[go: up one dir, main page]

JPS60262855A - Production of electromagnetic wave shielding resin - Google Patents

Production of electromagnetic wave shielding resin

Info

Publication number
JPS60262855A
JPS60262855A JP11812684A JP11812684A JPS60262855A JP S60262855 A JPS60262855 A JP S60262855A JP 11812684 A JP11812684 A JP 11812684A JP 11812684 A JP11812684 A JP 11812684A JP S60262855 A JPS60262855 A JP S60262855A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
pellets
pellet
cut
metal fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11812684A
Other languages
Japanese (ja)
Inventor
Akira Ogawa
小川 晶
Tatsuo Ooshima
大嶋 達夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP11812684A priority Critical patent/JPS60262855A/en
Publication of JPS60262855A publication Critical patent/JPS60262855A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To obtain a thermoplastic resin having improved moldability and excellent electromagnetic wave shielding properties, by interposing a metallic fiber between thermoplastic resin sheets, molding them by heating, cutting the molding into pellets and blending the pellets with a thermoplastic resin. CONSTITUTION:A metallic fiber having a fiber diameter of pref. 4-20mu is interposed between thermoplastic resin sheets and the laminate is molded by heating. The resulting molding is cut into pellets, which are blended with a thermoplastic resin, pref. polypropylene to obtain an electromagnetic wave shielding resin. The metallic fiber is used in a quantity of pref. 80-120pts.wt. per 100pts.wt. thermoplastic resin. Pref. the pellet should have nearly the same size as that of the thermoplastic resin pellet from the viewpoint of excellent moldability, and is to be cut into such a length that the metallic fiber has a length of 1-10mm..

Description

【発明の詳細な説明】 本発明は電磁シールド性に優れた樹脂の製造方法に関し
、特に導電性の金属繊維を熱可塑性樹脂に充填、成形す
る際の成形性を改良し11つ電磁シールド性に優れた樹
脂を製造する方fp−に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a resin with excellent electromagnetic shielding properties, and in particular improves moldability when filling and molding conductive metal fibers into a thermoplastic resin, thereby improving electromagnetic shielding properties. Concerning methods for producing excellent resins.

゛市鏝、波を)F薮する所謂、゛電磁シールド性樹脂成
形品(ハウジング)の製造方法としては、一般に熱可塑
性樹脂に導電性のフィラーを充填後成形する方法、或い
は熱可塑性樹脂成形品の表面に導電性の1−を形成させ
る方法などが行われる。中でも前者の熱可塑性樹脂に導
電性のフィラーを充填する方法は後者の樹脂成形品の表
面に導電性の層を形成させる方法によって得られる成形
品に懸念される導電性層の剥離の問題がなく、また成形
後の二次加工が不用であるなどの利点を有する。従来、
上記した導電性のフィラーとしては炭素粒子や炭素繊維
が一般的であったが、最近では導電性に優れた材料とし
て金属繊維も用いられるようになった。ところが、前者
の方法において例えば繊維径が3071m以下と小さな
金属繊維を用いる場合、所望の電磁シールド性を発揮さ
せるに必要な皺を添加すると熱可塑性樹脂中で金属繊維
が嵩ばる状態を呈する。従って、次いで例えば射出成形
、押出成形などの一般的な方法を用いて成形に供した場
合に樹脂中で金属繊維が粉末状で分散したり綿状に偏存
するため、流動性や分散性が低下【ハ成形性が極めて悪
くなったり、場合によっては成形不能となる。また、得
られた成形品は、体積固有抵抗が大きくなるなどの電磁
シールド性が劣ったり、他の添加剤、例えば難燃化剤等
との相乗効果が発揮されないという問題があった。
Generally speaking, the manufacturing method of so-called electromagnetic shielding resin molded products (housings) is to fill a thermoplastic resin with a conductive filler and then mold it, or to make a thermoplastic resin molded product. A method of forming conductive 1- on the surface of the substrate is used. Among them, the former method of filling a thermoplastic resin with a conductive filler eliminates the problem of peeling of the conductive layer, which is a concern with molded products obtained by the latter method of forming a conductive layer on the surface of the resin molded product. It also has the advantage of not requiring secondary processing after molding. Conventionally,
Carbon particles and carbon fibers have generally been used as the conductive fillers described above, but recently metal fibers have also come to be used as materials with excellent conductivity. However, in the former method, when using small metal fibers with a fiber diameter of 3071 m or less, the metal fibers become bulky in the thermoplastic resin when wrinkles necessary to exhibit the desired electromagnetic shielding properties are added. Therefore, when the metal fibers are then subjected to molding using general methods such as injection molding or extrusion molding, the metal fibers are dispersed in the resin in the form of powder or unevenly distributed in the form of flocs, resulting in decreased fluidity and dispersibility. [C] The moldability becomes extremely poor, or in some cases, it becomes impossible to mold. In addition, the obtained molded product has problems such as poor electromagnetic shielding properties such as increased volume resistivity, and lack of synergistic effects with other additives, such as flame retardants.

