JPH11343544A - Iron-chromium-silicon alloy excellent in high frequency magnetic property and its production - Google Patents
Iron-chromium-silicon alloy excellent in high frequency magnetic property and its productionInfo
- Publication number
- JPH11343544A JPH11343544A JP10215347A JP21534798A JPH11343544A JP H11343544 A JPH11343544 A JP H11343544A JP 10215347 A JP10215347 A JP 10215347A JP 21534798 A JP21534798 A JP 21534798A JP H11343544 A JPH11343544 A JP H11343544A
- Authority
- JP
- Japan
- Prior art keywords
- less
- alloy
- rolling
- wtppm
- frequency magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 17
- 229910000676 Si alloy Inorganic materials 0.000 title description 4
- XEVZIAVUCQDJFL-UHFFFAOYSA-N [Cr].[Fe].[Si] Chemical compound [Cr].[Fe].[Si] XEVZIAVUCQDJFL-UHFFFAOYSA-N 0.000 title 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 100
- 239000000956 alloy Substances 0.000 claims abstract description 71
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 61
- 229910052742 iron Inorganic materials 0.000 claims abstract description 47
- 229910019819 Cr—Si Inorganic materials 0.000 claims abstract description 39
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 22
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 21
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 21
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 18
- 239000012535 impurity Substances 0.000 claims abstract description 12
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 12
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 11
- 238000005096 rolling process Methods 0.000 claims description 48
- 238000000034 method Methods 0.000 claims description 22
- 238000000137 annealing Methods 0.000 claims description 16
- 238000005097 cold rolling Methods 0.000 claims description 14
- 238000005098 hot rolling Methods 0.000 claims description 10
- 239000000696 magnetic material Substances 0.000 claims description 6
- 230000007797 corrosion Effects 0.000 abstract description 19
- 238000005260 corrosion Methods 0.000 abstract description 19
- 229910052804 chromium Inorganic materials 0.000 abstract description 6
- 239000011651 chromium Substances 0.000 description 36
- 239000002436 steel type Substances 0.000 description 31
- 229910000831 Steel Inorganic materials 0.000 description 19
- 239000010959 steel Substances 0.000 description 19
- 230000000694 effects Effects 0.000 description 15
- 239000000203 mixture Substances 0.000 description 14
- 230000007704 transition Effects 0.000 description 14
- 229910017082 Fe-Si Inorganic materials 0.000 description 10
- 229910017133 Fe—Si Inorganic materials 0.000 description 10
- 229910000838 Al alloy Inorganic materials 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 239000011572 manganese Substances 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 6
- 230000004907 flux Effects 0.000 description 5
- 238000003303 reheating Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000002195 synergetic effect Effects 0.000 description 4
- 239000002994 raw material Substances 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 229910000976 Electrical steel Inorganic materials 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229910002796 Si–Al Inorganic materials 0.000 description 2
- 238000003723 Smelting Methods 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 230000008595 infiltration Effects 0.000 description 2
- 238000001764 infiltration Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229910001339 C alloy Inorganic materials 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 229910001337 iron nitride Inorganic materials 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、磁気特性に優れ
るFe−Cr−Si系合金、特に、商用周波数よりも高い周波
数において電磁鋼板として用いる場合に良好な磁気特性
を有する、Fe−Cr−Si系合金及びその製造方法に関す
る。The present invention relates to Fe-Cr-Si alloys having excellent magnetic properties, and more particularly to Fe-Cr-Si alloys having good magnetic properties when used as electrical steel sheets at frequencies higher than the commercial frequency. The present invention relates to a system alloy and a method for producing the same.
【0002】[0002]
【従来の技術】Fe−Si合金は、軟質磁気特性に優れる材
料として知られていて、主にSi量が3.5 wt%以下の電磁
鋼板として商用周波数用の各種鉄心を中心に多用されて
いる。しかし、使用周波数が商用周波数よりも高い場合
には、かかるSi量3.5 wt%以下の電磁鋼板では鉄損が大
きくなる不利がある。そのため、このような商用周波数
よりも高い周波域での鉄損特性を改善するためには、更
に電気抵抗の高い材料が求められている。2. Description of the Related Art An Fe-Si alloy is known as a material having excellent soft magnetic properties, and is frequently used mainly as an electromagnetic steel sheet having a Si content of 3.5 wt% or less, mainly for various commercial frequency iron cores. However, when the operating frequency is higher than the commercial frequency, there is a disadvantage that the iron loss is increased in the magnetic steel sheet having the Si content of 3.5 wt% or less. Therefore, in order to improve the iron loss characteristics in a frequency range higher than the commercial frequency, a material having higher electric resistance is required.
【0003】ここに、鋼中のSi量を増やせば電気抵抗が
増大するから、上記のような高周波域での鉄損を低減す
る上で好都合である。しかし、その一方で、Si量が3.5
wt%を超えると、合金が極めて硬く脆くなり、加工性が
劣ってしまうので圧延による製造、加工が困難となる。
特にSi量が5.0 wt%を超える場合には、冷間加工はもろ
んのこと、温間加工も不可能になってしまう。[0003] Here, if the amount of Si in the steel is increased, the electric resistance increases, which is advantageous in reducing the iron loss in the high frequency range as described above. However, on the other hand, when the amount of Si is 3.5
If the content exceeds wt%, the alloy becomes extremely hard and brittle, resulting in poor workability, which makes it difficult to manufacture and process by rolling.
In particular, when the Si content exceeds 5.0 wt%, not only cold working but also warm working becomes impossible.
【0004】この高Si鋼の加工性を改良し、6.5 wt%程
度のSiを含有しても工業的に鋼板を製造できる技術とし
ては、特開昭61−166923号公報に開示されてい
る低温強圧下の熱間圧延による方法、特開昭62−22
7078号公報に開示されているSiの拡散浸透処理によ
る方法が代表的である。A technique for improving the workability of this high Si steel and industrially producing a steel sheet even when containing about 6.5 wt% of Si is disclosed in JP-A-61-166923. A method by hot rolling under high pressure.
A method based on the diffusion and infiltration treatment of Si disclosed in Japanese Patent No. 7078 is representative.
