JPS61101230A - Preparation of waste ozone gas treating material - Google Patents
Preparation of waste ozone gas treating materialInfo
- Publication number
- JPS61101230A JPS61101230A JP59221700A JP22170084A JPS61101230A JP S61101230 A JPS61101230 A JP S61101230A JP 59221700 A JP59221700 A JP 59221700A JP 22170084 A JP22170084 A JP 22170084A JP S61101230 A JPS61101230 A JP S61101230A
- Authority
- JP
- Japan
- Prior art keywords
- manganese
- medium
- water
- ozone gas
- chlorine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Treating Waste Gases (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、上水、用水、下水、し尿、工場廃水等のオゾ
ン処理における、廃オゾンガスの処理材の製造に関する
ものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to the production of a treatment material for waste ozone gas in the ozone treatment of clean water, commercial water, sewage, human waste, industrial wastewater, etc.
現在までに示されている廃オゾンガスの処理技術には、
活性炭法、薬液吸収法、熱分解法、マンガン酸化物触媒
法などがある。The waste ozone gas treatment technologies that have been shown to date include:
Examples include activated carbon method, chemical absorption method, thermal decomposition method, and manganese oxide catalyst method.
活性炭法は戻オゾンガスを活性炭充填槽に導き、次式の
尿によりオゾンを分解するものである。この方法は
203+C*−302+C*
C*:活性炭
低濃度のオゾンを効率良く分解できるため廃オゾンガス
の処理に幅広く利用されているが、欠点としてオゾンと
の反応に伴う活性炭粒子の粉化、副反応として一酸化炭
素や二酸化炭素に酸化されることによる活性炭の減少、
高濃度オゾンと接触させた場合の着火や爆発の危険性な
どが挙げられている。In the activated carbon method, returned ozone gas is introduced into a tank filled with activated carbon, and ozone is decomposed using urine according to the following formula. 203+C*-302+C* C*: Activated carbon This method is widely used in the treatment of waste ozone gas because it can efficiently decompose ozone at low concentrations, but its disadvantages include powdering of activated carbon particles and side reactions due to the reaction with ozone. The reduction of activated carbon by being oxidized to carbon monoxide and carbon dioxide,
The dangers of ignition and explosion when coming into contact with high concentrations of ozone are cited.
薬液吸収法は、亜硫酸ナトリウム、チオ硫酸ナトリウム
、第1鉄塩などの還元剤水溶液、または水酸化ナトリウ
ムなどのアルカリ水溶液の槽に廃オゾンガスを導いて吸
収させる方法である。この方法の場合は、オゾン吸収に
より薬液の組成が変化するため吸収能力が低下すること
、そのために薬液の補充や廃液の処理が必要であり、煩
雑であることなどの欠点を有している。The chemical absorption method is a method in which waste ozone gas is introduced into a tank containing a reducing agent aqueous solution such as sodium sulfite, sodium thiosulfate, or ferrous salt, or an alkaline aqueous solution such as sodium hydroxide, and is absorbed. This method has drawbacks such as a decrease in the absorption capacity due to the change in the composition of the chemical due to ozone absorption, and the need for replenishment of the chemical and treatment of waste liquid, which is complicated.
熱分解法は、重油、軽油などの燃焼室へ廃オゾンガスを
導いて熱分解する方法である。この方法は、活性炭処理
では爆発の危険があるような高濃度の廃オゾンを処理す
る場合に良〈実施されるが、コストが高いのが欠点であ
る。マンガン酸化物触媒法は、砂の表面にマンガン酸化
物を付着させたもの、シリカ・アルミナ質ケ゛ル、粘土
、活性炭などとマンガン酸化物を混合して焼成したもの
などの触媒の充填槽に廃オゾンガスを導き、主に次式の
反応によりオゾンを分解するものである。The thermal decomposition method is a method in which waste ozone gas is introduced into a combustion chamber for heavy oil, light oil, etc., and thermally decomposed. This method is well implemented when treating waste ozone with a high concentration that poses a risk of explosion when treated with activated carbon, but the disadvantage is that it is expensive. The manganese oxide catalyst method involves injecting waste ozone gas into a tank filled with a catalyst, such as one made by adhering manganese oxide to the surface of sand, or one made by mixing and firing manganese oxide with silica/alumina cell, clay, activated carbon, etc. It decomposes ozone mainly through the following reaction.
