JPS59161079A - Manufacturing method of photoelectric conversion element - Google Patents
Manufacturing method of photoelectric conversion elementInfo
- Publication number
- JPS59161079A JPS59161079A JP58034407A JP3440783A JPS59161079A JP S59161079 A JPS59161079 A JP S59161079A JP 58034407 A JP58034407 A JP 58034407A JP 3440783 A JP3440783 A JP 3440783A JP S59161079 A JPS59161079 A JP S59161079A
- Authority
- JP
- Japan
- Prior art keywords
- type
- amorphous silicon
- photoelectric conversion
- conversion element
- silicon layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000006243 chemical reaction Methods 0.000 title claims description 33
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 34
- PZPGRFITIJYNEJ-UHFFFAOYSA-N disilane Chemical compound [SiH3][SiH3] PZPGRFITIJYNEJ-UHFFFAOYSA-N 0.000 claims description 25
- 239000000126 substance Substances 0.000 claims description 20
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 14
- 229910052710 silicon Inorganic materials 0.000 claims description 14
- 239000010703 silicon Substances 0.000 claims description 14
- 230000003287 optical effect Effects 0.000 claims description 11
- 238000000354 decomposition reaction Methods 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 9
- 239000003085 diluting agent Substances 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 5
- 239000000758 substrate Substances 0.000 description 22
- 239000007789 gas Substances 0.000 description 16
- 239000000463 material Substances 0.000 description 16
- 230000015572 biosynthetic process Effects 0.000 description 15
- 239000010408 film Substances 0.000 description 14
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 12
- 239000002994 raw material Substances 0.000 description 12
- 239000010409 thin film Substances 0.000 description 10
- 229910052799 carbon Inorganic materials 0.000 description 7
- 239000011521 glass Substances 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Chemical group N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 229910007264 Si2H6 Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 4
- 229910000077 silane Inorganic materials 0.000 description 4
- 210000000078 claw Anatomy 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 229910052734 helium Inorganic materials 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910052757 nitrogen Chemical group 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- QHGNHLZPVBIIPX-UHFFFAOYSA-N tin(II) oxide Inorganic materials [Sn]=O QHGNHLZPVBIIPX-UHFFFAOYSA-N 0.000 description 2
- 241001566735 Archon Species 0.000 description 1
- -1 Sifuran Substances 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- ZOCHARZZJNPSEU-UHFFFAOYSA-N diboron Chemical compound B#B ZOCHARZZJNPSEU-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 210000003141 lower extremity Anatomy 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 239000010812 mixed waste Substances 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- VEDJZFSRVVQBIL-UHFFFAOYSA-N trisilane Chemical compound [SiH3][SiH2][SiH3] VEDJZFSRVVQBIL-UHFFFAOYSA-N 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/10—Manufacture or treatment of devices covered by this subclass the devices comprising amorphous semiconductor material
- H10F71/103—Manufacture or treatment of devices covered by this subclass the devices comprising amorphous semiconductor material including only Group IV materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は非晶質シリコン光電変換素子の高効率化に関す
る。現在非晶質シリコン光電変換素子の高効率化が各種
の手段で試みられているがその中の一つに光活性領域へ
の光の入射量を多くず地試みがある。このため、光活性
領域である1型非晶質シリコンの有する光学禁制路中(
以下光学禁制路中をEop tと記す)、よりも広いE
optを有する物質(このような物質を窓材料という)
を光の入射側に配置して素子を形成することが試みられ
てきた。かかる窓材料としては、シリコンに炭素や窒素
を導入結合したタイプの非晶質ノリコンカーノ・イド(
以下2−5iCxと記す)や非晶質シリコンナイトライ
ド(以下a−5iNyと記す)が検剖され、ボロンをト
ープしたp型a−3i(4は一部実用に供せられている
。しかしながら上記a−5i’C)(や5iNyは本来
電気を通しにくい性質のものであり、これらを窓利相と
して用いる場合には必す軍、気伝導性が低下するという
問題を含むものであった。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to increasing the efficiency of an amorphous silicon photoelectric conversion element. Currently, attempts are being made to improve the efficiency of amorphous silicon photoelectric conversion elements by various means, one of which is an attempt to increase the amount of light incident on the photoactive region. Therefore, in the optically forbidden path of type 1 amorphous silicon, which is the photoactive region, (
(Hereinafter, the optically prohibited path will be referred to as Eop t), which is wider than E.
Substances with opt (such substances are called window materials)
Attempts have been made to form an element by arranging the light on the light incident side. Such window materials include amorphous silicon carbide (a type of silicon with carbon and nitrogen bonded to it).
2-5iCx) and amorphous silicon nitride (hereinafter a-5iNy) were autopsied, and boron-topped p-type a-3i (4 is partially put into practical use.However, The above a-5i'C) (and 5iNy) are inherently difficult to conduct electricity, and when they are used as a window, there is a problem that the air conductivity decreases. .
それ放電気伝導性を低下させないために、a−5iCx
やa−8INyにおいてはx+yの値を犬にして、Eo
ptを増大させることができなかった。たとえばa”5
iCL−(zはEop tを1.9〜2.OeVて用い
る時が電気伝導性とのバランスの上から最適であるとさ
れているが、この時の導電率は約10’5−cm’とな
お低いため、該光電素子においては抵抗成分として作用
し、効率の改善には不利になる。したがってこれよシ以
上にEoptを広くしても短波長の光をとり込む利益よ
りも、上記抵抗の増加による損失の方が大きく作用する
結果、総合的な光電変換効率はかかるワイドギャップの
窓材料の使用によシ逆に低下せしめられることになる。In order not to reduce the discharge conductivity, a-5iCx
or a-8INy, the value of x+y is set to dog, and Eo
It was not possible to increase pt. For example a”5
iCL-(z is Eopt) It is said that it is best to use Eopt from 1.9 to 2.0eV in terms of balance with electrical conductivity, but the electrical conductivity at this time is about 10'5-cm' Since Eopt is still low, it acts as a resistance component in the photoelectric element, which is disadvantageous to improving efficiency.Therefore, even if Eopt is made wider than this, the benefit of taking in short wavelength light is outweighed by the resistance component. As a result, the overall photoelectric conversion efficiency is adversely reduced by the use of such a wide gap window material.