【0005】[0005]
【発明が解決しようとする課題】しかし、前者の特開昭
61−166923号公報に開示された技術は、合金と
しての脆性を見かけ上改善すべく圧延組織の微妙な調整
が必要とされ、製造過程で厳密な制御を行うことから、
工業的に安定して生産するのは困難と推定される。一
方、後者の特開昭62−227078号公報に開示され
た技術では、特殊な拡散浸透法を用いるため、工業的な
製造を行う場合にはコストにおいて極めて不利と考えら
れる。しかも、良好な高周波磁気特性を得るために更に
電気抵抗を上げるには限界があるものの、Si量をこれら
の方法で増量しても、高々80μΩcmの水準までにとどま
らざるを得ない。特に、通常の工業的な圧延法で製造で
きる3.5 wt%以下のSi量の場合、50μΩcm台までの比抵
抗しか得られなかった。また、これらのFe−Si合金は、
耐食性が劣る点も鉄心などの用途においては問題とされ
る。However, the former technique disclosed in Japanese Patent Application Laid-Open No. Sho 61-166923 requires fine adjustment of the rolling structure to apparently improve the brittleness of the alloy. Strict control in the process,
It is presumed that industrially stable production is difficult. On the other hand, in the latter technique disclosed in Japanese Patent Application Laid-Open No. 62-227078, a special diffusion infiltration method is used, so that it is considered to be extremely disadvantageous in terms of cost when performing industrial production. In addition, although there is a limit to further increasing the electric resistance in order to obtain good high-frequency magnetic characteristics, even if the amount of Si is increased by these methods, it must be at most 80 μΩcm. In particular, when the amount of Si was 3.5 wt% or less, which can be produced by a normal industrial rolling method, a specific resistance of only about 50 μΩcm was obtained. Also, these Fe-Si alloys
Poor corrosion resistance is also a problem in applications such as iron cores.
【0006】他方で、Alは磁気特性の観点でSiと同様に
電気抵抗を増大させる効果があり、しかもSi程は加工性
を劣化させない。そこで、Siの一部をAlで置換すること
により、加工性が改善されることが知られている。Alは
Siよりコスト高であり、磁束密度の減少が大きいなどの
弱点があるが、例えばSi:3 wt%、Al:0.7 wt%の組成
の鋼は、Si:3.7 wt%の組成の鋼よりも加工性、冷延性
が良好であり、磁気特性としてもほぼ同等となる。しか
し、Si:3 wt%以上の鋼において、SiとAlとの合計量が
4wt%以上になると、冷間圧延が不能となり、更に、Si
とAlとの合計量が6wt%を超える場合には、温間圧延も
困難になっていた。この場合も結局、工業的には60μΩ
cm未満の比抵抗しか得られていなかった。On the other hand, Al has the effect of increasing the electric resistance in the same manner as Si from the viewpoint of magnetic properties, and does not deteriorate workability as much as Si. Therefore, it is known that workability is improved by substituting a part of Si with Al. Al
Although it is more expensive than Si and has weaknesses such as a large decrease in magnetic flux density, for example, steel with a composition of Si: 3 wt% and Al: 0.7 wt% is processed more than steel with a composition of Si: 3.7 wt%. , Cold-rolling properties and magnetic properties are almost the same. However, when the total amount of Si and Al is 4 wt% or more in steel with Si: 3 wt% or more, cold rolling becomes impossible,
If the total amount of Al and Al exceeds 6 wt%, warm rolling has also become difficult. In this case as well, after all, industrially 60μΩ
Only a specific resistance of less than cm was obtained.
【0007】いずれにしても、単なるSiやAlの増加によ
り高周波域での鉄損低減を図るよりも、本質的に加工性
の改善された新成分系合金によって、高周波域にわたる
磁気特性と共に、加工性をも確保し、更に、耐食性と低
廉性を満たすことが望ましい。In any case, rather than simply reducing the iron loss in the high frequency range by simply increasing the amount of Si or Al, the new component-based alloy with essentially improved workability, together with the magnetic properties over the high frequency range, It is also desirable to ensure good corrosion resistance and to satisfy corrosion resistance and low cost.
【0008】なお、Fe−Si合金の耐食性を改善する手段
として、Crを一定量添加する方法が、特開昭52−24
117号公報及び特開昭61−27352号公報に開示
されている。このように、Crの添加により耐食性を向上
させた合金は知られている。しかし、これらの公報に開
示された合金はいずれも、磁気特性としては従来の合金
と同程度で、格段の改良を加えたものではなかった。As a means for improving the corrosion resistance of an Fe—Si alloy, a method of adding a certain amount of Cr is disclosed in Japanese Patent Laid-Open No. 52-24 / 1982.
No. 117 and JP-A-61-27352. As described above, alloys having improved corrosion resistance by adding Cr are known. However, all of the alloys disclosed in these publications have the same magnetic properties as conventional alloys and have not been significantly improved.
【0009】そこで、この発明は、上記の問題点を解決
し、優れた製造時並びに使用時の加工性と共に、高い電
気抵抗と良好な高周波磁気特性を有し、更に耐食性や低
廉性をも兼ね備えたFe−Cr−Si系合金を提案することを
目的としている。このようにして製造時の加工性が改善
されるならば、とりわけ板厚の薄い鋼板とすることが可
能となり、更に高周波磁気特性が改善される。Therefore, the present invention solves the above-mentioned problems, and has not only excellent workability at the time of manufacture and use, but also high electrical resistance and good high-frequency magnetic characteristics, and also has corrosion resistance and low cost. It is intended to propose an Fe-Cr-Si based alloy. If the workability at the time of manufacturing is improved in this way, it becomes possible to make the steel sheet particularly thin, and the high-frequency magnetic characteristics are further improved.
【0010】[0010]
【課題を解決するための手段】発明者らは上記目的を達
成すべく鋭意研究を行った結果、次のような新規知見を
得た。まず、加工性(ほぼ靱性によって評価することが
できる。)の確保については、Fe−Si合金やFe−Si−Al
合金の靱性向上のためには意外にもCrを共存させること
が効果があることを見いだした。すなわち、これまでは
Crを添加するほど靱性は劣化すると考えられてきたが、
Siが3 wt%以上かつ、Alが1 wt%以上の含有量であって
も、C+Nの含有量を十分に低減した上で、一定量以上
のCrを含有させることにより、むしろ高い靱性が得られ
ることを見いだした。しかも、更にSi量及びAl量が低い
Fe−Cr−Si系合金(Fe−Cr−Si合金の他、Fe−Cr−Si−
Al合金も含む。以下同じ。)であって、比抵抗が60μΩ
cm以上となる成分系においても、C+Nの含有量を十分
に低減すれば、同等の比抵抗をもつFe−Si合金やFe−Si
−Al合金よりも加工性が大幅に向上することを見いだし
たのである。Means for Solving the Problems The inventors have conducted intensive studies to achieve the above object, and as a result, obtained the following new findings. First, regarding the securing of workability (which can be almost evaluated by toughness), Fe-Si alloys and Fe-Si-Al
It was surprisingly found that coexistence of Cr is effective for improving the toughness of the alloy. That is, until now
It has been thought that the more Cr is added, the more the toughness deteriorates.
