventional technology fltlF As a common discovery point of zinc-alkaline batteries, 1 during storage
Corrosion caused by the electrolyte of 'l 11 sub-X) can be mentioned.

従来、亜t1)に5〜IO重量%程度の水銀を添加し、
実用的に問題のlJ″い(2)’:iに1q食を抑制す
ることが工業的な手法として採用されている。しがし近
年、低公害化のため、電池内の含有水銀量を低減させる
ことか社会的ニーズとして高まり、種!/の研究がなさ
れている。例えば、亜釘)中に鉛、カドミウム、インジ
ウム、ガリウムなとを添加した合金粉末を用いて耐食1
1を向上させ、采比率を低減させる方法か提案されてい
る。これらの腐食抑制効果は、添加元素のJit体の効
果以外に複数の添加元素による複合効果も大きく、イン
ジウムとil)あるいはこれにさらにガリウムを添加し
たちの、さらにはガリウム、と鉛を添加した亜鉛合金な
どが従来、有望な系として提案されている。
Conventionally, about 5 to IO weight % of mercury is added to subtense t1),
It has been adopted as an industrial method to suppress the amount of mercury contained in batteries in order to reduce pollution. There is a growing social need to reduce corrosion, and research is being carried out. For example, alloy powders containing lead, cadmium, indium, gallium, etc.
A method has been proposed to improve 1 and reduce the ratio. These corrosion-inhibiting effects are due to the combined effect of multiple additive elements in addition to the effect of the JIT element. Zinc alloys and the like have been proposed as promising systems.

これらはいずれらある程度の耐食性が期待でき、水1ヒ
率の低減らある程度見込めるものの、さらに一層、耐食
性のよい合金系の探索が必要である。
All of these can be expected to have a certain degree of corrosion resistance, and a certain degree of reduction in the water resistance can be expected, but it is necessary to search for an alloy system with even better corrosion resistance.

また、主にマンガン乾電池の改良をめざして、亜鉛又は
亜鉛合金にインジウムを1べ加した亜J1)合金をf+
 、IE<に使用することか防食上の効果が大きいとい
う提案がある(特公昭:33−320.1号)。
In addition, with the aim of improving manganese dry batteries, we have developed an F+
There is a proposal that the anti-corrosion effect is great if it is used for IE.

発明が解決しようとする問題点 上記の提案の中では亜鉛合金中の元素として、インジウ
ムの他にFe、 Cd、 Cr、 Pb、 Ca、 H
g。
Problems to be Solved by the Invention Among the above proposals, in addition to indium, Fe, Cd, Cr, Pb, Ca, and H are used as elements in the zinc alloy.
g.

Bi、 Sb、 t\I、Ag、Mg、si、Ni、M
n等を不純物又は添加物として1又は2種以上を含む場
合を包含して記載されているが、インジウムと鉛を添加
元素上して併用した場合の有効性以外には、上記の雑多
な各元素を不純物として含むのか、有効な元素として添
加するのかの区分は明示されていなく、どの元素か防食
に有効なのかさえ不明であり、その適切な添加量につい
てはインジウム。
Bi, Sb, t\I, Ag, Mg, si, Ni, M
The description includes cases in which one or more types of impurities or additives such as n are included. It is not clear whether the element is added as an impurity or as an effective element, and it is not even clear which element is effective for corrosion prevention, and the appropriate amount of addition is unknown.

鉛以外の記載はない。There is no mention of anything other than lead.

これらの元素の組合せの効果について、しかもこれを亜
jf)アルカリ電池において検討し、有効な合金組成を
求めることは、なお今後の課題である。
It remains a future challenge to study the effects of the combination of these elements in sub-jf) alkaline batteries and to find an effective alloy composition.

本発明は、負極亜鉛の耐食性、放電性能を劣化させるこ
となく水比率を低減させ、低公害で放電性能、貯蔵性、
耐漏液性なとの総合性能のすぐれた亜鉛アルカリ電池を
提供することを目的とする。
The present invention reduces the water ratio without deteriorating the corrosion resistance and discharge performance of negative electrode zinc, and improves discharge performance, storage stability, and low pollution.
The purpose of the present invention is to provide a zinc-alkaline battery that is resistant to leakage and has excellent overall performance.