203+ MnO2= 302 + Mn 02本発明
は、上記のマンガン酸化物触媒の一種として、ガラス、
樹脂、金属などの繊維状媒体および網状媒体、あるいは
砂、樹脂などの粒状媒体、モジくはラシヒリング、テラ
レットなどの充填材の表面にマンガン酸化物を付着させ
る廃オゾンガス処理材の新しい製造方法に関するもので
ある。203+ MnO2 = 302 + Mn 02 The present invention uses glass, glass,
Concerning a new manufacturing method for waste ozone gas treatment materials, in which manganese oxide is attached to the surface of fibrous media and net-like media such as resins and metals, or granular media such as sand and resins, and fillers such as Mojiku, Raschig Ring, and Terraret. It is.
従来性われている砂の表面にマンガン酸化物を付着させ
る製法は、塩化マンガンと過マンガン酸カリウムのそれ
ぞれ数パーセント溶液を砂に加えて充分混合してから水
洗を行い、この操作を数回繰返した後乾燥させるもので
ある。The conventional method for attaching manganese oxide to the surface of sand is to add several percent solutions of manganese chloride and potassium permanganate to the sand, mix well, wash with water, and repeat this process several times. It is then dried.
本出願の関連技術としては、同一発明者による、昭和5
9年特許願第036398号がある。As related technology to this application, the Showa 5
There is a 9 year patent application No. 036398.
従来法は、次式のごとく塩化マンガンと過マンガン酸カ
リウムの反応により二酸化マンガンを生成させるもので
あるが、この反応が砂表面だけで特異的に起こ
2KMnO4+3MnCe2+2H20−”5MnO2
+4HCe+2Kc/?る反応ではないため、次のよう
な改良すべき点を持っていた。In the conventional method, manganese dioxide is produced by the reaction between manganese chloride and potassium permanganate as shown in the following equation, but this reaction occurs specifically only on the sand surface.
+4HCe+2Kc/? However, there were some points that needed to be improved as follows.
(1) 砂表面から離れた所で生成する二酸化マンガ
ンが多いため、ろ材へのマンガン付着効率が悪く、マン
ガン換算で使用薬品の20〜30%程度しかない。(1) Since a large amount of manganese dioxide is produced far from the sand surface, the adhesion efficiency of manganese to the filter medium is poor, and the amount of manganese is only about 20 to 30% of the chemicals used in terms of manganese.
(2) 同じ理由から多量の洗浄水が必要であり、ま
た多量のマンガンを含有した洗浄排水が出るため、その
処理も必要となる。(2) For the same reason, a large amount of washing water is required, and washing wastewater containing a large amount of manganese is generated, which also needs to be treated.
本発明は、前記の媒体へのマンガン付着効率を良くする
こと、および洗浄排水の処理を不要とすることを目的と
して研究を重ねた結果発明されたものである。The present invention was developed as a result of repeated research aimed at improving the efficiency of manganese adhesion to the medium and eliminating the need for treatment of cleaning wastewater.
本発明で使用する薬品は、塩化マンガンなどのマンガン
塩、液体塩素、次亜塩素酸ナトリウムなどの塩素剤、お
よびpHを3〜8、望ましくはpHを5〜6.5に調整
するpH緩衝剤であるが、このpH緩衝剤を使用するこ
とが本発明の最大の特色である。The chemicals used in the present invention include manganese salts such as manganese chloride, liquid chlorine, chlorine agents such as sodium hypochlorite, and a pH buffer that adjusts the pH to 3 to 8, preferably 5 to 6.5. However, the use of this pH buffer is the most distinctive feature of the present invention.
本発明は上記の3種類の薬液を使用して媒体に循環接触
させることにより、前記の問題点を全て解決したもので
ある。The present invention solves all of the above problems by using the three types of chemical solutions mentioned above and bringing them into cyclic contact with the medium.
本発明で二酸化マンガンを生成させる原理は次の2式の
反応によるものである。The principle of producing manganese dioxide in the present invention is based on the following two reactions.