本発明者らは、上記観点から鋭意検討した結果、ジシラ
ンガスを用いてグロー放電分解により形成した非晶質シ
リコン(以下非晶質シリコンをa−5i:Hと記す)は
Eoptが増大するという知見を得(%願昭5’7−1
34−709号)さらに検討を進めた結果、a−5i:
HKp型の導電型を付与する物質をトープして得られる
p型a−5i:Hは、1.70 eVを越えるEop
tを有し、かつその4電率は1、0 ’ S−cm−’
を越えるものであった。すなわち、本発明者らは、この
ように、ジシランおよびp型の導電型を付与する物質を
原ぐとしてグロー放電によシ形成したp型a−3i:H
は、光電変換素子の窓材料として好適が性質を有するも
のであると吉を見出し本発明を完成した。As a result of intensive studies from the above viewpoint, the present inventors found that Eopt increases in amorphous silicon formed by glow discharge decomposition using disilane gas (hereinafter amorphous silicon will be referred to as a-5i:H). Obtained (% Gansho 5'7-1
34-709) As a result of further investigation, a-5i:
The p-type a-5i:H obtained by doping with a substance imparting HKp-type conductivity has an Eop of more than 1.70 eV.
t, and its tetraelectric constant is 1,0'S-cm-'
It was more than that. That is, the present inventors thus obtained p-type a-3i:H, which was formed by glow discharge using disilane and a substance imparting p-type conductivity.
discovered that the material had properties suitable for use as a window material for photoelectric conversion elements, and completed the present invention.
すなわち、本発明は、
pin型非晶質シリコン元電変換素子において、(1)
上記p型非晶質シリコン層がジシランとn型の導電型付
与物質からなる混合ガスをグロー放電分解して形成され
ておシ、該分解により該p型シリコン層の光学禁制路中
は上記l型非晶質ンリコン層の光学禁制路中よりも広い
光学宗制路中を有するものとして構成され、(11)か
つ、該p型非晶質ノリコン層が光の入射側に配置されて
なることを特徴とする非晶質シリコン光電変換素子。お
よびpin型ンリコン光電変換素子の製法に、お・いて
、ジシランとn型の導電型付与物質からなる混合ガスケ
グロー放電室内へ導入し、上記77ラン単位m−量当p
l−OKJ以下のエネルギーを印加してグロー放電分解
して上記1型非晶買ンリコン層のプr−学禁制路中よシ
も広い光学禁制路中を有するp J’(l]非晶質シリ
コン層を形成し、かつ該形成されるp型シリコン層が光
の入射4IN1に位置して形成せしめられるように該分
解を行うことを特徴とする非晶質シリコン光電変換素子
の製造法。That is, the present invention provides a pin-type amorphous silicon power conversion element comprising (1)
The p-type amorphous silicon layer is formed by glow discharge decomposition of a mixed gas consisting of disilane and an n-type conductivity imparting substance, and as a result of the decomposition, the optical forbidden path of the p-type silicon layer is (11) and the p-type amorphous amorphous layer is arranged on the light incident side. An amorphous silicon photoelectric conversion element characterized by: In the method for manufacturing a pin-type NRICON photoelectric conversion element, a mixture of disilane and an n-type conductivity type imparting substance is introduced into a gasket glow discharge chamber, and the above 77 runs per m-amount per p
Applying energy of less than l-OKJ, glow discharge decomposition produces pJ'(l) amorphous which has a wide optical forbidden path as well as a wide optical forbidden path in the type 1 amorphous silicon layer. 1. A method for manufacturing an amorphous silicon photoelectric conversion element, comprising forming a silicon layer and performing the decomposition so that the formed p-type silicon layer is formed at a position 4IN1 of light incidence.
を提供するものである。It provides:
以下、本発明の詳細な説明する。The present invention will be explained in detail below.
本発明のpin型非型室晶質シリコン光電変換素子いて
は、少くともこのp型非晶質シリコン層(a−3i:H
)かジシランとn型の導電型付与物質からなる混合カス
をグロー放電により分解することにより形成される。The pin-type non-crystalline silicon photoelectric conversion element of the present invention has at least this p-type amorphous silicon layer (a-3i: H
) or disilane and an n-type conductivity imparting substance is decomposed by glow discharge.
本発明においてジシランとは一般式Sin’H2n+2
で表わされる/シランの中でn−2に相当するもので、
5I2H6の化学式を有する。ジシランはもちろん高純
度てめることか好丑しいが、グロー放電中でジシランと
同・際に挙動するトリプラン、テトラシラン等(上記一
般式tr(おいてn二3.4)が含′fれでいること1
は例ら支障のないものである。In the present invention, disilane has the general formula Sin'H2n+2
It is represented by / corresponds to n-2 among silanes,
It has the chemical formula 5I2H6. Of course, it is preferable to use disilane with high purity, but tripran, tetrasilane, etc. (including the above general formula tr (where n23.4)) behave in the same way as disilane in glow discharge. Being there 1
For example, there is no problem.
徒だ少量のモノ7ランが混入していてもか丑わない。ン
/ランは物理的な合成方法、たとえばモノシラン(上記
一般式でn−1)を無声放電すると一部ジシランに変化
するのでこれを分離してイHる方法、又は化学的な合成
方法で製造されるが光電変換素子を工業的に大量に生産
するためには、安定した品質のものが大量に得られる化
学的な合成方法(たとえばヘキサクロロン7ランを還元
する等の方法)によるものが実用上便利である。I don't care if a small amount of mono 7 run is mixed in. N/Ran can be produced by a physical synthesis method, for example, by silently discharging monosilane (n-1 in the general formula above), which partially changes to disilane, which is then separated and heated, or by a chemical synthesis method. However, in order to industrially produce photoelectric conversion elements in large quantities, it is practical to use chemical synthesis methods (for example, methods such as reducing hexachlorone 7rane) that can produce large quantities of products of stable quality. It is convenient.
サだ、p型の導電型を付与する物質はたとえばジボラン
(B2H6)であり、通常H2やHe等の希釈カスで希
釈された状態で使用することが安全性及びドーピング量
の管理上から好捷しい。これらのガスのジノランに対す
る使用割合はシフラン1.00容量部に対して01〜5
容量部である。However, the substance that imparts p-type conductivity is, for example, diborane (B2H6), and it is usually preferable to use it diluted with diluted scum such as H2 or He from the viewpoint of safety and control of doping amount. Yes. The ratio of these gases to Dinolane is 0.1 to 0.5 parts by volume per 1.00 parts by volume of sifuran.
This is the capacity part.
