JPS59203774A - Floor powder for ceramic formed body baking - Google Patents
Floor powder for ceramic formed body bakingInfo
- Publication number
- JPS59203774A JPS59203774A JP58078913A JP7891383A JPS59203774A JP S59203774 A JPS59203774 A JP S59203774A JP 58078913 A JP58078913 A JP 58078913A JP 7891383 A JP7891383 A JP 7891383A JP S59203774 A JPS59203774 A JP S59203774A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- ceramic
- fired
- firing
- crystals
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000843 powder Substances 0.000 title claims description 63
- 239000000919 ceramic Substances 0.000 title claims description 39
- 239000013078 crystal Substances 0.000 claims description 38
- 238000010304 firing Methods 0.000 claims description 17
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 16
- 238000004220 aggregation Methods 0.000 claims description 6
- 230000002776 aggregation Effects 0.000 claims description 6
- 239000002245 particle Substances 0.000 description 28
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 229910052593 corundum Inorganic materials 0.000 description 3
- 239000010431 corundum Substances 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 230000001089 mineralizing effect Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- IRPGOXJVTQTAAN-UHFFFAOYSA-N 2,2,3,3,3-pentafluoropropanal Chemical compound FC(F)(F)C(F)(F)C=O IRPGOXJVTQTAAN-UHFFFAOYSA-N 0.000 description 1
- KLZUFWVZNOTSEM-UHFFFAOYSA-K Aluminum fluoride Inorganic materials F[Al](F)F KLZUFWVZNOTSEM-UHFFFAOYSA-K 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 239000003985 ceramic capacitor Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000005029 sieve analysis Methods 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Insulating Materials (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
この発明はセラミック成形体の焼成用敷粉に係り、特に
、焼成時において敷粉付着が少く、表面平滑度の高い電
子部品用セラミックス焼成体の製造に適した敷粉に関す
るものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a bedding powder for firing ceramic molded bodies, and in particular to a bedding powder that is suitable for producing ceramic fired bodies for electronic components that have little adhesion of bedding powder during firing and have high surface smoothness. It is related to.
従来、セラミック成形体を高温において焼成して焼結体
を製造する場合、該成形体同志の焼付き防止のために、
セラミ、り成形体の間に、該成形体に対して不活性の耐
熱性酸化物粉末、所謂敷粉を介在させ、多段に積重ねて
焼成することが行われている。しかしながら焼成後のセ
ラミ、夕焼成体の表面には敷粉が付着し、その除去に困
難を来すのみでなく、これによってセラミ、夕焼成体の
表面の平滑度が損なわれいた。近年、エレクトロニクス
・セラミックスは集積回路用基板等の絶縁材料、セラミ
ックスコンデンサー等の誘電材料をはじめ、磁性材料、
圧電材料、半導体材料等に広く応用され、その需要は増
大しているが、電子機1ト
器の%型軽量化に伴い、これらのセラミ、クス部材も、
ますます小型化、精密化、均質化が求められている。か
又る状況下にあって、セラミック焼成体への敷粉の付着
は、製品々質劣化、生産性の低下に直結するためこれを
防止する方法の確立が強く要請されている。Conventionally, when producing a sintered body by firing ceramic molded bodies at high temperatures, in order to prevent the molded bodies from seizing together,
A heat-resistant oxide powder that is inert to the ceramic molded bodies, so-called so-called bed powder, is interposed between the ceramic molded bodies, and the ceramic bodies are stacked in multiple stages and fired. However, bedding powder adhered to the surface of the ceramic or pre-fired body after firing, which not only made it difficult to remove, but also impaired the smoothness of the surface of the ceramic or pre-fired body. In recent years, electronics and ceramics have been developed into insulating materials such as integrated circuit boards, dielectric materials such as ceramic capacitors, magnetic materials,
It is widely applied to piezoelectric materials, semiconductor materials, etc., and the demand for these materials is increasing, but as electronic devices become lighter and lighter, these ceramics and glass materials are also becoming more and more
There is an increasing demand for miniaturization, precision, and homogenization. Under these circumstances, there is a strong demand for the establishment of a method to prevent the adhesion of bedding powder to ceramic fired bodies, as this is directly linked to deterioration of product quality and reduction in productivity.
