JPS61173137A - Method for measuring immune reaction by intensity fluctuation of light - Google Patents
Method for measuring immune reaction by intensity fluctuation of lightInfo
- Publication number
- JPS61173137A JPS61173137A JP1392185A JP1392185A JPS61173137A JP S61173137 A JPS61173137 A JP S61173137A JP 1392185 A JP1392185 A JP 1392185A JP 1392185 A JP1392185 A JP 1392185A JP S61173137 A JPS61173137 A JP S61173137A
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- antigen
- antibody
- light
- fine particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/536—Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase
Landscapes
- Health & Medical Sciences (AREA)
- Immunology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【発明の詳細な説明】
(技術分野)
本発明は、抗原−抗体反応に基く免疫反応を、微粒子に
よる散乱光の強度ゆらぎを利用して測定する方法に関す
るものである。DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a method for measuring an immune reaction based on an antigen-antibody reaction using intensity fluctuations of light scattered by fine particles.
(従来技術]
免疫物質、ホルモン、医薬品、免疫調節等生体内微量成
分の測定法として免疫反応の特異的選択反応を利用した
免疫分析法があり、大別すると酵素や放射性アイソトー
プを標識物質として用いる標識免疫分析法と、抗原・抗
体複合体を直接測定する非標識免疫分析法との2つの方
法がよく知られている。(Prior art) There is an immunoassay method that utilizes a specific selective reaction of the immune reaction as a method for measuring trace components in the body such as immune substances, hormones, medicines, and immunomodulators.It can be roughly divided into methods that use enzymes or radioactive isotopes as labeling substances. Two methods are well known: labeled immunoassay and unlabeled immunoassay, which directly measures antigen-antibody complexes.
前者の標識免疫分析法としてはラジオイムノアッセイ(
RI A ) 、エンザイムイム/アッセイ(EIA)
、フルオロイムノアッセイCFI&)等がよく知られて
いる。しかし、これらの分析方法は高感度であるが測定
に長時間を要するうえに標識試薬が高価であるため、検
査コストが高い等の欠点があり、また特にEIAにおい
てはアイソトープの取り扱い、廃棄物処理等の種々の制
限がある。The former labeled immunoassay is radioimmunoassay (
RIA), enzyme im/assay (EIA)
, fluoroimmunoassay CFI&), etc. are well known. However, although these analytical methods are highly sensitive, they require a long time for measurement and the labeling reagents are expensive, so they have drawbacks such as high testing costs. There are various restrictions such as.
また、後者の非標識免疫分析法には免疫電気泳動法、免
疫拡散法、沈降法等があり、簡便な分析法であるが感度
、定量性、再現性の点で精密測定としては不充分である
とともに測定時間が長くなる欠点がある。このような免
疫分析法に関しては「臨床検査法提要」(金井泉原著、
金井正光編著、金属出版)や、「臨床検査J VOl、
22.45(1978)I第471〜48フ頁に詳し
く説明されている。In addition, the latter non-labeled immunoassay methods include immunoelectrophoresis, immunodiffusion, and precipitation, and although they are simple analytical methods, they are insufficient for precise measurements in terms of sensitivity, quantitative performance, and reproducibility. However, there is a drawback that the measurement time becomes longer. Regarding this type of immunoassay method, please refer to the "Clinical Test Methods Recommendation" (written by Izumihara Kanai,
(edited by Masamitsu Kanai, Metal Publishing), “Clinical Examination J vol.
22.45 (1978) I, pages 471-48.
