[go: up one dir, main page]

JPS59173197A - Fermentating method of organic waste liquid - Google Patents

Fermentating method of organic waste liquid

Info

Publication number
JPS59173197A
JPS59173197A JP58047858A JP4785883A JPS59173197A JP S59173197 A JPS59173197 A JP S59173197A JP 58047858 A JP58047858 A JP 58047858A JP 4785883 A JP4785883 A JP 4785883A JP S59173197 A JPS59173197 A JP S59173197A
Authority
JP
Japan
Prior art keywords
methane
fermentation
waste liquid
temperature
organic waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58047858A
Other languages
Japanese (ja)
Other versions
JPS6327079B2 (en
Inventor
Chiaki Shimodaira
下平 千秋
Yoshinori Yushina
油科 嘉則
Akinori Kurima
昭典 栗間
Kazuhiro Numadate
沼館 和宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Original Assignee
Chiyoda Chemical Engineering and Construction Co Ltd
Chiyoda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Chemical Engineering and Construction Co Ltd, Chiyoda Corp filed Critical Chiyoda Chemical Engineering and Construction Co Ltd
Priority to JP58047858A priority Critical patent/JPS59173197A/en
Publication of JPS59173197A publication Critical patent/JPS59173197A/en
Publication of JPS6327079B2 publication Critical patent/JPS6327079B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 詳細には有機性廃液を低温域、かつ短い滞留時“間でメ
タン発酵により清浄化し、メタンガスを回収する方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION In detail, the present invention relates to a method for cleaning organic waste liquid by methane fermentation in a low temperature range and short residence time and recovering methane gas.

従来、メタン発酵によって有機性廃液を清浄化するにあ
たっては、余剰汚泥、し尿、アルコール蒸留廃液などの
BOD成分が高い濃度で含まれている有機性廃液を、3
5〜45℃(中温発酵)、或は約54℃(高温発酵)で
メタン発酵させ、一般的には約10〜50日の滞留日数
でこれらBOD成分を除去すると共に、副生じたメタン
ガスをエネルギー源として回収、利用していた。
Conventionally, when cleaning organic wastewater by methane fermentation, organic wastewater containing high concentrations of BOD components such as excess sludge, human waste, and alcohol distillation wastewater is
Methane fermentation is performed at 5 to 45 degrees Celsius (medium temperature fermentation) or about 54 degrees Celsius (high temperature fermentation), and these BOD components are generally removed over a retention period of about 10 to 50 days, and the by-produced methane gas is used as energy. It was collected and used as a source.

しかしながら、かかる方法では37℃、或は54℃付近
の温度で発酵を行なわなけれGet’反応速度の低下を
招くことになるので、廃水を力・力・る温度まで加温す
るか、或は保温する必要がるシ、これに要するエネルギ
ーは副生メタン力・ら回収されるエネルギーに比較して
決して少なくはなく、従ってメタン発酵による廃水処理
の省エネルギー効率の低下を招き、ひいてはメタン発酵
法の採用を阻害する欠点があった。
However, in such a method, fermentation must be carried out at a temperature of around 37°C or 54°C, resulting in a decrease in the Get' reaction rate. However, the energy required for this process is by no means small compared to the energy recovered from the by-product methane, which leads to a decrease in the energy-saving efficiency of wastewater treatment by methane fermentation, and ultimately to the adoption of the methane fermentation method. There were drawbacks that hindered the

また、従来のメタン・発酵法では、,主に完全混合型反
応槽が用いられ、槽内の浮遊性微生物によってメタン発
酵が行なわれていた。
Furthermore, in the conventional methane fermentation method, a complete mixing type reaction tank was mainly used, and methane fermentation was carried out by floating microorganisms inside the tank.

ところが、メタン発酵を行なう微生物は増殖速度が遅く
、浮遊性微生物による完全混合型の反応槽を使用し、低
濃度有機性廃液を処理した場合には、微生物が十分に増
殖しないうちに発酵槽から廃水が排出されるので、微生
物の濃度を高く保ち得ない問題点があった。
However, the growth rate of microorganisms that perform methane fermentation is slow, and when a completely mixed reaction tank with planktonic microorganisms is used to treat low-concentration organic wastewater, the microorganisms are removed from the fermenter before they have sufficiently multiplied. Since wastewater is discharged, there is a problem in that it is not possible to maintain a high concentration of microorganisms.

