[go: up one dir, main page]

JPS61226661A - Automatic analyzing instrument - Google Patents

Automatic analyzing instrument

Info

Publication number
JPS61226661A
JPS61226661A JP6740985A JP6740985A JPS61226661A JP S61226661 A JPS61226661 A JP S61226661A JP 6740985 A JP6740985 A JP 6740985A JP 6740985 A JP6740985 A JP 6740985A JP S61226661 A JPS61226661 A JP S61226661A
Authority
JP
Japan
Prior art keywords
absorbancy
measuring
sample
wavelength
absorbance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6740985A
Other languages
Japanese (ja)
Other versions
JPH0576572B2 (en
Inventor
Kiyokazu Nakano
中野 清和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP6740985A priority Critical patent/JPS61226661A/en
Publication of JPS61226661A publication Critical patent/JPS61226661A/en
Publication of JPH0576572B2 publication Critical patent/JPH0576572B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To make possible the automatic measurement of concn. even if a sample having a high concn. of the component to be detected is included by preparing preliminarily plural kinds of measuring wavelengths of a photometer and selecting the measuring wavelength in such a manner that the measuring absorbancy is kept within the preset range for assuring the linearity of the absorbancy. CONSTITUTION:The light of a wavelength lambda1 is irradiated from a measuring part 13 to a reaction vessel 3 and the measuring absorbancy A1 thereof is obtd. by a detector 28 and a measuring absorbancy calculating part 29. The measuring absorbancy A1 and the set absorbancy Ao1 which assures the linearity of the absorbancy with the wavelength lambda1 stored in a set absorbancy storage part 30 are compared in a relational discriminating part 31. In case of A1>Ao1, the change-over signal to the wavelength lambda2 is outputted to a motor 27 of a filter-mounted rotor 23 and similarly the measuring absorbancy A2 and the set absorbancy Ao2 at the wavelength lambda2 are compared. The concn. of the component to be detected is determined from (A2-Ab2)K2 in a calculating part 32 for the concn. of the component to be measured in the case of A2<=Ao2.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、自動分析装置に関し、更に詳しくは、臨床
生化学検査などにおける血清、尿などの生体液試料につ
いて特定の被検成分濃度を自動的に測定できる自動分析
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to an automatic analyzer, and more specifically, to an automatic analyzer for measuring the concentration of specific test components in biological fluid samples such as serum and urine in clinical biochemical tests. This invention relates to an automatic analyzer that can perform automatic measurements.

(ロ)従来の技術 上述のごとき自動分析装置は、従来、反応条件(試料量
、試薬量、試薬添加時間、反応時間)、測定条件(測定
波長、測定時間など)を、各被検成分ごとに、広い濃度
範囲について、必要な測定精度を維持できるようにして
いる。
(b) Conventional technology Automatic analyzers such as those described above conventionally set reaction conditions (sample amount, reagent amount, reagent addition time, reaction time) and measurement conditions (measurement wavelength, measurement time, etc.) for each analyte. Additionally, the required measurement accuracy can be maintained over a wide concentration range.

、しかし、実際に扱う試料の中には、非常に高濃度のも
のがあり、測定精度を保障できないことがしばしば起こ
っている。例えば、被検成分としてのCPK (クレア
チンホスホキナーゼ)、グルコースなとは、健康人では
低い値を示すが、特定の病人ではきわめて高い値を示す
。この場合は、試料を希釈して再検査を行うことになり
、この際の試料および分析データの取扱いが?!雑で、
通常のものとの取違いなどのトラブルが多いという問題
があった。
However, some of the samples actually handled have extremely high concentrations, and measurement accuracy is often not guaranteed. For example, CPK (creatine phosphokinase) and glucose as test components show low values in healthy people, but extremely high values in certain diseased people. In this case, the sample will be diluted and retested. How should the sample and analytical data be handled in this case? ! It's sloppy,
There was a problem in that there were many troubles such as confusion with regular products.

(ハ)目 的 この発明は、これらの事情に鑑みなされたちので、その
主要な目的の一つは、被検成分濃度の高い試料が含まれ
ていても、所定の測定精度を保障して自動的に濃度測定
が可能になる自動分析装置を提供することにある。
(c) Purpose This invention was developed in view of these circumstances, and one of its main purposes is to automatically guarantee a predetermined measurement accuracy even if the sample contains a sample with a high concentration of analyte. The object of the present invention is to provide an automatic analyzer that enables concentration measurement in a timely manner.

