[go: up one dir, main page]

JPS60225824A - Optical shutter elememt - Google Patents

Optical shutter elememt

Info

Publication number
JPS60225824A
JPS60225824A JP8269484A JP8269484A JPS60225824A JP S60225824 A JPS60225824 A JP S60225824A JP 8269484 A JP8269484 A JP 8269484A JP 8269484 A JP8269484 A JP 8269484A JP S60225824 A JPS60225824 A JP S60225824A
Authority
JP
Japan
Prior art keywords
electrodes
electrode
thickness
view
operating voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8269484A
Other languages
Japanese (ja)
Other versions
JPH0422248B2 (en
Inventor
Chiharu Katagiri
千春 片桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Precision Corp
Original Assignee
Nidec Copal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Copal Corp filed Critical Nidec Copal Corp
Priority to JP8269484A priority Critical patent/JPS60225824A/en
Publication of JPS60225824A publication Critical patent/JPS60225824A/en
Publication of JPH0422248B2 publication Critical patent/JPH0422248B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0102Constructional details, not otherwise provided for in this subclass

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To narrow down electrode width and to lower an operating voltage, and to improve light transmissivity by providing an internal laminar electrode which extends in a light transmission direction between chip substrates laminated in an array. CONSTITUTION:Metallic electrodes 2' with thickness W/2 are vapor-deposited on both top and reverse surfaces of a wafer 1' with thickness (g) in out-of-phase relation and diced to width (t) to form a number of chip substrates 1, which are rearranged and laminated so that electrodes 2' and 2' come into contact with each other. Then, the electrodes 2' and 2' are bonded together by compression into an internal laminar electrode 2, an electric insulating agent 3 is charged in and outside of the gap between chip substrates 1 and 1, and flank electrodes 4 and 4 are fitted to constitute a couple of comb-shaped electrodes having opposed electrodes 2, 2.... Consequently, the thickness W of electrodes 2 and the electrode gap (g) are reduced to obtain a low operating voltage and high light transmissivity.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は電気光学効果を有する透明強誘電体セラミッ
クスを利用した光シヤツタ素子に関し、更に詳しくは、
上記セラミフクスよりなる多数のチップ基板を一列に配
列してなる光シヤツタ素子に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an optical shutter element using transparent ferroelectric ceramics having an electro-optic effect, and more specifically,
The present invention relates to an optical shutter element formed by arranging a large number of chip substrates made of the above-mentioned ceramic fuchs in a line.

〔従来技術〕[Prior art]

この種の光シヤツタ素子にあっては偏光方向が互いに直
交した一対の偏光子間に、電界の方向が入射光の偏光方
向と45°の角度をなしてPLZT (Pb、La、Z
r、Ti)等の透明強誘電体セラミフクスよりなる基板
を配置している。
In this type of optical shutter element, between a pair of polarizers whose polarization directions are perpendicular to each other, the direction of the electric field forms an angle of 45° with the polarization direction of the incident light.
A substrate made of transparent ferroelectric ceramic material such as Ti, Ti) is disposed.

そして、例えば第4図に示すようにPLZTよりなる基
板(ウェハ)21の表裏両面にくし歯状の平面電極22
.22を設けた構造を有している。
For example, as shown in FIG. 4, comb-shaped planar electrodes 22 are provided on both the front and back surfaces of a substrate (wafer) 21 made of PLZT.
.. It has a structure in which 22 are provided.

しかしながら、このような従来のものにあっては、基板
21の厚さt、電極22の幅W、電極間隔g等をパラメ
ータとして電界分布が変動するため、動作電圧や光透過
率が大きく影響されており、特に動作電圧を低くしよう
として電極間隔gを狭くすると、電界分布が表面だけに
集中してしまうために動作電圧は下がらず、むしろ増大
してしまう場合がある。
However, in such conventional devices, the electric field distribution varies with parameters such as the thickness t of the substrate 21, the width W of the electrode 22, and the electrode spacing g, so the operating voltage and light transmittance are greatly affected. In particular, if the electrode spacing g is narrowed in an attempt to lower the operating voltage, the electric field distribution will be concentrated only on the surface, so the operating voltage may not decrease but rather increase.

また、電極幅Wはホトリソ(ホトエツチングプロセス)
技術による限界(10μm程度)があるため、特に電極
間隔gを狭くした場合に開口率(光の透過する面積/全
面積)を大きくとれないために光透過率を大きくできな
い等の欠点を有してし、た。
In addition, the electrode width W is determined by photolithography (photoetching process).
Due to technological limitations (approximately 10 μm), there are drawbacks such as the inability to increase light transmittance because the aperture ratio (light transmitting area/total area) cannot be increased, especially when the electrode spacing g is narrowed. Teshita, ta.