更ニ、「Immunochemistry J vOX
、 12 、164(1975)*第849〜851頁
には、抗体または抗原を表面に担持させた粒子を被測定
液中の抗原または抗体と反応させ、凝集粒子の大きさに
比例して減少するブラウン運動の指標となる平均拡散定
数な、レーザ光の散乱光のスペクトル幅の変化から求め
ることにより抗原または抗体を定量分析する方法が開示
されている。この分析方法では標識試薬を用いない利点
はあるが、粒子のブラウン運動によるドツプラ効果によ
って入射光のスペクトルが広がるのを分光計を用いて検
出しているため、装置が大形で高価となる欠点があると
共に分光計を機械的に駆動する際に誤差が生じ、精度お
よび再現性が悪くなる欠点がある。また、この方法では
光のスペクトル幅から平均拡散定数を求めているだけで
あり、情報量が少ないという欠点もある。Sarani, “Immunochemistry J vOX
, 12, 164 (1975) *pp. 849-851 describes that particles carrying antibodies or antigens on their surfaces are reacted with antigens or antibodies in a liquid to be measured, and the aggregated particles are reduced in proportion to the size of the particles. A method is disclosed for quantitatively analyzing an antigen or antibody by determining the average diffusion constant, which is an index of Brownian motion, from changes in the spectral width of scattered laser light. This analysis method has the advantage of not using labeled reagents, but it uses a spectrometer to detect the broadening of the spectrum of incident light due to the Doppler effect caused by the Brownian motion of particles, so the disadvantage is that the equipment is large and expensive. In addition, errors occur when the spectrometer is mechanically driven, resulting in poor accuracy and reproducibility. Furthermore, this method only calculates the average diffusion constant from the spectral width of light, and has the disadvantage that the amount of information is small.
上述したように従来の免疫分析方法では、高価な標識試
薬を用いるため分析のランニングコストが高価となると
共に液体の取扱いおよび処理が面倒となったり、処理時
間が長くなる欠点があったり、高価で大形な分光計を必
要とすると共に精度や再現性も悪く、得られる情報量も
少ないという欠点があった。As mentioned above, conventional immunoassay methods use expensive labeling reagents, resulting in high analysis running costs, troublesome liquid handling and processing, long processing times, and high costs. The disadvantages are that it requires a large spectrometer, has poor accuracy and reproducibility, and provides only a small amount of information.
このような欠点を克服するために、微粒子による散乱光
の強度ゆらぎが抗原−抗体反応と密接な関係にあること
を利用して抗原−抗体反応を測定することにより、高価
な標識試薬や高価でかつ大形な分光計を用いずに、高い
精度および再現性を以って測定を行なうことができ、し
かも抗原−抗体反応測定の自動化が可能であると共に抗
原−抗体反応について多くの有用な情報を得ることがで
きる免疫反応測定方法が特願昭59−148878号に
おいて提案されている。In order to overcome these drawbacks, the antigen-antibody reaction can be measured by taking advantage of the fact that the intensity fluctuation of light scattered by fine particles is closely related to the antigen-antibody reaction. Measurements can be performed with high precision and reproducibility without using a large spectrometer, and antigen-antibody reaction measurements can be automated, and a lot of useful information about antigen-antibody reactions can be obtained. A method for measuring an immune reaction that can obtain the following is proposed in Japanese Patent Application No. 148878/1983.
この免疫反応測定方法は、少なくとも抗原および抗体を
含む抗原−抗体反応液にコヒーレントまたはインコヒー
レントな輻射線を投射し、抗原−抗体反応により生成さ
れる微粒子による散乱光または反応液に加えた抗体また
は抗原を固定した微粒子の抗原−抗体反応によって生ず
る散乱光をホモダイン的にまたはヘテロダイン的に検知
し1この検知出力の強度ゆらぎのパワースペクトル密度
に基いて抗原−抗体反応を測定するものである。This immune reaction measurement method involves projecting coherent or incoherent radiation onto an antigen-antibody reaction solution containing at least an antigen and an antibody. Scattered light generated by the antigen-antibody reaction of microparticles with immobilized antigens is detected in a homodyne or heterodyne manner, and the antigen-antibody reaction is measured based on the power spectrum density of the intensity fluctuation of this detection output.
