[go: up one dir, main page]

JPS61251033A - X-ray exposing device - Google Patents

X-ray exposing device

Info

Publication number
JPS61251033A
JPS61251033A JP60091227A JP9122785A JPS61251033A JP S61251033 A JPS61251033 A JP S61251033A JP 60091227 A JP60091227 A JP 60091227A JP 9122785 A JP9122785 A JP 9122785A JP S61251033 A JPS61251033 A JP S61251033A
Authority
JP
Japan
Prior art keywords
ray
plasma
rays
window
out window
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60091227A
Other languages
Japanese (ja)
Other versions
JPH0638391B2 (en
Inventor
Yasunao Saito
斉藤 保直
Ikuo Okada
岡田 育夫
Hideo Yoshihara
秀雄 吉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP60091227A priority Critical patent/JPH0638391B2/en
Priority to EP86105914A priority patent/EP0201034B1/en
Priority to US06/857,112 priority patent/US4771447A/en
Priority to DE86105914T priority patent/DE3688946T2/en
Publication of JPS61251033A publication Critical patent/JPS61251033A/en
Publication of JPH0638391B2 publication Critical patent/JPH0638391B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001Production of X-ray radiation generated from plasma
    • H05G2/003Production of X-ray radiation generated from plasma the plasma being generated from a material in a liquid or gas state
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To reduce the damage to be inflicted on the X-ray lead-out window and to make thinner the film of the window by a method wherein the direction of the normal of the X-ray lead-out window and the central axis of a group of electrodes to be used for growing plasma are mutually inclined, and at the same time, the central position of the X-ray lead-out window is deviated from the extension line of the axial direction of the plasma. CONSTITUTION:X-rays 8 are irradiated from high-temperature and high-density plasma 7 on the central axis of a group of an upper electrode 5 and a lower electrode 6; and ions, electrons, high-temperature gas and so forth, which are generated in the degradative process of the high-density plasma 7, are emitted in addition to the X-rays 8. The X-rays 8 are nearly radiated isotropically from each point of the plasma 7 on the periphery of a wafer 12, while to the X-rays, the ions, the electrons and the high-temperature gas and so forth are emitted to the axial direction of the plasma. In this case, when an X-ray lead-out window 10 is set up at a position with a constant angle from the axial direction of the plasma, the damage to be inflicted on the X-ray lead-out window by the particle groups 9 can be almost ignored. Meanwhile, in the X-ray exposure, an out-of-focussed image delta=2rs/D is generated according to the diameter 2r of the X-ray source, the gap (s) between the wafer 12 and a mask 11 and the distance D between the X-ray source and the mask 11. It is not desirable for the normal of the X-ray lead-out window to make an angle to exceed 45 deg. with the central axis of the electrodes because the out-of-focussed image becomes larger when the angle exceeds 45 deg.. The effective lower limit of the inclination angle is sufficient at 2-3 deg..

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体集積回路製造のための微細バタン転写
用x&l露光装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an x&l exposure apparatus for fine pattern transfer for semiconductor integrated circuit manufacturing.

〔開示の概要〕[Summary of disclosure]

本発明はプラズマX線源を用いるX線露光装置において
、X線取り出し窓の法線方向とプラズマを生成させる一
組の電極の中心軸とを相互に傾け、かつX線取り出し窓
の中心位置を生成されるプラズマの軸方向延長線からず
らして設けることによって、プラズマからの粒子群によ
るX線引き出し窓の損傷を防ぎ、もってX線引き出し窓
の薄膜化によるX線の高効率引き出し、高速露光を可能
にしたX線露光装置の技術を開示したものである。なお
、この概要はあくまでも本発明の技術的内容に迅速にア
クセスするためにのみ供されるものであって、本発明の
技術的範囲および権利解釈に対しては何の影響も及ぼさ
ないものである。
The present invention provides an X-ray exposure apparatus using a plasma X-ray source, in which the normal direction of the X-ray extraction window and the central axis of a set of electrodes for generating plasma are tilted with respect to each other, and the center position of the X-ray extraction window is adjusted. By positioning it offset from the axial extension line of the generated plasma, it prevents damage to the X-ray extraction window due to particle groups from the plasma, and allows for high-efficiency extraction of X-rays and high-speed exposure by making the X-ray extraction window thinner. This paper discloses the technology of the X-ray exposure apparatus that has made this possible. Please note that this summary is provided solely for the purpose of quickly accessing the technical content of the present invention, and does not have any influence on the technical scope of the present invention or the interpretation of rights. .