また、前記のような平面電極22による電界分布の不均
一性を改善するために、第5図に示すように光透過性の
基板(ウェハ)31の表面に溝形電極32を設けた構造
のものも検討されている。
In addition, in order to improve the non-uniformity of the electric field distribution due to the flat electrode 22 as described above, a structure in which groove-shaped electrodes 32 are provided on the surface of a light-transmitting substrate (wafer) 31 as shown in FIG. Things are also being considered.

しかしながら、このようなものにあっては、動作電圧は
平面電極22に比べて低くすることができるが、ダイシ
ングによって溝を形成するために、電極Wは溝幅による
制約を受けて20〜40μm程度より狭くすることがで
きず、電極間隔gを狭くすると開口率が下がって光透過
率が低下してしまうという欠点を有していた。
However, in such a device, the operating voltage can be lower than that of the planar electrode 22, but since the groove is formed by dicing, the electrode W is limited by the groove width and has a thickness of about 20 to 40 μm. However, if the electrode spacing g is made narrower, the aperture ratio decreases and the light transmittance decreases.

〔発明の目的〕[Purpose of the invention]

この発明は前記のような従来のもののもつ欠点を排除し
て、電界分布の不均一性をさらに改善し、特性を向上さ
せた光シヤツタ素子を提供することを目的とする。
An object of the present invention is to eliminate the drawbacks of the conventional devices as described above, further improve the non-uniformity of electric field distribution, and provide an optical shutter element with improved characteristics.

〔発明の概要〕 上記目的を達成するため、本発明の光シャウタ素子は透
明強誘電体セラミックスよりなる多数のチップ基板を一
列に積層し、各チップ基板間において、光透過方向に沿
って貫通した内部層状電極を設けており、これにより電
極幅を狭(して、動作電圧を低下させるとともに、光透
過率も高くすることができる。
[Summary of the Invention] In order to achieve the above object, the optical shutter element of the present invention has a large number of chip substrates made of transparent ferroelectric ceramics stacked in a row, and a light beam that penetrates between each chip substrate along the light transmission direction. An internal layered electrode is provided, which makes it possible to reduce the electrode width, thereby lowering the operating voltage and increasing the light transmittance.

〔発明の実施例〕[Embodiments of the invention]

以下、図面に示すこの発明の実施例について説明する。 Embodiments of the invention shown in the drawings will be described below.

第1図にはこの発明による光シヤツタ素子の一実施例が
示されており、この光シヤツタ素子は、PLZT等の透
明強誘電体セラミックスよりなる多数のチップ基板を一
列に積層したアレー構造を有し、チップ基板1間に、光
透過方向に沿って貫通した内部層状電極2を設けた構造
を有しており、tはチップ基板1の厚さ、Wは電極2の
幅、gは電極間隔である。
FIG. 1 shows an embodiment of an optical shutter element according to the present invention, and this optical shutter element has an array structure in which a large number of chip substrates made of transparent ferroelectric ceramics such as PLZT are laminated in a row. It has a structure in which an internal layered electrode 2 is provided between the chip substrates 1 and penetrates along the light transmission direction, where t is the thickness of the chip substrate 1, W is the width of the electrode 2, and g is the electrode spacing. It is.