本発明は上記のごとき現状に鑑みてなされたもので、焼
成時において、焼成体への敷粉の付着が著しく少く、表
面平滑度の高いセラミック焼成体を効率よ(製造するに
適した敷粉を提供することを目的とするものである。The present invention was made in view of the above-mentioned current situation, and it is possible to efficiently produce ceramic fired bodies with extremely low adhesion of bedding powder to the fired body during firing and with a high surface smoothness. The purpose is to provide the following.
本発明者等は、上記目的を達成するため多数の耐熱性酸
化物粉末について、敷粉として用いた場合の焼成体への
付着特性について研究した結果、成る種の結晶集合体か
らなる粉末が顕著に付着し難い現象を見出し、本発明に
到達した。すなわち本発明の敷粉は、被焼成セラミック
成形体に不活性の酸化物粉末であって、板状−次結晶が
集合して形成された、外径が40〜100μmの塊状二
次結晶粒からなる粉末であることを特徴とするものであ
る。In order to achieve the above object, the present inventors studied the adhesion characteristics of a large number of heat-resistant oxide powders to fired bodies when used as bedding powder. The present invention was achieved by discovering a phenomenon in which it is difficult to adhere to. That is, the bedding powder of the present invention is an oxide powder that is inert to the ceramic molded body to be fired, and is made of massive secondary crystal grains with an outer diameter of 40 to 100 μm, which are formed by aggregation of plate-shaped secondary crystals. It is characterized by being a powder.
本発明において、被焼成セラミックス成形体としては、
股も広く使用されるアルミナ基、またはケイ酸質セラミ
ックをはじめ、エレクトpニクス・セラーミックスとし
てMg、 Ti 、 Ha、 Sr、 Cr+ Zr。In the present invention, the ceramic molded body to be fired includes:
In addition to widely used alumina-based or silicic acid ceramics, Mg, Ti, Ha, Sr, and Cr+Zr are used as electronic ceramics.
Mn 、等の金属の酸化物またはそれらの複酸化物等が
対象となる。そして高温焼成中これらのセラミック成形
体に不活性の酸化物としては、主としてA/又はZrの
酸化物である。The target materials include oxides of metals such as Mn, and their double oxides. The oxides that are inactive to these ceramic molded bodies during high-temperature firing are mainly A/ or Zr oxides.
敷粉として要求される粒子特性は、(1)セラミック焼
成体への付着粒子が少く、また付着粒子が剥離し易いこ
と。(2)付着粒子を剥離した後のセラミック焼成体の
面に付着粒子による大きいビット(<ぼみ)が残らず、
平滑面であること。(3)敷粉の粒子が使用中に圧潰し
て微粒化しないことがその主なものである。本発明の敷
粉は、これらの特性をすべて具備しているが、その粉体
を構成する粒子は前記したように、板状の一次結晶が集
合して形成された外径40〜1007+mの塊状の二次
結晶粒であるところに特徴がある。粒径が40μm未満
では粒子が付着し易くなり、敷粉層の厚みが少い場合に
はセラミック焼成体同志の焼付きを惹起する欠点がある
。一方、粒径が大きくなると、粒子付着の際、それを剥
離した跡のセラミツタ焼成体の面のピットを太きくし、
焼成体の表面平滑性を損なう。一般にエレクトロ・セラ
ミックスの表面ピットの径は100μmを超えないこと
が要請されるので本発明においては、この観点から二次
結晶粒子径の上限を100μmとする。二次結晶粒は第
1図に例示するように全体的に丸味のある顆粒状でもよ
いが、本願発明はこのような規制された外形を必ずしも
必要とせず、第2図に例示するように一次結晶粒が大き
な空胴な伴って粗く集合している粒子であっても差し支
えない。Particle characteristics required for a bed powder are: (1) Few particles adhere to the ceramic fired body, and the adhered particles should be easily peeled off. (2) No large bits (< dents) caused by the adhered particles remain on the surface of the fired ceramic body after the adhered particles have been peeled off.