すなわち、ある一定の有機物外筒で高濃度の有機性廃液
を処理する場合には、低濃度の有機性廃液を処理する場
合よシも槽内の滞留時間が長くなシ、微生物の増殖が槽
内で十分に行なわれるが、低濃度の有機性廃液の場合、
微生物の増殖速度が一定でも、流入水量が増加するため
槽外へ流出する微生物量が増加(いわゆるwash o
ut現象)して槽内の微生物濃度が低下し、反応速度も
低下する欠点がある。従って低〜高濃度有機性廃水を使
用して、十分な省エネルギー効率を得るためには、微生
物の流出が少なく、かつ系内に高濃度微生物保持ができ
、常温で操作可能である条件が必要となる。しかし、完
全混合ノ 型反応槽と、浮遊性微生物を用いる限シ、低濃度有機性
廃液のメタン発酵は上記の理由で不可能とされていた。
In other words, when treating high-concentration organic waste liquid in a certain organic matter outer cylinder, the retention time in the tank is longer than when treating low-concentration organic waste liquid, and the growth of microorganisms is delayed. However, in the case of low concentration organic waste liquid,
Even if the growth rate of microorganisms is constant, the amount of microorganisms flowing out of the tank increases because the amount of inflow water increases (so-called wash o
This has the disadvantage that the concentration of microorganisms in the tank decreases due to the ut phenomenon), and the reaction rate also decreases. Therefore, in order to obtain sufficient energy-saving efficiency using low- to high-concentration organic wastewater, it is necessary to have conditions in which the outflow of microorganisms is small, the system can maintain a high concentration of microorganisms, and it can be operated at room temperature. Become. However, for the reasons mentioned above, methane fermentation of low-concentration organic waste liquid has been considered impossible unless a complete mixing reactor and planktonic microorganisms are used.

そこで本発明はかかる従来の欠点を解消すべくなされた
ものであシ、無機質微粒子に固定された微生物を用い、
従来の中温発酵温度未満の低温においてもメタン発酵を
することができるので反応槽の加温、保温はほとんど必
要なく、従来は非効率的とされていた低濃度有機性廃液
を、短い滞留時間で処理することができ為などの特長を
有するものである。
Therefore, the present invention was made to eliminate such conventional drawbacks, and uses microorganisms immobilized on inorganic fine particles.
Methane fermentation can be carried out even at low temperatures below the conventional medium-temperature fermentation temperature, so there is almost no need to heat or insulate the reaction tank, and low-concentration organic waste liquid, which was conventionally considered inefficient, can be processed in a short residence time. It has features such as being able to be processed.

すなわち、本発明の有機性廃液の清浄化方法は、メタン
細菌が表面に付着した担持用粒子を充填した発酵槽に有
機性廃液を供給して、該廃液中の有機物をメタン発酵さ
せる有機性廃液の清浄化方法において、前記担持用粒子
として無機質微粒子を用い、前記メタン発酵の温度が中
温発酵温度未満であることを特徴とするものである。
That is, the method for cleaning an organic waste liquid of the present invention involves supplying the organic waste liquid to a fermenter filled with supporting particles on which methane bacteria are attached, and fermenting the organic matter in the waste liquid with methane. The cleaning method is characterized in that inorganic fine particles are used as the supporting particles, and the temperature of the methane fermentation is lower than the mesophilic fermentation temperature.

以下、本発明を工程に従い、順を追って説明する。まず
、表面に有機酸生成菌およびメタン発酵菌を含む活性汚
泥(以下メタン細菌と称する)が付着した無機質微粒子
が充填された発酵槽を用意す、る。或は無機質微粒子へ
のメタン細菌の付着と、メタン発酵とを同一の発酵槽で
行なう。後者の場合、無機質微粒子を発酵槽に充填し、
この粒子表面に微生物を十分付着させるための馴致とし
て、まず反応槽内にメタン発酵の種汚泥を少量づつ注入
する。同時に徐々に有機基質負荷を高めつつ有機性廃液
を供給する。
Hereinafter, the present invention will be explained step by step according to the steps. First, a fermentation tank filled with inorganic fine particles having activated sludge containing organic acid producing bacteria and methane fermenting bacteria (hereinafter referred to as methane bacteria) attached to the surface is prepared. Alternatively, attachment of methane bacteria to inorganic fine particles and methane fermentation are performed in the same fermenter. In the latter case, the fermenter is filled with inorganic fine particles,
In order to acclimatize the microorganisms to the surface of the particles, a small amount of seed sludge for methane fermentation is first injected into the reaction tank. At the same time, organic waste liquid is supplied while gradually increasing the organic substrate load.