(ニ)構 成 この発明は、多数の反応容器と、多数の試料容器と、こ
れらの試料容器から各反応容器に試料を採取する試料採
取器と、各反応容器の搬送手段と、各反応容器に分析試
薬を添加する試薬分注器と、各反応容器を一定温度に保
持する恒温槽と、各反応容器を測定する光度計とを備え
、この光度計が、複数波長について各反応容器の吸光度
を測定する測定部と、予め設定された吸光度直線性保障
値内にある測定吸光度値のうち、最も高感度に検出でき
る波長のものに基づいて、試料中の被検成分濃度を演算
し、出力する演算部とからなる自動分析装置である。
(D) Configuration This invention includes a large number of reaction containers, a large number of sample containers, a sample collector for collecting samples from these sample containers into each reaction container, a means for transporting each reaction container, and a plurality of reaction containers. A reagent dispenser that adds analytical reagents to the sample, a constant temperature bath that maintains each reaction container at a constant temperature, and a photometer that measures each reaction container.This photometer measures the absorbance of each reaction container at multiple wavelengths. The concentration of the analyte in the sample is calculated and output based on the measurement unit that measures the wavelength and the wavelength that can be detected with the highest sensitivity among the measured absorbance values that are within the preset absorbance linearity guarantee value. This is an automatic analyzer consisting of a calculation section that performs the following steps.

すなわち、この発明は、光度計の測定波長を予め複数種
用意しておき、測定吸光度が予め設定された吸光度直線
性保障範囲内に収まるように、測定波長を選択でき、そ
れによって上記目的を達成するものである。
That is, the present invention can prepare a plurality of measurement wavelengths for the photometer in advance, and select the measurement wavelength so that the measured absorbance falls within a preset guaranteed absorbance linearity range, thereby achieving the above object. It is something to do.

血清(漿)、尿などの生体液試料の被検成分としては、
種々知られているが、特にCPK (クレアチンホスホ
キナーゼ)、グルコース、LDH(乳酸脱水素酵素)、
α−HBD (α−ヒドロキシ酪酸脱水素酵素ン、γ−
GTP(γ−グルタミルトランスペブチターゼ)、α−
AMY (α−アミラーゼ〉等は超高値(高濃度値)を
示す可能性があり、この発明の自動分析装置での測定に
適している。特に、尿試料や酵素活性測定項目のように
、試料中のダイナミックレンジが広くしかも測定精度を
必要とするために微量サンプリングが雌しい被検成分の
分析に適している。
Test components of biological fluid samples such as serum (plasma) and urine include:
Various types of enzymes are known, especially CPK (creatine phosphokinase), glucose, LDH (lactate dehydrogenase),
α-HBD (α-hydroxybutyrate dehydrogenase, γ-
GTP (γ-glutamyl transpebutidase), α-
AMY (α-amylase), etc. may show extremely high values (high concentration values), and are suitable for measurement with the automatic analyzer of this invention.Especially, samples such as urine samples and enzyme activity measurement items are suitable for measurement. Because the dynamic range of the sample is wide and measurement accuracy is required, trace sampling is suitable for analyzing the target components.

(ホ)実施例 以下図に示す実施例に基づいてこの発明を詳述する。な
お、これによってこの発明が限定を受けるものではない
(e) Examples The present invention will be described in detail below based on examples shown in the drawings. Note that this invention is not limited by this.

第1図において、自動生化学分析装置(1)は、多数の
反応容器(2) f31・・・・・・と、多数の試料容
器[5) (61・・・・・・と、試料採取器(8)と
、反応容器搬送用コンベア(9)と、試薬分注器ω)口
11)(121と、反応容器を一定温度に保持する恒温
槽(図示省略)と、光度計03)とから主として構成さ
れている。なお、(14)は試料架設台、05)は洗浄
水ライン、(社)は廃液ラインである。
In Fig. 1, the automatic biochemical analyzer (1) includes a large number of reaction vessels (2) f31..., a large number of sample containers [5] (61...), and sample collection. (8), a conveyor (9) for transporting reaction containers, a reagent dispenser (ω) port 11) (121), a constant temperature bath (not shown) for keeping the reaction container at a constant temperature, and a photometer 03). It is mainly composed of. Note that (14) is a sample mounting stand, 05) is a washing water line, and 05) is a waste liquid line.