本発明者等は、導電性のフィラーと1ノで金属繊維を用
いる場合において、該金属繊維の熱ill塑性杓脂牛脂
中ける分散性や成形性を改良すると共に他の添加剤の効
果を損なうことなく、電磁シールド性に優れた熱可塑性
樹脂の製造方法について鋭意検討した。その結果、予め
金属繊維を含有するペレットを製造し、該ペレットを熱
iJ籾性樹脂に充填することにより、上記したtll′
I20が解決出来ることを見出し、本発明を完成するに
至った。
The present inventors have found that when using metal fibers in combination with a conductive filler, they improve the dispersibility and moldability of the metal fibers in hot plastic ladle tallow, while impairing the effects of other additives. Therefore, we conducted extensive research on a method for producing thermoplastic resin with excellent electromagnetic shielding properties. As a result, by producing pellets containing metal fibers in advance and filling the pellets with hot iJ rice grain resin, the above-mentioned tll'
It was discovered that I20 could be solved, and the present invention was completed.

即ち、本発明は金属繊維を熱可塑性樹脂シート間に挾i
n加熱成形【ノて得た成形物をベレット状に切断()、
該ペレットを語口f帝性樹脂に充填することを特徴とす
るsli、硼シールド性樹脂の製造方法である。
That is, the present invention involves sandwiching metal fibers between thermoplastic resin sheets.
n Heat molding [Cutting the obtained molded product into pellet shapes (),
This is a method for producing a sli shielding resin, which is characterized in that the pellets are filled with a transparent resin.

本介、明に用いられる金属繊維の材質、形状等は特に制
限されるものでなく種々のものが用いられる。例λば材
質と1ノでは鉄、オーステナイト系ステンレス鋼、銅、
アルミニウムなとがある。又、形状についても樹脂の種
類や成形条件等により適宜選定すればよいが、本発明で
は連続繊維(トウ)から50〜10mm前後に切断され
た短線1a(スライバー、チョップ)、あるいはスライ
バー(Stiver)を綿状に開繊した形状(ウェブ)
のもののいずれも使用できる。これらの金属繊維の繊維
径は11〜206 m前後のものが好ましく用いられる
The material, shape, etc. of the metal fibers used herein are not particularly limited, and various types may be used. For example, material and number 1 are iron, austenitic stainless steel, copper,
There is aluminum. In addition, the shape may be appropriately selected depending on the type of resin, molding conditions, etc., but in the present invention, short wires 1a (sliver, chop) cut from continuous fibers (tow) to about 50 to 10 mm, or slivers shaped like cotton (web)
You can use any of the following. These metal fibers preferably have a fiber diameter of about 11 to 206 m.

本発明の最大の特徴は、上記した如き金属繊維を熱[h
(塑性樹脂シート間に挾装して加熱成形した後、該成形
物を一定の大きざに切断することによりペレットを得る
ことにあり、次いで該ペレットを1(il J塑性樹脂
に充填することにより、金属繊維が良好に分散された熱
可塑性樹脂で成形性を改良【]成形品の物性低下を防I
F、でき、極めて優れた電磁シールド性を付与すること
が−Cきる。なお従来、集束剤を用いて金属繊維を複数
束ねて、これを熱可塑性に充填する方法があるが、本発
明ではシートに金属線1tを挾むだけであり、集束剤を
用いる方法における乾燥工程は不用てあり、T程が極め
て簡略化する。
The greatest feature of the present invention is that the metal fibers as described above are heated [h].
(After being sandwiched between plastic resin sheets and heat-formed, the molded product is cut into a certain size to obtain pellets, and then the pellets are filled in 1 (il J plastic resin). Improved moldability with thermoplastic resin in which metal fibers are well dispersed [] Prevents deterioration of physical properties of molded products
-C can provide extremely excellent electromagnetic shielding properties. Conventionally, there is a method of bundling a plurality of metal fibers using a sizing agent and filling them with thermoplastic material, but in the present invention, only 1 ton of metal wire is sandwiched between sheets, and the drying step in the method using a sizing agent is is not needed, and T is extremely simplified.