そして、この光シヤツタ素子の製造工程は第2図に示さ
れており、まず厚さgのPLZTセラミックスのウェハ
l′を用意しく第2図(a)(b)参照)、このウェハ
l′の表裏両面に、厚さW/2の金属電極2′を互いに
位相をずらして(その面方向において相対向する辺部が
互いに平行な金属電極2′の非被着領域となるように)
蒸着しく第2図(c)(d)参照)、これを幅tでダイ
シングして多数の千ノブ基板1を形成しく第2図(e)
<r)参照)、つぎに前記電極2′、2′どうしが接す
るようにむきを並べ変え、且つ1つおきのチップ基板1
間の金属電極2′、2′が互いに位置をずら(るように
してこれにより厚さgのウェハl′からpJさtのチッ
プ基板1が一列に積層されたものを構成しく第2図(g
)(f)参照)、つぎに圧着により電極2′、2′どう
しを密接して内部層状電極2を構成しく第2図(i)(
j)参照)千ノブ基板1.1の間隙およびその外側に電
気絶縁材3を充填し、次に両面(図示紙面と平行な面)
に鏡面研磨を施しく第2図(k)参照)さらに側面電極
4.4を両側に取り付けて電極2.2−を対向した一対
のくし山伏電極に構成する(第2図(β)(m)参照)
The manufacturing process of this optical shutter element is shown in FIG. 2. First, a PLZT ceramic wafer l' with a thickness g is prepared (see FIGS. 2(a) and (b)), and this wafer l' is Metal electrodes 2' with a thickness of W/2 are placed on both the front and back surfaces with their phases shifted from each other (so that the opposing sides in the plane direction are parallel non-adhered regions of the metal electrodes 2').
2(c) and 2(d)), and diced with a width t to form a large number of 1,000-knob substrates 1 (see FIG. 2(e)).
<r)), then rearrange the peeling so that the electrodes 2', 2' are in contact with each other, and remove every other chip substrate 1.
As shown in FIG. g
) (f)), then the electrodes 2', 2' are brought into close contact with each other by pressure bonding to form the inner layered electrode 2 (see FIG. 2(i)).
j)) Fill the gap and the outside of the 1,000-knob board 1.1 with electrical insulating material 3, then cover both sides (the plane parallel to the plane of the drawing).
(see Fig. 2 (k))) Furthermore, side electrodes 4.4 are attached on both sides to form electrodes 2.2- into a pair of facing comb-shaped Yamabushi electrodes (see Fig. 2 (β) (m). )reference)
.

次ぎに前記のものの作用について説明する。Next, the operation of the above will be explained.

前記のように構成すると、第2図(n)のように前記電
極2の厚さWを数μm以下に狭(することができ、また
電極間隔gはウェハl′の厚さで決まるから、たとえば
300μm程度の狭さにすることができ、そのため低い
動作電圧と高い光透過率とをともに得ることができる。
With the above structure, the thickness W of the electrode 2 can be reduced to several μm or less as shown in FIG. 2(n), and the electrode spacing g is determined by the thickness of the wafer l'. For example, it can be made as narrow as about 300 μm, and therefore both low operating voltage and high light transmittance can be obtained.

第3図にはこの発明による光シヤツタ素子の他の実施例
の製造工程が示されている。
FIG. 3 shows the manufacturing process of another embodiment of the optical shutter element according to the present invention.

すなわち、厚さgのウェハ11′(第3図(a)(b)
参照)にまずテーパ面15を形成しく第5図(’C)(
d)参照)、その後、テーパ面15を含めてウェハ11
′の表裏両面に厚さW/2の金属電極12′を互いに位
相をずらして蒸着しく第3図(e)(f)参照)、これ
を幅tでダイシングしく第3図(g)参照)b、つぎに
前記電極12’、12’どうしが接するように向きを並
べ変えて厚さgのウェハ11′から厚さtのチンプ基板
11を多数−列に積層したものを構成するとともに、電
極12’、12′どうしを圧着して内部層状電極12を
構成しく第3図(h)参照)、テーパ面のない基板11
.11の間隙およびその外側に電気絶縁材13を充填し
、側面電極14.14を両側面に取り付けて電極12.
12−を対向したくし歯状電極に構成すると共に、両面
に鏡面研磨を施す(第3図(+)参照)。
That is, a wafer 11' having a thickness g (Fig. 3(a)(b)
First, form the tapered surface 15 on the surface (see Figure 5('C)(
d)), then the wafer 11 including the tapered surface 15
Metal electrodes 12' having a thickness of W/2 are deposited on both the front and back surfaces of the metal electrode 12' with a phase shift from each other (see FIGS. 3(e) and 3(f)), and this is diced with a width t (see FIG. 3(g)). b. Next, the directions of the electrodes 12' and 12' are changed so that they are in contact with each other, and a large number of chimp substrates 11 of thickness t are stacked in rows from the wafer 11' of thickness g, and 12' and 12' are pressed together to form an internal layered electrode 12 (see FIG. 3(h)), and a substrate 11 without a tapered surface.
.. 11 and the outside thereof are filled with electrical insulating material 13, and side electrodes 14.14 are attached to both sides of electrode 12.14.
The electrodes 12- are formed into opposing comb-like electrodes, and both surfaces are mirror-polished (see FIG. 3 (+)).

そして、このものにあっては、第2図に示すものと同様
の作用を有するほか、内部層状電極12と両側電極14
との接続を容易に、かつ確実に行うことかできる。
In this case, in addition to having the same effect as that shown in FIG.
connection can be made easily and reliably.