Even if the content of Si is 3 wt% or more and the content of Al is 1 wt% or more, high toughness can be obtained by sufficiently reducing the C + N content and by adding a certain amount of Cr or more. Was found to be able to. Moreover, the amount of Si and the amount of Al are even lower.
Fe-Cr-Si alloys (Fe-Cr-Si- alloys in addition to Fe-Cr-Si alloys)
Also includes Al alloy. same as below. ) And the specific resistance is 60μΩ
cm or more, if the content of C + N is sufficiently reduced, an Fe-Si alloy or Fe-Si alloy having the same specific resistance can be obtained.
-It was found that the workability was significantly improved compared to the -Al alloy.
【0011】また、磁気特性については、Cr、Si及びAl
を同時に含有させることにより、電気抵抗の増大に相乗
的な効果が現れることを見いだした。その結果、特に高
周波域での鉄損を、SiやAlのみを含有するFe−Si合金、
Fe−Al合金、更にはFe−Si−Al合金に比べて格段に低減
することができるに至った。しかも、このようにCrを添
加すれば、このCrの効果によって耐食性は従来のFe−Si
系に比べて確実に向上する。The magnetic properties of Cr, Si and Al
Was found to have a synergistic effect on the increase in electrical resistance. As a result, especially iron loss in the high frequency range, Fe-Si alloy containing only Si and Al,
Fe-Al alloys, and further reduced significantly compared to Fe-Si-Al alloys. Moreover, if Cr is added in this manner, the corrosion resistance is reduced by the effect of the conventional Fe-Si.
It definitely improves compared to the system.
【0012】この発明は上記の知見に立脚するものであ
り、その要旨構成は次のとおりである。Cr:1.5 wt%以
上20wt%以下及びSi:2.5 wt%以上10wt%以下を含有
し、かつ、C及びNを合計量で100 wtppm 以下に低減
し、残部は鉄及び不可避的不純物からなり、比抵抗が60
μΩcm以上であることを特徴とする高周波磁気特性に優
れるFe−Cr−Si系合金。Cr:1.5 wt%以上20wt%以下、
Si:2.5 wt%以上10wt%以下及びAl:5 wt%以下を含有
し、かつ、C及びNを合計量で100 wtppm 以下に低減
し、残部は鉄及び不可避的不純物からなり、比抵抗が60
μΩcm以上であることを特徴とする高周波磁気特性に優
れるFe−Cr−Si系合金。Cr:1.5 wt%以上20wt%以下及
びSi:2.5 wt%以上10wt%以下を含み、Mn及びPから選
ばれる1種又は2種をそれぞれ1 wt%以内で含有し、か
つ、C及びNを合計量で100 wtppm 以下に低減し、残部
は鉄及び不可避的不純物からなり、比抵抗が60μΩcm以
上であることを特徴とする高周波磁気特性に優れるFe−
Cr−Si系合金。Cr:1.5 wt%以上20wt%以下、Si:2.5
wt%以上10wt%以下及びAl:5 wt%以下を含み、Mn及び
Pから選ばれる1種又は2種をそれぞれ1 wt%以内で含
有し、かつ、C及びNを合計量で100 wtppm 以下に低減
し、残部は鉄及び不可避的不純物からなり、比抵抗が60
μΩcm以上であることを特徴とする高周波磁気特性に優
れるFe−Cr−Si系合金。この発明の高周波磁気特性に優
れるFe−Cr−Si系合金においては、板厚が0.01〜0.4 mm
であることは、より好ましい。Cr:1.5 wt%以上20wt%
以下及びSi:2.5 wt%以上10wt%以下を含み、かつ、C
及びNを合計量で100 wtppm 以下に低減したFe−Cr−Si
系合金素材を圧延するに際し、熱間圧延によって板厚3
mm以下とし、次いで熱延板を焼鈍することなく冷間又は
温間で圧延することを特徴とする高周波磁気特性に優れ
るFe−Cr−Si系合金の製造方法。Cr:1.5 wt%以上20wt
%以下及びSi:2.5 wt%以上10wt%以下を含み、かつ、
C及びNを合計量で100 wtppm 以下に低減したFe−Cr−
Si系合金素材を圧延するに際し、熱間圧延後の冷間圧延
又は温間圧延を、途中焼鈍を施すことなしに実施するこ
とを特徴とする高周波磁気特性に優れるFe−Cr−Si系合
金の製造方法。Cr:1.5 wt%以上20wt%以下及びSi:2.
5 wt%以上10wt%以下を含み、かつ、C及びNを合計量
で100 wtppm 以下に低減したFe−Cr−Si系合金素材を圧
延するに際し、熱間圧延によって板厚3 mm以下とし、次
いで熱延板を焼鈍することなく冷間圧延又は温間圧延に
供し、この冷間又は温間圧延を、途中焼鈍を施すことな
しに実施することを特徴とする高周波磁気特性に優れる
Fe−Cr−Si系合金の製造方法。この発明の高周波磁気特
性に優れるFe−Cr−Si系合金の製造方法においては、Fe
−Cr−Si系合金素材がAlを5 wt%以下含有するものであ
ること、Fe−Cr−Si系合金素材にMn及びPから選ばれる
1種又は2種をそれぞれ1 wt%以内で含有するものを用
いることもできる。The present invention is based on the above findings, and the gist configuration thereof is as follows. Cr: 1.5 wt% or more and 20 wt% or less and Si: 2.5 wt% or more and 10 wt% or less, and C and N are reduced to 100 wtppm or less in total, and the balance consists of iron and unavoidable impurities. Resistance is 60
Fe-Cr-Si based alloy with excellent high frequency magnetic properties characterized by being at least μΩcm. Cr: 1.5 wt% or more and 20 wt% or less,
Si: 2.5 wt% or more and 10 wt% or less and Al: 5 wt% or less, and the total amount of C and N is reduced to 100 wtppm or less, and the balance is composed of iron and unavoidable impurities.
Fe-Cr-Si based alloy with excellent high frequency magnetic properties characterized by being at least μΩcm. Cr: 1.5 wt% or more and 20 wt% or less and Si: 2.5 wt% or more and 10 wt% or less, each containing 1 or 2 kinds selected from Mn and P within 1 wt%, and the total of C and N Fe- is excellent in high-frequency magnetic characteristics characterized in that it is reduced to 100 wtppm or less, the balance being iron and unavoidable impurities, and having a specific resistance of 60 μΩcm or more.