Mn2“十Mno2・H20十H2O−MnO2・Mn
0−H20+2H+MnO2・MnO−H3O+ 21
FL!0+CTo −2Mn 02 ’ H20+2I
(” +2Ce−この反応は、例えば普通の砂に、Mn
’ ”−(オンを含有した原水に塩素を添加したものを
長時間通水しているだけでも徐々に進行し、砂表面にマ
ンガン酸化物が付着したものが得られるが、数ケ月から
1年といった非常に長い時間がかかるため、産業に用い
る上では短時間で製造できる技術が必要である。Mn2"10Mno2・H2010H2O-MnO2・Mn
0-H20+2H+MnO2・MnO-H3O+ 21
FL! 0+CTo -2Mn 02' H20+2I
(" +2Ce - This reaction can be carried out, for example, by adding Mn to ordinary sand.
''' - (Even if raw water containing chlorine is added to water and passed through it for a long time, the process will gradually progress, resulting in sand with manganese oxide attached to the surface, but it will take a few months to a year.) Because it takes a very long time, a technology that can be manufactured in a short time is required for industrial use.
この反応を短時間で進行させ、所定のマンガン量を付着
させるためにはマンガン塩および塩素剤の濃度を高くす
る必要があるが、マンガン塩と塩素剤だけを使用したの
では酸の生成によりpHが2程度まで低下し、有毒な塩
素ガスの発生を招ききわめて危険である。このためpH
が下がり過ぎないようなpH調整が必要である。ただし
、−低下を抑えるために単に水酸化ナトリウムなどのア
ルカリを添加する方法は、アルカリを添加した瞬間に局
部的に高pHとなった点でMn’+イオンの酸化が瞬時
に起こり、次いで、生成したマンガン酸化物の触媒作用
により循環液全体でM n 2”4オンの酸化が進行し
てしまうため、適当な制御方法ではない。したがって、
瞬間的にでも高pHとなる部分を生じさせないような形
での川伝下を抑制するpH制御方法が必要となる。これ
に合致する方法が、本発明の最大の特色であるpH緩衝
剤の使用である。In order for this reaction to proceed in a short time and to deposit a predetermined amount of manganese, it is necessary to increase the concentration of manganese salt and chlorine agent, but if only manganese salt and chlorine agent are used, the pH will increase due to the production of acid. This is extremely dangerous as it causes the generation of toxic chlorine gas. For this reason, the pH
It is necessary to adjust the pH so that it does not drop too much. However, in the method of simply adding an alkali such as sodium hydroxide to suppress the decrease in −, the oxidation of Mn'+ ions occurs instantaneously at the point where the pH locally becomes high the moment the alkali is added. This is not an appropriate control method because the oxidation of M n 2"4one proceeds throughout the circulating fluid due to the catalytic action of the produced manganese oxide. Therefore,
There is a need for a pH control method that suppresses the flow of water in a manner that does not cause a portion to become even momentarily high in pH. A method that meets this requirement is the use of a pH buffer, which is the most distinctive feature of the present invention.
本発明の主な特徴を示すと次のごとくである。The main features of the present invention are as follows.
(1) pHを3〜8、望ましくは5〜6.5に調整
できる一緩衝剤を添加することにより、媒体の表面から
離れた所で起こるM n2”イオンの酸化をきわめて円
滑に抑制でき、また、pHの低下による塩素ガスの揮散
を少量に抑えられる。(1) By adding a buffer that can adjust the pH to 3 to 8, preferably 5 to 6.5, the oxidation of M n2'' ions that occurs away from the surface of the medium can be extremely smoothly suppressed; Further, volatilization of chlorine gas due to a decrease in pH can be suppressed to a small amount.
(2)循環水をろ材に通水してろ過することにより、M
n”4オンが徐々に酸化されて生じた二酸化マンガン水
和物を媒体に捕捉でき、これが後の反応でのMn’+イ
オン酸化触媒として利用できる。(2) By passing circulating water through a filter medium and filtering it, M
The manganese dioxide hydrate produced by the gradual oxidation of n''4-one can be captured in the medium, and this can be used as a Mn'+ ion oxidation catalyst in the subsequent reaction.
