JPS5939915B2 - Wavelength stabilization method for semiconductor laser output light - Google Patents
Wavelength stabilization method for semiconductor laser output lightInfo
- Publication number
- JPS5939915B2 JPS5939915B2 JP51150193A JP15019376A JPS5939915B2 JP S5939915 B2 JPS5939915 B2 JP S5939915B2 JP 51150193 A JP51150193 A JP 51150193A JP 15019376 A JP15019376 A JP 15019376A JP S5939915 B2 JPS5939915 B2 JP S5939915B2
- Authority
- JP
- Japan
- Prior art keywords
- wavelength
- light
- output light
- semiconductor laser
- laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000004065 semiconductor Substances 0.000 title claims description 28
- 238000000034 method Methods 0.000 title claims description 8
- 230000006641 stabilisation Effects 0.000 title description 2
- 238000011105 stabilization Methods 0.000 title description 2
- 230000035945 sensitivity Effects 0.000 claims description 6
- 230000000087 stabilizing effect Effects 0.000 claims description 4
- 238000001816 cooling Methods 0.000 description 17
- 238000006243 chemical reaction Methods 0.000 description 10
- 239000000463 material Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000005679 Peltier effect Effects 0.000 description 2
- 230000001427 coherent effect Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 238000004566 IR spectroscopy Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/06—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
- H01S5/068—Stabilisation of laser output parameters
- H01S5/0683—Stabilisation of laser output parameters by monitoring the optical output parameters
- H01S5/0687—Stabilising the frequency of the laser
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Description
【発明の詳細な説明】
本発明は半導体レーザの出力光の波長を安定化する方法
に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for stabilizing the wavelength of output light from a semiconductor laser.
半導体レーザの内、素子の温度によつて出力光の波長が
かなり変化するものが近年開発された。Among semiconductor lasers, one in which the wavelength of output light changes considerably depending on the temperature of the element has been developed in recent years.
このようなレーザは波長可変レーザ(tunablel
aser)と呼ばれている。このような種類のレーザは
素子の構成材料として3種類の元素から成る多元半導体
物質を用いており、赤外領域で発光する。上記の波長可
変レーザを使用する際には、その波長可変範囲内で所望
の特定波長の光を取出したい場合が多い。Such a laser is a wavelength tunable laser.
It is called ``aser''. These types of lasers use a multi-component semiconductor material consisting of three types of elements as the constituent material of the device, and emit light in the infrared region. When using the above wavelength tunable laser, it is often desired to extract light of a desired specific wavelength within the wavelength tunable range.
たとえば赤外分光分析において吸収スペクトル測定用光
源として上記レーザを使用する際には何種かのそれぞれ
異なつた波長の赤外線を試料に入射せしめるが、ある特
定波長における吸収を測定し終るまでは光源の発光波長
が変化しないことが望ましいのは云うまでもない。しか
るに波長可変レーザはその可変特性ゆえに反面において
温度変動により発光波長の変動を生ずる。とくにレーザ
光の発生すなわち発振をなさしめるには相当多量の順方
向電流を流す必要があり、この電流による発熱のためレ
ーザ素子の温度が上昇する。ゆえにレーザ光の波長を安
定化するためには強力な冷却手段が必要となるが、一般
に強力な冷却手段としては液体窒素等の冷媒を使用し、
また冷媒の容器としてかなり大型のものを要するなどの
問題点がある。本発明は前述の問題点を解決したもので
、半導体受光素子の入射光に対する感度特性が感度の極
大点よりも長波長側において負の勾配をもつて急激に変
化する現象を利用して半導体レーザの出力光波長を検出
し、検出出力を上記レーザの冷却手段に帰還することに
より該レーザの出力光の波長を安定化する新規なる半導
体レーザの発光波長安定化方法を提供せんとするもので
ある。For example, when using the above laser as a light source for measuring absorption spectra in infrared spectroscopy, several types of infrared rays of different wavelengths are made incident on the sample, but the light source is not used until the absorption at a particular wavelength is measured. Needless to say, it is desirable that the emission wavelength does not change. However, due to its variable characteristics, a wavelength tunable laser, on the other hand, causes fluctuations in the emission wavelength due to temperature fluctuations. In particular, in order to generate laser light, that is, to cause oscillation, it is necessary to flow a considerably large amount of forward current, and the temperature of the laser element rises due to the heat generated by this current. Therefore, in order to stabilize the wavelength of the laser beam, a powerful cooling method is required, but generally a coolant such as liquid nitrogen is used as a powerful cooling method.