このような免疫反応測定方法においては、抗原−抗体反
応の結果として生成される微粒子による散乱光または抗
体または抗原を表面に固定した微粒子の抗原−抗体反応
によって生ずる散乱光の強度が、光の干渉によりゆらぐ
ため、この強度ゆらぎのパワースペクトル密度に粒子の
形状や大きさの依存性があることに着目し、強度ゆらぎ
のパワースペクトル密度を検知することにより抗原−抗
体反応の有無、抗原または抗体の定量、抗原−抗体反応
による微粒子の凝集状III(粒径分布)などの多くの
有用な情報を得ることができる。また、散乱光な光検出
器で受光し、その出力信号強度のゆらぎを検知するもの
であるから、標識試薬を用いる必要はないと共に散乱光
のスペクトル分析を行なうものではないので分光計を用
いる必要もない。具体的に抗体または抗原濃度を検出す
る方法としでは、散乱光をホモダイン的に検知し、その
強度ゆらぎのパワースペクトル密度の緩和周波数が粒子
の大きさに依存することを利用して1抗原−抗体反応の
前後における緩和周波数の比を求め、この比の値から抗
原−抗体反応を測定する方法、抗原−抗体反応の前後に
おけるパワースペクトル密度の低周波帯域の積分値の変
化の比や、低周波帯域の特定周波数におけるパワースペ
クトル密度のレベルの比として表わされる相対ゆらぎ比
の値から、抗原−抗体反応を測定する方法が提案されて
いる。In such an immune reaction measurement method, the intensity of scattered light generated by microparticles as a result of an antigen-antibody reaction, or the intensity of scattered light generated by an antigen-antibody reaction of microparticles on which antibodies or antigens are immobilized, is determined by light interference. We focused on the fact that the power spectral density of this intensity fluctuation depends on the shape and size of the particle, and by detecting the power spectral density of the intensity fluctuation, we can determine whether there is an antigen-antibody reaction or not. It is possible to obtain a lot of useful information such as quantitative determination and aggregation type III (particle size distribution) of microparticles based on antigen-antibody reactions. In addition, since the scattered light is received by a photodetector and fluctuations in the output signal intensity are detected, there is no need to use a labeling reagent, and there is no need to use a spectrometer as there is no spectrum analysis of the scattered light. Nor. Specifically, a method for detecting antibody or antigen concentration is to detect scattered light in a homodyne manner and utilize the fact that the relaxation frequency of the power spectral density of the intensity fluctuation depends on the particle size to detect one antigen-antibody concentration. A method of determining the ratio of relaxation frequencies before and after the reaction and measuring the antigen-antibody reaction from this ratio value, the ratio of the change in the integrated value of the low frequency band of the power spectral density before and after the antigen-antibody reaction, and the method of measuring the low frequency band A method has been proposed for measuring an antigen-antibody reaction from the value of a relative fluctuation ratio expressed as a ratio of power spectral density levels at a specific frequency in a band.
しかし、この免疫反応測定方法においては、上述した他
の免疫反応測定方法においても同様であるが、信頼性の
高い測定結果を得るためには抗原−抗体反応を十分性な
わせる必要があり、このため反応時間に長時間を要し処
理速度が遅くなる不具合がある。However, in this immune reaction measurement method, as in the other immune reaction measurement methods mentioned above, in order to obtain highly reliable measurement results, it is necessary to ensure a sufficient antigen-antibody reaction. Therefore, there is a problem that the reaction time takes a long time and the processing speed becomes slow.
(発明の目的)
本発明の目的は、上述した不具合を解決し、短い反応時
間で信頼性の高い測定結果が得られる元強度ゆらぎによ
る免疫反応測定方法を提供しようとするものである。(Objective of the Invention) An object of the present invention is to provide an immune reaction measurement method using source intensity fluctuation, which solves the above-mentioned problems and provides highly reliable measurement results in a short reaction time.
(発明の概要)
本発明は、抗原および抗体を含む反応液に輻射1mを投
射し、反応液中の微粒子による散乱光を検知し、この検
知出力の強度ゆらぎのパワースペクトル密度に基いて抗
原−抗体反応を測定するに当たり、前記反応液中に反応
液よりも粘度の高い反応促進剤を添加することを特徴と
するものである。(Summary of the Invention) The present invention projects radiation of 1 m onto a reaction solution containing an antigen and an antibody, detects scattered light by fine particles in the reaction solution, and detects the antigen and antibody based on the power spectrum density of the intensity fluctuation of this detection output. In measuring the antibody reaction, a reaction accelerator having a higher viscosity than the reaction solution is added to the reaction solution.