本発明に用いる熱可塑性樹脂とLノでは、ポリエチレン
、ポリプロピレン、ポリブテン等のポリオレフィン;ポ
リスチレン、AS樹脂(アクリルニトリル−スチレン共
重合体) 、ABS樹脂(アクリルニトリル−ブタジェ
ン共重合体)等のスチレン系ポリマー;ナイロン61、
ナイロン6.6等のポリアミド;ポリ塩化ビニル、塩素
化ポリプロピレン等の含ハロゲンポリマ;等の単独重合
体及びこれらの共重合体が挙げられ、夫々単独または混
合物の形態で使用される。特にポリプロピレンが好ま1
ノく用いられる。
The thermoplastic resin used in the present invention includes polyolefins such as polyethylene, polypropylene, and polybutene; styrene-based resins such as polystyrene, AS resin (acrylonitrile-styrene copolymer), ABS resin (acrylonitrile-butadiene copolymer), etc. Polymer; nylon 61,
Examples include homopolymers such as polyamides such as nylon 6.6; halogen-containing polymers such as polyvinyl chloride and chlorinated polypropylene; and copolymers thereof, which may be used alone or in the form of a mixture. Particularly preferred is polypropylene.
It is often used.

上記した熱可塑性樹脂をシートにする方法も特に制限さ
れるものでなく、例えばカレンダ加工、押出成形、Tダ
イ法等が用いられる。なお、本明細肖においてシートと
は、シート状物の意味であって1すみに関して厳密な意
味でのシートにかぎらずフィルムをも含む概念である。
The method of forming the above-mentioned thermoplastic resin into a sheet is not particularly limited, and for example, calendering, extrusion molding, T-die method, etc. are used. In this specification, the term "sheet" refers to a sheet-like object, and is a concept that includes not only a sheet in the strict sense of one corner but also a film.

熱可塑性樹脂シート間に挾装する金属m維の都は一般に
熱可塑性樹脂100市量部に対して50〜150重量部
で80〜120重量部が好まし0゜金属繊維の緻が少な
すぎると、樹脂を多量に要するため製造効率が低下し、
余りに多すぎると成形性が低−ドする。成形は一般に1
fiO〜350℃の温度でプレス成形する方法やラミネ
ート法が用いられる。このようにして得た成形物はカッ
ター等によりベレット状に切断される。この際、ベレッ
トの大きさは、充填する熱可塑性樹脂のベレットと同程
度の大きさが、成形性に優れるため好ましく金属繊維の
長さh月〜101IIR+となるように切断することが
好ましい。なお、シートを構成する熱り塑性樹脂とベレ
ットを充填する熱可塑性樹脂とは同種のものを用いるこ
とが、成形性及び成形品の物性の低下を防1卜するうえ
で好ましい。
The amount of metal fibers sandwiched between thermoplastic resin sheets is generally 50 to 150 parts by weight, preferably 80 to 120 parts by weight, per 100 parts of thermoplastic resin. , production efficiency decreases due to the large amount of resin required;
If the amount is too large, moldability will be low. Molding is generally 1
A method of press molding at a temperature of fiO to 350°C or a lamination method is used. The molded product thus obtained is cut into pellet shapes using a cutter or the like. At this time, the size of the pellet is preferably about the same size as the pellet of the thermoplastic resin to be filled, because it has excellent moldability, and it is preferable to cut the metal fiber so that it has a length of h months to 101 IIR+. Note that it is preferable to use the same type of thermoplastic resin for forming the sheet and for filling the pellet, in order to prevent deterioration in moldability and physical properties of the molded product.

ベレットを熱可塑性樹脂に充填、成形する方法は、例え
ζまタンブラ一式ブレンダー、■型ブレンダー、ヘンシ
ェルミキサー、リボンミキサー等を用いて、ベレットと
熱可塑性樹脂を混合した後、押出成形する方法等、特に
限定されるものでない。
Examples of methods for filling and molding pellets in thermoplastic resin include mixing the pellets and thermoplastic resin using a ζ-tumbler blender, ■-type blender, Henschel mixer, ribbon mixer, etc., and then extruding the mixture. It is not particularly limited.

この際のベレットの充tag、は熱可塑性樹脂100重
量部に対して8〜40重量部が好ましく用いられる。
In this case, the filling tag of the pellet is preferably 8 to 40 parts by weight per 100 parts by weight of the thermoplastic resin.