Another problem is that it requires a fairly large container for the refrigerant. The present invention solves the above-mentioned problems, and utilizes the phenomenon that the sensitivity characteristics of a semiconductor photodetector to incident light rapidly change with a negative gradient on the longer wavelength side than the maximum point of sensitivity. The present invention aims to provide a novel method for stabilizing the emission wavelength of a semiconductor laser, which stabilizes the wavelength of the output light of the laser by detecting the wavelength of the output light of the laser and returning the detected output to the cooling means of the laser. .
以下図面を用いて本発明の一実施例につき詳細に説明す
る。An embodiment of the present invention will be described in detail below with reference to the drawings.
第1図は本発明の方式を実施するための装崖の一例を簡
略系統図として示したもので、本図において半導体から
成る波長可変レーザ1は、駆動用パルス発生器2により
パルス電流を供給されて発光する。FIG. 1 is a simplified system diagram showing an example of a system for implementing the method of the present invention. In this diagram, a wavelength tunable laser 1 made of a semiconductor is supplied with a pulse current by a driving pulse generator 2. and emit light.
半導体レーザの動作原理はすでに周知であつて、所定の
光反射面を設けた接合ダイオードに充分大きな順方向電
流を流すとレーザ発振が起こつてコヒーレント光が接合
部から放射される。該コヒーレント光すなわちレーザ光
の波長はキヤリアの遷移が起こるエネルギー間隙の幅に
よつて定まり、この幅に温度依存性があるためにレーザ
光の波長が素子の温度によつて変化するわけである。一
例として鉛一錫−テルル(Pbl−XSnxTe)から
成る半導体レーザ(は77(Kで波長約8.3μmのレ
ーザ光を発し、温度が1℃上昇すると約0.02〜0.
03μm程度発光波長が短かくなる。さて、半導体レー
ザ1の発するレーザ光3とは別にその発光の一部4を光
電変換装置5に入れて電気信号に変換する。この光電変
換装置5の出力する電気信号のレベルは入射光の波長に
依存するのであるが、該光電変換装置5の特性について
は後に詳述する。上記電気信号は増幅器6に入れられて
増幅された後半導体レーザ1を冷却する冷却装置7に帰
還されて帰還ループを閉じる。該冷却装置7はその冷却
温度を電気信号によつて制御されるように構成したもの
である。本実施例では冷却装置7はペルチエ効果を利用
した電子冷却素子を主体としたもので、該電子冷却素子
に流す電流の制御により冷却温度を可変制御することが
できる。一般に半導体レーザは素子温度が上昇すればレ
ーザ光の波長は短かくなる方向に、また温度が下降すれ
ば逆の方向に推移する。そこで前述した半導体レーザ1
、光電変換装置5、増幅器6および冷却装置7から成る
帰還ループが負帰還作用をなすように電気信号の極性を
設定しておけば、半導体レーザ1の素子温度は安定化さ
れ、したがつてレーザ光の波長も変化しなくなる。次に
、光電変換装置5の特性について説明する。The operating principle of a semiconductor laser is already well known; when a sufficiently large forward current is passed through a junction diode provided with a predetermined light reflecting surface, laser oscillation occurs and coherent light is emitted from the junction. The wavelength of the coherent light, that is, the laser light, is determined by the width of the energy gap in which the carrier transition occurs, and since this width is temperature dependent, the wavelength of the laser light changes depending on the temperature of the element. As an example, a semiconductor laser made of lead-tin-tellurium (Pbl-XSnxTe) emits laser light with a wavelength of about 8.3 μm at 77K, and when the temperature rises by 1°C, it emits a laser beam of about 0.02 to 0.0 μm.
The emission wavelength becomes shorter by about 0.3 μm. Now, apart from the laser light 3 emitted by the semiconductor laser 1, a part 4 of the emitted light is input into a photoelectric conversion device 5 and converted into an electrical signal. The level of the electrical signal output by the photoelectric conversion device 5 depends on the wavelength of the incident light, and the characteristics of the photoelectric conversion device 5 will be described in detail later. The electrical signal is input to an amplifier 6, amplified, and then fed back to a cooling device 7 for cooling the semiconductor laser 1, thereby closing a feedback loop. The cooling device 7 is configured so that its cooling temperature is controlled by an electric signal. In this embodiment, the cooling device 7 is mainly composed of an electronic cooling element that utilizes the Peltier effect, and the cooling temperature can be variably controlled by controlling the current flowing through the electronic cooling element. Generally, in a semiconductor laser, the wavelength of the laser beam decreases as the element temperature increases, and in the opposite direction as the temperature decreases. Therefore, the semiconductor laser 1 mentioned above
If the polarity of the electric signal is set so that the feedback loop consisting of the photoelectric conversion device 5, the amplifier 6, and the cooling device 7 performs a negative feedback function, the element temperature of the semiconductor laser 1 is stabilized, and the laser The wavelength of light also stops changing. Next, the characteristics of the photoelectric conversion device 5 will be explained.
