[go: up one dir, main page]

JPS59224430A - Control of intake control valve - Google Patents

Control of intake control valve

Info

Publication number
JPS59224430A
JPS59224430A JP9999183A JP9999183A JPS59224430A JP S59224430 A JPS59224430 A JP S59224430A JP 9999183 A JP9999183 A JP 9999183A JP 9999183 A JP9999183 A JP 9999183A JP S59224430 A JPS59224430 A JP S59224430A
Authority
JP
Japan
Prior art keywords
intake
control valve
valve
cylinder
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9999183A
Other languages
Japanese (ja)
Inventor
Takafumi Fukue
福江 尚文
Yasuo Kosaka
匂坂 康夫
Katsushi Kato
克司 加藤
Haruhiko Kato
晴彦 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP9999183A priority Critical patent/JPS59224430A/en
Publication of JPS59224430A publication Critical patent/JPS59224430A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/02Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Abstract

PURPOSE:To prevent stagnation of engine revolution due to the concentration of mixed gas, by forming a plurality of intake passages for each cylinder and installing an intake control valve in one intake passage for each cylinder and opening said control valve on start. CONSTITUTION:An intake control valve 14 is installed in one intake passage for each cylinder of a 4-cylinder engine equipped with two intake valves 21 for each cylinder. A surge tank 17 and a subinjector 19 are installed on the upstream side of the control valve 14. Though said intake control valve 14 is closed to strengthen swirl during low speed operation the valve 14 is opened out start, and the concentration of the mixed gas due to the fuel adhering onto the valve is prevented, and the reduction of the number of revolutions immediately after starting is prevented.

Description

【発明の詳細な説明】 本発明は各気筒に2本づつ吸気通路を有するエンジンの
吸気制御方法、特に低温始動性の向上に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an intake control method for an engine having two intake passages in each cylinder, and particularly to improvement of low-temperature startability.

従来、1つの燃焼室へ結ばれる吸気通路が2つに分割さ
れ、その一方に吸気制御バルブを設け、これを制御する
ことにより、低回転域のトルク増と高回転域のトルク増
を両立させる方法があった。
Conventionally, the intake passage leading to a single combustion chamber is divided into two, and by installing an intake control valve on one side and controlling this, it is possible to achieve both an increase in torque in the low rotation range and an increase in torque in the high rotation range. There was a way.

その制御手法は例えば第2図の如く、所定の設定回転数
、または所定の空気量(図示せず)を境として上記吸気
制御バルブの開閉制御を行なっていた。しかし第1図に
示すような吸気管集合部に低温始動用のサブインジェク
タを有する内燃機関に、上記の吸気制御バルブシステム
を導入すると、クランキング時は負圧発生が小さい為、
始動時にサブインジェクタから噴射された燃料の半分は
閉じている方のバルブ近傍に付着してしまい、燃焼室へ
供給されないという問題があった。そして次に、機関が
始動完了すると、この付着燃料は負圧発生に伴い燃焼室
へ供給される。この結果、始動直後の空燃比が一瞬過濃
となり、始動直後の回転挙動が不安定となるという問題
があった。
The control method is, for example, as shown in FIG. 2, in which the opening and closing of the intake control valve is controlled at a predetermined set rotational speed or a predetermined amount of air (not shown). However, when the above-mentioned intake control valve system is introduced into an internal combustion engine that has a sub-injector for cold starting in the intake pipe gathering part as shown in Fig. 1, the generation of negative pressure during cranking is small.
There was a problem in that half of the fuel injected from the sub-injector during startup ended up in the vicinity of the closed valve and was not supplied to the combustion chamber. Then, when the engine is completely started, this adhering fuel is supplied to the combustion chamber as negative pressure is generated. As a result, there was a problem in that the air-fuel ratio immediately after starting became excessively rich for a moment, and the rotational behavior immediately after starting became unstable.