その他、これらの成分以外に従来公知の難燃化剤、安定
剤、着色剤、帯電防1ト剤、滑剤、核剤、各種充填剤、
ガラス、各種力・ンブリング剤等を添加してもよい。特
に、無機アンモニウム塩、E#化アンチモン及びベンゼ
ン核に臭素が直接結合した芳香族化合物(但し、側鎖に
臭素が結合している化合物は除く)またはトリアジン環
を有する脂肪族臭素化合物を前述したベレットとともに
ポリプロピレン樹脂中に充填して得た成形品は、難燃性
の1!磁シールド材として極めて優れている。
In addition to these ingredients, conventionally known flame retardants, stabilizers, colorants, antistatic agents, lubricants, nucleating agents, various fillers,
Glass, various strength/embrying agents, etc. may be added. In particular, inorganic ammonium salts, E# antimony, aromatic compounds in which bromine is directly bonded to the benzene nucleus (excluding compounds in which bromine is bonded to the side chain), or aliphatic bromine compounds having a triazine ring, as mentioned above. The molded product obtained by filling the pellet together with polypropylene resin has a flame retardant rating of 1! Extremely excellent as a magnetic shielding material.

実施例1゜ 直径+ (17+のステンレストウなラミネート機(:
1層式トライラミネーター)を用い、幅300mm、厚
さ1.5mmのポリプロピレンシートの間に重量比でl
:lになる様に挾装し、210℃で加熱成形することに
より積層状シートを作成後、カッターで縦5IIIII
+1横41の賽の目状に切断しベレットとした。このベ
レット20 # l$1%とポリプロピレンベレット(
MI=180重竜%とをタンブラ一式ブレンダーを用い
混合し、−軸押出機によりベレットを作成【)た。
Example 1゜Diameter + (17+ stainless steel laminating machine:
Using a single-layer tri-laminator), the weight ratio of
After creating a laminated sheet by heating and forming at 210℃, cut it vertically into 5III with a cutter.
+1 Cut into 41 dice shapes to make pellets. This pellet 20#l$1% and polypropylene pellet (
The mixture was mixed with MI=180% by using a blender with a tumbler, and pellets were prepared by using a -screw extruder.

得られたベレットより縦20mm、横20mm、厚ざ2
mmの試験片を作り、体積固有抵抗値を測定したところ
:(,2X10オームであった。
From the obtained pellet, the length is 20 mm, the width is 20 mm, and the thickness is 2.
A test piece of mm was prepared and the volume resistivity value was measured: (2×10 ohms).

比較例!。Comparative example! .

実施例1と同1ノステンレストウな411I11に切断
し、該ステンレストウ10重番%とポリプロピレンベレ
ット(MI=q)no重量%とをタンブラ一式ブレンダ
ーを用い混合し、−軸押出機によりベレットを作成した
The same stainless steel tow as in Example 1 was cut into 411I11 pieces, 10 weight percent of the stainless steel tow and no weight percent of polypropylene pellets (MI=q) were mixed using a tumbler blender, and the pellets were made using a -shaft extruder. Created.

以下、実施例と同一な方法で体積固有抵抗(−を測定し
たところ4.FiX10オームであった。
Hereinafter, the volume resistivity (-) was measured using the same method as in the example, and it was found to be 4.FiX10 ohms.

実施例2゜ 隊さ1.(1mmのポリエチレンジート及びポリエチレ
ンシート)(MI=4.)を用いる以外は実施例1と全
く同じ方法でベレットを作成し、該ペレツトの体積固有
抵抗を測定したところ2.lX1−亀 0オームであった。
Example 2゜Team 1. A pellet was prepared in exactly the same manner as in Example 1 except that (1 mm polyethylene sheet and polyethylene sheet) (MI=4.) was used, and the volume resistivity of the pellet was measured.2. lX1-Kame0 ohm.

比較VA2゜ 比較例1のポリプロピレンベレットの代わりに実施例2
と同一のポリエチレンベレットを用いた以外、比較例1
と同lノ方法でベレットを作成[ハ該ベレットの体積固
有抵抗を測定したとごろ;3゜6 X ] 0であった
Comparison VA2゜Example 2 instead of polypropylene pellet of Comparative Example 1
Comparative Example 1 except that the same polyethylene pellet was used.
A pellet was prepared using the same method as above.The volume resistivity of the pellet was measured: 3°6×0.

実施例3゜ 直径8 /Iのステンレスウェアを圧縮成形機に(5ト
ン自動プレス成形11)を用い300 X 30 (1
mI11.厚さ]−:(tillのポリプロピレンシー
ト閤に重量比で1:1になる様に挾装し、20 (1”
Cで加熱成形することにより積層シートを作成後、該シ
ートを力・ツタ−て縦4.mm、横4mmの賽の目状に
切断lノベレットと【〕た。
Example 3 Stainless steelware with a diameter of 8/I was molded using a compression molding machine (5-ton automatic press molding 11) to form 300 x 30 (1
mI11. Thickness] -: (Put it between the polypropylene sheets of till so that the weight ratio is 1:1,
After creating a laminated sheet by heating and forming at C, the sheet is twisted and rolled lengthwise. It was cut into dice-shaped pieces with a width of 4 mm and a novelette.