(3) Mn”イオンの酸化の大部分を媒体表面で行
わせることが可能であるため、マンガンの付着効率を極
めて高くできる。(3) Since most of the oxidation of Mn'' ions can be performed on the medium surface, the adhesion efficiency of manganese can be extremely high.
(4) 液を循環することにより、循環液中のMn2
イオンを完全に除去することができる。したがって、洗
浄排水の処理が不要である。(4) Mn2 in the circulating fluid is reduced by circulating the fluid.
Ions can be completely removed. Therefore, treatment of washing wastewater is not necessary.
次に、本発明の実施態様を第1図に基いて説明すると、
1は原料媒体、2は接触槽、3はろ材支持目皿、4は循
環液槽、5は循環−ンプ、6はpH緩衝液槽、7は塩素
水槽、8はマンガン塩溶液槽、9は循環液流入管、10
は循環液返送管、11は逆洗排水流出管、12は水道水
流入管、13は循環液槽ドレンである。Next, an embodiment of the present invention will be explained based on FIG.
1 is a raw material medium, 2 is a contact tank, 3 is a filter medium support plate, 4 is a circulating liquid tank, 5 is a circulation pump, 6 is a pH buffer tank, 7 is a chlorine water tank, 8 is a manganese salt solution tank, 9 is Circulating fluid inflow pipe, 10
1 is a circulating fluid return pipe, 11 is a backwash drainage outflow pipe, 12 is a tap water inflow pipe, and 13 is a circulating fluid tank drain.
接触槽2に投入された原料媒体1は水道水で逆洗され、
原料媒体のよごれが逆洗排水流出管11より排出される
。次で循環液槽2で水道水流入管12、pH緩衝液槽6
、塩素水”槽7、マンガン塩溶液槽8から水・通水およ
び各薬品溶液が混合されてpHが3〜8、望ましくは5
〜6,5に調整された循環液が調製され、循環ポンプ5
によって循環液流入管9−接触槽2・−循環液返送管1
o−循環液槽4の順に循環される。循環は循環液中のM
n←が除去されるまで続けられ、製造された廃オゾン処
理材は、水道水で逆洗後接触槽から取υ出され、乾燥後
製品とされる。The raw material medium 1 put into the contact tank 2 is backwashed with tap water,
Dirt from the raw material medium is discharged from the backwash drainage outflow pipe 11. Next, in the circulating liquid tank 2, tap water inflow pipe 12, pH buffer tank 6
, water from the chlorine water tank 7 and the manganese salt solution tank 8 and each chemical solution are mixed to reach a pH of 3 to 8, preferably 5.
A circulating fluid adjusted to 6.5 is prepared, and the circulation pump 5
Circulating fluid inflow pipe 9 - contact tank 2 - circulating fluid return pipe 1
It is circulated in the order of o-circulating liquid tank 4. Circulation is M in the circulating fluid.
The process continues until n← is removed, and the produced waste ozonated material is backwashed with tap water, taken out from the contact tank, and dried to form a product.
なお、pH緩衝液、塩素水、マンガン塩溶液の注入は、
一括注入、分割注入、連続注入およびそれらの組合せに
よる注入の何れでも良い。また、第1図に示した例では
循環液を下向流で通液しているが、通液方式は上向流、
水平流の何れでも良い。In addition, injection of pH buffer solution, chlorine water, manganese salt solution,
The injection may be carried out at once, in divided injections, continuous injection or a combination thereof. In addition, in the example shown in Fig. 1, the circulating fluid is passed in a downward flow, but the circulating fluid is passed in an upward flow,
Any horizontal flow is fine.
ガラスウールを用いて廃オゾンガス処理材を製造した例
を示す。An example of manufacturing a waste ozone gas treatment material using glass wool is shown.