Must be a smooth surface. (3) The main reason is that the particles of the bedding powder are not crushed and atomized during use. The bed powder of the present invention has all of these characteristics, but as described above, the particles constituting the powder are lump-like particles with an outer diameter of 40 to 1007+ m formed by aggregation of plate-shaped primary crystals. It is characterized by the fact that it is a secondary crystal grain. If the particle size is less than 40 μm, the particles tend to adhere to each other, and if the thickness of the powder layer is small, there is a drawback that the fired ceramic bodies may seize together. On the other hand, as the particle size increases, the pits on the surface of the ceramic ivy fired body that remain after the particles are peeled off become thicker when they are attached.
Impairs the surface smoothness of the fired product. Generally, it is required that the diameter of the surface pits of electro-ceramics does not exceed 100 μm, so in the present invention, from this point of view, the upper limit of the secondary crystal particle diameter is set to 100 μm. Although the secondary crystal grains may have an overall rounded granular shape as illustrated in FIG. 1, the present invention does not necessarily require such a restricted external shape, and There is no problem even if the crystal grains have large cavities and are coarsely aggregated.
粒子の外径は顕微鐘下の粒子について測定しても良いが
、篩分析によって判定される。本発明の粉体は、工業的
には篩分けによって分級され、例えばタイラー標準篩の
325メツシユ(43μm)と170メ、シュ(s91
+m)の間のものが採取される。The outer diameter of the particles may be measured on the particles under a microscope, but is determined by sieve analysis. The powder of the present invention is industrially classified by sieving, for example, 325 mesh (43 μm) and 170 mesh (s91
+m) are collected.
本発明の一層好ましい要件としては、−次結晶の80%
以上が平均中5〜50μmであることである。板状−次
結晶の平均中がこの低限界を下廻る微細晶では、焼成体
への付着力が強くなり、剥離もや〜困難になる。−次結
晶の平均中の上限は、二次結晶粒サイズを満足する限界
によって定まるが、一般K 507+mである。アルミ
ナの場合には一次結晶の80以上が平均中10〜30μ
mの範囲のものがより望ましい。また、−次結晶の平均
中と厚さの比が115〜115oの範囲にあることも望
ましい要件である。この比が115より大きくなると、
付着粒子の剥離強度が増大し、また115oより小さい
薄板状になると、圧潰して微粒化し易く、これによって
付着性を高める。A more preferable requirement of the present invention is that 80% of the -order crystals
The average diameter is 5 to 50 μm. In the case of fine crystals in which the average medium of the plate-like crystals falls below this low limit, the adhesion to the fired body becomes strong and peeling becomes difficult. The upper limit of the -order crystal average is determined by the limit that satisfies the secondary crystal grain size, and is generally K 507+m. In the case of alumina, 80 or more primary crystals are on average 10 to 30μ
A range of m is more desirable. Further, it is also a desirable requirement that the average medium to thickness ratio of the -order crystals be in the range of 115 to 115 degrees. When this ratio becomes larger than 115,
When the peel strength of the adhered particles increases and the particles become thinner than 115°, they are easily crushed and atomized, thereby increasing the adhesion.
上記したような本発明尾よる敷粉は、溶融法では製造し
得ない。アルミナの場合は電融コランダムでは板状結晶
の集合粒は得られず、水酸化アルミニウム結晶の焼成に
よって製造される。得られるα−アルミナの一次結晶の
形状(板状)およびサイズは水酸化アルミニウムの結晶
形状とサイズに強(依存し、水酸アルミニウムの析出条
件を調整することによって主として決定づけられる。そ
して二次結晶の形状(−次結晶の集合態様)および外径
は、−次結晶の形状・サイズにもよるが、鉱化剤の種類
、添加量、焼成、温度と時間、動的加熱等の焼成条件に
よって決定づけられろ。The powder according to the present invention as described above cannot be produced by a melting method. In the case of alumina, aggregate grains of plate-like crystals cannot be obtained using fused corundum, but are produced by firing aluminum hydroxide crystals. The shape (plate-like) and size of the obtained primary crystals of α-alumina strongly depend on the crystal shape and size of aluminum hydroxide, and are mainly determined by adjusting the precipitation conditions of aluminum hydroxide. The shape (aggregation mode of the -order crystals) and outer diameter depend on the shape and size of the -order crystals, but also vary depending on the firing conditions such as the type of mineralizing agent, the amount added, firing, temperature and time, and dynamic heating. Be determined.