このベレット15重都%とポリプロピレン(M1=9)
ペレッ)85重11%を■型ブレンダーを用い混合し、
−軸押出機によりベレットを作成した。
This pellet 15% heavy weight and polypropylene (M1=9)
Pellets) 85 weight 11% are mixed using a ■ type blender,
- The pellets were made using a screw extruder.

マ:ノられたベレットを縦20IIll11.横20m
m、厚さ2mmの試験片を作り、体積国有抵抗値を測定
()た−1 ところ4.3X10オームであった。
M: Hold the cut bellet vertically 20IIll11. Width 20m
A test piece with a thickness of 2 mm was prepared, and the volume resistance value was measured ()-1, and it was found to be 4.3 x 10 ohms.

比較例3゜ 実施例3と同しステンレスウェブを4−に切断し、該ス
テンレスウェア7.5重量%とポリプロピレン(MI=
9)ペレットとを■型ブレンダーを用い混合し、−軸押
出機によりペレットを作成Lノか。
Comparative Example 3 The same stainless steel web as in Example 3 was cut into 4 pieces, and 7.5% by weight of the stainless steel ware and polypropylene (MI=
9) Pellets were mixed using a type blender, and pellets were made using a -screw extruder.

以下、実施例3と同一な方法で体積固有抵抗値を測定し
たところ2.6X10オームであった。
The volume resistivity value was measured in the same manner as in Example 3 and found to be 2.6×10 ohms.

実施例4゜ 厚さ1.3mmのA)(Sシート及び一般成形用ARS
ベレットを用いる以外は実施例3と同じ方法で体積固有
抵抗値を測定したところ]、RX](1オームであった
・ 比較例4゜ 実施例4のA BSペレットを用いる以外は比較例:)
と同じ方法で体積固有抵抗値を測定したところ8.6X
]Oオームであった。
Example 4 A) (S sheet and ARS for general molding) with a thickness of 1.3 mm
The volume resistivity value was measured in the same manner as in Example 3 except for using pellets], RX] (1 ohm Comparative example 4゜A Comparative example except for using BS pellets of Example 4:)
The volume resistivity value was measured using the same method as 8.6X.
]O ohm.

実施f9Ilf5゜ 直径4μの黄銅繊維スライバーをラミネート機を用い;
9さ50μのポリプロピレンのフィルムの間に重重比で
2対3になるように挟装し、加熱成形することにより、
積層状フィルムを作成、カッターで縦4IIII111
横3ms+の賽の目状に切断しペレットとした。
Implementation f9Ilf5° Brass fiber sliver with a diameter of 4μ was used using a laminating machine;
By sandwiching between 9x50μ polypropylene films at a weight ratio of 2:3 and heat forming,
Create a laminated film and use a cutter to cut it vertically 4III111
It was cut into dice-like pieces with a width of 3 ms+ to form pellets.

このベレット10重重%とM+9のポリプロピレンパウ
ダー90亀暮%とを■型タンブラーを用い混合【ハ通常
の一軸押出機によりペレットを作成した。
10% by weight of this pellet and 90% by weight of M+9 polypropylene powder were mixed using a type tumbler.

1グられたペレットにより縦201.横201I11、
淳さ2III11の試験片を作り、体積固有抵抗値を測
定1 【ノた。その値は、11.9XIOオー11であった。
201mm vertically by 1 pellet. Horizontal 201I11,
A test piece of Atsushi 2 III 11 was made and the volume resistivity was measured 1. The value was 11.9XIO oh 11.

比較例5゜ 実施例5と同じ黄銅繊維スライバーを:1m航こ切断し
該スライバーを直接実施例5と同じ割合、方法で実施例
5と同じポリプロピレンパウダーと混合しペレットを作
成した。
Comparative Example 5 The same brass fiber sliver as in Example 5 was cut by a 1 m line, and the sliver was directly mixed with the same polypropylene powder as in Example 5 in the same proportion and method as in Example 5 to prepare pellets.

得られたペレットより、実施例5と同じ方法で体積固有
抵抗値を測定した。その値は、2,3x10オーツ、で
あった。
The volume resistivity value of the obtained pellet was measured in the same manner as in Example 5. Its value was 2.3 x 10 oats.

実施例6゜ j9さFi O)tの塩化ビニールフィルム及び重合度
800の塩化ビニールパウダーを用いる以外は実施例5
と仝く同【)方法を実施し、体積固有抵抗値を測定した
Example 6 Example 5 except that a vinyl chloride film of ゜j9SFiO)t and a vinyl chloride powder with a degree of polymerization of 800 were used.
The same method [) was carried out to measure the volume resistivity value.