圧密状態で700 trtlのガラスウールを内径60
Uのカラムに充填した。循環液の通液速度はLV=IC
II−m/H)、5V=40(H’″1〕であシ、循環
液の総量はIOJとした。循環液は純水にpH緩衝液、
塩素水を加えて−を6.1とし、マンガン塩溶液は10
W/V %OMn C62・4 H20溶液1eを10
回に分割して注入して循環させた。使用したMnC62
・4 H2Oの総量は1002、塩素水の総量は40
? asc6zであった。Glass wool of 700 trtl in a consolidated state with an inner diameter of 60
It was packed into a U column. The circulating fluid flow rate is LV=IC
II-m/H), 5V = 40 (H'''1), and the total amount of circulating fluid was IOJ.The circulating fluid was pure water, pH buffer,
Add chlorine water to set - to 6.1, and manganese salt solution to 10
W/V %OMn C62.4 H20 solution 1e to 10
The solution was injected in divided doses and circulated. MnC62 used
・4 The total amount of H2O is 1002, the total amount of chlorine water is 40
? It was asc6z.
接触時間150分で廃オゾンがス処理材の製造は終了し
、循環液の水質は表1のごとく、そのまま排出しても何
ら問題のない水質となっている。The production of waste ozone gas treatment material was completed after a contact time of 150 minutes, and the water quality of the circulating fluid was such that there would be no problem even if it was discharged as is, as shown in Table 1.
表1 製造終了時の循環液の水質
製造された廃オゾンガス処理材のマンガン付着量は、0
.2f−Mn/?ガラスウールであシ、使用したMnC
4・4H20中のマンガンのほとんどが媒体に付着して
いる。Table 1 Water quality of circulating fluid at the end of production The amount of manganese deposited on the produced waste ozone gas treatment material is 0.
.. 2f-Mn/? Made of glass wool, MnC used
Most of the manganese in 4.4H20 is attached to the medium.
本発明法によると、従来20〜30%に過ぎなかったマ
ンガン付着効率が100%近くなっておυ、また洗浄工
程がほとんど不要であるほか排液処理も不要であり、か
つ製造に要する時間と用水量の点でも大幅に節約できる
など多くの効果を有している、実用上極めて有効な方法
である。According to the method of the present invention, the manganese adhesion efficiency, which was conventionally only 20 to 30%, has increased to nearly 100%.In addition, there is almost no need for a cleaning process, no need for drainage treatment, and the time required for production is reduced. This is an extremely effective method in practice, as it has many effects, including significant savings in water consumption.
第1図は、本発明の実施11項様を示すフローシートで
ある。
1・・・原料ろ材、3・・接触槽、3・・・ろ材支持目
皿、4・・・循環水槽、5・・・循環ポンプ、6・・・
pH緩衝液槽、7・・・塩素水槽、8・・マンガン塩溶
液槽、9・・・循環液流入管、10・・・循環水返送管
、11・・・逆洗排水流出管、12・・・水道水流入管
、13・・循環水槽ドレン。FIG. 1 is a flow sheet showing the eleventh embodiment of the present invention. 1... Raw material filter medium, 3... Contact tank, 3... Filter medium support plate, 4... Circulation water tank, 5... Circulation pump, 6...
pH buffer tank, 7... Chlorine water tank, 8... Manganese salt solution tank, 9... Circulating fluid inflow pipe, 10... Circulating water return pipe, 11... Backwash drainage outflow pipe, 12.・・Tap water inflow pipe, 13.・Circulating water tank drain.
Claims (1)
次亜塩素酸ナトリウムなどの塩素含有水およびpH緩衝
溶液を含有せる溶液を、ガラス、樹脂、金属などの繊維
状、網状およびフェルト状媒体または砂、樹脂などの粒
状媒体、またはラシヒリング、テラレットなどの充填剤
等を充填せしめた接触槽内へ循環通液することにより、
媒体の表面にオゾン分解能を有するマンガン酸化物を付
着せしめることを特徴とする廃オゾンガス処理材の製造
方法。 2 pH緩衝溶液の添加により、循環液のpHを3〜8
望ましくは5〜6.5の範囲に調整して媒体と接触せし
めることを特徴とする特許請求の範囲第1項の記載の方
法による廃オゾンガス処理材の製造方法。 3 マンガン塩溶液、塩素含有水およびpH緩衝溶液を
、循環液中へ同時に又は別々にあるいは連続的に、もし
くは分割して薬注せしめることを特徴とする特許請求の
範囲第1項記載の方法による廃オゾンガス処理材の製造
方法。[Claims] 1. Manganese salt solution such as manganese chloride, manganese sulfate, etc.