本発明の敷粉がセラミック焼成体に付着し難(、付着し
ても剥離し易い現象は、充分解明し得ていない。しかし
ながら多数の観測から考察1−ると密実なt4を結晶粒
においては、粒子と被焼成セラミック成形体との接触面
積が大きいことが付着性および付着強度を高めているも
のと推定されるが、本発明の粉体においては、粒子と被
焼成セラミック成形体の接触は、二次結晶粒の外周に突
出する板状結晶の薄い先端部で起るため、接触面積が前
者に比して犬巾虻減少しているためと推定される。The phenomenon in which the bedding powder of the present invention has difficulty adhering to ceramic fired bodies (or is easy to peel off even if it adheres) has not been fully elucidated. It is presumed that the large contact area between the particles and the ceramic molded body to be fired increases the adhesion and adhesive strength. It is presumed that this is because the contact area is significantly reduced compared to the former because it occurs at the thin tip of the plate crystal that protrudes from the outer periphery of the secondary crystal grain.
以下、本発明を実施例、比較例にもとすいて説明する。The present invention will be explained below with reference to Examples and Comparative Examples.
実施例
(1)被焼成セラミック成形体
バイヤーα−アルミナ粉末(脱Na処理済)にMgO粉
末を025重量係添加含有せしめ、全体をアルミナボッ
トミルで粉砕して平均粒径0.657+mの原料粉末を
製した。この粉末に常法により成形用バインダーを加え
て混練し、得られたスラリーをテープキャスト法により
成形した後、室内風乾してセラミックス基板用生シート
(被焼成セラミック成形体)を作成した。Example (1) Ceramic compact to be fired Bayer α-alumina powder (de-Na treated) is added with MgO powder by weight of 0.25%, and the whole is ground in an alumina bot mill to obtain a raw material powder with an average particle size of 0.657+m. was manufactured. A molding binder was added to this powder and kneaded in a conventional manner, and the resulting slurry was molded by tape casting and air-dried indoors to produce a green sheet for a ceramic substrate (ceramic molded body to be fired).
(2)敷粉
バイヤー水酸化アルミニウム結晶2種に鉱化剤として弗
化アルミニウム粉末を添加し、ロータリーキルン中で最
高1350℃において動的焼成して得られた実質的にα
−アルミナ粉末であって、タイラー標準篩により篩分縁
した8種を供試した。(2) Adding aluminum fluoride powder as a mineralizing agent to two types of Bayer aluminum hydroxide crystals and dynamically firing them in a rotary kiln at a maximum temperature of 1350°C.
- Eight types of alumina powder sieved using a Tyler standard sieve were tested.
この粉末の粒子諸元は第1表の41〜A8に示すごとく
である。The particle specifications of this powder are as shown in 41 to A8 in Table 1.
(3)セラミック成形体の焼成
上記(1)のどと(作成したセラミック基板用生シート
を焼成用さやVc8段に積重ね、各6列に並べ(生シー
)数48箇)、各シートの間には上記(2)の敷粉を篩
撒布する方法および敷粉の有機溶剤スラリーをスプレー
塗布する方法の2方法尾よって敷粉な一定の厚みに存在
せしめた。ついで、焼成炉中において、350 ’Cに
おいて1.5時間加熱して成形用バインダーを除いた後
、炉温を1500℃(大気中)K昇温し2時間保持して
焼成を行った。(3) Firing of ceramic molded body (1) Throat (The prepared raw sheets for ceramic substrates are stacked in 8 stages of firing sheaths and Vc, arranged in 6 rows each (48 raw sheets)), and between each sheet The powder was made to exist at a constant thickness by two methods: spreading the powder on a sieve as described in (2) above, and spraying an organic solvent slurry of the powder. Next, the molding binder was removed by heating in a firing furnace at 350'C for 1.5 hours, and then the furnace temperature was raised to 1500°C (in the atmosphere) and held for 2 hours to perform firing.