この際、発酵槽中の有機酸濃度が高くなシ、pHが低下
すると、メタン発酵が阻害されて有機物除去速度とメタ
ンガス生成速度か高くならず、従ってメタン細菌の増殖
速度も低く、担体粒子表面にメタン細菌が付着しにくい
。。
At this time, if the organic acid concentration in the fermenter is high or the pH is low, methane fermentation will be inhibited and the organic matter removal rate and methane gas production rate will not increase, so the growth rate of methane bacteria will also be low and the surface of the carrier particles will methane bacteria are difficult to adhere to. .

このだめ、発酵槽内液のpHを通常では6.5〜8、O
2好捷しくは7゜0〜7゜5に調整して、よシ速く微生
物を増殖させ、担持用粒子表面に微生物を付着させる。
In this tank, the pH of the fermenter liquid is normally 6.5-8, O
2. Preferably, the temperature is adjusted to 7°0 to 7°5 to allow microorganisms to proliferate more rapidly and adhere to the surface of the supporting particles.

かかる馴致操作によって、はぼ1〜6ケ月で担持用粒子
表面への微生物の付着が終了し、以後、有機性廃液を定
常に供給できるようになる。
By this acclimatization operation, the attachment of microorganisms to the surface of the supporting particles is completed in about 1 to 6 months, and thereafter, it becomes possible to constantly supply organic waste liquid.

ここで本発明に用いる無機質微粒子とは、ケイソウ土、
クレイ、ベントナイト、炭酸カルシウム、石膏、タルク
であシ、好ましくはケイソウ土である。
Here, the inorganic fine particles used in the present invention include diatomaceous earth,
Clay, bentonite, calcium carbonate, gypsum, talcum, preferably diatomaceous earth.

これら無機質微粒子は、通常では比表面積が40.00
0m2/m3 以上、好ましくは60,0007712
昨3以上であシ、その結果、メタン細菌濃度をよシ高濃
度にして、反応速度を高めることができる。
These inorganic fine particles usually have a specific surface area of 40.00.
0m2/m3 or more, preferably 60,0007712
As a result, the concentration of methane bacteria can be made much higher and the reaction rate can be increased.

また、無機質微粒子は通常、平均粒径が100μm以下
、好壕しくは1〜75μm1よシ好ましくは1〜50μ
mの範囲である。
In addition, the inorganic fine particles usually have an average particle diameter of 100 μm or less, preferably 1 to 75 μm, and preferably 1 to 50 μm.
m range.

なお、本発明において好ましく用いられるケイソウ土は
、触媒の担持用に用いられる精製したものが望ましいが
、吸着剤、濾過剤、保温材等に用いられる一般用のもの
も十分使用することができる。
The diatomaceous earth preferably used in the present invention is preferably a purified one used for supporting catalysts, but general diatomaceous earth used for adsorbents, filtering agents, heat insulating materials, etc. can also be used.

このように微生物担持用粒子として、微細な粒子を用い
、比表面積を高め、その表面に微生物を付着させること
によって、発酵槽内の微生物濃度を高めることができる
。一般にメタン細菌濃度は10,000〜35,000
 ppmに達する。
In this way, by using fine particles as microorganism-carrying particles, increasing the specific surface area, and allowing microorganisms to adhere to the surface, it is possible to increase the microorganism concentration in the fermenter. Generally, the concentration of methane bacteria is 10,000 to 35,000
reaches ppm.

次に、発酵槽に有機性゛廃液を供給し、嫌気性条件下に
メタン発酵を行なう。
Next, organic waste liquid is supplied to the fermenter and methane fermentation is carried out under anaerobic conditions.

この廃液供給は、発酵槽に充填した無機系微粒子(以後
、ケイソウ土を例に説明する)に上向流で通水する。上
向流とすることによって、ケイソウ土粒子間の目詰シを
防止することができる・。
This waste liquid is supplied by flowing upward through inorganic fine particles (hereinafter, diatomaceous earth will be explained as an example) filled in the fermenter. By creating an upward flow, clogging between diatomaceous earth particles can be prevented.