問題点を解決するための手段 本発明は、電解液にか性カリ、かイ1ソーダなとを主成
分とするアルノノリ水溶液、f′I(函活物質に亜鉛、
正極活物質に二酸1ヒマンガン、酸1ヒ銀、酸素。
Means for Solving the Problems The present invention provides an electrolyte containing caustic potash, an alkali aqueous solution containing caustic soda as a main component, f'I (box active material containing zinc,
Positive electrode active materials include 1-himanganese diacid, 1-arsenic acid, and oxygen.

酸化水銀などを用いるいわゆる亜鉛アルカリ電池の負極
に、亜j?>を主成分とし、インジウムを0゜005〜
0.5重量%、ストロンヂウムを0.005〜0.2f
fiM%、アルミニウム、カルシウム。
Nitrogen is used as the negative electrode of so-called zinc-alkaline batteries that use mercury oxide, etc. > is the main component, and indium is 0°005 ~
0.5% by weight, strondium 0.005-0.2f
fiM%, aluminum, calcium.

マグネシウムのうち一種以上を0.005〜0゜2重量
%含有する亜鉛合金を負極活物質に用いたことを特徴と
する。
The present invention is characterized in that a zinc alloy containing 0.005 to 0.2% by weight of one or more types of magnesium is used as the negative electrode active material.

本発明は、亜鉛合金への添加元素としてSrに注目して
実験を行い、Srを単独で添加した加工1)合金は防食
11に乏しいか、池の添加元素との複合効果が大きく、
とりわけ、上記の元素上組合せて適正な量を含有させた
場合に、極めて顕著な複合的防食効果が得られることを
見出して完成したらのである。
The present invention conducted experiments focusing on Sr as an additive element to zinc alloys, and found that 1) alloys in which Sr was added alone either lacked corrosion protection 11 or had a large combined effect with the additive elements;
In particular, it was discovered and completed that when the above-mentioned elements are combined and contained in appropriate amounts, an extremely remarkable composite anti-corrosion effect can be obtained.

作用 各元素の添加による防食効果、及び、これらの元素の複
合効果についての作用機構1よ不明確であるか、次のよ
うに推察される。まず、Srは水銀との親fO性が大き
いので亜鉛合金の表面を水化する場合に均一な水化を行
われ易くする作用があると考えられる。さらに溶融亜鉛
合金を噴射して粉体化した亜jf)合金粉の表面の“し
ゎ“をなくして平滑化する作用がある。しがしSrは亜
鉛より電気1ヒ学的に卑な電位を有するため亜鉛より擾
先してI府食し易く、これ!Ji独の添加では充分な防
食効果は得られない。また、inは従来がら防食効果の
大きい添加元素として知られ、亜鉛合金の水素過電圧を
大きくするとともに、水銀となじみ易いため、水化によ
り表面状態を均一化するのに有効で、さらに、亜鉛合金
の表面や結晶粒県に水銀を固定して表面の水銀濃度を高
く維持する役割も期待される。またA1.Ca、Mgは
何れら水銀上の親frl性が小さいので、亜鉛合金の内
部への水銀の拡散を抑制して表面の水銀濃度を維持する
とともに、Srと同様に噴射法で得られる亜鉛合金粉の
表面を平滑化し、表面情を小さくする作用がある。しか
し、Srと同様に卑な電(etを有するので、単独の添
加では充分な防食効果が得られず、」a剰な添加は却っ
て防食1=[をILlうことになる。
Action The anti-corrosion effect of the addition of each element and the combined effect of these elements are unclear as in Action Mechanism 1, or are speculated as follows. First, since Sr has a high affinity for mercury, Sr is thought to have the effect of facilitating uniform hydration when hydrating the surface of a zinc alloy. Furthermore, it has the effect of smoothing the surface of the sub-jf) alloy powder, which is pulverized by spraying molten zinc alloy, by eliminating wrinkles. Because Sr has an electrical potential that is electrically less noble than zinc, it is easier to eat it than zinc. A sufficient anticorrosive effect cannot be obtained with the addition of Ji alone. In addition, in has traditionally been known as an additive element with a large corrosion-preventing effect, and it increases the hydrogen overvoltage of zinc alloys, and since it is easily compatible with mercury, it is effective in making the surface condition uniform through hydration. It is also expected to play a role in maintaining a high mercury concentration on the surface by fixing mercury on the surface and crystal grains. Also A1. Since both Ca and Mg have low frl affinity for mercury, they suppress the diffusion of mercury into the interior of the zinc alloy to maintain the mercury concentration on the surface, and the zinc alloy powder obtained by the injection method as well as Sr. It has the effect of smoothing the surface and reducing surface roughness. However, like Sr, it has a base electric charge (et), so adding it alone will not provide a sufficient anticorrosion effect, and adding too much will actually result in less corrosion protection.