〔従来の技術〕[Conventional technology]

集積回路の高密度化に伴ない、微細高精度な転写技術が
必要でありその一方法として、X線露光法がある。従来
、X線露光装置のX線源としては、アルミニウム、銅、
モリブデン、シリコン、パラジウム等の金属に電子線を
照射してX線を発生させる電子線励起方式が用いられて
いたが、X線発生効率が0.01%程度と低く、X線源
の高出力化が望めないため、生産性が低いという問題が
あった。これに比べX線発生効率が高く、高出力のX線
が得られるプラズマX線源が注目されている。プラズマ
X線源には細管放電、レーザ励起。
As the density of integrated circuits increases, fine and highly accurate transfer techniques are required, and one method is X-ray exposure. Conventionally, the X-ray sources for X-ray exposure equipment have been aluminum, copper,
An electron beam excitation method has been used in which metals such as molybdenum, silicon, and palladium are irradiated with electron beams to generate X-rays, but the X-ray generation efficiency is as low as 0.01%, and the X-ray source has a high output. There was a problem that productivity was low because there was no hope for improvement. In contrast, plasma X-ray sources are attracting attention because they have higher X-ray generation efficiency and can produce high-power X-rays. The plasma X-ray source uses capillary discharge and laser excitation.

プラズマフォーカス、ガス注入型放電等があり。There are plasma focus, gas injection type discharge, etc.

X線発生効率、出力安定性等からガス注入型放電が有効
である。
Gas injection type discharge is effective in terms of X-ray generation efficiency, output stability, etc.

第2図に従来のガス注入型放電法の一例を示す、lは真
空室、2は真空ポンプ、3は高速開閉ガスバルブのガス
溜め、4はピストン、5はガス注入通路を有する上部電
極、6はメツシュ状又は孔を有する下部電極、7はピン
チしたプラズマ。
Fig. 2 shows an example of a conventional gas injection discharge method, where l is a vacuum chamber, 2 is a vacuum pump, 3 is a gas reservoir for a high-speed opening/closing gas valve, 4 is a piston, 5 is an upper electrode having a gas injection passage, 6 7 is a lower electrode having a mesh shape or a hole, and 7 is a pinched plasma.

8は発生X線、9は粒子群、10はX線取り出し窓、1
1はマスク、12はウェハ、13はコンデンサ。
8 is the generated X-ray, 9 is the particle group, 10 is the X-ray extraction window, 1
1 is a mask, 12 is a wafer, and 13 is a capacitor.

14は放電スイッチ、15は高速開閉ガスバルブ、18
はリング状のガス通路、 17はガス塊、18は下部電
極を支持し、かつ放電空間を形成する導電性の支持体で
導体19によってコンデンサ13に接続されている。
14 is a discharge switch, 15 is a high-speed opening/closing gas valve, 18
17 is a gas mass; 18 is a conductive support that supports the lower electrode and forms a discharge space; and is connected to the capacitor 13 by a conductor 19.

ガス注入放電を起すにはまず、高速開閉ガスバルブ15
中のピストン4を高速に駆動し、瞬時にガス溜め3のガ
スをを放電電極間に注入して、真空中に対向した電極5
と電極6の間にガス塊17を形成する。電極間にガス塊
を形成すると同時にスイッチ14を閉じて、充電された
コンデンサ13により電極間に電圧を印加し、ガス塊1
7を電離して円柱状のプラズマを生成させる。さらに、
円柱状プラズマの中心軸方向(以後、プラズマ軸方向と
言う)に沿って流れる電流の作る磁場の圧力で上記のプ
ラズマを自己収束させ、プラズマを圧縮し。
To generate gas injection discharge, first open and close the gas valve 15 at high speed.
The piston 4 inside is driven at high speed, and the gas in the gas reservoir 3 is instantaneously injected between the discharge electrodes, and the electrodes 5 facing each other are placed in a vacuum.
A gas mass 17 is formed between the electrode 6 and the electrode 6. At the same time as a gas mass is formed between the electrodes, the switch 14 is closed, a voltage is applied between the electrodes by the charged capacitor 13, and the gas mass 1 is
7 is ionized to generate a cylindrical plasma. moreover,
The plasma is self-focused and compressed by the pressure of the magnetic field created by the current flowing along the central axis direction of the cylindrical plasma (hereinafter referred to as the plasma axis direction).