本発明においてはp型層以外のn層もしくはi層を構成
1−へきシリコン層は、モノシランカスをはじめとして
一般式5InH2n+2(n−1〜3)であられされる
任意のシランを原料ガスとしてグロー放電分解して得ら
れる。In the present invention, the silicon layer constituting the n-layer or i-layer other than the p-type layer is grown using any silane formed by the general formula 5InH2n+2 (n-1 to 3), including monosilane gas, as a raw material gas. Obtained by electrical discharge decomposition.
しかして好ましくは、参考例に示したように165〜1
67のEopt f有了るモノシラン (上記一般式(
/Cおいてn−1)が用いられる。シンラン(同じくn
=2)やトリシラン(同じ(n=3)を用いる場合には
p型a−3i:Hを実施例に示したように3KJ/g
3+2H6以下のエネルギーを力えて形成すればよい
。なお、n型の導電性伺与叫勿賀としては、PH3(フ
ォスフイン)、ArH3(アルシン)等が用いられる。Preferably, however, as shown in the reference example, 165-1
67 Eopt f monosilane (the above general formula (
/C, n-1) is used. Shinran (also n
= 2) or trisilane (when using the same (n = 3), p-type a-3i:H is 3KJ/g as shown in the example.
It can be formed by applying energy of 3+2H6 or less. Note that PH3 (phosphine), ArH3 (arsine), etc. are used as the n-type conductive material.
にはSn+Ge等の化合物を添加することもできる。A compound such as Sn+Ge can also be added to the oxide.
要するにこれら非晶質物質のEoptが光の入射側に位
置するp型a−3i:Hj!2も小さいものであればよ
い。それ故、従来技術で用いられるところのa−5i
:F :H,a−3i :Ge :H,a−5i :S
n:H等を本発明において何ら支障なく用いることがで
きる。In short, the Eopt of these amorphous substances is located on the light incident side: p-type a-3i:Hj! 2 should also be small. Therefore, a-5i as used in the prior art
:F :H, a-3i :Ge :H, a-5i :S
n:H etc. can be used in the present invention without any problem.
本発明においてU:、p型a−3i:H形成原料のジシ
ランとp型の導電性付与物質が希釈カスによシ希釈混合
されていZ、ことが好丑しいが かかる″#i釈カスと
してはHe 、 Ar 、 H2等が望ましい。In the present invention, disilane, which is a raw material for forming U:, p-type a-3i:H, and p-type conductivity imparting substance are diluted and mixed into the diluted scum. is preferably He, Ar, H2, etc.
希釈ガスを用いる時には光電特性の再現性が向上するの
で、おそらく微量不純物の影響を少なくし、プラズマに
よる膜の損傷を緩和する役割を有しているのではなかろ
うかと考えられる。希釈の節」合については特に限定さ
れるものではないが5〜2、 Ovo1%の範囲にある
ことか製造上便利であり、前記の効果が大いに発揮され
る。Since the reproducibility of photoelectric characteristics is improved when diluent gas is used, it is thought that it probably has the role of reducing the influence of trace impurities and mitigating damage to the film caused by plasma. The dilution ratio is not particularly limited, but it is within the range of 5 to 2.0%, which is convenient for production, and the above-mentioned effects are greatly exhibited.
もちろん、i型a−5i:Hもしくはn型a−3i:H
形成に際して希釈ガスを使用することも同様な理由によ
り好ましいことである。Of course, i type a-5i:H or n type a-3i:H
The use of a diluent gas during formation is also preferred for similar reasons.
以上のごとく、ジシラン、p型の導電性付与物質および
好ましくは希釈ガスからなる混合カスをそれ自体公知の
通常のグロー放電により分解することにより構成される
本発明のp型非晶躍ンリコン層はl型非晶質シリコン層
の光学禁制帯「1]よりも広い光学禁制路中を有するも
のであり、本発明の光電変換素子はかかるp型非晶質シ
リコン層が光の入射側に配置されてなるものでヤ】る。As described above, the p-type amorphous phosphoric acid layer of the present invention is formed by decomposing a mixed residue consisting of disilane, a p-type conductivity-imparting substance, and preferably a diluent gas by a conventional glow discharge that is known per se. It has an optical forbidden path wider than the optical forbidden band "1" of the l-type amorphous silicon layer, and the photoelectric conversion element of the present invention has such a p-type amorphous silicon layer disposed on the light incident side. Do it with something like that.
なお、pin型光電変換素子のp型非晶賀ンリコン層を
光の入射1νIIK配置するためには、後記詳述するよ
うに、(1)ステンレス鋼のごとき不透1叫寿、; )
1反を使用する場合は、該基板側からn型、i型、p型
の順にシリコン層を形成しかつp型シリコン層の外側に
透明電極を形成し該透明電極1111を光入射1νりと
すれはよいし、また、(11)ガラス基板のごとき透明
基板を用いる場合は、上記のほか、基板側からp型、i
型、n型の順にシリコン層を形成し、該基板側を光入射
側としてもよい。In order to arrange the p-type amorphous silicon layer of the pin-type photoelectric conversion element at 1νIIK of light incidence, as will be detailed later, (1) an opaque material such as stainless steel;
When using one film, silicon layers are formed in the order of n-type, i-type, and p-type from the substrate side, and a transparent electrode is formed on the outside of the p-type silicon layer. (11) When using a transparent substrate such as a glass substrate, in addition to the above, p-type, i-type
A silicon layer may be formed in the order of type and n type, and the substrate side may be set as the light incident side.
本発明はlだ、上記のとときl型非晶質シリコン層のそ
れよシ広い光学禁制帯1〕を有するp型非晶質シリコン
層を、pin型非晶質ンリコン光電変換素子のp型層と
するシリコン光電変換素子の製造法を提供するものであ
って、上記したジシラン、p型の導電性付与物質および
好ましくは希釈ガスからなる混合カスをグロー放電室内
へ供給しグロー放電によりノンラン単位質量当り10に
、T以下のエネルギーを印加し分FAせしめてp型非晶
佃ンリコン層を形成し、かつ該p型シリコン層が光の入
射側に位置して形成ぜしめられるように該分解を行うも
のてろる。In the present invention, in the above case, a p-type amorphous silicon layer having an optical forbidden band 1 which is wider than that of an l-type amorphous silicon layer is used as a p-type amorphous silicon layer of a pin-type amorphous silicon photoelectric conversion element. The present invention provides a method for manufacturing a silicon photoelectric conversion element as a layer, in which a mixture of disilane, a p-type conductivity-imparting substance, and preferably a diluent gas described above is supplied into a glow discharge chamber, and a non-run unit is formed by glow discharge. A p-type amorphous silicon layer is formed by applying an energy of T or less to FA per mass, and the decomposition is performed so that the p-type silicon layer is located on the light incident side. I'm going to do it.