(実施例)
第1図は本発明の免疫反応測定方法を実施する装置の一
例の構成を示す図である。本例においては、光源1とし
て波長682.8 nmのコヒーレント光を放出するH
e −Neガスレーザを用いる。コヒーレント光を放射
する光源1としては、このようなガスレーザの他に半導
体レーザのような固体レーザを用いることもできる。ま
た、本発明の方法ではインコヒーレントな光を放射する
光源を用いることもできる。光源1から放射されるレー
ザ光束2は、半透鏡8により光束4と光束5とに分離し
、一方の光束4を集光レンズ6により集光して透明なセ
ルフに投射させ、他方の光束5をシリコンフォトダイオ
ードより成る光検出器8に入射させて光i1!1の出力
光強度の変動を表わすモニタ信号に変換する。(Example) FIG. 1 is a diagram showing the configuration of an example of an apparatus for implementing the immune reaction measuring method of the present invention. In this example, the light source 1 is an H
An e-Ne gas laser is used. As the light source 1 that emits coherent light, a solid laser such as a semiconductor laser can also be used in addition to such a gas laser. Furthermore, a light source that emits incoherent light can also be used in the method of the present invention. A laser beam 2 emitted from a light source 1 is separated into a beam 4 and a beam 5 by a semi-transparent mirror 8, one beam 4 is focused by a condensing lens 6 and projected onto a transparent self, and the other beam 5 is is made incident on a photodetector 8 made of a silicon photodiode and converted into a monitor signal representing fluctuations in the output light intensity of the light i1!1.
セルフの中には、表面に抗体または抗原を結合した微粒
子9を分散させた緩衝液と、抗原または抗体を含む被検
液との混合物である抗原−抗体反応液を収容すると共に
、その反応液よりも粘度の高い反応促進剤、例えばポリ
、エチレングリコール(PEG)を約5重ffi%注入
する。したがってセルフ中で抗原−抗体反応が促進され
、微粒子間に相互作用が生じたり、微粒子が相互に付着
して、ブラウン運動の状態が変化することになる。セル
フ中の微粒子9によって散乱された散乱光は、一対のピ
ンホール′を有するコリメータ10を経て光電子増倍管
より成る光検出器11に入射させる。The self contains an antigen-antibody reaction solution, which is a mixture of a buffer solution in which fine particles 9 having antibodies or antigens bound to their surfaces are dispersed, and a test solution containing the antigen or antibody. A reaction accelerator having a higher viscosity than that of PEG, such as polyethylene glycol (PEG), is injected at a concentration of about 5%. Therefore, the antigen-antibody reaction is promoted in the self, interaction occurs between the particles, particles adhere to each other, and the state of Brownian motion changes. Scattered light scattered by the fine particles 9 in the self passes through a collimator 10 having a pair of pinholes and is made incident on a photodetector 11 consisting of a photomultiplier tube.
コリメータ10は外光の影響を除くために暗箱構造とし
て、その内面には反射防止処理を施し、暗箱の前後にピ
ンホールを形成する。The collimator 10 has a dark box structure to eliminate the influence of external light, and its inner surface is subjected to antireflection treatment, and pinholes are formed at the front and rear of the dark box.
光検出器8の出力モニタ信号は低雑音増幅器13を経て
データ処理装置1114に供給すると共に、光検出器1
1の出力信号は低雑音増幅器15および低域通過フィル
タ16を経てデータ処理装置14に供給する。データ処
理装置14には、A/D変換部17、高速7一リエ変換
部18および演算処理部19を設け、このデータ処理装
置14において光検出器11の出力信号、すなわちセル
4からの散乱光強度を、光検出器8からの光源強度モニ
タ信号の短時間平均値出力によって、光源lから放射さ
れるレーザ光強度の変動を除去して規格化した後、その
散乱光の強度ゆらぎのパワースペクトル密度の緩和周波
数を求め、これに基いてセルフ中での微粒子9の凝集状
態、したがって抗原−抗体反応を測定し、その測定結果
を表示装置20に供給して表示させる。The output monitor signal of the photodetector 8 is supplied to the data processing device 1114 via the low noise amplifier 13 and
The output signal of 1 is supplied to a data processing device 14 via a low noise amplifier 15 and a low pass filter 16. The data processing device 14 is provided with an A/D conversion section 17, a high-speed 7-channel conversion section 18, and an arithmetic processing section 19. After the intensity is normalized by removing fluctuations in the intensity of the laser light emitted from the light source 1 using the short-time average value output of the light source intensity monitor signal from the photodetector 8, the power spectrum of the intensity fluctuation of the scattered light is calculated. The relaxation frequency of the density is determined, and based on this, the aggregation state of the fine particles 9 in the self, and therefore the antigen-antibody reaction, is measured, and the measurement results are supplied to the display device 20 for display.