(4)敷粉付着の判定
8種の敷粉(第1表、/161〜A8)の各々について
得られた48箇のセラミック焼成体をバレル研磨機によ
って一定時間処理し、この処理後敷粉が未だ付着残留し
ている焼成体の筒数の百分率をもって敷粉付着率とした
。(4) Judgment of adhesion of bedding powder The 48 ceramic fired bodies obtained for each of the 8 types of bedding powder (Table 1, /161 to A8) were treated with a barrel polisher for a certain period of time, and after this treatment, the bedding powder was The percentage of the number of cylinders of the fired body to which the powder was still adhered was defined as the powder adhesion rate.
また付着した敷粉粒子の剥1雛強度を判定するため、表
面がタイラー標準篩80メツシユの電融アルミナ粒の焼
結粒からなる粗面(A)を形成したセラミック板体に、
敷粉が旬着残留している焼成体(時の面を合はぜ、上記
粗面(A)を固定し、焼成体(B)を平行摺動せしめ、
その際の引張強度の最高値をもって剥離強度とした。第
1表に示すこの数値は、電融アルミナ粉を敷粉とした場
合の剥離強度を1とした指数である。In addition, in order to determine the peeling strength of the adhered bed powder particles, a ceramic plate with a rough surface (A) made of sintered fused alumina grains with a Tyler standard sieve of 80 mesh was used.
A fired body in which the bedding powder has settled and remains (the surfaces are brought together, the rough surface (A) is fixed, and the fired body (B) is slid in parallel,
The maximum value of the tensile strength at that time was defined as the peel strength. The values shown in Table 1 are an index with the peel strength of 1 being the peel strength when fused alumina powder is used as the powder.
本発明の敷粉を構成する粒子の状態を明らかにするため
、代表例として第1表/f61と扁5の敷粉について、
走査電子顕微鏡写真をそれぞれ第1図および第2図に示
す。そして各図とも(a)は倍率×500の二次結晶粒
子外観、(b)は倍率X 2500の一次結晶粒子外観
である。In order to clarify the state of the particles constituting the bed powder of the present invention, as a representative example, Table 1/F61 and Flat 5 bed powder are shown below.
Scanning electron micrographs are shown in FIGS. 1 and 2, respectively. In each figure, (a) shows the appearance of a secondary crystal particle at a magnification of x500, and (b) shows an appearance of a primary crystal particle at a magnification of x2500.
第1表/169〜A18の10種のアルミナな敷粉とし
て供試したほかは上記実施例の場合と同一方法、条件の
もと尾敷粉付着の判定を行った。その結果は第1表の数
値に示すごとくである。The adhesion of Oshiki powder was determined using the same method and conditions as in the above example, except that 10 kinds of alumina powders listed in Table 1/169 to A18 were used. The results are as shown in the numerical values in Table 1.
供試したアルミナの出所について付言すると、下記のご
とくである。The source of the alumina tested is as follows.
169〜A11; 微細板状のα−アルミナ−次結晶が
集合して形成された塊状二次結晶粒からなる点で本発明
の敷粉と近似するが、100μm以上の二次結晶粒を含
むことにおいて相違し、また厘9、腐10は一次結晶の
平均中が小さい。169-A11; It is similar to the bed powder of the present invention in that it consists of massive secondary crystal grains formed by aggregation of fine plate-shaped α-alumina secondary crystals, but it contains secondary crystal grains of 100 μm or more. In addition, Rin 9 and Fu 10 have smaller average primary crystals.
A612〜14; バイヤー析出水酸化アルミニウムを
高温焼成して製した粉体をアルミナポットミルで微粉砕
したもので、α単結晶からなり、本発明のごとき二次結
晶を構成していない。A612-14: Powder produced by baking Bayer-precipitated aluminum hydroxide at high temperature is finely pulverized in an alumina pot mill, and consists of α single crystals and does not constitute secondary crystals as in the present invention.
zK 15〜16; 電融コランダムの粉砕品である。zK 15-16; This is a crushed product of fused corundum.