本発明では、/シラン単位質量h ン’vりに与えられ
るグロー放電エネルギー(rJ: ] OKX以下であ
る。In the present invention, the glow discharge energy (rJ: ) given per unit mass of silane (h) is equal to or less than OKX.
これは、p型asi:HのEoptを]、70eVJ:
り大きく維持して窓材料としての性能を満足させるため
である。すなわち、後記実施例に示−tXうに、Eop
tはグロー放電エネルギーによシ変化し、該エネルギー
の小さい領域で大きくなるが同様の後記参考例からも明
らかなごとくモノシラ/を原料とするa−8i :l(
のEop tは、1.65〜1.67 eV程度であシ
、前記の゛如くジシランを原料ガスとして印加するエネ
ルギーの範囲をl0KJ以下に選択してやることにより
p型a−5i:HのEoptをl型a−5i:HのEo
ptよシも十分大にするという本発明の要件は充分に満
足される。This is the Eopt of p-type asi:H], 70eVJ:
This is in order to maintain a large diameter and satisfy the performance as a window material. That is, as shown in the example below, Eop
t changes depending on the glow discharge energy and increases in the region where the energy is small, but as is clear from the similar reference examples mentioned later, a-8i :l(
The Eopt of p-type a-5i:H is approximately 1.65 to 1.67 eV, and by selecting the energy range for applying disilane as a raw material gas to 10 KJ or less as described above, the Eopt of p-type a-5i:H can be increased. l type a-5i: Eo of H
The requirement of the present invention that the pt width is also sufficiently large is fully satisfied.
−また、グロー放電エネルギーの下限値については安定
したグロー放電状態を形成できるものてあればよく、こ
の値はクロー放電設備の状況及び使用する原料カスの状
況によっても変化するが好Vしい具体例としては、ジン
ラン単独やヘリウム(He )やアルコン(Ar )
Wの拓釈カスで鞘釈されたジンランの場合には0.5
KJ/ g−Si2H6以上で、りり、水素(H2)希
釈の場合や\犬さくて15KJ / g S I 2
H6以上である。-Also, the lower limit value of glow discharge energy is sufficient as long as it can form a stable glow discharge state, and this value varies depending on the conditions of the claw discharge equipment and the raw material waste used, but a preferred specific example is Examples include Jinran alone, helium (He), and archon (Ar).
0.5 in the case of Jinran that has been sheathed with W's Takusaku Kasu.
KJ/g-Si2H6 or more, when diluted with hydrogen (H2) or \15KJ/g SI 2
It is H6 or higher.
以上、総括するに、本発明においてp型a−5izHを
形成り−るたりに与えられる好ましいグロー放電エネル
ギーの範囲は05〜l0KJ/g−Si。In summary, in the present invention, the preferable range of glow discharge energy given to the formation of p-type a-5izH is 05 to 10 KJ/g-Si.
H6である。 この軛囲外のエネルギーを供給する場合
にはも吋や本発明の効果は期待されない。即ち10KJ
/g−3i2!(6を越えるエネルギーを付与するとき
は比較例に示すようにEop tか小さくなり窓材料と
しての性能が発揮されず、また0、5 K J/ g−
8i□H6よシも小さいエネルギーでは、放電そのもの
が生じなかったシ、放電した場合もその放電か安定せず
してp型a−3i:Hの形成そのものが問題となる。It is H6. Even when energy outside this range is supplied, the effects of the present invention cannot be expected. i.e. 10KJ
/g-3i2! (When applying energy exceeding 6, as shown in the comparative example, Eopt becomes small and the performance as a window material is not exhibited, and 0.5 KJ/g-
When the energy is smaller than 8i□H6, the discharge itself does not occur, and even if discharge occurs, the discharge is not stable and the formation of p-type a-3i:H itself becomes a problem.
本発明におけるジシラン率位質量当りのグロー放電エイ
・ルキー直はつぎの式て算出される。In the present invention, the glow discharge energy per unit mass of disilane is calculated using the following formula.
たとえはヘリウム(He)で10容力1%に希釈された
ジンラン(Si2H6)500CC/分にIOWの電力
を加える場合のエネルギー値は次のように算出される。For example, the energy value when power of IOW is applied to 500 CC/min of Jinlan (Si2H6) diluted with helium (He) to a volume of 1% is calculated as follows.
平均分子量= (62,2]、84X 0.1+4.0
026X O,9) =9.824 (g)Si2H6
の重量分率は62.2184 X 0.1 /9.82
4=0633である。これらを上記(I)式に代入して
ジンラン単0
0.633 = ] 732CJ/g 5jzH6)い
ま103JをKJと表わせば上記エネルギー値は、約1
.7KJ/g−812H6と表わすことができる。Average molecular weight = (62,2], 84X 0.1+4.0
026X O,9) =9.824 (g)Si2H6
The weight fraction is 62.2184 x 0.1 /9.82
4=0633. Substituting these into the above equation (I), we get Jinran unit 0 0.633 = ] 732CJ/g 5jzH6) Now, if 103J is expressed as KJ, the above energy value is approximately 1
.. It can be expressed as 7KJ/g-812H6.
本発明においては、p型a−3i:Hを形成する時に、
原料ガス流量を多くすることが好ましい。In the present invention, when forming p-type a-3i:H,
It is preferable to increase the raw material gas flow rate.
前記のエネルギー算出式(i)において、該流量は分母
にめり、流量を大きくすればそれたけ印−加できるグロ
ー放電電力を大きくできるとともに電力のバラツキの許
容範囲も大きくなり、放電管理が容易になるからである
3、さらに流量が多くなった分たけa−3i:Hの形成
速度も大きくなる。こうした利点の他p型a−5i:H
の4%率のバラツキが少なくなるという好ましい結果も
得られる。好廿しい流量の範囲を具体的、一義的に示す
ことは、その範囲がa−5i:H形成設備の形状、容量
材質等によシ変化するために困難であるが好−テしい流
量の例を後記実施例に示した。In the above energy calculation formula (i), the flow rate is included in the denominator, and if the flow rate is increased, the glow discharge power that can be applied can be increased by that amount, and the allowable range of power variation is also increased, making discharge management easier. 3, and as the flow rate increases, the formation rate of a-3i:H also increases. In addition to these advantages, p-type a-5i:H
A favorable result is also obtained in that the variation in the 4% rate of is reduced. It is difficult to specifically and unambiguously indicate a preferable flow rate range because the range varies depending on the shape of the a-5i:H forming equipment, capacity material, etc. Examples are shown in Examples below.