また、ケイソウ土は廃水の流れに対して固定層としても
良いし、膨張層または流動層としても良い。発生したメ
タンガスが粒子に妨げられて上部に抜けにくくなること
を防止するためには、流動層、或は膨張層とするのが好
筐しい。
Further, diatomaceous earth may be used as a fixed bed, an expanding bed, or a fluidized bed for the wastewater flow. In order to prevent the generated methane gas from being blocked by particles and becoming difficult to escape to the upper part, it is preferable to use a fluidized bed or an expanded bed.

膨張、或は流動状態には特に制限はないが、流動に要す
るエネルギーを軽減するためと、粒子表面に付着してい
る微生物が過度に剥離を起すことを防止するために、メ
タンガスが抜けるために必要な最低限の膨張、或は流動
を行なえば良い、。
There are no particular restrictions on the expansion or flow state, but in order to reduce the energy required for flow, to prevent microorganisms attached to the particle surface from exfoliating excessively, and to allow methane gas to escape. Just do the minimum necessary expansion or flow.

なお、固定層の場合には、低速回転する攪拌機によって
、一般には粒子層がゆるやかに攪拌され、ケイソウ土粒
子同志の凝着を防止すると共に、発生するメタンガスが
容易に抜けるように、米粒子表面のメタン細菌を廃水と
良好に接触させて、反応の効率化がはかられるようにす
る。
In the case of a fixed bed, the particle layer is generally gently stirred by a stirrer rotating at low speed to prevent diatomaceous earth particles from adhering to each other, and to ensure that the surface of the rice grains is so that the generated methane gas can escape easily. The methane bacteria are brought into good contact with the wastewater to improve the efficiency of the reaction.

なお、攪拌機としては、常時水中にあっても変質しない
ステンレスまたはプラスチック製のものが良く、形状と
しては、たとえば回転軸に多段に攪拌翼を設けたもの、
或は回転軸に平イテに多数の線状部材を配列し、これを
枠体を介して回転軸に固定したものなど、廃水まだは担
持用粒子による抵抗が少なく、攪拌によって激しい混乱
を生じない形状のものが用いられる。
The stirrer is preferably made of stainless steel or plastic, which does not deteriorate even if it is constantly submerged in water, and the shape may be, for example, one with stirring blades arranged in multiple stages on a rotating shaft,
Alternatively, a large number of linear members are arranged flat on a rotating shaft and fixed to the rotating shaft through a frame, and the wastewater has less resistance due to supporting particles and does not cause severe confusion when agitated. shape is used.

本発明においては、有機性廃液中の有機物のメタン発酵
が中温発酵温度未満で行なわれる。
In the present invention, methane fermentation of the organic matter in the organic waste liquid is carried out below the mesophilic fermentation temperature.

□発酵温度を加熱によシ中温以上とすることもで。□Fermentation temperature can be raised to medium temperature or higher by heating.

き・るが、高濃度微生物濃度を保持しているために系内
のメタン細菌の濃度依存性が少なく、あえて中温、高温
発酵へ持っていく必要はない。
Since Kiru maintains a high concentration of microorganisms, there is little dependence on the concentration of methane bacteria in the system, so there is no need to carry it to medium-temperature or high-temperature fermentation.

しかし、メタン細菌を系内に高い濃度で増殖する必要の
あるときは、中温発酵に使用する温度まで高めていくと
、急速に所要濃度まで高められる。
However, when it is necessary to grow methane bacteria in a system at a high concentration, the required concentration can be rapidly increased by raising the temperature to the temperature used for mesophilic fermentation.

更に、本発明において処理される有機性廃液のBOD濃
度は特に制限されないが、高濃度BOD廃水を極めて効
率よく処理できるほか従来の浮遊性微生物を用いる方法
によっては処理が困難であった比較的数百〜数千ppm
のBODを有する廃水にも固定微生物膜を採用して、処
理が可能となった本発明の利点を十分に生かすことがで
きる。
Further, although the BOD concentration of the organic wastewater treated in the present invention is not particularly limited, it is possible to treat high-concentration BOD wastewater extremely efficiently and to treat relatively large numbers of organic wastewaters that have been difficult to treat by conventional methods using planktonic microorganisms. Hundreds to several thousand ppm
It is possible to fully utilize the advantage of the present invention, which makes it possible to treat wastewater with a BOD of 100% by employing a fixed microbial membrane.