ここで、散乱光のパワースペクトル密度はローレンツ型
となるから、その緩和周波数frは、で表わされる。た
だし1Δ区1は波数ベクトルの変化分を示し、
で表わされ、またDは拡散係数を示し、で表わされる。Here, since the power spectral density of the scattered light is Lorentzian, its relaxation frequency fr is expressed by . However, 1Δ section 1 indicates the change in the wave number vector, which is expressed as , and D indicates the diffusion coefficient, which is expressed as .
なお、上記(2)および(3)式において、n6は空気
の層液率、θは散乱角、λは波長、kはボルツマン定数
、Tは絶対温度、lは粘度、rは粒径を表わす。In the above equations (2) and (3), n6 is the layer ratio of air, θ is the scattering angle, λ is the wavelength, k is Boltzmann's constant, T is the absolute temperature, l is the viscosity, and r is the particle size. .
本発明においては、上述したように反応液中に反応液よ
りも粘度の高い反応促進剤を添加する。In the present invention, as described above, a reaction promoter having a higher viscosity than the reaction solution is added to the reaction solution.
このようにすれば、反応が促進されると同時に、反応液
全体の粘度が高くなることから、上記(3)式から明ら
かなように拡散係数りが小さくなり、したがって反応後
の緩和周波数frは、上記(1)式から明らかなように
、反応促進剤を添加しない場合に比べより小さくなる。In this way, the reaction is promoted and at the same time the viscosity of the entire reaction liquid increases, so as is clear from equation (3) above, the diffusion coefficient becomes smaller, and therefore the relaxation frequency fr after the reaction becomes , as is clear from the above equation (1), is smaller than when no reaction accelerator is added.
すなわち、第2図に示すように、反応促進剤を添加する
と、反応前におけるパワースペクトル密度の緩和周波数
froは反応促進剤を添加しない場合とほぼ同じである
が、反応後における緩和周波数frは破線で示す反応促
進剤を添加しない場合の緩和周波数fr′よりも小さく
なり、反応前の緩和周波数froとの差が大きくなる。That is, as shown in Figure 2, when a reaction accelerator is added, the relaxation frequency fro of the power spectrum density before the reaction is almost the same as when no reaction accelerator is added, but the relaxation frequency fr after the reaction is as shown by the broken line. The relaxation frequency fr' becomes smaller than the relaxation frequency fr' when no reaction accelerator is added, and the difference from the relaxation frequency fro before the reaction becomes large.
このように、反応前後における緩和周波数の差が大きく
なれば、緩和周波数の比(fr/ fry )から抗原
濃度を求める場合において、その比の値と抗原濃度との
関係を表わす検量線が、第3図に実線で示すように10
〜10 (g/1Lt)の低濃度領域においても十分
な傾きを持つものとなり、破線で示す反応促進剤を添加
しない場合に比べ、特に低濃度における測定精度を著し
く向上させることができる。In this way, if the difference between the relaxation frequencies before and after the reaction becomes large, when determining the antigen concentration from the ratio of relaxation frequencies (fr/fry), the calibration curve representing the relationship between the value of the ratio and the antigen concentration becomes 10 as shown by the solid line in Figure 3.
It has a sufficient slope even in the low concentration region of ~10 (g/1Lt), and the measurement accuracy especially at low concentrations can be significantly improved compared to the case where the reaction accelerator shown by the broken line is not added.
なお、本発明は上述した例にのみ限定されるものではな
く、幾多の変形または変更が可能である。Note that the present invention is not limited to the above-mentioned example, and can be modified or changed in many ways.