そこで、本発明は上記問題点に鑑み、始動時あるいは始
動後一定時間にかぎり通常低回転時は閉じている吸気制
御バルブを開くことにより、サブインジェクタの吸気制
御バルブ近傍への燃料付着を大幅に低減し、始動後の回
転挙動を安定させることを目的とする。
Therefore, in view of the above problems, the present invention significantly reduces fuel adhesion near the intake control valve of the sub-injector by opening the intake control valve, which is normally closed at low rotation speeds, only at the time of startup or for a certain period of time after startup. The purpose is to reduce this and stabilize rotational behavior after startup.

以下図面に基づいて本発明の一実施例について説明する
An embodiment of the present invention will be described below based on the drawings.

第4図は本発明を実施する内燃機関の全体構成図である
。1は内燃機関本体、2は回転角度センサを内蔵するデ
ィストリビュータ1.3は圧力センサである。4はリニ
アスロットルセンサ、5は水温センサ、6は02センサ
である。7は吸気温センサ、8はマイクロコンピュータ
を内蔵するエンジン制御ユニットである。9はイグナイ
タと一体構成の点火コイル、10は燃料を噴射するイン
ジェクタ、11はスロットル弁、12はスロットル弁1
1をバイパスする空気量を制御するエアバルブである。
FIG. 4 is an overall configuration diagram of an internal combustion engine implementing the present invention. 1 is an internal combustion engine main body, 2 is a distributor 1 having a built-in rotation angle sensor, and 3 is a pressure sensor. 4 is a linear throttle sensor, 5 is a water temperature sensor, and 6 is an 02 sensor. 7 is an intake air temperature sensor, and 8 is an engine control unit incorporating a microcomputer. 9 is an ignition coil integrated with an igniter, 10 is an injector that injects fuel, 11 is a throttle valve, and 12 is a throttle valve 1
This is an air valve that controls the amount of air that bypasses 1.

13は可変吸気システム、14は吸気制御バルブである
13 is a variable intake system, and 14 is an intake control valve.

さらに、吸気弁と吸気制御バルブ、サブインジェクタ等
の関係をより詳しく示したのが第1図である。第1図は
4気筒エンジンについて示したものである。燃焼室の上
部にはそれぞれ2個の吸気バルブ21と排気バルブ22
がある。サージタンク17から各気筒に二本づつの吸気
管が配設され、その各々の一方には前記の吸気制御バル
ブが配設されている。このエンジンにおいて、第2図に
示すように、低回転時には吸気制御バルブを閉して吸気
速度を増し、スワール効果や吸気慣性により低回転時の
トルク増大を行ない、高回転には吸気制御バルブを開け
て吸気し易くして高回転域のトルクを増大するように適
合している。
Further, FIG. 1 shows the relationship among the intake valve, intake control valve, sub-injector, etc. in more detail. FIG. 1 shows a four-cylinder engine. There are two intake valves 21 and two exhaust valves 22 at the top of the combustion chamber.
There is. Two intake pipes are provided from the surge tank 17 to each cylinder, and one of the intake pipes is provided with the above-mentioned intake control valve. In this engine, as shown in Figure 2, the intake control valve is closed at low speeds to increase the intake speed, and the swirl effect and intake inertia increase torque at low speeds, and the intake control valve is closed at high speeds. It is adapted to open to make it easier to take in air and increase torque in the high rotation range.