以上の如く、各添加元素は異った作用を及ぼすt)のと
考えられる。しがし、1n以外は単独の添加では防食効
果が乏しいが、本発明の組合せて元素を添加することに
より、1nを4」独で添加したものよりはるかに優れた
耐食性を有する亜鉛合金か得られる。これは、前述の各
元素が互いに長所。
As mentioned above, each additive element is considered to have a different effect. However, when elements other than 1n are added alone, the anticorrosive effect is poor, but by adding the elements in combination according to the present invention, a zinc alloy can be obtained that has corrosion resistance far superior to that obtained by adding 4'' of 1n alone. It will be done. This is because each of the aforementioned elements has advantages over each other.

短所を補完し合うことにより、少量の水銀添加で亜jl
)合金t5)の表面の水素過電圧を長期に亘って推持す
るとともに表面状、I2I!を均一1ヒし、さらに表面
Mを縮小した結束によるらのと考えられる。本発明はこ
れにより、低水化率の耐食性亜j1)負極を実現し、放
電1′l:能、貯蔵性ともにずくれた低公害の亜i;)
アルカリ電池を提f11シたらのである。
By complementing each other's weaknesses, adding a small amount of mercury can
) The hydrogen overvoltage on the surface of alloy t5) is maintained for a long period of time, and the surface condition, I2I! It is thought that this is due to the bundling that uniformly heats the surface M and further reduces the surface M. The present invention thereby realizes a corrosion-resistant negative electrode with a low water conversion rate, and a low-pollution negative electrode with excellent discharge performance and storability.
It is necessary to use alkaline batteries.

以下、実施131により詳細に説明ずろ。This will be explained in detail in the example 131 below.

実施例 純度99.997’、;の加工1)地金に、次表に示す
各種の元素を添加した各種の亜鉛合金を作成し、約50
0℃で溶融して圧縮空気により噴射して扮体化し、50
〜150メツシユの粒度範囲にふるい分けした。次いで
、か性カリの10重量%水溶液中に上記粉体を投入し、
撹拌しながら所定量の水銀を滴下して永1ヒした。その
後水洗し、アセトンで置換して乾燥し、氷化亜鉛合金粉
を作成した。
Example Processing of purity 99.997'; 1) Various zinc alloys were prepared by adding various elements shown in the following table to the base metal,
It is melted at 0℃ and sprayed with compressed air to form a 50%
The particles were sieved to a particle size range of ~150 mesh. Next, the above powder was poured into a 10% by weight aqueous solution of caustic potash,
A predetermined amount of mercury was added dropwise while stirring, and the mixture was left to cool for a while. Thereafter, it was washed with water, substituted with acetone, and dried to produce a frozen zinc alloy powder.

さらに本発明の実施例以外の水化亜jf)粉、又は氷化
亜鉛合金粉についても比較例として同様の方法で作成し
た。
Further, hydrated zinc alloy powder or hydrated zinc alloy powder other than the examples of the present invention were also prepared in the same manner as comparative examples.