而して光度計03)は、測定部面と演算部(181とか
らなり、測定部[F]は、光源ランプの、レンズ■、ミ
ラー&1) B及びフィルタ架設ロータ弼を備え、この
フィルタ架設ロータには、第2図のごとく、干渉フィル
タ(波長λ1)に)、同(波長λ2)V!A、同(波長
λ3)(ホ)、・・・・・・が架設され、モータ(27
Iの回転によって、使用する干渉フィルタを切換えるこ
とができる。
The photometer 03) consists of a measuring section and a calculating section (181), and the measuring section [F] is equipped with a light source lamp, a lens (1), a mirror &1) B, and a filter mounting rotor. As shown in Fig. 2, the rotor has an interference filter (wavelength λ1)) and an interference filter (wavelength λ2) V! A, the same (wavelength λ3) (e), ...... are installed, and the motor (27
By rotating I, the interference filter to be used can be changed.

次に演算部□□□は、検出器(至)、測定吸光度演算部
の、設定吸光度記憶部用、測定吸光度と設定吸光度とを
比較し、それによって所定の信号を出力する比較判定部
(31)及び被検成分濃度演算部σ2から主としてなる
Next, the calculation unit □□□ compares the detector (to), the measurement absorbance calculation unit, the set absorbance storage unit, the measured absorbance and the set absorbance, and outputs a predetermined signal accordingly. ) and a test component concentration calculating section σ2.

さて、反応容器(3)は、試料採取器(8)によって、
試料架設台(14)の試料容器(6)から試料の供給を
受け、コンベア(9)で搬送されるうちに、試薬分注器
001にて第1試薬を、試薬分注器(111にて第2試
薬を、更に試薬分注器色にて第3試薬をそれぞれ添加さ
れる。かくして、試料(被検成分)の反応が終了すると
、反応容器(3)に測定部(131から波長(A1)の
光が照射され、そ′の測定吸光度A1が、検出器(至)
及び測定吸光度演算部(ハ)によって得られ、更に比較
判定部l31)において、その測定吸光度A1と、設定
吸光度記憶部用で記憶されていた、波長λ1について吸
光度直線性を保障する設定吸光度Ao□とが比較される
。そして A1≦AO! の場合は、十分吸光度直線性を保障できる範囲内での測
定として、測定吸光度A1を被検成分濃度演算部■へ出
力し、被検成分濃度を次式で演算させ、濃度信号として
出力させる。
Now, the reaction vessel (3) is sampled by the sample collector (8).
A sample is supplied from the sample container (6) of the sample mounting table (14), and while being transported by the conveyor (9), the first reagent is dispensed with the reagent dispenser 001 and the first reagent is dispensed with the reagent dispenser (111). The second reagent and then the third reagent are added using the color of the reagent dispenser.Thus, when the reaction of the sample (analyte component) is completed, the wavelength (A1 ) is irradiated with light, and its measured absorbance A1 is detected by the detector (toward).
and the measured absorbance A1 obtained by the measured absorbance calculating section (c), and further in the comparison/judgment section l31), the measured absorbance A1 and the set absorbance Ao□ which guarantees absorbance linearity for the wavelength λ1, which was stored for the set absorbance storage section. are compared. And A1≦AO! In the case of , the measured absorbance A1 is output to the test component concentration calculation section (2) as a measurement within a range that can ensure sufficient absorbance linearity, and the test component concentration is calculated by the following equation and output as a concentration signal.

(A1 Al)1)Kt 但し、Al11は測定波長λ1 (第3図のごとく最も
高感度に検出できる波長である)における試薬ブランク
液吸光度、K1は同λ1における濃度換算係数である。
(A1 Al) 1) Kt However, Al11 is the absorbance of the reagent blank solution at the measurement wavelength λ1 (which is the wavelength that can be detected with the highest sensitivity as shown in FIG. 3), and K1 is the concentration conversion coefficient at the same wavelength λ1.

一方 At>AOL の場合は、フィルタ架設ロータ(ハ)のモータ弼に波長
λ2への切換信号を出力し、同様にして測定吸光度A2
と波長λ2における設定吸光度AO2とを比較する。そ
して A2≦AO2 の場合は、被検成分濃度演算部■にて、(A2  Ab
 2 )K2より被検成分濃度を求める。
On the other hand, if At>AOL, output a switching signal to the wavelength λ2 to the motor of the filter installation rotor (c), and similarly measure the absorbance A2.
and the set absorbance AO2 at wavelength λ2. In the case of A2≦AO2, the test component concentration calculation section ■ calculates (A2 Ab
2) Determine the concentration of the test component from K2.