Cr-Si alloy. Cr: 1.5 wt% or more and 20 wt% or less, Si: 2.5
1 wt% or less and 10 wt% or less and Al: 5 wt% or less, each containing 1 or 2 kinds selected from Mn and P within 1 wt%, and the total amount of C and N to 100 wtppm or less. Reduced, with the balance being iron and unavoidable impurities, with a resistivity of 60
Fe-Cr-Si based alloy with excellent high frequency magnetic properties characterized by being at least μΩcm. In the Fe-Cr-Si alloy excellent in high-frequency magnetic characteristics of the present invention, the plate thickness is 0.01 to 0.4 mm.
Is more preferable. Cr: 1.5 wt% or more and 20 wt%
Or less and Si: not less than 2.5 wt% and not more than 10 wt%, and C
Fe-Cr-Si in which the total amount of N and N is reduced to 100 wtppm or less
When rolling the base alloy material, hot rolling
mm or less, and then hot-rolled sheet is rolled cold or warm without annealing, and a method for producing an Fe-Cr-Si alloy having excellent high-frequency magnetic properties. Cr: 1.5 wt% or more and 20 wt%
% And Si: not less than 2.5 wt% and not more than 10 wt%, and
Fe-Cr- in which C and N are reduced to 100 wtppm or less in total
When rolling a Si-based alloy material, a Fe-Cr-Si-based alloy excellent in high-frequency magnetic characteristics, characterized in that cold rolling or warm rolling after hot rolling is performed without performing intermediate annealing. Production method. Cr: 1.5 wt% or more and 20 wt% or less and Si: 2.
When rolling a Fe-Cr-Si based alloy material containing 5 wt% or more and 10 wt% or less and having a total amount of C and N reduced to 100 wtppm or less, the thickness is reduced to 3 mm or less by hot rolling. The hot-rolled sheet is subjected to cold rolling or warm rolling without annealing, and the cold or warm rolling is performed without intermediate annealing.
Manufacturing method of Fe-Cr-Si alloy. In the method for producing an Fe-Cr-Si-based alloy having excellent high-frequency magnetic properties according to the present invention,
-The Cr-Si based alloy material contains 5 wt% or less of Al, and the Fe-Cr-Si based alloy material contains one or two selected from Mn and P within 1 wt% each. Those can also be used.
【0013】[0013]
【発明の実施の形態】以下、この発明を成就するに至っ
た実験結果について説明する。純度99.99 %以上のFe、
Cr、Si、Alを原料とし、高真空(1 ×10-4Torr)の小型
溶解炉にて、高純度Fe−(0 〜12)wt%Cr−4.5 wt%Si
−2 wt%Al合金を、Cr量がそれぞれ0 wt%、2 wt%、4
wt%及び12wt%になる成分組成として、10kgずつ溶製し
た。得られた合金の不純物含有量は、C:5 〜8 wtppm
、P:3 〜5 wtppm 、S:2 〜3 wtppm 、N:12〜18w
tppm 、O:11〜15wtppm 、C+N:18〜22wtppm であ
った。これらの鋼塊を、厚さ60mmに切り出し、1100℃に
加熱して板厚3.2 mmに圧延した。この鋼板から、板厚2.
5 mm、幅10mm、長さ55mm、切り欠き2 mmVノッチのシャ
ルピー試験片を圧延方向と平行に採取し、各温度で衝撃
値を測定して、脆性破面率が50%になる温度、すなわち
延性−脆性遷移温度を靱性の指標として求めた。Cr量の
異なる各組成(Fe−Xwt%Cr−4.5 wt%Si−2wt%Al)
に対する遷移温度の関係は表1のとおりであった。DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the results of experiments which have led to the present invention will be described. Fe with a purity of 99.99% or more,
Using Cr, Si, and Al as raw materials, high-purity Fe- (0 to 12) wt% Cr-4.5 wt% Si in a small melting furnace with high vacuum (1 × 10 -4 Torr)
-2 wt% Al alloy, Cr content 0 wt%, 2 wt%, 4 wt%
10 kg each was melted as a component composition to be wt% and 12 wt%. The obtained alloy has an impurity content of C: 5 to 8 wtppm.
, P: 3-5 wtppm, S: 2-3 wtppm, N: 12-18 w
tppm, O: 11 to 15 wtppm, and C + N: 18 to 22 wtppm. These ingots were cut to a thickness of 60 mm, heated to 1100 ° C., and rolled to a plate thickness of 3.2 mm. From this steel plate, 2.
5 mm, width 10 mm, length 55 mm, notch 2 mm V-notch Charpy test specimens were taken in parallel with the rolling direction, the impact value was measured at each temperature, the temperature at which the brittle fracture rate was 50%, The ductility-brittle transition temperature was determined as an index of toughness. Each composition with different Cr content (Fe-Xwt% Cr-4.5wt% Si-2wt% Al)
Table 1 shows the relationship of the transition temperature with respect to.
【0014】[0014]
【表1】 [Table 1]
【0015】予想外にも、Cr量の増加とともに遷移温度
が低下、すなわち、靱性が向上することがわかり、更
に、その効果はCr量2 wt%以上で現れること、また、Cr
を20wt%を超えて増量しても効果が飽和することが明ら
かになった。遷移温度が200 ℃以下であれば、300 ℃程
度の通常の温間圧延を行うことが可能となる。また、遷
移温度が100 ℃以下であれば、素材を最初に200 ℃以下
に加熱して、あとは通常の冷間圧延と同様に冷間圧延工
程に供して製造することが可能で、工業的に更に有利に
なる。次に、Fe−4 wt%Cr−4.5 wt%Si−2 wt%Alの組
成につき、C及びNを調節するためにFe−5 wt%C母合
金及び窒化鉄を添加した以外は前記と同様の方法で、C
+N含有量の異なる合金を作り、同様にシャルピー試験
を行い、表2の結果を得た。Unexpectedly, it was found that the transition temperature decreased with an increase in the Cr content, that is, the toughness was improved, and that the effect was exhibited when the Cr content was 2 wt% or more.
It was found that the effect was saturated even if the amount was increased beyond 20 wt%. If the transition temperature is 200 ° C. or lower, ordinary warm rolling at about 300 ° C. can be performed. If the transition temperature is 100 ° C or less, the material can be manufactured by first heating the material to 200 ° C or less and then subjecting the material to a cold rolling process in the same manner as ordinary cold rolling. Is more advantageous. Next, regarding the composition of Fe-4 wt% Cr-4.5 wt% Si-2 wt% Al, the same as above except that a Fe-5 wt% C master alloy and iron nitride were added to adjust C and N. In the method of C
Alloys having different + N contents were produced, and the Charpy test was performed in the same manner. The results shown in Table 2 were obtained.