これらの水化粉末を用い、図に示すボタン形酸化銀電池
を製作した。図において、■はステンレス鋼製の封目板
で、その内面には銅メッキ1′が施されている。2はか
性カリの40重量%水溶液に酸化亜鉛を飽和させた電解
液をカルボキシメヂルセルロースによりゲル化し、この
ゲル中に禾化亜!;)合金粉末を分散させた亜鉛負極で
ある。3はセルロース系の保液材、4は多孔性ポリプロ
ピレン製のセパレータ、5は酸化銀に黒鉛を混合して加
圧成形した正極、6は鉄にニッケルメッキを施した正極
リング、7はステンレス鋼製の正極缶で、その内外面に
は図示していないがニッケルメッキか施されている。8
はポリプロピレン91のガスケットで、正極缶の折り曲
げにより正(モ缶と封目板との間に圧縮されている。
Using these hydrated powders, the button-shaped silver oxide battery shown in the figure was manufactured. In the figure, ■ is a sealing plate made of stainless steel, and its inner surface is coated with copper plating 1'. 2. An electrolytic solution containing a 40% by weight aqueous solution of fragile potassium saturated with zinc oxide is gelled with carboxymethyl cellulose, and in this gel there is a hydroxide! ;) It is a zinc negative electrode in which alloy powder is dispersed. 3 is a cellulose-based liquid retaining material, 4 is a separator made of porous polypropylene, 5 is a positive electrode made of a mixture of silver oxide and graphite and pressure molded, 6 is a positive electrode ring made of nickel-plated iron, and 7 is stainless steel. This is a positive electrode can made of aluminum, and its inner and outer surfaces are nickel plated (not shown). 8
is a polypropylene 91 gasket, which is compressed between the positive electrode can and the sealing plate by bending the positive electrode can.

試作した電池は直径11−  G nun、高さ5 、
4 nunであり、負極の水化粉末の重量をI 93 
mgに統一し、水銀の添加量(禾1ヒ率)は、亜鉛合金
粉に対し、いずれも2重量%とじた。
The prototype battery has a diameter of 11-G nun, a height of 5 mm,
4 nun, and the weight of the hydrated powder of the negative electrode is I 93
The amount of mercury added was 2% by weight based on the zinc alloy powder.

試作した電池の亜鉛合金の組成と、60℃で1力月間保
存した後の放電性能と電池総高の変化を次表に示す。放
電性能は、20℃において510Ωて0.9vを終止電
圧として放電したときの放電持続時間で表わした。
The following table shows the composition of the zinc alloy of the prototype battery, and the changes in discharge performance and total battery height after storage at 60°C for one month. The discharge performance was expressed by the discharge duration when discharging at 510Ω at 20° C. with a final voltage of 0.9V.

また、温度60°C9湿度90?6てl 2z月放置し
たのち目視て漏液状態を判定し、漏i【l Lだ電池個
数を同時に示した。
In addition, after leaving the battery for 2 months at a temperature of 60° C. and a humidity of 90-6, the state of leakage was visually determined, and the number of leaking batteries was also indicated.

この表における、電池総高の変化については、電池封口
後、′Ff:n″r的に各電池11η成要素間への応力
の関係か安定1ヒするJ:ての期間は電池総高が減少す
るのか通例である。しかし、亜鉛負極の腐食にf′Vう
水素ガス発生の多い電池では、上記の電7IjHid高
の減少力に対抗する電池内圧の上昇により電池総高を増
大させる傾向か強くなる。従って、貯蔵による?fff
i+[!総高の増減により亜鉛負極の耐食性をJfli
lliするこ吉ができる。また、耐食11が不十分な電
池で・は、電池総高か増大するほか、電池内圧の上昇に
より耐漏液性が劣化するきともに、腐食による亜鉛の消
耗、亜鉛表面の酸化膜の形成や、水素ガスの内在による
放電反応の阻害等により放電性能が著しく劣化すること
になり、放電持続時間ら又亜11)負極の耐食性に依存
する要素が大きい。
In this table, the change in the total battery height is stable after the battery is sealed due to the stress relationship between the components of each battery 11. However, in batteries where a large amount of hydrogen gas is generated due to corrosion of the zinc negative electrode, there is a tendency for the total battery height to increase due to an increase in battery internal pressure that counters the above-mentioned power to reduce the electric height. becomes stronger.Thus, by storage?fff
i+[! Increasing the corrosion resistance of zinc negative electrodes by increasing or decreasing the total height
I can do lli sukokichi. In addition, in batteries with insufficient corrosion resistance 11, the total height of the battery increases, the leakage resistance deteriorates due to an increase in battery internal pressure, zinc is consumed due to corrosion, and an oxide film forms on the zinc surface. The discharge performance is significantly deteriorated due to inhibition of the discharge reaction due to the presence of hydrogen gas, and the discharge duration largely depends on the corrosion resistance of the negative electrode.