本発明においてp型a−3i:Hを形成するときの温度
は450℃以下好丑しくけ100〜400℃に維持され
る。In the present invention, the temperature when forming p-type a-3i:H is preferably maintained at 450°C or less, preferably from 100 to 400°C.
グロー放電エネルギーが等しい場合は、温度の低い方が
Eop tは大きくなるが100℃よりも低い温度では
a−3i:Hの膜形成が効果的に進行せず、1Mの剥離
が生じたり、黄色のアモルファススンリコンの粉末が発
生したりして本発明の目的を達し得ない。また400℃
を越える温度ではa−3i:Hを形成するには間珈はな
いか、さらに温度が上昇するとEopt等電気等電気味
質が劣化しまだこのような温度においては基板や電極の
耐熱性の問題がクローズアップされる。即ち基板や電極
が熱のために欠陥を生じるような温度で(d1光電変俣
素子の効率もまた低下するので、400℃を越える温度
でa−5i:Hを形成することは避ける方がよい。When the glow discharge energy is the same, Eopt will be larger at a lower temperature, but at a temperature lower than 100°C, the a-3i:H film formation will not proceed effectively, and 1M peeling may occur or a yellow color may occur. However, the object of the present invention cannot be achieved due to the generation of amorphous silicone powder. Also 400℃
Is there a problem with the formation of a-3i:H at temperatures exceeding this temperature?If the temperature rises further, the electric quality such as Eopt deteriorates, and at such temperatures there are problems with the heat resistance of the substrate and electrodes. is shown in close-up. That is, it is better to avoid forming a-5i:H at temperatures exceeding 400 °C, since the efficiency of the d1 photovoltaic element also decreases at temperatures where the substrate or electrodes will develop defects due to heat. .
さらに本発明においてはp型a−3i:H形成時の圧力
を高くして1〜10 Torrで行耽うことか好に改善
できる。土刀ケ尚めることにJニジ埃効率が向上する理
由は不明であるが、圧力上昇によシ、プラズマの平均自
由行程が小さくなるために、プラズマが直接基板や電極
やa−5i:Hなどを損傷するように働かないのではな
かろうかと考えられる。Furthermore, in the present invention, the formation of p-type a-3i:H can be improved by increasing the pressure to 1 to 10 Torr. The reason why the dust efficiency improves is unknown, but due to the increase in pressure, the mean free path of the plasma becomes smaller, so that the plasma is directly connected to the substrate or electrode. It is thought that it does not work to damage H etc.
本発明で用いる基板の材質や第1および第11の電極材
料については特に制限がな〈従来用いられている物質が
有用に用いられる。There are no particular limitations on the material of the substrate or the materials of the first and eleventh electrodes used in the present invention; conventionally used materials can be usefully used.
たとえば基板としては絶縁性又は導電性、透明又は不透
明いずれの性質を有するものでもよい。For example, the substrate may be insulating or conductive, transparent or opaque.
具体的にはガラス、アルミナ、シリコン、ステンレスス
チール、アルミニウム、モリブデン、耐熱性高分子等の
物質で形成されるフィルムあるいは板状の祠料を基板と
して有効に用いることができる。第1及び第11の電極
材料としては、光入射側にはもちろん、透明あるいは透
光性の材料を用いなければならないが、これ以外の制限
はない。アルミニウム、モリブデン、ニクロム、■TO
1酸化錫、ステンレススチール等の薄膜又は薄板が電極
材料として有効に用いられる。Specifically, a film or plate-shaped abrasive material made of a substance such as glass, alumina, silicon, stainless steel, aluminum, molybdenum, or a heat-resistant polymer can be effectively used as the substrate. As the first and eleventh electrode materials, transparent or translucent materials must of course be used on the light incident side, but there are no other restrictions. Aluminum, molybdenum, nichrome, TO
Thin films or thin plates of tin monoxide, stainless steel, etc. are effectively used as electrode materials.
つき゛に本発明の実施の態様について、透明な基板を用
いる場合について説明する。グロー放電の可能な反応室
中に透明な第■の電極を設けたガラス基板を設置し、減
圧下100〜400℃の温度に加熱保持する。そこにp
型の導電性付与物質、シフラン及び希釈ガスを原料とし
て導入し、シソラン単位質量あたりl0KJ以下のグロ
ー放電エイ・ルギーを与えて、圧力1〜10Torrで
グロー放電を行なう。こうしてp型a−3i:Hを第1
の電極上に層状に形成する。ついでシラン及び希釈カス
を導入することによシ、p型aSi:H層上に1型a−
3i:H層をグロー放電により゛形成する。つぎにn型
の導電性を付与する物質、7ラン及び希釈カスを原料と
して導入しグロー放電によりn型a−si:I(層を形
成する。最後に第11の電極を形成して本発明の光電変
換素子を得る。First, regarding an embodiment of the present invention, a case where a transparent substrate is used will be described. A glass substrate provided with a transparent No. 1 electrode is placed in a reaction chamber capable of glow discharge, and heated and maintained at a temperature of 100 to 400° C. under reduced pressure. there p
A type of conductivity imparting substance, Sifuran, and a diluent gas are introduced as raw materials, and a glow discharge energy of 10 KJ or less is applied per unit mass of Sisolane, and glow discharge is performed at a pressure of 1 to 10 Torr. In this way, p-type a-3i:H is
Formed in a layer on the electrode. Then, by introducing silane and diluted residue, type 1 a-
3i: H layer is formed by glow discharge. Next, a substance imparting n-type conductivity, 7 run, and diluted residue are introduced as raw materials, and an n-type a-si:I (layer) is formed by glow discharge.Finally, an 11th electrode is formed to form the present invention. A photoelectric conversion element is obtained.
また、上記の実施の態様の他に基板の反対II]+1か
ら光を入射させる光電変換素子も可能である。この時は
基板側からn型、l型、p型の順に形成しπ
て、p型a−5i:H層の上に透明な第スの電極を形成
すればよい。Further, in addition to the above embodiment, a photoelectric conversion element in which light is incident from the opposite side of the substrate II]+1 is also possible. In this case, the n-type, l-type, and p-type layers may be formed in this order from the substrate side, and a transparent second electrode may be formed on the p-type a-5i:H layer.
上記実施の態様は一つのグロー放電室でpin型a−3
i:Hを形成する例を示したかもちろんこれらのa−3
i:Hはそれぞれ連結された別個のグロー放電室におい
て形成することができる。The above embodiment is a pin type A-3 in one glow discharge chamber.