例えば上述した実施例においては、セルフに入射する光
束4の方向と、コリメータ10の光軸方向とを90’と
し、入射光束が直接光検出器11に入射しないホモダイ
ン法を採用し“たが、入射光束の一部を光検出器11に
入射させるヘテロゲイン法を採用することもできる。ま
た、表示装置20での表示は緩和周波数に限らず、パワ
ースペクトル密度データをも合わせて表示してもよいし
、演算により求めた緩和周波数に基いて更に所要の演算
を行なって抗原濃度を表示させるようにしてもよい◎ま
た、抗原濃度は反応前後の緩和周波数の比のみでなく、
相対ゆらぎ比により検出することもできる。更に、上述
した実施例では、微粒子の表面に抗体を固定して、被検
体中の抗原を検出するようにしたが、微粒子の表面に抗
原を固定し、被検体中の抗体を検出することもできる。For example, in the embodiment described above, the direction of the light beam 4 incident on the self and the optical axis direction of the collimator 10 are set to 90', and the homodyne method is adopted in which the incident light beam does not directly enter the photodetector 11. It is also possible to adopt a heterogain method in which a part of the incident light flux is incident on the photodetector 11.Also, the display on the display device 20 is not limited to the relaxation frequency, but may also display power spectral density data. However, the antigen concentration may be displayed by further performing necessary calculations based on the relaxation frequency obtained by calculation.In addition, the antigen concentration is determined not only by the ratio of the relaxation frequencies before and after the reaction.
It can also be detected by the relative fluctuation ratio. Furthermore, in the above-mentioned embodiments, antibodies were immobilized on the surface of microparticles to detect antigens in the specimen, but it is also possible to immobilize antigens on the surface of microparticles and detect antibodies in the specimen. can.
また、このような微粒子を用いずに、抗原−抗体反応の
結果として生ずる微粒子状生成物に、よる散乱光を利用
することもできる。このような抗原−抗体反応の実施例
としては、抗原としてヒト絨毛ゴナドトロピン(■OG
)を用い、抗体として抗ヒト絨毛ゴナトド四ビン(抗H
OG)を用いる反応があり、この反応により生成される
抗原、抗体複合体は微粒子として扱うことができる。ま
た、抗原そのものを粒子として用いることもできる。こ
のような抗原−抗体反応としては抗原としてカンデイダ
・アルビカンス(酵母)を用い、抗体として抗カンデイ
ダ・アルビカンスを用いる例や、他に血球、細胞、微生
物などを粒子として用いることもできる。更に、第1図
に示す実施例では抗原−抗体反応液をセルに収容して測
定を行なうパッチ方式としたが、抗原−抗体反応液を連
続的に流しながら測定を行なうフロ一方式とすることも
勿論可能である。Furthermore, without using such fine particles, it is also possible to utilize scattered light caused by fine particulate products produced as a result of the antigen-antibody reaction. As an example of such an antigen-antibody reaction, human chorionic gonadotropin (OG
) was used as the antibody, and anti-human chorionic gonadotrivin (anti-H
OG), and the antigen-antibody complexes produced by this reaction can be treated as fine particles. Furthermore, the antigen itself can also be used as particles. In such an antigen-antibody reaction, Candida albicans (yeast) is used as the antigen and anti-Candida albicans is used as the antibody, and blood cells, cells, microorganisms, etc. can also be used as particles. Furthermore, in the embodiment shown in FIG. 1, a patch method was used in which the antigen-antibody reaction solution was contained in a cell and measurements were performed, but a flow-type method was adopted in which the measurement was performed while the antigen-antibody reaction solution was continuously flowing. Of course, it is also possible.