/f617〜18; 43〜74μmの球状アルミナ粒
子で、A17は焼成αアルミナ粉、況18は電融コラン
ダムの粉砕品をそれぞれ原料として加工した球状粒から
なる粉末である。/f617-18; Spherical alumina particles of 43 to 74 μm, A17 is a powder made of calcined α-alumina powder, and Case 18 is a powder made of spherical particles processed using a crushed product of fused corundum as raw materials.
第1表に示した本発明と比較例の数値から明らかなごと
く、本発明の敷粉は、従来の敷粉に比してセラミック成
形体への付着が著しく少く、また付着粒の剥離強度も小
さく、優れた敷粉であることが認められる。また本発明
の敷粉を使用した場合、ラッピング処理後のセラミック
焼成体の表面は従来の敷粉の場合に比して非常に平滑で
きれいであった。As is clear from the values of the present invention and comparative examples shown in Table 1, the bedding powder of the present invention has significantly less adhesion to ceramic molded bodies than conventional bedding powder, and also has lower peel strength of the adhered particles. It is recognized that it is a small and excellent bed powder. Furthermore, when the lining powder of the present invention was used, the surface of the fired ceramic body after lapping was much smoother and cleaner than in the case of conventional lining powder.
上記のごとく、本発明の敷粉は高い表面平滑度を要求さ
れる電子部品用セラミック焼成体等の製造にきわめて好
適であり、焼成体の歩留りを向上し、品質を改善する効
果は顕著である。As mentioned above, the bedding powder of the present invention is extremely suitable for manufacturing ceramic fired bodies for electronic components that require high surface smoothness, and has a remarkable effect of increasing the yield and improving the quality of fired bodies. .
第1図および第2図は本発明の敷粉な構成する粒子の走
査電子顕微鏡写真であり、第1図は実施例j61、第2
図は実施倒置5の敷粉である。各図とも、(a)は倍率
×500の二次結晶粒子外観、(b)は倍率X2500
の一次結晶粒子外観を示す。
出顆人 昭和軽金属株式会社FIGS. 1 and 2 are scanning electron micrographs of particles constituting the powder of the present invention, and FIG.
The figure shows the bed powder of inversion 5. In each figure, (a) is the appearance of secondary crystal particles at a magnification of ×500, and (b) is a magnification of ×2500.
This shows the appearance of primary crystal grains. Showa Light Metal Co., Ltd.
Claims (1)
であって、板状の一次結晶が集合して形成された外径4
0〜100μmの塊状の二次結晶粒からなることを特徴
とするセラミック成形体焼成用敷粉。 2 板状の一次結晶の80チ以上が平均中5〜50μm
、かつ平均中に対する厚さの比が1/〜115oである
ことを特徴とする特許請求の範囲第1項記載のセラミッ
ク成形体焼成用敷粉。 3 酸化物粉末が、実質的にα−アルミナであって、平
均中10〜30μmの板状−次結晶が集合して形成され
た塊状の二次結晶粒からなることを特徴とする特許請求
の範囲第1項および第2項記載のセラミック成形体焼成
用敷粉。[Claims] 1. Ceramic compact to be fired IC is an inert oxide powder with an outer diameter 4 formed by aggregation of plate-shaped primary crystals.