子の頓は、2.9X1(1オームであった。The diameter of the child was 2.9X1 (1 ohm).

比較例6゜ 実施例6と同じ黄銅繊維スライバーを3iII11に切
断し該スライバーを実施例日と同し割合方法で直接、塩
化ビニールパウダーに混合し、ペレットを作成1.た。
Comparative Example 6゜The same brass fiber sliver as in Example 6 was cut into 3iII11 pieces, and the sliver was directly mixed with vinyl chloride powder in the same proportion as on the day of Example to make pellets.1. Ta.

得せれたベレ・ントより実施PA6と同じ方法で体積固
有抵抗(−を測定した。
The volume resistivity (-) was measured from the obtained beret in the same manner as in Example PA6.

その値は、71(XIOオームであった。Its value was 71 (XIO ohms).

実施例7゜ 直接871のステンレスウェブな圧縮成形機を用いl!
lLさO,Bms+のPPシート間に重量圧でl対lに
なるように挟装【ハ加熱成影することにより積層状のシ
ートを作成、力・ツタ−で縦;]lll1l、横3ml
l1の暮の目状に切断し、ペレットとしに0このペレッ
ト1fiii量%、ポリプロピレンパウダー44重量%
、臭化アンモニウム23重量%、デカブロモジフェニル
エーテ12重量%、=5酸化アンチモン6重敏%とをタ
ンブラ一式ブレンダーを用い混合しハ通常の一軸押出機
によりペレットを作成した。
Example 7 Directly using an 871 stainless steel web compression molding machine!
Sandwich between PP sheets of lL, O, Bms+ so that the ratio of l to l by weight pressure [C Create a laminated sheet by heating and forming, lengthwise with force and tumble;] lll1l, width 3ml
Cut into 11 squares and make pellets. 1fiii weight% of this pellet, 44% by weight of polypropylene powder.
, 23% by weight of ammonium bromide, 12% by weight of decabromodiphenyl ether, and 6% by weight of antimony pentoxide were mixed using a tumbler blender, and pellets were prepared using a conventional single screw extruder.

得られたペレットにより縦20m、横20111m、膣
、さ2III11の試験片を作り、体積固有抵抗値を測
定一 【ノた。その値は、2.1(XI(1オームであった。
A test piece with a length of 20 m, a width of 20111 m, and a vagina size of 2III11 was made from the obtained pellets, and the volume resistivity was measured. Its value was 2.1 (XI (1 ohm).

またIJ 1.94規格の垂直法に準拠して行った燃焼
試験の結果は、雛さ] / 10において平均自己消化
時間は1.;3秒、“火だれ′″による綿花の着火もな
く、■−〇の難燃性であると判定された。
In addition, the results of a combustion test conducted in accordance with the vertical method of the IJ 1.94 standard showed that the average self-extinguishing time was 1. After 3 seconds, there was no ignition of the cotton due to "flame drip", and the flame retardance was determined to be ①-〇.

比較例7゜ 実施例7と同lノステンレスウエブな:3mmに切断【
ノ該ウェブをペレット化することなく直接実施例7と同
し割合、方法で混合し、ペレットを作成した。
Comparative Example 7゜Same stainless steel web as Example 7: Cut to 3 mm [
The web was directly mixed in the same proportion and method as in Example 7 without being pelletized to produce pellets.

t(Jられたペレツトより実施例7と同じ方法”C1体
積固有抵抗値、及7J袴燃性を測定した。
The volume resistivity of C1 and the flammability of 7J were measured using the same method as in Example 7 from the pellets obtained.

3 体積固有抵抗値は3.((XIOオーム、平均自己消化
時間は7.;(秒、綿花の着火率が3/10であり、V
−2の難燃性であると判定された。
3 Volume resistivity value is 3. ((XIO ohms, the average self-extinguishing time is 7.; (seconds, the ignition rate of cotton is 3/10, and the V
It was determined that the flame retardance was -2.

実施例日。Example date.

直径4 Bのステンレススライバーをラミネート機を用
い、厚さ60μのポリプロピレンフィルムの間に重量比
で2対3になるように挾層し、加熱成形することにより
積層状フィルムを作成、カッターで縦;)爾−5横2m
lの賽の目状に切断し、ベレツトとした。
Using a laminating machine, a stainless steel sliver with a diameter of 4 B was sandwiched between polypropylene films with a thickness of 60 μm at a weight ratio of 2:3, and then heated and formed to create a laminated film, and cut vertically with a cutter; ) 爾-5 width 2m
It was cut into 1-inch dice and made into berets.