高温、高密度プラズマを生成する。この高密度プラグで
中のイオンと電子の相互作用でX線を発生させる。
Generates high temperature, high density plasma. This high-density plug generates X-rays through the interaction of the ions and electrons inside.

高温、高密度プラズマからはX線のほかに光等の電磁波
やイオン、電子、高温ガス等が放出され、ベリリウム等
のX線取り出し窓に損傷を与える。特に、第2図に示す
ように、ガス塊17がプラズマ化され、電極の中心軸に
プラズマ7が形成されるとき、プラズマの軸方向には高
エネルギのイオンや電子の粒子群9が大量に放射される
。従来この粒子群の影響を避けるため1粒子群のプラズ
マ径方向への放射が軸方向の・1/100〜1/1,0
00であるのを利用して第2図のようにX線取り出し窓
10、マスク11、ウェハ12等はピンチしたプラズマ
7の径方向に設置し、X線を支持体18に設けた孔から
取り出して露光させている。第3図はx!Ilマスクの
設置されている線源の径方向から撮影したX線ピンホー
ル写真によるX線源の形態である。
In addition to X-rays, high-temperature, high-density plasma emits electromagnetic waves such as light, ions, electrons, high-temperature gases, etc., which can damage beryllium and other X-ray extraction windows. In particular, as shown in FIG. 2, when a gas mass 17 is turned into plasma and a plasma 7 is formed on the central axis of the electrode, a large amount of high-energy ion and electron particle groups 9 are generated in the axial direction of the plasma. radiated. Conventionally, in order to avoid the influence of this particle group, the radiation of one particle group in the plasma radial direction was 1/100 to 1/1,0 of the axial direction.
00, the X-ray extraction window 10, mask 11, wafer 12, etc. are installed in the radial direction of the pinched plasma 7 as shown in FIG. It is exposed to light. Figure 3 is x! This is the form of an X-ray source based on an X-ray pinhole photograph taken from the radial direction of the source where an Il mask is installed.

この様な径方向露光ではマスク・ウニへ間隙を10〜2
0ILmとしてプロキシイミティ露光を行なった場合に
は、X線源形状が長い直線状であるため、半影ぼけが大
きくなり、微細バタン転写は不可能であった。
In such radial exposure, the gap between the mask and the sea urchin is 10 to 2
When proximity exposure was performed with 0ILm, the X-ray source shape was a long straight line, so the penumbra blur became large and fine batten transfer was impossible.

一方、プラズマ軸方向露光では、X線源径が小さく半影
ぼけが小さくなり、微細バタン転写に適するが、プラズ
マ軸方向に飛来する大きなエネルギを持った粒子、光等
によるx1i取り出し窓材の損傷が大きくなる。そのた
め、X線取り出し窓の口径を限定し、しかも厚い取り出
し窓材を使用する必要があったため、X線照射領域が小
さく、また、X線減衰も大きく、大面積での短時間露光
が困難であった。    。
On the other hand, in plasma axial exposure, the diameter of the X-ray source is small and the penumbra blur is small, making it suitable for fine baton transfer. becomes larger. Therefore, it was necessary to limit the diameter of the X-ray extraction window and use thick extraction window material, which resulted in a small X-ray irradiation area and large X-ray attenuation, making it difficult to expose a large area for a short time. there were. .

〔発明が解決し、ようとする間断点〕[Interruption point where the invention attempts to solve the problem]

本発明は従来のX線露光装置のX線のプラズマ径方向取
り出しにおける半影ぼけを防止し、かつプラズマ軸方向
取り出しにおけるX線取り出し窓の損傷を防ぎ、X!l
取り出し窓の薄膜化によって高速露光を可能にすること
を目的とする。
The present invention prevents penumbra blurring during extraction of X-rays in the plasma radial direction in a conventional X-ray exposure apparatus, prevents damage to the X-ray extraction window during plasma axial extraction, and prevents X! l
The aim is to enable high-speed exposure by making the extraction window thinner.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はX線取り出し窓の法線方向とプラズマを生成さ
せるための一組の電極との中心軸を相互に傾け、かつX
線取り出し窓の中心位置を発生されるプラズマ軸方向延
長線からずらすことによって上記目的を達成したもので
ある。
In the present invention, the normal direction of the X-ray extraction window and the central axis of a set of electrodes for generating plasma are tilted to each other, and
The above object is achieved by shifting the center position of the line extraction window from the axial extension line of the generated plasma.