第2図は該変換装置5中の半導体受光素子の入射光波長
対感度特性を示したもので、その特性を表わす曲線8は
極大点Pを有し、P点の両側で曲線の傾きは逆となり、
勾配の絶対値はP点の右側では急峻で、同じく左側では
緩やかである。因みに半導体受光素子はその構成材料が
異なつていても一般に上述した傾向を有しているもので
ある。そこで本実施例においては、受光素子の材料とし
て半導体レーザ素子と同一のものを使用し、これをレー
ザ素子とほぼ同じ温度に保つて、レーザ光の波長が第2
図のP点よりも右側の急勾配部においてたとえばQ点に
くるようにする。Q点に対応する波長をλ。とすると、
Q点における曲線8の微分係数が受光素子の変換利得に
相当する。ゆえに上述のように動作点を選ぶことにより
大きい変換利得が得られる。第2図から明らかなように
、レーザ光の波長がλoよりも長くなろうとすると、光
電変換装置5の出力は負極性となる。FIG. 2 shows the incident light wavelength vs. sensitivity characteristic of the semiconductor photodetector in the converter 5. A curve 8 representing the characteristic has a maximum point P, and the slopes of the curve are opposite on both sides of the P point. Then,
The absolute value of the slope is steep on the right side of point P, and is also gentle on the left side. Incidentally, semiconductor light-receiving elements generally have the above-mentioned tendency even if their constituent materials are different. Therefore, in this example, the same material as the semiconductor laser element is used as the material of the light receiving element, and this is kept at approximately the same temperature as the laser element, so that the wavelength of the laser light is
For example, point Q is located on the steep slope section to the right of point P in the figure. The wavelength corresponding to point Q is λ. Then,
The differential coefficient of the curve 8 at point Q corresponds to the conversion gain of the light receiving element. Therefore, by selecting the operating point as described above, a large conversion gain can be obtained. As is clear from FIG. 2, when the wavelength of the laser beam becomes longer than λo, the output of the photoelectric conversion device 5 becomes negative in polarity.
そこで再び第1図に戻つて、前述したように半導体レー
ザ素子の温度とレーザ光の波長とは逆方向に変化するか
ら、光電変換装置5の出力が負方向に振れるときには冷
却装置の冷却能率を低下させて半導体レーザ素子の温度
を上げ、この逆のときには冷却装置の冷却能率を増大さ
せてレーザ素子の温度を下げるように増幅器6の出力極
性を定めれば、帰還の方向が負帰還となつて半導体レー
ザ1の温度にしたがつてレーザ光の波長が安定化される
。なお、冷却装置がペルチエ効果を利用した方式のもの
でない場合にも、電気量により冷却温度を制御すること
が可能な方式であれば実施例と同等の効果が得られる。So, returning to FIG. 1 again, as mentioned above, the temperature of the semiconductor laser element and the wavelength of the laser light change in opposite directions, so when the output of the photoelectric conversion device 5 swings in the negative direction, the cooling efficiency of the cooling device is If the output polarity of the amplifier 6 is determined so that the temperature of the semiconductor laser element is increased by decreasing the temperature of the laser element, and vice versa, the direction of feedback becomes negative feedback. The wavelength of the laser beam is stabilized according to the temperature of the semiconductor laser 1. Note that even if the cooling device is not of a type that utilizes the Peltier effect, the same effect as that of the embodiment can be obtained as long as it is a type that can control the cooling temperature by the amount of electricity.
さらに、レーザ素子の発熱は当然発光させるために流す
電流の大きさに依存するから、該電流を制御して素子の
発熱量を加減するように帰還ループを形成しても理論上
負帰還になる。ただしこの方法は適用に若干困難を伴う
。以上説明した本発明に係る半導体レーザの出力光の波
長安定化方法によれば液状冷媒等を使用せずに安定化を
達成することができるから、レーザのみならず冷却装置
、光電変換装置、増幅器まですべてを半導体化すること
が可能となり、全体が小型となつて取扱いも容易となる
。Furthermore, since the heat generated by a laser element naturally depends on the magnitude of the current flowing to emit light, even if a feedback loop is formed to control the current and adjust the amount of heat generated by the element, it will theoretically result in negative feedback. . However, this method is somewhat difficult to apply. According to the method for stabilizing the wavelength of the output light of a semiconductor laser according to the present invention described above, stabilization can be achieved without using a liquid coolant, etc. It becomes possible to make everything up to and including semiconductors, making the whole thing smaller and easier to handle.