しかし、このエンジンの適合中、第5図に示すように、
始動直後エンジン回転の一時落ち込みという現象が見つ
かった。この原因を解析した結果、前述のように、付着
燃料が負圧発生によりシリンダに吸い込まれ、空燃比が
過濃となることによることがわかった。つまり、エンジ
ン始動時吸気制御バルブを閉じておくと、クランキング
中はエンジンの負圧発生が小さいため、吸気制御バルブ
より上流に設置しである低温始動用サブインジェクタ1
9から噴射される燃料の一部が、該制御バルブの上流側
に付着してしまう。次にエンジンが完爆になると急激に
負圧が発生し、この付着燃料がエンジン燃焼室20に吸
入される。この結果、エンジン始動直後−瞬空燃比が過
濃となり、第5図のようなエンジン回転のもたつきとな
るというメカニズムが解明された。
However, during the adaptation of this engine, as shown in Figure 5,
A phenomenon was discovered in which the engine speed temporarily dropped immediately after starting. As a result of analyzing the cause of this, it was found that, as mentioned above, the adhering fuel was sucked into the cylinder due to the generation of negative pressure, resulting in an excessively rich air-fuel ratio. In other words, if the intake control valve is closed when starting the engine, the generation of negative pressure in the engine is small during cranking, so the sub-injector 1 for low-temperature starting is installed upstream of the intake control valve.
A part of the fuel injected from the control valve 9 ends up adhering to the upstream side of the control valve. Next, when the engine reaches a complete explosion, negative pressure is suddenly generated, and this adhering fuel is sucked into the engine combustion chamber 20. As a result, the mechanism by which the instantaneous air-fuel ratio becomes excessively rich immediately after the engine starts, resulting in sluggish engine rotation as shown in FIG. 5, was clarified.

そこで本発明は、第4図のシステムにおいて吸気制御バ
ルブ14の制御を行なっている制御ユニット8によりエ
ンジンの始動状態を検出し、始動状態ならば吸気制御バ
ルブを開くという制御をすることにより上記問題点を解
決した。
Therefore, the present invention solves the above problem by detecting the starting state of the engine by the control unit 8 that controls the intake control valve 14 in the system shown in FIG. Resolved the point.

第3図において、制御ユニット8はスタータ信号(ST
A)を取り込み、ステップsIにて始動状態か否かを判
定する。スターク・スイッチがONの場合は始動時と判
定し、ステップs2に進む。
In FIG. 3, the control unit 8 controls the starter signal (ST
A) is taken in, and it is determined in step sI whether or not it is in the starting state. If the start switch is ON, it is determined that the engine is starting, and the process proceeds to step s2.

ステップS2では吸気制御バルブを開くため制御信号を
出力し、制御ユニット8からアクチュエータの電磁弁1
5を駆動して吸気制御バルブを開がせる。
In step S2, a control signal is output to open the intake control valve, and the control signal is sent from the control unit 8 to the solenoid valve 1 of the actuator.
5 to open the intake control valve.

一方、ステップSlにて始動状態ではないと判定したと
きはステップs3へ進む。ステップs3では別のルーチ
ンで取り込んでおいた回転数データを用い−で、回転数
が設定値以上か否かを判別する。回転数が設定値以上の
場合はステップs2へ進み前記の場合と同様に吸気制御
バルブを開かせる。ステップS3で回転数が設定値以上
ではないと判別した場合はステップs4へ進み、吸気制
御バルブを閉じるように制御する。
On the other hand, when it is determined in step Sl that the engine is not in the starting state, the process advances to step s3. In step s3, it is determined whether or not the rotation speed is equal to or higher than a set value using the rotation speed data acquired in another routine. If the rotational speed is equal to or higher than the set value, the process proceeds to step s2 and the intake control valve is opened in the same manner as in the previous case. If it is determined in step S3 that the rotational speed is not greater than the set value, the process proceeds to step s4, where the intake control valve is controlled to close.

ここで、ステップs3の判定は回転数ではな(、吸気量
で行なうことも可能である。また、回転数と吸気管負圧
を組み合せた値を用いてもよい。
Here, the determination in step s3 may be made based on the intake air amount rather than the rotational speed. Alternatively, a value that combines the rotational speed and the intake pipe negative pressure may be used.