〔作  用〕[For production]

X線取り出し窓材を損傷させる粒子群はプラズマ中心軸
方向に放出され、X線はプラズマから等方的に放出され
るので、上記手段によって、X線取り出し窓にX線のみ
を導くことができ、X線取り出し窓の損傷を防ぐことが
できる。
Particle groups that damage the X-ray extraction window material are emitted in the direction of the plasma center axis, and X-rays are emitted isotropically from the plasma, so the above method can guide only the X-rays to the X-ray extraction window. , damage to the X-ray extraction window can be prevented.

〔実 施 例〕〔Example〕

実施例1 第1図は本発明の一実施例であって、1は真空室、2は
真空室を排気する真空ポンプ、5は上部電極、6はメツ
シュ状又は孔を有する下部電極、7はピンチプラズマ、
8は発生X線、11はマスク、12はウェハ、13はコ
ンデンサ、14は放電スイッチ、15は高速開閉ガスバ
ルブ、24は充電電源、25は信号発生装置、2Bは遅
延回路、27は高電圧パルス発生装置、28は高速開閉
ガスバルブ駆動用電源、28は絶縁体、31はアライナ
−132はX線露光パイプである。
Embodiment 1 FIG. 1 shows an embodiment of the present invention, in which 1 is a vacuum chamber, 2 is a vacuum pump for evacuating the vacuum chamber, 5 is an upper electrode, 6 is a lower electrode having a mesh shape or holes, and 7 is a vacuum pump for evacuating the vacuum chamber. pinch plasma,
8 is a generated X-ray, 11 is a mask, 12 is a wafer, 13 is a capacitor, 14 is a discharge switch, 15 is a high-speed opening/closing gas valve, 24 is a charging power source, 25 is a signal generator, 2B is a delay circuit, 27 is a high voltage pulse 28 is a power supply for driving a high-speed opening/closing gas valve; 28 is an insulator; 31 is an aligner; and 132 is an X-ray exposure pipe.

これを動作するためには、真空室1を真空ポンプ2によ
り、 10−’ 〜10′)Torr程度まで排気し、
ガスポンベ30からネオンやクリプトン等の放電ガスを
高速開閉ガスバルブ15へ導入しておく、つぎに充電電
源24によりコンデンサ13を充電した後、信号発生装
置25の信号により、高速開閉ガスバルブ15の電源2
8を動作させ、高速開閉ガスバルブ15のピストン4を
駆動し、高電圧が印加される上部電極5と対向する下部
電極6の間にガス塊17を形成する。同時に信号発生器
25の信号は、電極5と電極6の間に放電用ガスが注入
される時間と一致するように設定された遅延パルサ2B
を通って、高電圧パルス発生装置27に入力され、高電
圧パルスで放電スイッチ14を動作させ、絶縁体28で
絶縁されている電極5と電極6の間に高電圧を印加し、
ガス塊17によって放電させる。ガスは放電によりプラ
ズマ化し、プラズマを流れる電流が作る磁場とプラズマ
中のイオン・電子の相互作用により、プラズマの中心方
向へ収束し、電極中心軸上で高温、高密度プラズマとな
りX線8が照射される。
In order to operate this, the vacuum chamber 1 is evacuated to about 10-' to 10' Torr using the vacuum pump 2.
A discharge gas such as neon or krypton is introduced from the gas pump 30 to the high-speed opening/closing gas valve 15. Next, after charging the capacitor 13 with the charging power supply 24, the power supply 2 of the high-speed opening/closing gas valve 15 is activated by a signal from the signal generator 25.
8 to drive the piston 4 of the high-speed opening/closing gas valve 15 to form a gas mass 17 between the upper electrode 5 to which a high voltage is applied and the opposing lower electrode 6. At the same time, the signal from the signal generator 25 is output from the delay pulser 2B, which is set to coincide with the time when the discharge gas is injected between the electrodes 5 and 6.
is inputted to the high voltage pulse generator 27 through the high voltage pulse, and operates the discharge switch 14 with the high voltage pulse, applying a high voltage between the electrode 5 and the electrode 6 which are insulated by the insulator 28,
A discharge is caused by the gas mass 17. The gas is turned into plasma by electric discharge, and due to the interaction between the magnetic field created by the current flowing through the plasma and the ions and electrons in the plasma, it converges toward the center of the plasma, forming a high-temperature, high-density plasma on the central axis of the electrode, and X-rays 8 are irradiated. be done.