さて、表において、本発明の比較ρI(!:t、て挙げ
たNo、1〜8のうち単独で添加元素を添加した場合(
No、1.2,3.4.5>よりも、二つの元素を添加
した場合(No、6.7.8)の方が亜j1)負極の耐
食性、放電性能とも幾分改静されてい!−かしIn、S
r、AI、Ca、Mgを適切な組合せで適正な陰有蛍だ
け併存させた本発明の実施例(No、 10. II、
 12.15.16.1?、 20.21.23.24
゜25、26.27.28.29.30>の場合には前
記の比較例に比べ、一段と耐食性、放電性能かすぐれ、
添加元素の複合効果か顕著に示される。−カニ元素を併
存させた場合でム含有量に過不足のある場合(No、 
9 、13.14.18.19.22.31.32)は
比較例と大差なく、複合効果か乏しい。
Now, in the table, the comparison ρI(!:t) of the present invention, and the case where an additive element is added alone among No. 1 to 8 listed above (
Compared to No. 1.2, 3.4.5, when two elements are added (No. 6.7.8), the corrosion resistance and discharge performance of the negative electrode are somewhat improved. ! -Kashi In, S
Examples of the present invention (No. 10. II,
12.15.16.1? , 20.21.23.24
゜25, 26.27.28.29.30>, corrosion resistance and discharge performance are even better than in the above comparative example.
The combined effect of the added elements is clearly shown. - When the crab element coexists and there is an excess or deficiency in the crab content (No,
9, 13.14.18.19.22.31.32) are not much different from the comparative example, and the combined effect is poor.

上述の通り、本発明はIn、 Sr、 AI、 Ca、
 Mgを適切な組合せ、例えば(No、 27.28.
29.30)で示すような適正な含有量で併存させた亜
鉛合金をf’1.tlに用いることにより低水化率化に
成功したちのであり、各元素の含有量はInが0.00
5〜05重量%、Srか0.005〜f)、 2ffl
量%、l\1.Ca、Mgの一種または二種以上のfl
+が0.005〜0.2重量%とするのか適切である。
As mentioned above, the present invention includes In, Sr, AI, Ca,
Mg in a suitable combination, for example (No, 27.28.
29.30), a zinc alloy coexisting with an appropriate content as shown in f'1. By using it in tl, we succeeded in lowering the hydration rate, and the content of each element was 0.00 for In.
5-05% by weight, Sr or 0.005-f), 2ffl
Amount %, l\1. One or more fl of Ca, Mg
It is appropriate that + be 0.005 to 0.2% by weight.

以上のように、本発明は前述の添加元素の絹合わゼによ
る相乗効果により1.’、+ 峰に用いる亜t1)合金
の耐食11か向上することを見出し、適切な含有量を割
り出して低公害で実用性能のすぐれたElfti+アル
ノノリ電池を実現したちのである。なお、実施例におい
ては水化亜鉛負極を用いた電池について説明したが、開
放式の空気電池や水素吸収機構を備えた密閉型の亜鉛ア
ルカリ電池などにおいては、水素ガスの発生許容量は比
較的多いので、このような場合に本発明を適用する場合
はさらに低水化率、場合によっては無水化のまま実施す
ることらできる。
As described above, the present invention achieves 1. They discovered that the corrosion resistance of the sub-t1) alloy used in the ', + peaks was improved by 11%, and by determining the appropriate content, they realized an Elfti+ alnoly battery with low pollution and excellent practical performance. In addition, in the example, a battery using a zinc hydrate negative electrode was explained, but in an open air battery or a sealed zinc-alkaline battery equipped with a hydrogen absorption mechanism, the permissible amount of hydrogen gas generated is relatively small. Therefore, when applying the present invention to such cases, it is possible to reduce the water rate even further, and in some cases, it can be carried out with the water being made anhydrous.