なお、有機性廃液の混合は、通常では2〜5回/分程度
のゆるやかに回転する攪拌機によって行ない、また有機
性廃液の上向流は、たとえばポンプによる発酵槽内廃液
の循環によシ行なうつ 以上述べたように本発明によれば、無機系微粒子の表面
にメタン細菌を付着せしめ、メタン発酵を中温発酵温度
未満の温度゛で行なうので、下記のような優れた利点を
有する。
The organic waste liquid is usually mixed using a stirrer that slowly rotates about 2 to 5 times per minute, and the upward flow of the organic waste liquid is carried out by, for example, circulating the waste liquid in the fermenter using a pump. As described above, according to the present invention, methane bacteria are attached to the surface of inorganic fine particles and methane fermentation is carried out at a temperature lower than the meso-fermentation temperature, so that the present invention has the following excellent advantages.

(イ)発酵槽内に、表面に微生物が付着した粒子を充填
する固定微生物膜法を採用しているので、発酵槽内のメ
タン細菌濃度を高めることができ、中温発酵未満の温度
においても発酵槽容積当シの反応速度を高く維持するこ
とができる。
(b) Since we use a fixed microbial membrane method in which the fermenter is filled with particles with microorganisms attached to the surface, it is possible to increase the concentration of methane bacteria in the fermenter, allowing fermentation to occur even at temperatures below mesophilic fermentation. The reaction rate per tank volume can be maintained high.

(o)  上記(イ)で述べたように発酵槽内のメタン
細菌濃度を高めることができたので、従来の微生物浮遊
法では非効宅的とされていた低濃度有機性廃液を、メタ
ン細菌の流出がほとんどなく、かつ高く、安定した反応
速度で運転することができる。相持用粒子の表面に付着
したメタン細菌は流動による粒子間の接触などによって
のみ剥離するだけであシ、低濃度高水量で運転しても発
酵槽内のメタン細菌濃度が低下することはない。
(o) As mentioned in (a) above, we were able to increase the concentration of methane bacteria in the fermenter, so we could use low-concentration organic waste liquid, which was considered ineffective with the conventional microbial suspension method, to contain methane bacteria. It can be operated at a high and stable reaction rate with almost no outflow. Methane bacteria attached to the surface of the supporting particles are only peeled off due to contact between particles due to flow, and the concentration of methane bacteria in the fermenter does not decrease even if the fermenter is operated with a low concentration and a high amount of water.

すなわち、本発明では無機質微粒子による固定微生物膜
法を採用しているので、高水量運転時においてもメタン
細菌の反応槽外への流出はほとんどなく、発酵槽内に高
いメタン細菌濃度を保持できる。
That is, since the present invention employs a fixed microbial membrane method using inorganic fine particles, there is almost no leakage of methane bacteria to the outside of the reaction tank even during high water flow operation, and a high concentration of methane bacteria can be maintained within the fermenter.

e″) (イ)で述べたように、低中温発酵未満の温度
でメタン発酵が可能となったために、従来のメタン発酵
に比較して加温に要するエネルギーが大巾に軽減され、
従って省エネルギー効率を従来法に比較して著るしく向
上させることができる。− に)本発明では発酵槽内のメタン細菌濃度が高いために
発酵槽をコンパクト化することができる。従って、従来
のメタン発酵法に比較して発酵槽の設置に必要な敷地面
積を大巾に削減することができる。
e'') As mentioned in (a), since methane fermentation is now possible at a temperature lower than low-medium temperature fermentation, the energy required for heating is greatly reduced compared to conventional methane fermentation.
Therefore, energy saving efficiency can be significantly improved compared to conventional methods. - In the present invention, the fermenter can be made more compact because the concentration of methane bacteria in the fermenter is high. Therefore, compared to the conventional methane fermentation method, the site area required for installing the fermenter can be significantly reduced.

(ホ)更に本発明の方法は、あらゆる種類の有機性廃液
に対して適用するとと゛ができる。特に低濃度有機性廃
液を処理する場合には、活・性汚泥法における曝気操作
を本発明のメタン発酵に置換することが可能である。
(e) Furthermore, the method of the present invention can be applied to all kinds of organic waste liquids. Particularly when treating low-concentration organic waste liquid, it is possible to replace the aeration operation in the activated sludge method with the methane fermentation of the present invention.