第1図は本発明の方法の一実施例における装置の構成を
示す系統図、第2図は半導体受光素子の感度と入射光波
長との関係を示すグラフである。
1:半導体レーザ、2:1駆動用パルス発生器、5:光
電変換装置、6:増幅器、7:冷却装置、8:半導体受
光素子の分光感度特性を示す曲線。FIG. 1 is a system diagram showing the configuration of an apparatus in an embodiment of the method of the present invention, and FIG. 2 is a graph showing the relationship between the sensitivity of a semiconductor light receiving element and the wavelength of incident light. 1: Semiconductor laser, 2: 1 driving pulse generator, 5: Photoelectric conversion device, 6: Amplifier, 7: Cooling device, 8: Curve showing the spectral sensitivity characteristics of the semiconductor photodetector.
Claims (1)
の温度を電気的に制御可能な温度調節装置により制御し
、かつ上記レーザ素子の出力光の一部を該出力光の波長
帯において入射光に対する感度特性が負の勾配をもつて
急激に変化する単一の半導体受光素子に入射せしめるこ
とにより上記出力光の波長変化に依存して出力レベルの
変化する電気信号を得、この電気信号を上記温度調節装
置に負帰還することにより上記出力光の波長を安定化す
ることを特徴とする半導体レーザの出力光の波長安定化
方法。1. The temperature of a semiconductor laser element whose emission wavelength changes depending on the temperature is controlled by an electrically controllable temperature control device, and a part of the output light of the laser element is controlled in the wavelength band of the output light relative to the incident light. An electrical signal whose output level changes depending on the wavelength change of the output light is obtained by making the light incident on a single semiconductor light-receiving element whose sensitivity characteristic changes rapidly with a negative gradient, and this electrical signal is transmitted to the above-mentioned temperature. A method for stabilizing the wavelength of output light from a semiconductor laser, characterized in that the wavelength of the output light is stabilized by negative feedback to an adjustment device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP51150193A JPS5939915B2 (en) | 1976-12-13 | 1976-12-13 | Wavelength stabilization method for semiconductor laser output light |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP51150193A JPS5939915B2 (en) | 1976-12-13 | 1976-12-13 | Wavelength stabilization method for semiconductor laser output light |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5373985A JPS5373985A (en) | 1978-06-30 |
JPS5939915B2 true JPS5939915B2 (en) | 1984-09-27 |
Family
ID=15491541
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP51150193A Expired JPS5939915B2 (en) | 1976-12-13 | 1976-12-13 | Wavelength stabilization method for semiconductor laser output light |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5939915B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4796996A (en) * | 1987-08-14 | 1989-01-10 | American Telephone And Telegraph Company, At&T Bell Laboratories | Laser temperature modulation and detection method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4838987A (en) * | 1971-09-20 | 1973-06-08 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5335411Y2 (en) * | 1974-05-30 | 1978-08-30 |
-
1976
- 1976-12-13 JP JP51150193A patent/JPS5939915B2/en not_active Expired
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4838987A (en) * | 1971-09-20 | 1973-06-08 |
Also Published As
Publication number | Publication date |
---|---|
JPS5373985A (en) | 1978-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20050254056A1 (en) | System and method for controlling the light source of a cavity ringdown spectrometer | |
JP2942619B2 (en) | Harmonic generator | |
US4745606A (en) | Dual-wavelength laser apparatus | |
Andrekson et al. | Novel technique for determining internal loss of individual semiconductor lasers | |
CA1207375A (en) | Spectrally stabilized laser | |
US5025449A (en) | Optical pumping-type solid-state laser apparatus with a semiconductor laser device | |
US4994663A (en) | Light intensity correlating apparatus | |
JPS5939915B2 (en) | Wavelength stabilization method for semiconductor laser output light | |
Childs et al. | Optical and electronic solutions for power stabilization of CO2 lasers | |
US20040022282A1 (en) | Arrangement for monitoring the emission wavelength and power of an optical source | |
JP2725012B2 (en) | Semiconductor light emitting device | |
JP2687557B2 (en) | Frequency stabilized semiconductor laser device | |
JPS58171880A (en) | Wavelength control device for semiconductor laser | |
JP3196300B2 (en) | Semiconductor laser device | |
JP2614754B2 (en) | Wavelength stabilized light source | |
Kakuma et al. | Frequency control of a laser diode by a photothermal effect and its application to frequency stabilization | |
JP2532632B2 (en) | Semiconductor laser device, semiconductor photodetector and manufacturing method thereof | |
US20250093739A1 (en) | Tunable light source with frequency generator | |
JPS5835441A (en) | Semiconductor laser drive method | |
JPS5978587A (en) | Stabilizer for oscillation wavelength of semiconductor laser | |
KR950002067B1 (en) | Second harmonic generator | |
JPH0636454B2 (en) | Semiconductor laser wavelength stabilizer | |
JPH045547A (en) | Carbon dioxide gas sensor | |
KR100314088B1 (en) | Second harmonic generation method and apparatus | |
JPH0710002B2 (en) | LED stabilized light source |