【0016】[0016]
【表2】 [Table 2]
【0017】このように、C+Nが100wtppm程度以下に
なると靱性が顕著に向上することが明らかとなった。こ
の場合、通常の温間圧延を行うことが可能となる。As described above, it has been found that when C + N is less than about 100 wtppm, the toughness is remarkably improved. In this case, normal warm rolling can be performed.
【0018】更に、これらの熱延板のうち、C+N量が
19wtppm のFe−4 wt%Cr−4.5 wt%Si−2 wt%Al合金
と、比較材のFe−6 wt%Si(C+Nは19wtppm )合金に
ついて、温間圧延で0.2 mm厚の薄板を作り、水素中1200
℃で60min の焼鈍ののち、比抵抗と磁気特性を測定し
た。ここで、Fe−4 wt%Cr−4.5 wt%Si−2 wt%Al合金
は熱延板を300 ℃に加熱して温間圧延したが、Fe−6 wt
%Si合金は極めて脆く通常の温間圧延は不可能であった
ため、特に熱延板の加熱を450 ℃とし、圧延1パスごと
に再加熱して薄板とした。各合金の比抵抗は、Fe−4 wt
%Cr−4.5 wt%Si−2 wt%Al合金が120 μΩcmであり、
Fe−6 wt%Siの81μΩcmを大幅に上回った。また周波数
10kHz 、磁束密度0.1 T における鉄損値を調査した。結
果は、Fe−4%Cr−4.5 wt%Si−2 wt%Al合金が15W/k
g、Fe−6 wt%Si合金が18W/kgであり、前者が格段に優
れていた。Further, among these hot rolled sheets, the C + N amount is
For the 19wtppm Fe-4wt% Cr-4.5wt% Si-2wt% Al alloy and the comparative material Fe-6wt% Si (C + N is 19wtppm) alloy, a 0.2mm thick sheet was made by warm rolling. 1200 in hydrogen
After annealing at 60 ° C. for 60 minutes, the specific resistance and magnetic properties were measured. Here, the Fe-4 wt% Cr-4.5 wt% Si-2 wt% Al alloy was warm-rolled by heating the hot-rolled sheet to 300 ° C.
Since the% Si alloy was extremely brittle and ordinary warm rolling was impossible, the heating of the hot-rolled sheet was particularly set at 450 ° C., and the sheet was reheated for each rolling pass to make a thin sheet. The specific resistance of each alloy is Fe-4 wt
% Cr-4.5 wt% Si-2 wt% Al alloy is 120 μΩcm,
It greatly exceeded the value of 81 μΩcm of Fe-6 wt% Si. Also frequency
The iron loss value at 10 kHz and a magnetic flux density of 0.1 T was investigated. The results show that the Fe-4% Cr-4.5 wt% Si-2 wt% Al alloy was 15 W / k
g, Fe-6wt% Si alloy was 18W / kg, and the former was much better.
【0019】この発明は、上記の実験事実を開発の端緒
として得られたものであり、成分系及び純度の選択が重
要な役割を担う。以下、これらの成分組成範囲について
数値限定した理由について説明する。The present invention has been obtained based on the above experimental facts as a starting point of development, and the selection of the component system and the purity plays an important role. The reasons for limiting the numerical ranges of these component composition ranges will be described below.
【0020】まず、Crは、Si及びAlとの相乗効果によっ
て電気抵抗を大幅に向上させて高周波域での鉄損を低減
し、更には耐食性を向上させる基本的な合金成分であ
り、しかも、3.5 wt%以上のSi含有量の場合、又は3 wt
%以上のSi含有量かつ1 %を超えるAl含有量の場合であ
っても温間圧延可能な程度の靱性を得るのに極めて有効
であり、その観点からは2 wt%以上を要する。Si量やAl
量が上記の場合よりも少ないときには、Cr量を更に減じ
ても加工性が確保できるが、Crの加工性向上効果を発揮
させ、かつ、合金の比抵抗を60μΩcm以上とするために
は、1.5 wt%以上のCrが必須である。一方、20wt%を超
えると靱性向上の効果が飽和するとともに、コスト上昇
を招くので、Crの含有量は1.5 wt%以上、20wt%以下、
好ましくは12wt%以上、10wt%以下、より好ましくは、
3 wt%以上、7 wt%以下と規定する。First, Cr is a basic alloying component that greatly improves electrical resistance by a synergistic effect with Si and Al, reduces iron loss in a high frequency range, and further improves corrosion resistance. 3.5 wt% or more Si content, or 3 wt%
Even if the Si content is more than 1% and the Al content is more than 1%, it is extremely effective for obtaining toughness to the extent that it can be warm-rolled. From that viewpoint, 2 wt% or more is required. Si amount and Al
When the amount is smaller than the above case, the workability can be ensured even if the Cr amount is further reduced.However, in order to exhibit the effect of improving the workability of Cr, and to make the specific resistance of the alloy 60 μΩcm or more, 1.5 Cr of at least wt% is essential. On the other hand, if the content exceeds 20 wt%, the effect of improving toughness is saturated and the cost is increased. Therefore, the content of Cr is 1.5 wt% or more and 20 wt% or less,
Preferably 12 wt% or more, 10 wt% or less, more preferably,
Defined as 3 wt% or more and 7 wt% or less.
【0021】Siは、Crとの相乗効果によって電気抵抗を
大幅に上昇させ、高周波域での鉄損を低減するのに有効
な成分である。Si量が2.5 wt%未満ではCrやAlを併用し
ても磁束密度をあまり犠牲にせずに60μΩcm以上の比抵
抗を得るには至らない。一方、10wt%を超えるとCrを含
有させても温間圧延可能なまでの靱性が確保できないの
で、Siの含有量は2.5 wt%以上、10wt%以下、好ましく
は3 wt%以上、7 wt%以下、より好ましくは3.5 wt%以
上、5 wt%以下と規定する。[0021] Si is a component effective for greatly increasing electric resistance by a synergistic effect with Cr and reducing iron loss in a high frequency range. If the amount of Si is less than 2.5 wt%, even if Cr and Al are used together, a specific resistance of 60 μΩcm or more cannot be obtained without sacrificing much the magnetic flux density. On the other hand, if the content exceeds 10 wt%, the toughness until warm rolling cannot be ensured even if Cr is contained. Therefore, the content of Si is 2.5 wt% or more and 10 wt% or less, preferably 3 wt% or more and 7 wt%. Hereinafter, it is more preferably defined as 3.5 wt% or more and 5 wt% or less.