第4図は放電電極部の詳細図である。4はガス開閉のピ
ストン、5は上部電極、6は下部電極、16はリング状
のガス注入通路、17は高速開閉ガスバルブから注入さ
れるガス塊、7はピンチしたプラズマ、8は発生したX
線、9は粒子群である。
FIG. 4 is a detailed view of the discharge electrode section. 4 is a gas opening/closing piston, 5 is an upper electrode, 6 is a lower electrode, 16 is a ring-shaped gas injection passage, 17 is a gas mass injected from a high-speed opening/closing gas valve, 7 is a pinched plasma, and 8 is a generated X
Line 9 is a particle group.

電極間でピンチしたプラズマ7からはX線8の他に高密
度プラズマの崩壊過程で生ずるイオンや電子、高温ガス
等が放出される。X線がプラズ′マの各点から周囲へほ
ぼ等方的に放射されるのに対し、イオン、電子、高温ガ
ス等はプラズマ軸方向を中心に放出される。
In addition to X-rays 8, ions, electrons, and high-temperature gas generated during the collapse process of the high-density plasma are emitted from the plasma 7 pinched between the electrodes. While X-rays are emitted almost isotropically from each point of the plasma to the surroundings, ions, electrons, high temperature gas, etc. are emitted mainly in the plasma axis direction.

プラズマ軸方向、下部電極より約150層層離れた位置
にアルミニウム箔を置いて、プラズマからの粒子群によ
るアルミニウム箔の損傷の様子を調べると、第5図に示
すようにアルミニウム箔の損傷は、中心部分に集中して
おり、中心から2〜3c+sのところでは、損傷の割合
が急激に減少している0本実施例では、X線取り出し窓
が、プラズマ軸方向から一定の角度の位置に設置された
構造となっているため、プラズマからの粒子群による損
傷をほとんど無視できる。
An aluminum foil was placed approximately 150 layers away from the lower electrode in the plasma axis direction, and damage to the aluminum foil caused by particles from the plasma was examined. As shown in Figure 5, the damage to the aluminum foil was as follows. The damage is concentrated in the center, and the damage rate rapidly decreases at 2 to 3c+s from the center. In this example, the X-ray extraction window is installed at a constant angle from the plasma axis direction. Because of this structure, damage caused by particles from the plasma can be almost ignored.

一方、X線露光では第6図に示すようにX線源径2r、
ウェハ・マスク間隔s、XdJ源からマスクまでの距離
りによって、半影ぼけδ= 2rs/Dが生ずる。また
X線源径は第6図からもわかるように、プラズマ軸方向
から一定の角度に設置したX線取り出し窓から見ると長
円形となり、X線源径が大きくなる。しかし、本実施例
では、X線源径の増加は、X線のプラズマ軸方向取り出
しに比べ、 2.5倍の5鵬塵程度となるが、X線の強
度分布は中心部分が強くなっており、実質上のX線源径
は3■程度又はそれ以下となる。このときの半影ぼけδ
=0.15pm以下であり、現用装置に比べ大きな値で
はなく、  0.51Lmバタン転写用X線露光装置と
して障害となることはない。
On the other hand, in X-ray exposure, as shown in Figure 6, the X-ray source diameter is 2r,
The wafer-mask spacing s, XdJ source-to-mask distance results in a penumbral blur δ=2rs/D. Further, as can be seen from FIG. 6, the X-ray source diameter becomes elliptical when viewed from the X-ray extraction window installed at a constant angle from the plasma axis direction, and the X-ray source diameter becomes large. However, in this example, the increase in the diameter of the X-ray source is approximately 2.5 times that of X-ray extraction in the axial direction of the plasma, about 5 times, but the intensity distribution of the X-rays becomes stronger in the center. Therefore, the actual diameter of the X-ray source is approximately 3 cm or less. Penumbral blur δ at this time
= 0.15 pm or less, which is not a large value compared to current equipment, and will not pose a problem as an X-ray exposure equipment for 0.51 Lm baton transfer.