発明の効果 以上のように本発明は、負(モ亜j1)の水化率を低減
でき、低公害の亜)F+アルノノリ電池を1!Iるに極
めて効果的である。
Effects of the Invention As described above, the present invention can reduce the hydration rate of negative (MoA j1), and reduce the pollution of A)F+Alnoly battery by 1! It is extremely effective.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の実施例に用いたボタン形酸化銀電池の一部
を断面にした側面図である。 2 ・・・・・・亜鉛負(屯1,1 ・・・・・・レバ
レータ、5 ・・・・・・ 酸1ヒjl i’rI屯。
The figure is a partially sectional side view of a button-shaped silver oxide battery used in an example of the present invention. 2...Zinc negative (ton 1,1...leverator, 5...acid 1hijl i'rIton.

Claims (1)

【特許請求の範囲】[Claims] インジウムを0.005〜0.5重量%、ストロンチウ
ムを0.005〜0.2重量%、アルミニウム、カルシ
ウム、マグネシウムのうち一種以上を0.005〜0.
2重量%含有する亜鉛合金を負極活物質に用いた亜鉛ア
ルカリ電池。
0.005 to 0.5% by weight of indium, 0.005 to 0.2% by weight of strontium, and 0.005 to 0.5% of at least one of aluminum, calcium, and magnesium.
A zinc alkaline battery using a zinc alloy containing 2% by weight as the negative electrode active material.
JP60230160A 1985-10-16 1985-10-16 Zinc alkaline battery Expired - Lifetime JPH0622119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60230160A JPH0622119B2 (en) 1985-10-16 1985-10-16 Zinc alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60230160A JPH0622119B2 (en) 1985-10-16 1985-10-16 Zinc alkaline battery

Publications (2)

Publication Number Publication Date
JPS62143366A true JPS62143366A (en) 1987-06-26
JPH0622119B2 JPH0622119B2 (en) 1994-03-23

Family

ID=16903536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60230160A Expired - Lifetime JPH0622119B2 (en) 1985-10-16 1985-10-16 Zinc alkaline battery

Country Status (1)

Country Link
JP (1) JPH0622119B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3902650A1 (en) * 1989-01-30 1990-08-02 Varta Batterie GALVANIC PRIME ELEMENT
JPH03173731A (en) * 1989-11-10 1991-07-29 Acec Union Miniere Nv:Sa Powdered zinc for use in alkaline battery
JP2008530369A (en) * 2005-02-21 2008-08-07 セラヤ, エンパランツァ イ ガルドス, エス.エー.(セガサ) Zinc alloy powder for alkaline batteries

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3902650A1 (en) * 1989-01-30 1990-08-02 Varta Batterie GALVANIC PRIME ELEMENT
JPH03173731A (en) * 1989-11-10 1991-07-29 Acec Union Miniere Nv:Sa Powdered zinc for use in alkaline battery
JP2008530369A (en) * 2005-02-21 2008-08-07 セラヤ, エンパランツァ イ ガルドス, エス.エー.(セガサ) Zinc alloy powder for alkaline batteries

Also Published As

Publication number Publication date
JPH0622119B2 (en) 1994-03-23

Similar Documents

Publication Publication Date Title
US5139900A (en) Zinc alkaline cells
JPS62143366A (en) Zinc alkaline battery
JPS6290852A (en) Zinc alkaline cell
JPS61253764A (en) Zinc alkaline battery
JPS6290860A (en) Zinc alkaline cell
JPS61140066A (en) Zinc alkali battery
JPS6290857A (en) Zinc alkaline cell
JPS6273565A (en) Zinc alkaline battery
JPS6290859A (en) Zinc alkaline cell
JPS61140062A (en) Zinc alkali battery
JPS6290851A (en) Zinc alkaline cell
JPS60177553A (en) Zinc alkaline primary battery
JPS61140067A (en) Zinc alkali battery
JPS63178452A (en) Zinc alkaline battery
JPS61181069A (en) Zinc alkaline cell
JPS6290858A (en) Zinc alkaline cell
JPS61140064A (en) Zinc alkali battery
JPS61181067A (en) Zinc alkaline cell
JPS61140065A (en) Zinc alloy battery
JPS6290854A (en) Zinc alkaline cell
JPS61181065A (en) Zinc alkaline cell
JPS63133450A (en) Zinc alkaline battery
JPS636747A (en) Zince alkaline battery
JPH0365621B2 (en)
JPS6178062A (en) Zinc alkaline battery