更に A2 >Ao 2 の場合は、同様にして波長λ3における測定吸光度A3
を求める。通常この波長λ3で測定すれば、はとんど吸
光度直線性が保障できるので、得られた測定吸光度A3
に基づいて被検成分濃度演算部(ト)にて (At −Atl s > Ka を直接求め、出力する。
Furthermore, in the case of A2 > Ao 2 , the measured absorbance A3 at wavelength λ3 is similarly calculated.
seek. Normally, if measurement is performed at this wavelength λ3, absorbance linearity can be almost guaranteed, so the measured absorbance A3
Based on this, the test component concentration calculation unit (G) directly calculates (At - Atls > Ka) and outputs it.

以上のごとく、この装置(1)によれば、被検成分濃度
が超高値の試料であっても再検査をほとんど行なうこと
なく、自動分析でき、試料、分析試薬、時間などを節約
できる。また試料や分析データの取扱いの複雑化をさけ
ることもできる。
As described above, according to this device (1), even a sample with an extremely high concentration of a test component can be automatically analyzed with almost no retesting, thereby saving samples, analytical reagents, time, etc. It is also possible to avoid complicating the handling of samples and analytical data.

なお、以上の実施例では、濃度測定法は、エンドポイン
ト法を用いたが、レート法の採用も可能である。例えば
、実施例でのA1、Ablとして、単位時間あたりの吸
光度変化ΔAt/Δt1ΔAb□/Δ℃をそれぞれ用い
ればよい。
In the above embodiments, the endpoint method was used as the concentration measurement method, but the rate method may also be used. For example, the absorbance change ΔAt/Δt1ΔAb□/Δ°C per unit time may be used as A1 and Abl in the example, respectively.

また異なる波長λ1、A2、A3を実施例のごとく、順
に(経時的に)用いて測定するのではなく、同時に測定
し、検出器にて異なる信号として各演算又は判定部へ出
力するようにしてもよい。
In addition, instead of measuring the different wavelengths λ1, A2, and A3 sequentially (over time) as in the embodiment, they are measured simultaneously, and the detector outputs them as different signals to each calculation or judgment section. Good too.

更に測定法として二波長測光法を採用することも可能で
ある。
Furthermore, it is also possible to employ dual wavelength photometry as a measurement method.

分析試薬は、実施例のごとく3種類用いられる例のほか
、1.2種類などの例もある。更に分析試薬(成分)と
して、平面的な媒体(フィルムなど)に展開保持された
ものを用いることもできる。
In addition to examples in which three types of analytical reagents are used as in the example, there are also examples in which 1.2 types are used. Furthermore, as the analytical reagent (component), one developed and held on a flat medium (such as a film) can also be used.

またこれらの分析試薬(成分)の複数種と、試料被検成
分の浸透・濾過材とが多層に積層形成されてなる媒体を
用いてもよい。
Alternatively, a medium may be used in which a plurality of these analytical reagents (components) and a permeation/filtration material for sample test components are laminated in multiple layers.

(へ)効 果 この発明によれば、試料中に被検成分濃度の高い試料が
含まれていても、再度測定しなおしすることもなく、所
定測定精度を保障して自動的に濃度測定できる。
(F) Effects According to the present invention, even if a sample contains a sample with a high concentration of the component to be tested, the concentration can be automatically measured while ensuring the predetermined measurement accuracy without having to re-measure the sample. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す構成説明図、第2図
はそのフィルタ架設ロータの平面図、第3図は測定波長
(A1、A2、A3)と得られる測定吸光度との関係を
示すグラフである。 (1)・・・・・・自動生化学分析装置、+21 +3
+・・・・・・反応容器、  (5) (61・・・・
・・試料容器、(8)・・・・・・試料採取器、 (9)・・・・・・反応容器搬送用コンベア、鳴αD面
・・・・・・試薬分注器、 03・・・・・・光度計、    0着・・・・・・測
定部、■・・・・・・演算部、 (ハ)・・・・・・測定吸光度演算部、田・・・・・・
設定吸光度記憶部、 (31)・・・・・・比較判定部、 ■・・・・・・被検成分濃度演算部。
Fig. 1 is a configuration explanatory diagram showing an embodiment of the present invention, Fig. 2 is a plan view of the filter-installed rotor, and Fig. 3 shows the relationship between the measurement wavelengths (A1, A2, A3) and the measured absorbance obtained. This is a graph showing. (1)・・・Automatic biochemical analyzer, +21 +3
+...Reaction container, (5) (61...
... Sample container, (8) ... Sample collector, (9) ... Conveyor for conveying reaction containers, Ning αD surface ... Reagent dispenser, 03 ... ...Photometer, 0th place...Measurement section, ■...Calculation section, (c)...Measurement absorbance calculation section, field...
Setting absorbance storage section, (31)... Comparison/judgment section, ■... Test component concentration calculation section.