【0022】Alは、Siと同様、Crとの相乗効果によって
電気抵抗を大幅に向上させ、高周波域での鉄損を低減す
るのに有効な成分であるので、この発明では必要に応じ
てAlを含有させることができる。しかし、Al量が5 wt%
を超えるとコスト上昇を招く上に、この発明のようにSi
量が2.5 wt%以上含有されている場合にCrを含有させて
も温間圧延可能なまでの靱性が確保できないので、Alの
含有量は5 wt%以下とする。Alの下限は特に限定する必
要がないが、脱酸や結晶粒成長性の改善のために0.005
〜0.3 wt%程度を含有させることがある。更に、Alを積
極的に電気抵抗の増大のために活用するときには、この
発明のようにSiが2.5 wt%以上含有されている合金では
Alが0.5 wt%未満では電気抵抗を更に上昇させるに十分
な効果が得られない。したがって、この好ましくはAlの
含有量は0.005 wt%以上、5 wt%以下、より好ましくは
0.5 wt%以上、3 wt%以下と規定する。Al, like Si, is a component that is effective in significantly improving electrical resistance by a synergistic effect with Cr and reducing iron loss in a high-frequency range. Can be contained. However, when the amount of Al is 5 wt%
Exceeding the cost will lead to an increase in cost, as well as Si
When the content is 2.5 wt% or more, the toughness until warm rolling can not be ensured even if Cr is added, so the Al content is 5 wt% or less. The lower limit of Al does not need to be particularly limited, but is preferably 0.005 to improve deoxidation and grain growth.
About 0.3 wt% may be contained. Further, when Al is positively used for increasing the electric resistance, an alloy containing 2.5 wt% or more of Si as in the present invention is used.
If Al is less than 0.5 wt%, a sufficient effect for further increasing the electric resistance cannot be obtained. Therefore, the content of Al is preferably not less than 0.005 wt% and not more than 5 wt%, more preferably
It is specified as 0.5 wt% or more and 3 wt% or less.
【0023】C及びNは、Fe−Cr−Si系合金の靱性を劣
化させるためにできる限り低減するのが好ましく、その
許容量はこの発明のCr量、Si量及びAl量の場合には、高
靱性を確保するために合計量で100 wtppm 以下に抑える
必要がある。好ましくは60wtppm 以下、より好ましくは
30wtppm 以下である。なお、C又はNの各々は、Cが30
wtppm 以下、Nが80wtppm 以下が良く、より好ましくは
Cが10wtppm 以下、Nが20wtppm 以下が良い。また、
C、N以外の不純物量は特に限定されないが、S:20wt
ppm 以下、好ましくは10wtppm 以下、より好ましくは5
wtppm 以下がよい。O:50wtppm 以下、好ましくは30wt
ppm 以下、より好ましくは15wtppm 以下が良い。又は、
不純物C+S+N+Oの合計量で120 wtppm 以下が好ま
しく、より好ましくは50wtppm 以下が良い。C and N are preferably reduced as much as possible in order to degrade the toughness of the Fe—Cr—Si alloy, and the allowable amounts thereof are as follows in the case of the Cr amount, Si amount and Al amount according to the present invention. In order to ensure high toughness, it is necessary to suppress the total amount to 100 wtppm or less. Preferably not more than 60 wtppm, more preferably
It is 30wtppm or less. Note that each of C and N has a C of 30.
The content of N is preferably not more than 80 wtppm, more preferably not more than 10 wtppm of C and not more than 20 wtppm of N. Also,
Although the amount of impurities other than C and N is not particularly limited, S: 20 wt.
ppm or less, preferably 10 wtppm or less, more preferably 5 ppm or less.
It is better to be less than wtppm. O: 50 wtppm or less, preferably 30 wtppm
ppm or less, more preferably 15 wtppm or less. Or
The total amount of impurities C + S + N + O is preferably 120 wtppm or less, more preferably 50 wtppm or less.
【0024】Mn及びPは、Fe−Cr−Si系合金に更に添加
することにより、一層の電気抵抗の上昇を与えることが
知られている。これらの成分の添加により、この発明の
趣旨が損なわれることなく、更なる鉄損の低減が達成で
きる。そこで、この発明では、Mn、Pの中から選ばれる
1種又は2種を含有させることができる。とはいえ、こ
れらの成分を大量に添加するとコスト上昇を招くので、
それぞれの添加量は1wt%を上限とする。より好ましく
は0.5 wt%以下が良い。It is known that Mn and P further increase the electric resistance by being further added to the Fe-Cr-Si alloy. By the addition of these components, a further reduction in iron loss can be achieved without impairing the spirit of the present invention. Therefore, in the present invention, one or two selected from Mn and P can be contained. Nevertheless, adding large amounts of these components will increase costs,
The upper limit of each addition amount is 1 wt%. More preferably, it is 0.5 wt% or less.
【0025】ところで、この発明において、磁気特性、
耐食性、加工性などを更に向上させる目的で、従来知ら
れている合金成分を追加添加することは、この発明の効
果を損なうものではなく、それらの成分を含有させるこ
とも可能である。それらの成分の代表例を以下に列記す
る。5wt%以下のNiは、耐食性改善成分であるととも
に、延性−脆性遷移温度を下げ、加工性を向上させるほ
か、結晶粒を微細にさせ易いため、渦電流損を抑制し、
高周波鉄損の低減にも効果がある。1 wt%以下のCuにも
Niと同様の効果がある。5 wt%以下のMoやWは耐食性を
改善する。1 wt%以下のLa、VやNb、0.1 wt%以下のT
i、YやZr、0.1 wt%以下のBは、靱性を高めて加工性
を向上させる効果がある。5 wt%以下のCoは、磁束密度
を向上させ、ひいては鉄損低減に効果がある。0.1 wt%
以下のSbやSnは、集合組織を改善し、ひいては鉄損低減
に効果がある。In the present invention, the magnetic characteristics,
The addition of conventionally known alloy components for the purpose of further improving corrosion resistance, workability, and the like does not impair the effects of the present invention, and it is possible to include those components. Representative examples of those components are listed below. Ni of 5 wt% or less is a component that improves corrosion resistance, lowers the ductile-brittle transition temperature, improves workability, and suppresses eddy current loss because crystal grains are easily made finer.