以下、本発明の実施例を述べる。Examples of the present invention will be described below.

実施例 図に示すように直径0.15m1内容積771゜反応部
分容積約51の塩化ビニル製カラムから成る発酵槽1内
に、担持用粒子2としてケイソウ土を約3.3ノ充填し
た。槽下部の廃水供給管路3ρ・ら目皿・11を通して
有機性廃液を供給し、槽上部の処理廃水管路4から処理
廃水を取シ出すことによって槽内に上向流を形成せしめ
、一方、低速回転モータ5によって2〜5回/分回転す
る攪拌機6による攪拌によって、微生物が表面に付着し
たケイソウ土2を流動せしめた。
EXAMPLE As shown in the diagram, about 3.3 pieces of diatomaceous earth were packed as supporting particles 2 into a fermenter 1 consisting of a vinyl chloride column having a diameter of 0.15 m, an internal volume of 771°, and a reaction partial volume of about 51. An upward flow is formed in the tank by supplying organic wastewater through the wastewater supply pipe 3ρ and the mesh plate 11 at the bottom of the tank, and taking out the treated wastewater from the treated wastewater pipe 4 at the top of the tank. The diatomaceous earth 2 having the microorganisms attached to its surface was made to flow by stirring by a stirrer 6 which was rotated 2 to 5 times per minute by a low-speed rotary motor 5.

なお、攪拌機は枠体に回転軸に平行に多数の塩化ビニル
製のひもを配列したものを用いた。
The stirrer used had a frame with a large number of vinyl chloride strings arranged in parallel to the rotation axis.

廃水は衛生廃水にグルコースを加えてBOD 濃度を8
50ppmとし、嫌気性雰囲気下においてメタン発酵せ
しめた。
For wastewater, glucose is added to sanitary wastewater to bring the BOD concentration to 8.
50 ppm, and methane fermentation was carried out in an anaerobic atmosphere.

運転開始から約1週間の間、メタン発酵の種汚泥を少量
づつ添加し、一方、廃水供給量を、0.2A!/hrか
ら徐々に増量したところ、約3ケ月後には担持用粒子表
面に大量の微生物が観察され、廃水供給量LM/hrで
定常運転が可能となった。処理廃水は、管路4を経て沈
殿槽7に導き、・沈殿汚泥8と放出水9に分離した。ま
た、発生したガスは、ガスホルダー10に貯L ft 
C。
For about a week after the start of operation, methane fermentation seed sludge was added little by little, while the wastewater supply rate was kept at 0.2A! When the amount was gradually increased from /hr, a large amount of microorganisms were observed on the surface of the supporting particles after about 3 months, and steady operation was possible at the wastewater supply rate LM/hr. The treated wastewater was led to a settling tank 7 via a pipe 4 and separated into settled sludge 8 and discharged water 9. Further, the generated gas is stored in the gas holder 10 L ft
C.

定常運転は反応温度を10℃、20℃、30℃の3種類
に変え各々2゜5ケ月の期間実験を行なった。各々の一
定温度を保つ為に本実験装置全体を恒温水槽に入れ水槽
内の水を温度コントロールした。d1約$ケ月におよぶ
3種類の実験結果を表−1に示す。
In steady operation, the reaction temperature was changed to three types: 10°C, 20°C, and 30°C, and experiments were conducted for 2° and 5 months each. In order to maintain a constant temperature, the entire experimental apparatus was placed in a constant temperature water tank and the temperature of the water in the tank was controlled. Table 1 shows the results of three types of experiments lasting approximately $1 month.

) 10   41     2.5      0.18
20   75     4.6      0゜40
30   90     5.5      0.35
(注1) ガス中のメタン含有率は全実験を通し約70
%であった。
) 10 41 2.5 0.18
20 75 4.6 0゜40
30 90 5.5 0.35
(Note 1) The methane content in the gas was approximately 70% throughout the entire experiment.
%Met.

(注2) 上記数字は各ランの平均値である。(Note 2) The above numbers are the average values of each run.

以上の実験結果から、従来法では困難と見られていた中
温発酵来満の温度でメタン発酵が可能である事が判明し
た。
From the above experimental results, it was found that methane fermentation is possible at temperatures as high as medium-temperature fermentation, which was considered difficult with conventional methods.