なお、第3図に示す実施例では電極12’を蒸着する部
分にテーパ面15を形成したか、電気絶縁材13を充填
する部分にもあらかじめテーパ面を同様に形成してもよ
いことは勿論である。
In the embodiment shown in FIG. 3, the tapered surface 15 is formed in the part where the electrode 12' is deposited, but it goes without saying that a tapered surface may also be formed in advance in the part where the electrical insulating material 13 is to be filled. It is.

また、実施例においてはチップ基板を一列に配設した長
尺のものを示したが、この−列のアレイを多数組合せて
面状に形成できることは言うまでもない。
Further, in the embodiment, a long chip substrate in which chip substrates are arranged in a single row is shown, but it goes without saying that a large number of arrays of these rows can be combined to form a planar shape.

〔発明の効果 この発明は前記のように構成したことにより、電極幅を
充分狭くすることができ、そのため開口率を低下させず
に電極間隔を狭くすることができ、したがって、動作電
圧を低くすることができるとともに、光透過率を高くす
ることができて光シヤツタ素子の最も重要な2つの特性
をともに向上させることができるなどのすぐれた効果を
有するものである。
[Effects of the Invention] By having the above-described structure, the electrode width can be made sufficiently narrow, and therefore, the electrode spacing can be made narrow without reducing the aperture ratio, and therefore the operating voltage can be lowered. In addition, it has excellent effects such as being able to increase the light transmittance and improving both of the two most important characteristics of the optical shutter element.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す断面図、第2図は第
1図のものの製造工程を示し、(a)(b)をウェハの
正面図および端面図、(C)(d)は電極蒸着工程の正
面図および端面図、(e)(f)はグイシング工程の正
面図および端面図、(g> (h)は並べ変えた工程の
正面図および端面図、(i)(j)は電極接着工程の正
面図および斜視図、(k)は電気絶縁、鏡面研磨工程の
正面図、(7り(m)(n)鵜側面電極取り付は工程の
正面図、斜視図およびn−n線に沿って見た断面図、第
3図はこの発明の他の実施例の製造工程を示し、(a)
(b)ばウェハの正面図および端面図、(C)(d)は
テーパ面形成工程の正面図および端面図、(e)(f>
は電極蒸着工程の正面図およず端面図、<g)はグイシ
ング工程の正面図、(h)は並び変え・電極接着工程の
正面図、(i)は電気絶縁・鏡面研磨・側面電極取り付
は工程の正面図、第4図(’a)は従来のものの一例を
示す正面図、第4図(b)は第41!](a)のb−b
線に沿って見た拡大断面図、第5図は従来のものの他の
例を示す断面図である。 1.1t−・−チップ基板 1 ′、11 ’ −−−−−−ウェハ2.12−・−
・−内部層状電極 2′、12’ −−−−一金属電極 3.13−・−電気絶縁材 4 、I’t−−−−−一側面電極 15−−−−−−−テーパ面 211.31−−−−一基板(ウェハ)22−−−−一
平面電極 32−−−−−一溝形電極 第1図 (光) 第2図 (j)
FIG. 1 is a sectional view showing one embodiment of the present invention, FIG. 2 is a manufacturing process of the one shown in FIG. 1, (a) and (b) are front and end views of the wafer, (C) and are a front view and an end view of the electrode deposition process, (e) and (f) are a front view and an end view of the guising process, (g> (h) are a front view and an end view of the rearranged process, (i) and (j ) is a front view and perspective view of the electrode adhesion process, (k) is a front view of the electrical insulation and mirror polishing process, (7ri (m) (n) is a front view and perspective view of the process for attaching the electrode on the side) A cross-sectional view taken along line -n, FIG. 3 shows the manufacturing process of another embodiment of the present invention, (a)
(b) A front view and an end view of the wafer, (C) (d) a front view and an end view of the tapered surface forming process, (e) (f>
are the front view and end view of the electrode deposition process, <g) is the front view of the guising process, (h) is the front view of the rearranging and electrode bonding process, and (i) is the electrical insulation, mirror polishing, and side electrode removal. Figure 4('a) is a front view showing an example of the conventional process, Figure 4(b) is the front view of the process, and Figure 4(b) is the 41st! ] (a) bb
FIG. 5 is an enlarged cross-sectional view taken along the line, and is a cross-sectional view showing another example of the conventional one. 1.1t--Chip substrate 1', 11'--Wafer 2.12--
・-Inner layered electrodes 2', 12'---One metal electrode 3.13---Electrical insulating material 4, I't---One side electrode 15---Tapered surface 211 .31 ---- One substrate (wafer) 22 ---- One plane electrode 32 ---- One groove electrode Figure 1 (light) Figure 2 (j)