I have shown an example of forming i:H. Of course, these a-3
i:H can be formed in separate, connected glow discharge chambers.
なお、本発明において、p型a−si:)(層の厚みは
50〜500Aで用いられる。址だ、n型a−3i:H
層、1型a−3i:H層の)享み(dそれぞれ50〜5
00A、3000〜7500λ程度でるる。In addition, in the present invention, p-type a-si:) (layer thickness is used at 50 to 500A.
layer, type 1 a-3i: H layer) enjoyment (d each 50-5
00A, about 3000-7500λ.
以上のごとく本発明は(炭素や窒素を用いることなしに
a S+#C)(等にかわシうる新しい窓材料を形成
した新規の光電変換素子を捺供するものである。As described above, the present invention provides a novel photoelectric conversion element in which a new window material (aS+#C) (without using carbon or nitrogen) is formed.
し/こがっ−C,たとえばa−5iCx形成のだめの原
料である炭化水素を用いる必要がないため、クロー放電
室内部への炭素の析出がなくなり、その除去の問題がな
くなる。また原料ガスから炭化水素を除くことができる
ので原料管理の繁雑さかなぐカると共にさらにEopt
と導電率を管理するためにSNとCの組成比制御を行な
う必要がなくなシ、ジシランを原料として用いるのみで
窓材料を形成できることという優れた作用効果を奏する
ものである。Since it is not necessary to use hydrocarbons, which are the raw materials for the formation of carbon/carbon-C, such as a-5iCx, there is no need to use carbon deposits inside the claw discharge chamber, and the problem of its removal is eliminated. In addition, hydrocarbons can be removed from the raw material gas, which reduces the complexity of raw material management and further reduces Eopt.
There is no need to control the composition ratio of SN and C in order to manage conductivity, and the window material can be formed simply by using disilane as a raw material, which is an excellent effect.
以下、実施例をあげて本発明をさらに具体的に説明する
。Hereinafter, the present invention will be explained in more detail with reference to Examples.
実施例1〜9 (p型非晶質7リコン薄膜のEop
tの測定)
基板加熱手段、真空排気手段、ガス導入手段及び基板を
設置することのできる平行平板電極を有するクロー放電
室をもつ容量結合型高周波プラズ7℃VD (Chem
ical Vapor Deposition)装置の
該基板設置部へ、コーニング社製7059ガラス基板を
設置した。Examples 1 to 9 (Eop of p-type amorphous 7-licon thin film
Measurement of t) A capacitively coupled high frequency plasma 7°C VD (Chem
A 7059 glass substrate manufactured by Corning Corporation was installed in the substrate installation part of the ical vapor deposition device.
油拡散ポンプによ、!710−7Torr以下に真空排
気しながら、該基板設置部の温度(薄膜の形成6m度)
が第1表に示す値になるように加熱した。By the oil diffusion pump! While evacuation to 710-7 Torr or less, the temperature of the substrate installation part (6 m degrees for thin film formation)
It was heated so that it became the value shown in Table 1.
Heで希釈したジシラン(希釈比’ S i2 H6/
He −1/9)及びH2希釈のB2H6(希釈比B
2H6/H2= 1/99 )を導入し、第1表に示し
た流量及びグロー放電電力を加えてp型非晶質シリコン
薄膜を形成した。Disilane diluted with He (dilution ratio 'S i2 H6/
He -1/9) and H2 diluted B2H6 (dilution ratio B
2H6/H2=1/99) was introduced, and the flow rates and glow discharge power shown in Table 1 were added to form a p-type amorphous silicon thin film.
第1表におけるジシラン及びB2H6の流量は前記の希
釈ガスを含んだ全流量を示すものである。The flow rates of disilane and B2H6 in Table 1 indicate the total flow rate including the diluent gas.
1・専膜の形成時間は約13分40秒であり、約500
OAの薄膜を形成した。Eoptは分光光度計で薄膜の
光吸収係数αを測定した後、入射光のエネルギ−(hν
)に対して(αhν) をフロントし、その直線部分を
外挿しhν軸との切片の値として求めた。碑電率の測定
は200μの間隔をあけて電極盆形成し、この電極間に
電圧を印加し、電流を(jillる方法で行なった。1. The formation time of the special film is approximately 13 minutes 40 seconds, and approximately 500
A thin film of OA was formed. Eopt is calculated by measuring the light absorption coefficient α of the thin film with a spectrophotometer, and then calculating the energy of the incident light (hν
) with respect to (αhν), and the straight line portion was extrapolated to obtain the value of the intercept with the hν axis. The measurement of the electric current was carried out by forming electrode basins with an interval of 200 μm, applying a voltage between the electrodes, and applying a current (jell).
参考例としてジシラン及びモノシランf25Iぐ17g
−812H6及び30 KJ / g−3iH,のエネ
ルギーを与えてグロー放電して得た7リコン麟膜のEo
ptはそれぞれ1.75eV及び]、64eVでアラた
。As a reference example, 17 g of disilane and monosilane f25I
-812H6 and the Eo of the 7-recon film obtained by glow discharge with an energy of 30 KJ/g-3iH.
The pt values were 1.75 eV and 64 eV, respectively.
即ち上記第1表に示すように放電エネルギーを10KJ
/g Si、、H6以下にして、形成温度を適宜選択
することによシ、本願発明の要件を満足させることがで
きる。That is, as shown in Table 1 above, the discharge energy is 10KJ.
/g Si,,H6 or less and by appropriately selecting the formation temperature, the requirements of the present invention can be satisfied.
実施例10〜12(光電変換素子の作成及び特性測定)
実施例1〜9で用いたプラズマCVD装置を用いてpi
n型光電変換素子を形成し、その特性をd11]定した
。即ち透明電極を有するカラス基板を該CVD装置中に
設置した。油拡散ポンプにより1O−7Torr以下に
真空排気しなから、該形成温朋か250℃になるように
加熱した。トーピンク比(B2H6/Si2H6の容量
比)2%として1)0述の実施例で用いたジシラン50
CC/分、B2て01vo1%に希釈したB2H610
CC/分を導入し、圧力2Torrで30秒間グロー放
電を行ないp型非晶質ノリコン薄膜を第2表に示すグロ
ー放電玉子ルギーを与えて約10OA厚形成した。たと
えばクロー放電電力が2.5Wの時は、該放電エネルギ
ーは約1.7 KJ / g−’Si□H6と計算され
る。Examples 10 to 12 (Creation and characteristic measurement of photoelectric conversion elements) Using the plasma CVD apparatus used in Examples 1 to 9, pi
An n-type photoelectric conversion element was formed and its characteristics were determined. That is, a glass substrate having a transparent electrode was placed in the CVD apparatus. The mixture was evacuated to 10-7 Torr or less using an oil diffusion pump, and then heated to a temperature of 250°C. 1) Disilane 50 used in the example described above, assuming a toe pink ratio (capacity ratio of B2H6/Si2H6) of 2%.