反応温度と反応速度は温度が高くなると反応速度が増大
する1、シかしながら10℃の様な低温にお”ハても反
応速度2.5):9/反l芯部’7”’/Fにゲ得られ
だ事は、通常の中温メタン発酵で反応速度が約2kgB
OD/反応部m3/日であることから考えると、極めて
効率の良い値といわねばならない。さらに20°C23
0℃における4゜6,5.5 kgBOD/反応部m3
/日の値は従来法よシ非常に高い値であることが立証出
来た。ガス発生率を見ると20℃のガス発生率は30℃
のそれよシ僅かながら高い値を示しておシ、この近辺の
温度では温度依存性が認められなかった。
Regarding reaction temperature and reaction rate, the reaction rate increases as the temperature rises. /F is that the reaction rate is about 2 kgB in normal medium-temperature methane fermentation.
Considering that it is OD/reaction area m3/day, it must be said that this is an extremely efficient value. Further 20°C23
4゜6,5.5 kgBOD/reaction area m3 at 0℃
It was proved that the value per day was much higher than that of the conventional method. Looking at the gas generation rate, the gas generation rate at 20℃ is 30℃
It showed a slightly higher value than that of , but no temperature dependence was observed at temperatures around this range.

以上の様に本発明のケイソウ土を微生物担体として使用
した発酵方法は従来法で達成できなかった種々の和漢を
有している事が認められた。1
As described above, it has been found that the fermentation method of the present invention using diatomaceous earth as a microbial carrier has various characteristics that could not be achieved by conventional methods. 1

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の実施例を示す系統図である。 1・・・発酵槽、2ツケイソウ土粒子。 代理人 弁理士 小 川 信 − 弁理士 野、口 腎 照 弁理士 斎 下 和 彦 The figure is a system diagram showing an embodiment of the present invention. 1...Fermentation tank, 2. Soil particles. Agent: Patent Attorney Nobuo Kogawa - Patent attorney Teru Noguchiki Patent Attorney Kazuhiko Sai

Claims (1)

【特許請求の範囲】[Claims] メタン細菌が表面に付着した担持用粒子を充填した発酵
槽に有機性廃液を供給して、該廃液中の有機物をメタン
発酵させる有機性廃液の発酵方法において、前記担持用
粒子として無機質微粒子を用い、前記メタン発酵の温度
が中温発酵温度未満であることを特徴とする有機性廃液
の発酵方法。
In an organic waste liquid fermentation method, in which organic waste liquid is supplied to a fermenter filled with supporting particles having methane bacteria attached to the surface thereof, and organic substances in the waste liquid are subjected to methane fermentation, inorganic fine particles are used as the supporting particles. . A method for fermenting an organic waste liquid, characterized in that the temperature of the methane fermentation is lower than the temperature of the mesophilic fermentation.
JP58047858A 1983-03-24 1983-03-24 Fermentating method of organic waste liquid Granted JPS59173197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58047858A JPS59173197A (en) 1983-03-24 1983-03-24 Fermentating method of organic waste liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58047858A JPS59173197A (en) 1983-03-24 1983-03-24 Fermentating method of organic waste liquid

Publications (2)

Publication Number Publication Date
JPS59173197A true JPS59173197A (en) 1984-10-01
JPS6327079B2 JPS6327079B2 (en) 1988-06-01

Family

ID=12787063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58047858A Granted JPS59173197A (en) 1983-03-24 1983-03-24 Fermentating method of organic waste liquid

Country Status (1)

Country Link
JP (1) JPS59173197A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61111197A (en) * 1984-11-05 1986-05-29 Shimizu Constr Co Ltd Method and device for producing gaseous methane by fermentation
JPS61114796A (en) * 1984-11-09 1986-06-02 Japan Organo Co Ltd Anaerobic filter bed apparatus
JPS63119000U (en) * 1987-01-27 1988-08-01
WO2004101449A3 (en) * 2003-05-14 2005-02-03 Commissariat Energie Atomique Method of degrading tbp using a photosynthetic bacterial strain
JP2006272138A (en) * 2005-03-29 2006-10-12 Fuji Electric Holdings Co Ltd Organic waste treatment method
KR100722978B1 (en) 2005-11-02 2007-05-30 최정희 Biomass reactor using diatomaceous earth ceramics
JP2012035194A (en) * 2010-08-06 2012-02-23 Kobelco Eco-Solutions Co Ltd Anaerobic treatment device and anaerobic treatment method
JP2014223611A (en) * 2013-04-15 2014-12-04 住友重機械工業株式会社 Anaerobic treatment system and anaerobic treatment method
CN105753263A (en) * 2016-04-27 2016-07-13 常州大学 Large breeding farm waste treatment device and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5439957A (en) * 1974-07-12 1979-03-28 Ecolotrol Method of treating waste water
JPS5633093A (en) * 1979-08-27 1981-04-03 Taki Chem Co Ltd Anaerobic fermentation method
JPS5716676A (en) * 1980-07-01 1982-01-28 Yokota:Kk Cooking for raw beef