It is also effective in reducing high frequency iron loss. For less than 1 wt% Cu
It has the same effect as Ni. Mo or W of 5 wt% or less improves corrosion resistance. La, V or Nb of 1 wt% or less, T of 0.1 wt% or less
i, Y, Zr, and B of 0.1 wt% or less have the effect of increasing toughness and improving workability. Co of 5 wt% or less improves the magnetic flux density and is effective in reducing iron loss. 0.1 wt%
The following Sb and Sn improve the texture and are effective in reducing iron loss.
【0026】この発明の磁気材料に優れる高加工性Fe−
Cr−Si系合金薄板を製造するには、原料として純度99.9
wt%以上の高純度の電解鉄、電解クロム、金属Si、金属
Alを用いることが好ましい。Mn、Pを添加する場合に
は、これらも高純度原料を用いる。あるいは、転炉法で
製造する場合には、所定の純度にまで十分に精錬し、か
つ、後工程での汚染を受けないように注意が必要であ
る。溶製に際しては、転炉法の他、例えば、高真空(10
-3Torr以下の圧力)の真空溶解炉を用いることができ
る。The high workability Fe- excellent in the magnetic material of the present invention.
In order to produce Cr-Si alloy thin plates, the purity must be 99.9%.
High purity electrolytic iron, electrolytic chromium, metallic Si, metal with wt% or more
It is preferable to use Al. When Mn and P are added, they also use high-purity raw materials. Alternatively, in the case of manufacturing by the converter method, care must be taken to sufficiently refine to a predetermined purity and not to be contaminated in a later step. At the time of melting, besides the converter method, for example, high vacuum (10
A vacuum melting furnace having a pressure of -3 Torr or less can be used.
【0027】その後の熱間圧延は、極力薄くまで圧延す
ることによって、次工程の冷間圧延ないしは温間圧延に
おける加工性、すなわち圧延性を良好にすることができ
る。これは、この発明のFe−Cr−Si系合金組成の場合に
は、熱延板の表面部分の方が中心部分よりも靱性が高
く、加工性が優れているとの新知見に基づくものであ
る。そのための熱延板の厚みは3 mm以下、好ましくは2.
5 mm以下、より好ましくは1.5 mm以下とする。In the subsequent hot rolling, by rolling as thin as possible, the workability in the next step of cold rolling or warm rolling, ie, the rolling property, can be improved. This is based on the new finding that in the case of the Fe-Cr-Si-based alloy composition of the present invention, the surface portion of the hot-rolled sheet has higher toughness than the central portion and has excellent workability. is there. The thickness of the hot rolled sheet for that purpose is 3 mm or less, preferably 2.
5 mm or less, more preferably 1.5 mm or less.
【0028】熱延板の靱性が改善されているため、更に
温間や冷間で圧延して0.4 mm以下の厚みの薄板とするこ
とができる。一般に、板厚を減じると、とりわけ高周波
において渦電流損が有利に抑制され、低鉄損になること
は周知である。しかし、これまでは高電気抵抗の材料は
圧延性が悪く、通常の圧延法によっては0.5 mm程度まで
しか減厚されていなかった。また、単に厚みを減じても
ヒステリシス損失のために、十分な鉄損低減ができない
とされてきた。この点、この発明では、成分系と純度を
選ぶことにより、減厚した場合の高周波鉄損特性の効果
を促進し得ることを見いだしたのである。かかる減厚の
効果を得るためには、板厚を0.4 mm以下とすることが有
効である。ただし、0.01mmよりも薄くするには、コスト
上、工業的に無理があるので、板厚の範囲を0.01〜0.4
mm、好ましくは0.03〜0.35mmと規定する。Since the toughness of the hot-rolled sheet is improved, the sheet can be further rolled hot or cold to form a thin sheet having a thickness of 0.4 mm or less. In general, it is well known that reducing the plate thickness advantageously suppresses eddy current loss, especially at high frequencies, and reduces iron loss. However, materials having high electric resistance have poor rollability so far, and the thickness has been reduced to only about 0.5 mm by a normal rolling method. It has also been said that simply reducing the thickness does not allow a sufficient reduction in iron loss due to hysteresis loss. In this regard, the present invention has found that the effect of the high-frequency iron loss characteristics when the thickness is reduced can be promoted by selecting the component system and the purity. In order to obtain such an effect of thickness reduction, it is effective to make the plate thickness 0.4 mm or less. However, it is industrially impossible to reduce the thickness to less than 0.01 mm.
mm, preferably 0.03 to 0.35 mm.
【0029】このような減厚のための圧延においては、
材料の加工性が優れているため、特に従来のように熱延
板を焼鈍したり、冷間圧延ないし温間圧延の途中で中間
焼鈍したりして圧延性を確保することが必ずしも必要で
なく、熱延板焼鈍や中間焼鈍を省略して作業能率向上、
省エネルギー化、コスト低減を図ることができる。その
後の焼鈍や表面仕上げは、通常の電磁鋼板や電磁ステン
レス鋼板と同様の工程が適用できる。In such rolling for thickness reduction,
Because the workability of the material is excellent, it is not always necessary to secure the rollability by annealing the hot-rolled sheet as in the past, or intermediate annealing during cold rolling or warm rolling, especially in the past. , Improving work efficiency by omitting hot-rolled sheet annealing and intermediate annealing,
Energy saving and cost reduction can be achieved. Subsequent annealing and surface finishing can be performed by the same steps as those for a normal electromagnetic steel sheet or an electromagnetic stainless steel sheet.
【0030】[0030]
【実施例】(実施例1)純度99.99 wt%の電解鉄及び電
解クロム及び純度99.999wt%の金属Si、並びに必要に応
じて純度99.99 wt%の金属アルミニウム、純度99.9wt%
の金属マンガン、純度99.5wt%のFe−23wt%P母合金を
原料とし、高真空(1 ×10-4Torr)の小型溶解炉にて、
表3に示す種々の成分組成になる合金を10kgずつ溶製し
た。ここで、Alを主成分として含まない場合には、脱酸
のために0.01wt%相当(1 g )のアルミホイルを脱脂し
て添加した。これらの鋳塊を40mm×60mm×100 mmのサイ
ズに切り出し、Ar中で1100℃に加熱して30min 保持した
後、60mmを20mmに減厚する形状に粗圧延し、更に1100℃
に再加熱して15min 保持してから、板厚2.3 mmまでに熱
間圧延した。EXAMPLES (Example 1) Electrolytic iron and electrolytic chromium having a purity of 99.99 wt%, metal Si having a purity of 99.999 wt%, and metal aluminum having a purity of 99.99 wt% and, if necessary, 99.9 wt%
Metal manganese, Fe-23wt% P master alloy with 99.5wt% purity as raw material, in a small melting furnace of high vacuum (1 × 10 -4 Torr)
Alloys having various component compositions shown in Table 3 were melted at 10 kg each. Here, when Al was not included as a main component, 0.01 wt% (1 g) of aluminum foil was degreased and added for deoxidation. These ingots were cut out to a size of 40 mm x 60 mm x 100 mm, heated to 1100 ° C in Ar and held for 30 minutes, and then roughly rolled to a shape that reduced 60 mm to 20 mm, and further 1100 ° C
After reheating for 15 minutes, hot rolling was performed to a sheet thickness of 2.3 mm.