A bed powder for firing a ceramic molded body, characterized in that it consists of massive secondary crystal grains of 0 to 100 μm. 2 More than 80 plate-shaped primary crystals have an average size of 5 to 50 μm
The bedding powder for firing a ceramic molded body according to claim 1, wherein the ratio of the thickness to the average thickness is 1/~115o. 3. A patent claim characterized in that the oxide powder is substantially α-alumina and consists of massive secondary crystal grains formed by aggregation of plate-like secondary crystals with an average diameter of 10 to 30 μm. A bedding powder for firing a ceramic molded body according to Items 1 and 2 of the scope.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58078913A JPS59203774A (en) | 1983-05-07 | 1983-05-07 | Floor powder for ceramic formed body baking |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58078913A JPS59203774A (en) | 1983-05-07 | 1983-05-07 | Floor powder for ceramic formed body baking |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59203774A true JPS59203774A (en) | 1984-11-17 |
JPH0235704B2 JPH0235704B2 (en) | 1990-08-13 |
Family
ID=13675082
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58078913A Granted JPS59203774A (en) | 1983-05-07 | 1983-05-07 | Floor powder for ceramic formed body baking |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59203774A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004155630A (en) * | 2002-11-08 | 2004-06-03 | Showa Denko Kk | Alumina particle and method of manufacturing the same |
WO2019194158A1 (en) * | 2018-04-06 | 2019-10-10 | Dic株式会社 | Alumina particle |
WO2021068126A1 (en) * | 2019-10-09 | 2021-04-15 | Dic Corporation | Composite particle and method of producing composite particle |
CN114555718A (en) * | 2019-10-09 | 2022-05-27 | Dic株式会社 | Alumina particles and method for producing alumina particles |
-
1983
- 1983-05-07 JP JP58078913A patent/JPS59203774A/en active Granted
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004155630A (en) * | 2002-11-08 | 2004-06-03 | Showa Denko Kk | Alumina particle and method of manufacturing the same |
WO2019194158A1 (en) * | 2018-04-06 | 2019-10-10 | Dic株式会社 | Alumina particle |
JPWO2019194158A1 (en) * | 2018-04-06 | 2021-04-08 | Dic株式会社 | Alumina particles |
US11401169B2 (en) | 2018-04-06 | 2022-08-02 | Dic Corporation | Alumina particle |
WO2021068126A1 (en) * | 2019-10-09 | 2021-04-15 | Dic Corporation | Composite particle and method of producing composite particle |
CN114514200A (en) * | 2019-10-09 | 2022-05-17 | Dic株式会社 | Composite particle and method for producing composite particle |
CN114555718A (en) * | 2019-10-09 | 2022-05-27 | Dic株式会社 | Alumina particles and method for producing alumina particles |
JP2022550986A (en) * | 2019-10-09 | 2022-12-06 | Dic株式会社 | Composite particles and method for producing composite particles |
CN114555718B (en) * | 2019-10-09 | 2024-01-26 | Dic株式会社 | Alumina particles and method for producing alumina particles |
Also Published As
Publication number | Publication date |
---|---|
JPH0235704B2 (en) | 1990-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS59203774A (en) | Floor powder for ceramic formed body baking | |
JPS61191562A (en) | Alumina base antiabrasive material | |
US6346161B1 (en) | Laminated electronic part, method for the production thereof, and dielectric ceramic composition | |
JP2000297363A (en) | Sputtering target for forming optical recording protective film and its production | |
JPS63136677A (en) | Manufacturing method of piezoelectric ceramic thin plate | |
JP3914635B2 (en) | Manufacturing method of ceramic electronic component | |
JPS59156961A (en) | Manufacture of alumina sintered substrate | |
JPS5851402B2 (en) | Porcelain for magnetic head structural parts and method for manufacturing the same | |
JP2957228B2 (en) | Magnetic head slider | |
JPS61117804A (en) | Mn-zn system soft ferrite and manufacture thereof | |
JP2612994B2 (en) | Hard disk substrate and method of manufacturing the same | |
JPH0827571A (en) | Method for producing strontium titanate target | |
JP2000169245A (en) | Production of oxide-based ceramic sintered compact | |
JP3085619B2 (en) | Non-magnetic ceramics | |
JPH03177383A (en) | Refractory having zirconia coated layer | |
JPH05319896A (en) | Nonmagnetic ceramics | |
JPH08217543A (en) | Production of nonmagnetic ceramics for magnetic head | |
JP2720199B2 (en) | Ceramic substrate firing method | |
JP2003306374A (en) | Composition for low temperature-burned ceramic, low temperature-burned ceramic and wiring board by using the same | |
JPH04114958A (en) | Alumina container and production thereof | |
JPH03261652A (en) | Porcelain composition for magnetic heads | |
JPH0529124A (en) | Production of soft ferrite magnetic material | |
JPH0365568A (en) | Production of sintered ceramic body | |
JPH07277820A (en) | Piezoelectric composition | |
JPS59146977A (en) | Non-magnetic ceramics for magnetic head |