このペレット10!i、I!1′%とMI9のポリプロ
ピレンパウダー57重量%、硫酸アンモニウム29重量
%、デカブロモジフェニルエーテル10111:%、三
酸化アンチモン4鴫量%とを■型ブレンダーを用い混合
【ハ通常の一軸押出機によりペレットを作成した。
This pellet is 10! i, i! 1'% and 57% by weight of MI9 polypropylene powder, 29% by weight of ammonium sulfate, 10111% of decabromodiphenyl ether, and 4% of antimony trioxide were mixed using a type blender. did.

得られたペレットより実施例7に示したと同じ方法で試
験片を作成し、体積固有抵抗値と難燃性を測定した。
Test pieces were prepared from the obtained pellets in the same manner as shown in Example 7, and the volume resistivity and flame retardance were measured.

体積固有抵抗値は8.3XIOオーツい平均自己消化時
間は1.1秒、“火だれ”による綿花の着火もなく、■
−0の難燃性であると判定された。
The volume resistivity value is 8.3XIO, the average self-extinguishing time is 1.1 seconds, and there is no ignition of cotton due to "sparkle".■
It was determined that the flame retardance was -0.

比較例8゜ 実施例8と同じステンレススライバーを2Illlに切
断し、該スライバーをペレット化することなく直接実施
例8と同じ割合、方法で混合しハベレットを作成した。
Comparative Example 8 The same stainless steel sliver as in Example 8 was cut into 2Illl pieces, and the slivers were directly mixed in the same ratio and method as in Example 8 without pelletizing to create a Havelet.

得られたペレットより実施例8と同じ方法で体積固有抵
抗値及び難燃性を測定した。
The volume resistivity and flame retardance of the obtained pellets were measured in the same manner as in Example 8.

体積固有抵抗値は5.7X]03オーム、平均自己消化
時間は5.9秒、綿花の着火率は371Oであり、V−
2の難燃性であると判定された。
The volume resistivity value is 5.7X]03 ohms, the average self-extinguishing time is 5.9 seconds, the ignition rate of cotton is 371O, and the V-
It was determined that the flame retardancy was 2.

註■ 比較例についてはいづれも押出機におけるペレッ
ト成形性が悪い。
Note■ Comparative examples all had poor pellet formability in an extruder.

(例えば、サージングが多く、ストランド切れが多発) (2)比較例で得られた最終のペレット中の金属繊維の
分散性は、実施例と比べてVII著に悪いことが認めら
れた。
(For example, there was a lot of surging and strand breakage occurred frequently.) (2) The dispersibility of the metal fibers in the final pellets obtained in the comparative example was found to be significantly worse than in the example.

特許出馴人 徳山曹達株式会社Patent expert Tokuyama Soda Co., Ltd.

Claims (1)

【特許請求の範囲】 1)金属繊維を熱可塑性樹脂シート間に挾装し加熱成形
して得た成形物をペレット状に切断し、該ペレットを熱
可塑性樹脂に充填することを特徴とする電磁シールド性
樹脂の製造方法2)金属繊維の繊維径が4〜207Lm
である特許請求の範囲第1項記載の電磁シールド性樹脂
の製造方法 3)シートを構成する熱可塑性樹脂とペレットを充填す
る熱可塑性樹脂が同種のものである特許請求の範囲第1
項記載の電磁シールド性樹脂の製造方法 II’) 熱可塑性樹脂がポリプロピレンである特許請
求の範囲第1項または第3項記載の電磁シールド性杓脂
の製造方法 5)ペレット中の金属繊維の技さが1〜10+mである
特許請求の範囲第1項記載の電磁シールド性樹脂の製造
方法 6)熱可塑性樹脂シート間に挾装する金属繊維が該熱可
堕性樹脂100重檄部に対して80〜120重量部であ
る特許請求の範囲第1項記載の電磁シールド性樹脂の製
造方法 7)無機アンモニウム塩、三酸化アンチモン及びベンゼ
ン核に臭素が直接結合した芳香族臭素化合物(但し、側
鎖に臭素が結合している化合物は除く)またはトリアジ
ン環を有する脂肪族臭素化合物を充填する特許請求の範
囲第1項記載の電磁シールド性相脂の製造方法
[Claims] 1) An electromagnetic device characterized in that metal fibers are sandwiched between thermoplastic resin sheets, the molded product obtained by heat molding is cut into pellets, and the pellets are filled in a thermoplastic resin. Manufacturing method of shielding resin 2) Fiber diameter of metal fiber is 4 to 207 Lm
3) A method for manufacturing an electromagnetic shielding resin according to claim 1, wherein the thermoplastic resin constituting the sheet and the thermoplastic resin filling the pellets are of the same type.
5) Method for manufacturing electromagnetic shielding resin according to claim 1 or 3, wherein the thermoplastic resin is polypropylene; 5) Technique for metal fibers in pellets. 6) A method for manufacturing an electromagnetic shielding resin according to claim 1, in which the length is 1 to 10+ m. 6) The metal fibers sandwiched between the thermoplastic resin sheets are 7) An aromatic bromine compound in which bromine is directly bonded to an inorganic ammonium salt, antimony trioxide, and a benzene nucleus (however, the amount of (excluding compounds in which bromine is bonded to) or an aliphatic bromine compound having a triazine ring.
JP11812684A 1984-06-11 1984-06-11 Production of electromagnetic wave shielding resin Pending JPS60262855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11812684A JPS60262855A (en) 1984-06-11 1984-06-11 Production of electromagnetic wave shielding resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11812684A JPS60262855A (en) 1984-06-11 1984-06-11 Production of electromagnetic wave shielding resin