A solution containing chlorine-containing water and a pH buffer solution such as sodium hypochlorite is applied to fibrous, reticulated and felt media such as glass, resin, metal, or granular media such as sand, resin, or By circulating liquid through a contact tank filled with filler, etc.
A method for producing a waste ozone gas treatment material, which comprises attaching manganese oxide having ozone decomposition ability to the surface of a medium. 2 Adjust the pH of the circulating fluid from 3 to 8 by adding a pH buffer solution.
A method for producing a waste ozone gas treatment material according to the method according to claim 1, wherein the contact with the medium is preferably adjusted to a range of 5 to 6.5. 3. According to the method according to claim 1, characterized in that the manganese salt solution, chlorine-containing water, and pH buffer solution are injected into the circulating fluid simultaneously, separately, continuously, or in divided doses. Method for producing waste ozone gas treatment material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59221700A JPS61101230A (en) | 1984-10-22 | 1984-10-22 | Preparation of waste ozone gas treating material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59221700A JPS61101230A (en) | 1984-10-22 | 1984-10-22 | Preparation of waste ozone gas treating material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61101230A true JPS61101230A (en) | 1986-05-20 |
JPH0229366B2 JPH0229366B2 (en) | 1990-06-29 |
Family
ID=16770904
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59221700A Granted JPS61101230A (en) | 1984-10-22 | 1984-10-22 | Preparation of waste ozone gas treating material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61101230A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5296435A (en) * | 1991-12-05 | 1994-03-22 | Nippon Shokubai Co., Ltd. | Catalyst and a method of prepare the catalyst |
-
1984
- 1984-10-22 JP JP59221700A patent/JPS61101230A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5296435A (en) * | 1991-12-05 | 1994-03-22 | Nippon Shokubai Co., Ltd. | Catalyst and a method of prepare the catalyst |
Also Published As
Publication number | Publication date |
---|---|
JPH0229366B2 (en) | 1990-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101327448B (en) | Preparation of Complex Iron Catalyst and Its Application to Heterogeneous Photocatalysis of Hydrogen Peroxide | |
AU2003275051B2 (en) | Process for reducing the level of NOx in waste gas streams using sodium chlorite | |
CN104226095A (en) | Synchronous denitration process based on wet ammonia process flue gas desulfurization | |
CN106731783A (en) | Integrated fume desulfurization denitrification agent and its application method | |
CN106277426B (en) | A kind of cold rolling diluted alkaline bio-chemical effluent deep treatment method and system | |
RU2465950C1 (en) | Removing ammonia nitrogen, ammonium nitrogen and urea nitrogen by oxidising with hypochlorite-containing solutions from spent air in ammonia and urea production apparatus | |
JPS61101230A (en) | Preparation of waste ozone gas treating material | |
KR102046269B1 (en) | Purification processing method of toxic substance containing liquid and toxic substance containing liquid for performing this | |
JP3659383B2 (en) | Method and apparatus for treating manganese-containing water | |
JP3729365B2 (en) | Method and apparatus for treating manganese-containing water | |
CN104190227A (en) | Wet flue gas ammonia desulfurization-based synchronous denitration system | |
SU1412232A1 (en) | Method of preparing drinkable water | |
RU2285670C2 (en) | Method of purification of the natural and industrial waste waters from sulfides and hydrogen sulfide | |
JPS6218230B2 (en) | ||
JPS6135136B2 (en) | ||
JPS6216154B2 (en) | ||
JPH07328654A (en) | Treatment of ammoniacal nitrogen-containing waste water | |
JPH0122036B2 (en) | ||
RU2265475C2 (en) | Method of purification of a liquid from impurities by filtration | |
GB2141119A (en) | Apparatus and process for removing iron and/or other chemically reducing substances from potable water | |
KR100720153B1 (en) | Recovery method of hexavalent chromium from chromium-containing waste liquid | |
JP2002301484A (en) | Method for removing residual ozone in treatment of raw water | |
JPH05329362A (en) | Hydrogen sulfide removing agent | |
JP3399607B2 (en) | Treatment method for wastewater containing hydrogen peroxide | |
JPH05212389A (en) | Treatment of waste water containing organo halogen compound |