X線引き出し窓の法線と上部電極、下部電極の中心軸の
なす角度は45@をこえると上述した径方向露光の欠点
、すなわち半影ぼけが大きくなるので好ましくない、有
効な傾き角の下限は露光装置の構成によって異なるが、
通常の装置構成では2°〜3°で充分である。また露光
むら、パターンずれを防ぐためにはX線取り出し窓の周
縁部、マスク、ウェハの周縁部をX線源に関して対称関
係を保つようにするのは当然である。
If the angle between the normal line of the X-ray extraction window and the central axes of the upper and lower electrodes exceeds 45@, the disadvantage of radial exposure described above, that is, the penumbra blur will increase, which is undesirable.This is the lower limit of the effective tilt angle. varies depending on the configuration of the exposure equipment, but
In a normal device configuration, 2° to 3° is sufficient. Furthermore, in order to prevent uneven exposure and pattern deviation, it is natural to maintain a symmetrical relationship between the peripheral edge of the X-ray extraction window, the mask, and the wafer with respect to the X-ray source.

実施例2 第7図はX線源部を傾斜する代りに、プラズマ軸からあ
る傾斜角をもつ方向にX線取り出し窓を複数個設置し、
その延長上にウェハとマスクを設置させる構造としたも
ので、5は上部電極、6は下部電極、7はピンチしたプ
ラズマ、8は発生したX線、9は粒子群、 10はX線
取り出し窓、11はマスク、12はウェハである。ピン
チしたプラズマ7から発生する粒子群9はほとんどがプ
ラズマ軸方向に集中しているため、プラズマ軸方向にX
線取り出し窓を設置するものに比べ、X線取り出し窓1
0に加わる損傷が小さく、ベリリウム等のX線取り出し
窓を薄くすることが可能である。さらにX線取り出し窓
lOを複数個有しているため、1回の露光により複数枚
のウェハを露光することができる0本実施例では下部電
極のプラズマ軸方向に孔をあけていないが、当然プラズ
マ軸方向に孔あけしでも効果は変らない。
Embodiment 2 In Fig. 7, instead of tilting the X-ray source section, multiple X-ray extraction windows are installed in a direction with a certain tilt angle from the plasma axis.
The structure is such that a wafer and a mask are installed on the extension, 5 is the upper electrode, 6 is the lower electrode, 7 is the pinched plasma, 8 is the generated X-ray, 9 is the particle group, and 10 is the X-ray extraction window. , 11 is a mask, and 12 is a wafer. Since most of the particle group 9 generated from the pinched plasma 7 is concentrated in the plasma axis direction,
Compared to those with an X-ray extraction window,
The damage caused to zero is small, and it is possible to make the X-ray extraction window made of beryllium or the like thinner. Furthermore, since it has multiple X-ray extraction windows, it is possible to expose multiple wafers in one exposure.In this example, no holes are made in the plasma axis direction of the lower electrode, but of course Even if holes are made in the direction of the plasma axis, the effect remains the same.

第7図の実施例において、X線取り出し窓、マスク及び
ウェハの法線を上部電極、下部電極の中心軸と平行に配
設すると、マスクの位置によってX線強度が異なるので
露光むらを生じ、また電極中心軸に近いマスク周縁部と
電極中心軸から遠いマスク周縁部とでマスクに対するX
線の入射角が異なるのでバタンずれを生ずる。窓、マス
ク、ウェハのそれぞれをその周縁部がX線源に対して対
称関係にあるように配設することはいうまでもない。
In the embodiment shown in FIG. 7, if the normal lines of the X-ray extraction window, mask, and wafer are arranged parallel to the central axes of the upper and lower electrodes, the X-ray intensity varies depending on the position of the mask, resulting in uneven exposure. In addition, the X with respect to the mask is
Since the incident angles of the lines are different, a deviation occurs. It goes without saying that the window, mask, and wafer are each arranged so that their peripheral edges are symmetrical with respect to the X-ray source.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、円柱状のプラズマのプラズマ軸方
向に対して、角度をもってX線を取り出すことにより、
プラズマから発生するイオンや電子、高温ガス等による
X線取り出し窓の損傷を少°なくでき、薄膜のX線取り
出し窓が使用できると同時にX線源距離を短かくできる
ため、プラズマから発生するX線を高効率で利用できる
利点がある。
As explained above, by extracting X-rays at an angle to the plasma axis direction of the cylindrical plasma,
Damage to the X-ray extraction window due to ions, electrons, high-temperature gas, etc. generated from the plasma can be reduced, and a thin film X-ray extraction window can be used, while the distance to the X-ray source can be shortened. It has the advantage of being able to use wires with high efficiency.