Publications (1)

Publication Number Publication Date
JPS60262855A true JPS60262855A (en) 1985-12-26

Family

ID=14728679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11812684A Pending JPS60262855A (en) 1984-06-11 1984-06-11 Production of electromagnetic wave shielding resin

Country Status (1)

Country Link
JP (1) JPS60262855A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61294702A (en) * 1985-06-21 1986-12-25 新神戸電機株式会社 Method for producing polyolefin conductive resin composition
JPS6273415U (en) * 1985-10-28 1987-05-11
JPS62100905A (en) * 1985-10-28 1987-05-11 東海ゴム工業株式会社 Conductive sheet and manufacture of the same
WO2020071421A1 (en) * 2018-10-05 2020-04-09 ダイセルポリマー株式会社 Resin molded body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58150203A (en) * 1981-12-30 1983-09-06 エヌ・ヴイ・ベカルト・エス・エイ Prastic product with conductive fiber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58150203A (en) * 1981-12-30 1983-09-06 エヌ・ヴイ・ベカルト・エス・エイ Prastic product with conductive fiber

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61294702A (en) * 1985-06-21 1986-12-25 新神戸電機株式会社 Method for producing polyolefin conductive resin composition
JPH0461441B2 (en) * 1985-06-21 1992-09-30 Shin Kobe Electric Machinery
JPS6273415U (en) * 1985-10-28 1987-05-11
JPS62100905A (en) * 1985-10-28 1987-05-11 東海ゴム工業株式会社 Conductive sheet and manufacture of the same
WO2020071421A1 (en) * 2018-10-05 2020-04-09 ダイセルポリマー株式会社 Resin molded body
JPWO2020071421A1 (en) * 2018-10-05 2020-04-09

Similar Documents

Publication Publication Date Title
US4664971A (en) Plastic article containing electrically conductive fibers
DE69632047T2 (en) COPOLYESTER COMPOSITION CONTAINING AMORPHE RUSS
US4500595A (en) Stainless steel fiber-thermosplastic granules and molded articles therefrom
KR20180015501A (en) Electrically conductive resin composition and method of preparing the same
EP1412429B1 (en) Flameproofed thermoplastic molding compounds
CN100402603C (en) Preparation method for flame-proof acrylonitrile-styrene copolymerized resin/acrylonitrile-chlorided polyethylene-styrene copolymerized resinplastic alloy
JPS60262855A (en) Production of electromagnetic wave shielding resin
JPS5911357A (en) Polyphenylene sulfide resin molding material
CN109762292A (en) A kind of ABS composition and a kind of preparation method of ABS composition
CN110607019A (en) Long-acting antistatic color master batch and preparation method and application method thereof
JPH0778515A (en) Conductive plastic goods
WO2025001879A1 (en) Multifunctional polyethylene breathable film and preparation method therefor
JPS6054967B2 (en) Method of manufacturing conductive plastic
JPS6337142A (en) Production of electrically conductive resin composition
JPS61209120A (en) Manufacture of electrically conductive termoplastic resin molding
JPS5937295B2 (en) polyolefin composition
JPH03153738A (en) molding material
DE2827760A1 (en) STABILIZED, FLAME-RETARDED, THERMOPLASTIC MOLDS
CN112812431B (en) High-performance low-shrinkage polypropylene and preparation method thereof
JPS59109537A (en) Production of electromagnetic shielding material
JPH0555961B2 (en)
KR100732320B1 (en) Conductive resin composition and method for producing the molded article
CN116790057A (en) Antistatic flame-retardant master batch
CN108250695B (en) Flame-retardant reinforced PBT (polybutylene terephthalate) material with high drawing force for wiring terminal insulating base and preparation method thereof
CN107099123B (en) A kind of modified PBT material and preparation method thereof of resistance to long-time injection molding storage