CC/min, B2H610 diluted to 01vo1% in B2
CC/min was introduced, glow discharge was performed for 30 seconds at a pressure of 2 Torr, and a p-type amorphous Noricon thin film was formed to a thickness of about 10 OA by giving the glow discharge energy shown in Table 2. For example, when the claw discharge power is 2.5 W, the discharge energy is calculated to be about 1.7 KJ/g-'Si□H6.
つき゛に形成温度を280℃に上昇しだ後肢ノンラン5
00CC/分を加え、圧力5Torrでグロー放電エネ
ルギー約26 KJ/ g 5j2H6を加えて1型
非晶質シリコン薄膜を2分間約4200Aの厚みに形成
した。ついで該7シラン及びB2で0.1vo1%に希
釈したPH3をそれぞれ50CC/分、l0CC/分を
導入し、グロー放電によりn型非晶質シリコン薄膜を4
0秒約1ooX厚形成した。つぎに真空蒸製によりアル
ミ−ラム薄膜を形成し背面電極とした。比較のためにp
型非晶質シリコン毎膜を形成するときのエネルギーが異
る他は上記の例と同一の形成条件で光電変換素子を作成
した。ソーラー/ユミレーターでAMlの光を基板側か
ら照射したときに得られた特性を第2表に示した。The formation temperature gradually increased to 280℃ and the hindlimb non-run 5
00 CC/min and a glow discharge energy of about 26 KJ/g 5j2H6 at a pressure of 5 Torr to form a type 1 amorphous silicon thin film with a thickness of about 4200 A for 2 minutes. Next, 50 CC/min and 10 CC/min of PH3 diluted with silane and B2 to 0.1 vol.
The film was formed to a thickness of about 1ooX for 0 seconds. Next, an aluminum-lamb thin film was formed by vacuum evaporation to form a back electrode. For comparison p
A photoelectric conversion element was fabricated under the same formation conditions as in the above example, except that the energy used to form each type of amorphous silicon film was different. Table 2 shows the characteristics obtained when AMl light was irradiated from the substrate side using Solar/Umulator.
本発明の例では比較のだめの例に比べ、開放端電圧(V
oc )で0.12 V大きくなり085〜089■に
達した。lた短終′直流Dsc)は20〜50%増加し
、て、12.6 mA / cm2に達した。そして光
電変換効率は6%を越えるすぐれた価を示した。特に本
実施例の如(pin型非晶質シリコン、砂膜の全形成時
間が3分10秒と公知の技術の1/10以下の時間であ
°るにもかかわらず、上記の変換効率を達成できたこと
は、本発明の効果が著しくすぐれていることを表わすも
のである。In the example of the present invention, compared to the comparative example, the open circuit voltage (V
oc) increased by 0.12 V and reached 085-089■. The short-term direct current (Dsc) increased by 20-50% and reached 12.6 mA/cm2. The photoelectric conversion efficiency showed an excellent value exceeding 6%. In particular, as in this example (pin-type amorphous silicon, the total formation time of the sand film is 3 minutes and 10 seconds, which is less than 1/10 of the known technology, yet the above conversion efficiency is achieved. What was achieved indicates that the effects of the present invention are significantly superior.
第 2 表
実施例13
本実施例は実力山例10〜12と1α異なシ、光活性層
のi型外晶質シリコン薄膜をモノシランSiH4を原料
として形成する%jである。Table 2 Example 13 This example differs from Examples 10 to 12 by 1α in that the i-type exocrystalline silicon thin film of the photoactive layer is formed using monosilane SiH4 as a raw material.
光の実2ifij例で用いた高周波プラズマCVD装置
を用いてpin型光電変換素子を形成した。即ちカラス
基板に透8JJ電極を形成した後、躾CVD装甫中に設
抛した。油拡散ポンプによ、!l) 10−7Torr
以下にA全排気しながら、該基板温度が260℃方へ
になるように加7した。ドーピング比を2%として先の
実施例で用いたジシラン及びB2H6をそれぞれ50
CC7分及び10 CC7分の流量で導入した。8.6
KJ/g Si2H6の放電エネルギーを力え、圧
力1.5 Torrで30秒間、放電を行ないp型a−
5i:H膜を形成した。A pin-type photoelectric conversion element was formed using the high-frequency plasma CVD apparatus used in the example of Hikari no Practical Example 2. That is, after forming a transparent 8JJ electrode on a glass substrate, it was placed during CVD deposition. By the oil diffusion pump! l) 10-7 Torr
While fully evacuating A, the temperature of the substrate was increased to 260°C. The doping ratio was 2%, and 50% each of the disilane and B2H6 used in the previous example were added.
It was introduced at a flow rate of 7 minutes CC and 10 CC 7 minutes. 8.6
P type a-
A 5i:H film was formed.
つぎにS i H4/ H2二1/10の混合ガス]0
0CC/分を加えエネルギ−80,4KJ/g−5iH
4でl型a−3i:H膜を25分間形成した。 さらに
この1層形成に用いた混合カスの流量を50CC/m
i n としてP H3/ H2−0,1vo 1%の
混合ガスl0CC/分を導入してn fj4 a−3i
: H膜を形成した。n型a−3i:H膜の形成には
約2分を袈した。p%”%”型a −S i膜の形成に
要する時間は27分30秒であった。つぎにAIを真、
空蒸着で蒸着し、第¥の電極と−した、基板11+1か
らA MIの光を照射して得られた光電特性はVoc
−0,87■、J5(=14.2mA/cm” 、FF
=0.62、効率は7.65%とすぐれるものであった
。このようにSiH4を用いる場合は形成速度は遅いが
すぐれた光電変換効率が得られた。Next, a mixed gas of S i H4/H22 1/10]0
Add 0CC/min and energy -80.4KJ/g-5iH
4, a l-type a-3i:H film was formed for 25 minutes. Furthermore, the flow rate of the mixed waste used to form this one layer was set at 50 CC/m.