Claims (1)

【特許請求の範囲】[Claims] 透明強誘電体セラミックスよりなる多数のチップ基板を
一列に積層し、該各チップ基板間において光透過方同に
沿ってNi1Nシた内部層状電極を設けると共に、該内
部層状電極は対向した一対のくし歯状電極となるように
、1つおきのチップ基板間の内部層状電極を、光透過方
向に沿ったいま一対の対向面において電気的に接続した
ことを特徴とする光シヤツタ素子。
A large number of chip substrates made of transparent ferroelectric ceramics are stacked in a row, and an inner layered electrode made of Ni1N is provided between each chip substrate along the same direction of light transmission, and the inner layered electrode is connected to a pair of opposing combs. A light shutter element characterized in that internal layered electrodes between every other chip substrate are electrically connected at a pair of opposing surfaces along the light transmission direction so as to form tooth-shaped electrodes.
JP8269484A 1984-04-24 1984-04-24 Optical shutter elememt Granted JPS60225824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8269484A JPS60225824A (en) 1984-04-24 1984-04-24 Optical shutter elememt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8269484A JPS60225824A (en) 1984-04-24 1984-04-24 Optical shutter elememt

Publications (2)

Publication Number Publication Date
JPS60225824A true JPS60225824A (en) 1985-11-11
JPH0422248B2 JPH0422248B2 (en) 1992-04-16

Family

ID=13781516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8269484A Granted JPS60225824A (en) 1984-04-24 1984-04-24 Optical shutter elememt

Country Status (1)

Country Link
JP (1) JPS60225824A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62235923A (en) * 1986-04-04 1987-10-16 Sumitomo Special Metals Co Ltd Optical shutter element
JPS62235921A (en) * 1986-04-04 1987-10-16 Sumitomo Special Metals Co Ltd Optical shutter element
JPS63246721A (en) * 1987-03-31 1988-10-13 Sumitomo Special Metals Co Ltd Optical phase modulator
JPH03127025A (en) * 1989-10-13 1991-05-30 Fujitsu General Ltd Plzt display device and production thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62235923A (en) * 1986-04-04 1987-10-16 Sumitomo Special Metals Co Ltd Optical shutter element
JPS62235921A (en) * 1986-04-04 1987-10-16 Sumitomo Special Metals Co Ltd Optical shutter element
JPS63246721A (en) * 1987-03-31 1988-10-13 Sumitomo Special Metals Co Ltd Optical phase modulator
JPH03127025A (en) * 1989-10-13 1991-05-30 Fujitsu General Ltd Plzt display device and production thereof

Also Published As

Publication number Publication date
JPH0422248B2 (en) 1992-04-16

Similar Documents

Publication Publication Date Title
EP0244442B1 (en) Linear light valve arrays having transversely driven electro-optic gates and method of making such arrays
JPH0510834B2 (en)
JPS61500393A (en) Light/detector array module and its manufacturing method
JPS60225824A (en) Optical shutter elememt
US4569573A (en) Method of making light valve arrays having transversely driven electrooptic gates
JPH0298965A (en) Multi-element infrared detection sensor
JPS63237489A (en) Semiconductor laser and its manufacture
US6574028B2 (en) Opposing electrode light modulator array and method for manufacturing the same
CN112349835B (en) Chip components
US6396618B1 (en) Opposing electrode light modulator array and method for manufacturing the same
US4413886A (en) Optical switch
CN107924954B (en) Trench capacitor and method for making trench capacitor
JPS6035554A (en) thin film solar cells
JPS61163671A (en) thin film solar cells
JPS5946368B2 (en) Manufacturing method of multi-bit spatial optical phase modulation plate
JPS6069524A (en) Infrared ray detecting element
JPH0222621A (en) Optical element and optical parts using this element
JPH08316543A (en) Piezoelectric transformer
JPH0529890B2 (en)
JPS60225825A (en) Optical shutter element
JP2660758B2 (en) Manufacturing method of PLZT display device
JPS62119421A (en) Pyroelectric type linear array infrared detection element
JP4370594B2 (en) Piezoelectric filter
JPH0536282Y2 (en)
JPH03206419A (en) Optical shutter array