さらに、高効率X線取り出しによりスループットの向上
が図れると同時に、X線源径が径方向取り出しに比べ小
さいため、プロキシイミティ露光でサブミクロン転写が
可能である。
Furthermore, throughput can be improved by high-efficiency X-ray extraction, and at the same time, since the diameter of the X-ray source is smaller than in radial extraction, submicron transfer is possible with proximity exposure.

このような、X線の傾き取り出し構成は、X線分析装置
、X線顕微鏡、X線励起による化学反応装置、X線励起
を利用する膜形成装置ならびにX線励起を利用するエツ
チング装置に適用してそれら装置の小型化、反応の促進
等に用いることもできる。
Such an X-ray gradient extraction configuration can be applied to an X-ray analyzer, an X-ray microscope, a chemical reaction device using X-ray excitation, a film forming device using X-ray excitation, and an etching device using X-ray excitation. It can also be used to miniaturize these devices, promote reactions, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成図。 第2図は従来のプラズマX線源の構成図、第3図は従来
のプラズマX線源の形態を示す図、 第4図は第1図の放電電極部分の拡大図、第5図はプラ
ズマ軸方向におけるプラズマからの粒子群によるダメイ
ジの様子を示す図、第6図はX線露光における半影ぼけ
δを説明する図、 第7図は本発明の他の実施例を示す図である。 1・・・真空室、 2・・・真空ポンプ、 3・・・ガス溜め。 4・・・ピストン、 5・・・上部電極。 6・・・下部電極、 7・・・ピンチしたプラズマ、 8・・・発生したX線、 9・・・粒子群、 10・・・X線取り出し窓。 11・・・マスク、 12・・・ウェハ。 13・・・コンデンサ、 14・・・放電スイッチ、 15・・・高速開閉ガスバルブ。 17・・・ガス塊、 24・・・充電電源、 25・・・信号発生装置、 2B・・・遅延パルサ、 27・・・高電圧パルス発生器、 28・・・高速開閉ガスバルブ駆動用電源、28・・・
絶縁体、 30・・・ガスボンベ。 31・・・アライナ−1 32・・・X線露光パイプ。
FIG. 1 is a configuration diagram of an embodiment of the present invention. Fig. 2 is a configuration diagram of a conventional plasma X-ray source, Fig. 3 is a diagram showing the form of a conventional plasma FIG. 6 is a diagram illustrating the state of damage caused by particle groups from plasma in the axial direction, FIG. 6 is a diagram illustrating penumbral blur δ in X-ray exposure, and FIG. 7 is a diagram illustrating another embodiment of the present invention. 1...Vacuum chamber, 2...Vacuum pump, 3...Gas reservoir. 4... Piston, 5... Upper electrode. 6... Lower electrode, 7... Pinched plasma, 8... Generated X-rays, 9... Particle group, 10... X-ray extraction window. 11...Mask, 12...Wafer. 13... Capacitor, 14... Discharge switch, 15... High speed opening/closing gas valve. 17... Gas mass, 24... Charging power source, 25... Signal generator, 2B... Delay pulser, 27... High voltage pulse generator, 28... High speed opening/closing gas valve driving power source, 28...
Insulator, 30...Gas cylinder. 31... Aligner-1 32... X-ray exposure pipe.