以上の制御を行なうことにより、始動時においても前部
の吸気管がら燃焼室に吸入されるため、完爆になっても
過濃とはならず、エンジン回転がもたつくことを防止で
きるという優れた効果を有する。
By performing the above control, the intake pipe at the front is drawn into the combustion chamber even during startup, so even if a complete explosion occurs, it will not become over-rich, and the engine speed will be prevented from becoming sluggish. have an effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は吸気制御バルブ取付の模式図、第2図は吸気制
御バルブを制御した場合のトルク特性図、第3図は吸気
弁制御のフローチャート、第4図は全システム構成の模
式図、第5図は始動時のエンジン回転特性図である。 l・・・エンジン本体、2・・・ディストリビュータ。 3・・・圧力センサ、4・・・リニアスロットルセンサ
。 5・・・水温センサ、6・・・o2センサ、7川吸気温
センサ、8・・・エンジン制御ユニット、9川コイルW
/イグナイタ、1o・・・インジェクタ、11・・・ス
ロノトルバルブ、12・・・エアバルブ、13・・・可
変吸気システム、14・・・吸気制御バルブ、15・・
・電磁弁、17・・・サージタンク、18・・・吸気通
路、19・・・サブインジェクタ。 代理人弁理士 岡 部   隆
Figure 1 is a schematic diagram of intake control valve installation, Figure 2 is a torque characteristic diagram when controlling the intake control valve, Figure 3 is a flowchart of intake valve control, Figure 4 is a schematic diagram of the entire system configuration, FIG. 5 is an engine rotation characteristic diagram at the time of starting. l...Engine body, 2...Distributor. 3...Pressure sensor, 4...Linear throttle sensor. 5... Water temperature sensor, 6... O2 sensor, 7 River intake temperature sensor, 8... Engine control unit, 9 River coil W
/igniter, 1o...injector, 11...throttle valve, 12...air valve, 13...variable intake system, 14...intake control valve, 15...
- Solenoid valve, 17... surge tank, 18... intake passage, 19... sub-injector. Representative Patent Attorney Takashi Okabe

Claims (1)

【特許請求の範囲】[Claims] 1つの気前に対し複数づつ吸気通路を有するエンジンに
おいて、各気筒毎の1本の吸気通路に吸気制御弁を配設
し、この吸気制御弁を始動時に開放とすることを特徴と
する吸気制御弁の制御方法。
In an engine having a plurality of intake passages for one intake, an intake control valve is provided in one intake passage for each cylinder, and the intake control valve is opened at startup. How to control the valve.
JP9999183A 1983-06-03 1983-06-03 Control of intake control valve Pending JPS59224430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9999183A JPS59224430A (en) 1983-06-03 1983-06-03 Control of intake control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9999183A JPS59224430A (en) 1983-06-03 1983-06-03 Control of intake control valve

Publications (1)

Publication Number Publication Date
JPS59224430A true JPS59224430A (en) 1984-12-17

Family

ID=14262105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9999183A Pending JPS59224430A (en) 1983-06-03 1983-06-03 Control of intake control valve

Country Status (1)

Country Link
JP (1) JPS59224430A (en)

Similar Documents

Publication Publication Date Title
US6966299B2 (en) Start control device and start control method for internal combustion engine
JPS61101635A (en) Apparatus for controlling quantity of fuel supplied to internal-combustion engine
US5413078A (en) Engine control system
JP2611979B2 (en) Engine intake system
JP2910380B2 (en) Engine control device
JPS59224430A (en) Control of intake control valve
JPH0350897B2 (en)
JPH11315740A (en) Control unit for engine with turbocharger
JPH03225045A (en) Air-fuel ratio control device for internal combustion engine
JP4074350B2 (en) Electronic controller for fuel metering in internal combustion engines
JPS611841A (en) Fuel injection device for internal-combustion engine
JPS61192836A (en) Ignition timing and air/fuel ratio control method for internal-combustion engine
JPH05312068A (en) Starting time fuel injection controller
JP2022129779A (en) Internal combustion engine control device
JPH08284710A (en) Engine air-fuel ratio controlling method
JP2524908Y2 (en) Engine fuel control device
JPH0543872B2 (en)
JPS61223239A (en) Starting fuel injection controller of internal-combustion engine
JPS58195057A (en) Assist air control method for internal combustion engine
JPH094490A (en) Intake air control device for internal combustion engine
JPH09209851A (en) Air intake control device of internal combustion engine
JPH11159373A (en) Air-fuel ratio control device for internal combustion engine
JPH06146957A (en) Fuel control device of engine
JPH0654091B2 (en) Internal combustion engine intake system
JPH055440A (en) Fuel control device for engine