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5439957A (en) * 1974-07-12 1979-03-28 Ecolotrol Method of treating waste water
JPS5633093A (en) * 1979-08-27 1981-04-03 Taki Chem Co Ltd Anaerobic fermentation method
JPS5716676A (en) * 1980-07-01 1982-01-28 Yokota:Kk Cooking for raw beef

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0476754B2 (en) * 1984-11-05 1992-12-04 Shimizu Construction Co Ltd
JPS61111197A (en) * 1984-11-05 1986-05-29 Shimizu Constr Co Ltd Method and device for producing gaseous methane by fermentation
JPS61114796A (en) * 1984-11-09 1986-06-02 Japan Organo Co Ltd Anaerobic filter bed apparatus
JPH0476755B2 (en) * 1984-11-09 1992-12-04 Organo Kk
JPS63119000U (en) * 1987-01-27 1988-08-01
US9029127B2 (en) 2003-05-14 2015-05-12 Commissariat A L'energie Atomique Method of degrading TBP using a photosynthetic bacterial strain
WO2004101449A3 (en) * 2003-05-14 2005-02-03 Commissariat Energie Atomique Method of degrading tbp using a photosynthetic bacterial strain
JP2006272138A (en) * 2005-03-29 2006-10-12 Fuji Electric Holdings Co Ltd Organic waste treatment method
JP4729718B2 (en) * 2005-03-29 2011-07-20 富士電機株式会社 Organic waste treatment methods
KR100722978B1 (en) 2005-11-02 2007-05-30 최정희 Biomass reactor using diatomaceous earth ceramics
JP2012035194A (en) * 2010-08-06 2012-02-23 Kobelco Eco-Solutions Co Ltd Anaerobic treatment device and anaerobic treatment method
JP2014223611A (en) * 2013-04-15 2014-12-04 住友重機械工業株式会社 Anaerobic treatment system and anaerobic treatment method
CN105753263A (en) * 2016-04-27 2016-07-13 常州大学 Large breeding farm waste treatment device and method

Also Published As

Publication number Publication date
JPS6327079B2 (en) 1988-06-01

Similar Documents

Publication Publication Date Title
US4284508A (en) Methane production by attached film
JP4224951B2 (en) Denitrification method
JP5150993B2 (en) Denitrification method and apparatus
JP4899253B2 (en) Wastewater aerobic treatment method
CN1424985A (en) Removal of sulfur compounds from wastewater
JP5685902B2 (en) Organic wastewater treatment method
JPS59173197A (en) Fermentating method of organic waste liquid
JP2652841B2 (en) Operating method of wastewater treatment equipment
Ng et al. Treatment of piggery wastewater by expanded-bed anaerobic filters
JPH07290088A (en) Method for biologically denitrifying organic waste water
JPH0218915B2 (en)
JP2878640B2 (en) Upflow anaerobic sludge bed method
JP2925383B2 (en) Anaerobic microorganism treatment equipment for organic wastewater
JPH091179A (en) Method for anaerobic digestion of high-concentration organic wastewater and treatment apparatus therefor
JP3373001B2 (en) Anaerobic treatment method and apparatus for organic wastewater
JPS6154293A (en) Treatment of high concentrated organic waste water
JP3328139B2 (en) Method and apparatus for producing activated sludge
JPH0630781B2 (en) Short-term startup method for anaerobic fermenter
JPS6094194A (en) Treating apparatus for organic waste water
CN109095610A (en) A kind of three-stage photocatalysis composite suspension step biofilm reactor
JPH0217676Y2 (en)
JPH0311836B2 (en)
JPH0667511B2 (en) Anaerobic water treatment method
JPS6034794A (en) Biological treating apparatus of organic waste
JPS5849492A (en) Removing method for bod and ss from organic waste water