(発明の効果)
以上述べたように、本発明においては、反応促進剤を添
加して反応させるようにしたから、短い反応時間で信頼
性の高い測定結果を得ることができ、処理速度を向上さ
せることができる。また、反応促進剤の粘度が反応液の
それよりも高いので、特に反応前後のパワースペクトル
密度の緩和周波数の比に基いて抗原−抗体反応を測定す
る場合には、緩和周波数の差が大きくなり、低濃度にお
いても精度の高い測定結果を得ることができる。(Effects of the invention) As described above, in the present invention, since the reaction is carried out by adding a reaction accelerator, highly reliable measurement results can be obtained in a short reaction time, and the processing speed is improved. can be done. In addition, since the viscosity of the reaction accelerator is higher than that of the reaction solution, the difference in relaxation frequencies becomes large, especially when measuring the antigen-antibody reaction based on the ratio of the relaxation frequencies of the power spectrum densities before and after the reaction. , it is possible to obtain highly accurate measurement results even at low concentrations.
第1図は本発明の免疫反応測定方法を実施する装置の一
例の構成を示す線図、
第2図および第8図は本発明の詳細な説明するための図
である@FIG. 1 is a diagram showing the configuration of an example of an apparatus for carrying out the immune reaction measurement method of the present invention, and FIG. 2 and FIG. 8 are diagrams for explaining the present invention in detail.
Claims (1)
応液中の微粒子による散乱光を検知し、この検知出力の
強度ゆらぎのパワースペクトル密度に基いて抗原−抗体
反応を測定するに当たり、前記反応液中に反応液よりも
粘度の高い反応促進剤を添加することを特徴とする光強
度ゆらぎによる免疫反応測定方法。1. In projecting radiation onto a reaction solution containing an antigen and an antibody, detecting light scattered by fine particles in the reaction solution, and measuring the antigen-antibody reaction based on the power spectrum density of the intensity fluctuation of this detection output, A method for measuring an immune reaction using light intensity fluctuation, characterized in that a reaction accelerator having a higher viscosity than the reaction solution is added to the reaction solution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1392185A JPS61173137A (en) | 1985-01-28 | 1985-01-28 | Method for measuring immune reaction by intensity fluctuation of light |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1392185A JPS61173137A (en) | 1985-01-28 | 1985-01-28 | Method for measuring immune reaction by intensity fluctuation of light |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61173137A true JPS61173137A (en) | 1986-08-04 |
Family
ID=11846637
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1392185A Pending JPS61173137A (en) | 1985-01-28 | 1985-01-28 | Method for measuring immune reaction by intensity fluctuation of light |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61173137A (en) |
-
1985
- 1985-01-28 JP JP1392185A patent/JPS61173137A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4446239A (en) | Light scattering immunoassay involving particles with selective frequency band apparatus | |
US4766083A (en) | Method for the photometric determination of biological agglutination | |
US3990851A (en) | Process and device for measuring antigen-antibody reactions | |
JPH054021B2 (en) | ||
US4204837A (en) | Method of rate immunonephelometric analysis | |
JP3283078B2 (en) | Immunological measurement device | |
JPH0580980B2 (en) | ||
JPS6128866A (en) | Measuring method and apparatus for immuno-reaction using fluctuating intensity of light | |
JPS61173137A (en) | Method for measuring immune reaction by intensity fluctuation of light | |
JPS61173138A (en) | Method for measuring immune reaction by intensity fluctuation of light | |
JPS62116263A (en) | Method and apparatus for measuring immunoreaction using multiple scattering of linearly polarized light | |
JPS6166150A (en) | Immunoreaction measuring method | |
JPH046465A (en) | Method for treating specimen and method and apparatus for measuring specimen | |
JPH0635980B2 (en) | How to measure body fluid components | |
JPS6165144A (en) | Instrument for measuring immune reaction using intensity fluctuation of light | |
JPH07113635B2 (en) | Method for determining prozone in immune reaction | |
JPS61173136A (en) | Method for measuring immune reaction by intensity fluctuation of light | |
JPH0556817B2 (en) | ||
JPS61173139A (en) | Method of measuring immune reaction by intensity fluctuation of light | |
JPH02275361A (en) | Measurement of immunoreaction | |
JPS63247644A (en) | Method for measuring immune reaction | |
JPS6165142A (en) | Method for measuring immune reaction by using fluctuation of light intensity | |
JPS61175548A (en) | Immunological reaction measurement by fluctuations in intensity of light | |
JPH01313737A (en) | Inspection device for body to be inspected | |
JPS6165143A (en) | Method and instrument for measuring immune reaction |