Claims (1)

【特許請求の範囲】 1)プラズマX線源を用いるX線露光装置において、X
線取り出し窓の法線方向とプラズマ発生のための一組の
電極の中心軸とを傾け、かつ前記X線取り出し窓の中心
位置を発生されるプラズマの軸方向延長線からずらして
設けたことを特徴とするX線露光装置。 2)X線取り出し窓が複数であることを特徴とする特許
請求の範囲第1項記載のX線露光装置。
[Claims] 1) In an X-ray exposure apparatus using a plasma X-ray source,
The normal direction of the X-ray extraction window and the central axis of the set of electrodes for plasma generation are tilted, and the center position of the X-ray extraction window is shifted from the axial extension line of the generated plasma. Characteristics of X-ray exposure equipment. 2) The X-ray exposure apparatus according to claim 1, characterized in that there is a plurality of X-ray extraction windows.
JP60091227A 1985-04-30 1985-04-30 X-ray exposure device Expired - Lifetime JPH0638391B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60091227A JPH0638391B2 (en) 1985-04-30 1985-04-30 X-ray exposure device
EP86105914A EP0201034B1 (en) 1985-04-30 1986-04-29 X-ray source
US06/857,112 US4771447A (en) 1985-04-30 1986-04-29 X-ray source
DE86105914T DE3688946T2 (en) 1985-04-30 1986-04-29 X-ray source.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60091227A JPH0638391B2 (en) 1985-04-30 1985-04-30 X-ray exposure device

Publications (2)

Publication Number Publication Date
JPS61251033A true JPS61251033A (en) 1986-11-08
JPH0638391B2 JPH0638391B2 (en) 1994-05-18

Family

ID=14020534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60091227A Expired - Lifetime JPH0638391B2 (en) 1985-04-30 1985-04-30 X-ray exposure device

Country Status (1)

Country Link
JP (1) JPH0638391B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02500625A (en) * 1987-08-25 1990-03-01 ハンプシャー インスツルメンツ,インコーポレーテッド Target placement for smallest strips
JP2008522379A (en) * 2004-12-04 2008-06-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method and apparatus for operating an electrical discharge device
JP2008522355A (en) * 2004-11-29 2008-06-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method and apparatus for generating radiation in the wavelength range from about 1 nm to about 30 nm, and use in a lithographic apparatus or measuring apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS607723A (en) * 1983-06-28 1985-01-16 Nippon Telegr & Teleph Corp <Ntt> Plasma x-ray exposing device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS607723A (en) * 1983-06-28 1985-01-16 Nippon Telegr & Teleph Corp <Ntt> Plasma x-ray exposing device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02500625A (en) * 1987-08-25 1990-03-01 ハンプシャー インスツルメンツ,インコーポレーテッド Target placement for smallest strips
JPH0439221B2 (en) * 1987-08-25 1992-06-26
JP2008522355A (en) * 2004-11-29 2008-06-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method and apparatus for generating radiation in the wavelength range from about 1 nm to about 30 nm, and use in a lithographic apparatus or measuring apparatus
JP2008522379A (en) * 2004-12-04 2008-06-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method and apparatus for operating an electrical discharge device

Also Published As

Publication number Publication date
JPH0638391B2 (en) 1994-05-18

Similar Documents

Publication Publication Date Title
US6924493B1 (en) Ion beam lithography system
CN100466879C (en) Neutral particle beam processing equipment
JPS59175125A (en) Dry etching device
US5327475A (en) Soft x-ray submicron lithography using multiply charged ions
JPH09115694A (en) Plasma treatment device
JPS61251033A (en) X-ray exposing device
KR20230017313A (en) Processing system and extraction assembly including high angle extraction optics
US3998718A (en) Ion milling apparatus
JPH0372183B2 (en)
JPS607723A (en) Plasma x-ray exposing device
JPH0614456B2 (en) Ultra-fine shape soft X-ray generator and method
JPS62235484A (en) thin film device
JPH0473288B2 (en)
JPH0535537B2 (en)
JPH0373101B2 (en)
CN1320947A (en) DC Plasma Ion Implantation Apparatus Using Grounded Conductive Grid
JP5733687B2 (en) Method for manufacturing plasma light source
JPH03201399A (en) Method of generating x-ray
JPS62180747A (en) Electric discharge reaction device
JP2024532942A (en) Uniform plasma linear ion source
JPS60211942A (en) Plasma processing device
JPS6094724A (en) dry etching equipment
JPH11233288A (en) Pinch plasma generation method and its device
JPH0578849A (en) High magnetic field microwave plasma treating device
JP2739889B2 (en) Process equipment by electronic excitation

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term