Introducing 10 CC/min of PH3/H2-0,1vo 1% mixed gas as in, n fj4 a-3i
: H film was formed. It took about 2 minutes to form the n-type a-3i:H film. The time required to form the p% "%" type a-Si film was 27 minutes and 30 seconds. Next, make AI true,
The photoelectric characteristics obtained by irradiating AMI light from the substrate 11+1, which was deposited by empty deposition and connected to the -th electrode, are Voc.
-0,87■, J5 (=14.2mA/cm", FF
= 0.62, and the efficiency was excellent at 7.65%. As described above, when SiH4 was used, excellent photoelectric conversion efficiency was obtained although the formation rate was slow.
以上のように本発明は炭素や窒素を用いることなしに、
窓材料を形成した新規の光電変換素子であシ、かつその
製法において優れた技術を提供するものである。As described above, the present invention does not use carbon or nitrogen.
The present invention provides a novel photoelectric conversion element formed with a window material and an excellent technology for its manufacturing method.
特許出願人 三井東圧化学株式会社patent applicant Mitsui Toatsu Chemical Co., Ltd.
Claims (4)
て、(1)上Wep型非晶質シリコン層がジシランとp
型の導電型付与物質からなる混合カスをグロー放電分解
して形成されておシ、該分解にょシ該p型シリコン層の
光学禁制路中は上記i型非晶質シリコン層の光学禁制路
中よシも広い光学禁制路中を有するものさして構成され
、(11ンがっ、該p型非晶質シリコン層が光の入射1
1’+11に配置されてなることを特徴とする非晶質ン
リコン光電変換素子。(1) In the pin type amorphous silicon photoelectric conversion element, (1) the upper Wep type amorphous silicon layer is composed of disilane and p
It is formed by glow discharge decomposition of a mixed scum consisting of a conductivity type imparting substance, and during the decomposition, the optical forbidden path of the p-type silicon layer is in the optical forbidden path of the i-type amorphous silicon layer. The p-type amorphous silicon layer has a wide optical forbidden path (11).
An amorphous silicon photoelectric conversion element characterized by being arranged at 1'+11.
シ希釈混合されている特許請求の範囲第1項記載の光電
変換素子。(2) The photoelectric conversion element according to claim 1, wherein Synlan and a p-type 4° C. type imparting substance are diluted and mixed with a diluent gas.
て、ジシランとp型の導電型付与物質からなる混合ガス
をグロー放電室内へ導入し、上記ジンラン単位質量当り
l0KJ以下のエネルギーを印加してグロー放電分解し
て上記i型非晶質シリコン層の光学禁制路中よりも広い
光学禁制路中を有するp型非晶質シリコン層を形成し、
かつ該形成されるp型シリコン層が光の入射側に位置し
て形成せしめられるように該分解を行うことを特徴とす
る非晶質シリコン光電変換素子の製造法。(3) In the method for manufacturing a pin-type NRICON Kyudan conversion element, a gas mixture consisting of disilane and a p-type conductivity type imparting substance is introduced into a glow discharge chamber, and an energy of 10 KJ or less per unit mass of Ginran is applied to produce a glow discharge. decomposing to form a p-type amorphous silicon layer having a wider optical forbidden path than the optical forbidden path of the i-type amorphous silicon layer;
A method for manufacturing an amorphous silicon photoelectric conversion element, characterized in that the decomposition is performed so that the formed p-type silicon layer is formed on the light incident side.
り希釈混合されている特許請求の範囲第3項記載の光電
変換素子の製造法。(4) The method for manufacturing a photoelectric conversion element according to claim 3, wherein the 7-norane and the p-type conductivity imparting substance are diluted and mixed with a diluent gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58034407A JPS59161079A (en) | 1983-03-04 | 1983-03-04 | Manufacturing method of photoelectric conversion element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58034407A JPS59161079A (en) | 1983-03-04 | 1983-03-04 | Manufacturing method of photoelectric conversion element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59161079A true JPS59161079A (en) | 1984-09-11 |
JPH0563950B2 JPH0563950B2 (en) | 1993-09-13 |
Family
ID=12413331
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58034407A Granted JPS59161079A (en) | 1983-03-04 | 1983-03-04 | Manufacturing method of photoelectric conversion element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59161079A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6132581A (en) * | 1984-07-25 | 1986-02-15 | Agency Of Ind Science & Technol | Manufacture of amorphous solar cell |
-
1983
- 1983-03-04 JP JP58034407A patent/JPS59161079A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6132581A (en) * | 1984-07-25 | 1986-02-15 | Agency Of Ind Science & Technol | Manufacture of amorphous solar cell |
Also Published As
Publication number | Publication date |
---|---|
JPH0563950B2 (en) | 1993-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2533639B2 (en) | Method for producing amorphous silicon doped with P-type carbon | |
US5151255A (en) | Method for forming window material for solar cells and method for producing amorphous silicon solar cell | |
US5242505A (en) | Amorphous silicon-based photovoltaic semiconductor materials free from Staebler-Wronski effects | |
JPH01119015A (en) | Silicon carbide semiconductor film and manufacture thereof | |
US4749588A (en) | Process for producing hydrogenated amorphous silicon thin film and a solar cell | |
JPH07130661A (en) | Method for producing amorphous silicon oxide thin film | |
JPS59161079A (en) | Manufacturing method of photoelectric conversion element | |
JPH0918038A (en) | Photoelectric conversion element | |
JPH0691010B2 (en) | Amorphous thin film manufacturing method | |
JP2688219B2 (en) | Photoelectric conversion element | |
JPH07183550A (en) | Amorphous photoelectric conversion device | |
JPH0563951B2 (en) | ||
JP2000196122A (en) | Photovoltaic element | |
JPH1187751A (en) | Polycrystalline silicon thin film, photoelectric conversion element, and manufacturing method thereof | |
JP2688220B2 (en) | Amorphous solar cell | |
JPH0552673B2 (en) | ||
JPS59161880A (en) | Manufacture of amorphous solar battery | |
EP0137043B1 (en) | Method of manufacturing hydrogenated amorphous silicon thin film and solar cell | |
JP2728874B2 (en) | Semiconductor device manufacturing method | |
JPH0584051B2 (en) | ||
JPS6132512A (en) | Formation of p type semiconductor thin film | |
JP2543498B2 (en) | Semiconductor thin film | |
JP2575397B2 (en) | Method for manufacturing photoelectric conversion element | |
JPS61278132A (en) | Method for forming hydrogenated amorphous SiGe film | |
JPS63220578A (en) | Photoelectric conversion element |