Claims (1)

【特許請求の範囲】 1、多数の反応容器と、多数の試料容器と、これらの試
料容器から各反応容器に試料を採取する試料採取器と、
各反応容器の搬送手段と、各反応容器に分析試薬を添加
する試薬分注器と、各反応容器を一定温度に保持する恒
温槽と、各反応容器を測定する光度計とを備え、 この光度計が、複数波長について各反応容器の吸光度を
測定する測定部と、予め設定された吸光度直線性保障値
内にある測定吸光度値のうち、最も高感度に検出できる
波長のものに基づいて、試料中の被検成分濃度を演算し
、出力する演算部とからなる自動分析装置。
[Claims] 1. A large number of reaction containers, a large number of sample containers, and a sample collector for collecting samples from these sample containers into each reaction container;
It is equipped with a means for transporting each reaction container, a reagent dispenser for adding an analytical reagent to each reaction container, a constant temperature bath for maintaining each reaction container at a constant temperature, and a photometer for measuring each reaction container. The meter has a measuring section that measures the absorbance of each reaction container at multiple wavelengths, and the sample is selected based on the wavelength that can be detected with the highest sensitivity among the measured absorbance values that are within the preset absorbance linearity guaranteed value. An automatic analyzer consisting of a calculation section that calculates and outputs the concentration of the test component in the sample.
JP6740985A 1985-03-30 1985-03-30 Automatic analyzing instrument Granted JPS61226661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6740985A JPS61226661A (en) 1985-03-30 1985-03-30 Automatic analyzing instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6740985A JPS61226661A (en) 1985-03-30 1985-03-30 Automatic analyzing instrument

Publications (2)

Publication Number Publication Date
JPS61226661A true JPS61226661A (en) 1986-10-08
JPH0576572B2 JPH0576572B2 (en) 1993-10-22

Family

ID=13344094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6740985A Granted JPS61226661A (en) 1985-03-30 1985-03-30 Automatic analyzing instrument

Country Status (1)

Country Link
JP (1) JPS61226661A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9945880B2 (en) 2013-07-05 2018-04-17 Toshiba Medical Systems Corporation Automatic analyzer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9945880B2 (en) 2013-07-05 2018-04-17 Toshiba Medical Systems Corporation Automatic analyzer

Also Published As

Publication number Publication date
JPH0576572B2 (en) 1993-10-22

Similar Documents

Publication Publication Date Title
Chisolm Jr et al. Micro-scale photofluorometric determination of" free erythrocyte porphyrin"(protoporphyrin IX)
US4263512A (en) Colorimetric method for liquid sampler including disturbing chromogens
JPS649572B2 (en)
Toffaletti et al. An automated dry-slide enzymatic method evaluated for measurement of creatinine in serum.
US4668617A (en) Apparatus and method for optically analyzing a plurality of analysis items in a sample in a container
US3795484A (en) Automated direct method for the determination of inorganic phosphate in serum
EP0268025B1 (en) Method for analyzing a haemolysed blood sample
JPH0666808A (en) Chromogen measurement method
Burtis et al. Increased Rate of Analysis by Use of a 42-Cuvet GeMSAEC1 Fast Analyzer
JPS61226661A (en) Automatic analyzing instrument
JPH0257863B2 (en)
FI57844C (en) FOERFARANDE FOER ATT FOERBAETTRA CHEMICAL ANALYZERS DOSERINGS- OCH MAETNOGGRANHET
Lott et al. Evaluation of an automated urine chemistry reagent‐strip analyzer
Adlercreutz et al. Evaluation of the new" System Olli 3000" kinetic ultraviolet analyzer for measuring aspartate and alanine aminotransferase and lactate dehydrogenase activities in serum
JPS6060558A (en) Analyzing method for plural measurements
JPS6118982B2 (en)
GB2029013A (en) A method of and a device for chemical analysis
Liedtke et al. Centrifugal analysis with automated sequential reagent addition: measurement of serum calcium.
Roodyn Automated enzyme assays
Ohkubo et al. Multilayer-film analysis for urea nitrogen in blood, serum, or plasma.
Hohbadel et al. Automated bichromatic analysis of serum ceruloplasmin
Puukka et al. Evaluation of the new “C” parallel analyser
JPH08219984A (en) Biochemical analyzer
Burtis et al. The use of a centrifugal fast analyzer for biochemical and immunological analysis
JPS6345055B2 (en)