【0031】[0031]
【表3】 [Table 3]
【0032】この鋼板から、板厚1.5 mm、幅10mm、長さ
55mm、切り欠き2 mmVノッチのシャルピー試験片を圧延
方向と平行に採取し、25℃おきの温度でシャルピー衝撃
値を測定して、脆性破面率が50%になる温度、すなわち
延性−靱性遷移温度を靱性の指標として求めた。From this steel sheet, a thickness of 1.5 mm, a width of 10 mm, and a length of
A Charpy test specimen with a notch of 2 mm V notch with a notch of 55 mm was taken in parallel with the rolling direction, and the Charpy impact value was measured at a temperature of every 25 ° C., and the temperature at which the brittle fracture ratio became 50%, that is, the ductile-tough transition Temperature was determined as an index of toughness.
【0033】次に、先の2.3 mm厚の熱延板の表面をショ
ットブラストで手入れをしてから、途中焼鈍なしで0.20
mmまでの冷間圧延を行った。但し、遷移温度が室温を超
える場合には、300 ℃に予熱して温間圧延とした。ま
た、特に遷移温度が200 ℃を超える場合には、加熱温度
を450 ℃とし、パスごとに再加熱する方法で温間圧延と
した。続いて、これらの薄板から、外径30mm、内径20mm
のリング状試験片を切り出し、水素中1000℃で60min の
焼鈍ののち、BHアナライザにより周波数10kHz 、磁束密
度0.1 T 対する鉄損値を測定した。また、同じ薄板から
別途、幅30mm、長さ280 mmの試験片を切り出して上述と
同様に焼鈍し、四端子法によって比抵抗を測定した。表
4に各鋼種の遷移温度と温間圧延の加熱方法、比抵抗及
び鉄損値を示す。また、耐食性はJIS Z2371 に準拠した
塩水噴霧試験を2 時間行い、板表面の錆発生面積率が20
%なら「良」、20%を超え80%以下なら「中」、80%超
えなら「劣」と判定した。Next, the surface of the previously hot-rolled 2.3 mm-thick plate was cleaned by shot blasting, and then 0.20 mm without annealing.
Cold rolling up to mm was performed. However, when the transition temperature was higher than room temperature, warm rolling was performed by preheating to 300 ° C. In particular, when the transition temperature exceeds 200 ° C., the heating temperature was set to 450 ° C., and warm rolling was performed by reheating each pass. Subsequently, from these thin plates, an outer diameter of 30 mm and an inner diameter of 20 mm
The ring-shaped test piece was cut out, annealed in hydrogen at 1000 ° C. for 60 minutes, and the iron loss value at a frequency of 10 kHz and a magnetic flux density of 0.1 T was measured by a BH analyzer. Separately, a test piece having a width of 30 mm and a length of 280 mm was cut out from the same thin plate, annealed in the same manner as described above, and the specific resistance was measured by a four-terminal method. Table 4 shows the transition temperature of each steel type, the heating method in warm rolling, the specific resistance, and the iron loss value. The corrosion resistance was evaluated by performing a salt spray test in accordance with JIS Z2371 for 2 hours.
% Was judged as "good", more than 20% and less than 80% as "medium", and more than 80% as "poor".
【0034】[0034]
【表4】 [Table 4]
【0035】鋼種1は、比較のための従来成分系(3wt
%Si)である。鋼種2は、この発明の範囲よりもCrが不
足した比較例であり、Siの増量により鉄損は低減してい
るが、靱性が鋼種1よりも劣り、耐食性も悪い。鋼種3
はこの発明の組成範囲にあり、高い靱性と、低い鉄損お
よび高い耐食性を併せ持つ。鋼種4はSiが不足した例で
あり、靱性は良好だが鉄損は鋼種1の水準に留まってい
る。鋼種5はSi量が更に多い実施例であるが、C量及び
N量を低減する高純度化により高靱性であり、鉄損が極
めて低く良好である。Steel type 1 is a conventional component system (3 wt.
% Si). Steel type 2 is a comparative example in which Cr is less than the range of the present invention, and although iron loss is reduced by increasing the amount of Si, the toughness is inferior to steel type 1 and the corrosion resistance is poor. Steel type 3
Is in the composition range of the present invention and has both high toughness, low iron loss and high corrosion resistance. Steel type 4 is an example in which Si is insufficient. The toughness is good, but the iron loss remains at the level of steel type 1. Steel type 5 is an example in which the amount of Si is further increased, but has high toughness due to high purification by reducing the amounts of C and N, and has extremely low iron loss and is excellent.
【0036】鋼種6及び7は、この発明において更にA
l、P、Mnを追加して添加した例であり、いずれも高靱
性かつ低鉄損である。鋼種8及び9は、他の例に比べて
C+N量を増やした例で、鋼種9がこの発明の範囲を超
えて高過ぎ場合であり、鋼種9は靱性が劣化しているほ
か、鉄損もやや上昇している。[0036] Steel types 6 and 7 are further defined as A in the present invention.
This is an example in which l, P, and Mn are additionally added, and all have high toughness and low iron loss. Steel types 8 and 9 are examples in which the amount of C + N was increased as compared with the other examples, where steel type 9 was too high beyond the scope of the present invention, and steel type 9 had deteriorated toughness and reduced iron loss. It is rising slightly.
【0037】鋼種10は、この発明の範囲内で更に純度を
高めた例であり、靱性も鉄損も更に改善し、極めて優秀
な磁性材料となることを示している。鋼種11は、Siを6.
4 wt%まで増量しても、Crをそれに応じて増量し、か
つ、極めて高い純度とすることによって、靱性が確保さ
れた例である。この場合、比抵抗が高く、鉄損が更に低
減されている。鋼種12は、Fe−Siの2元合金の中で最も
低鉄損になるFe−6.5 wt%Siを比較として示している。
この組成では極めて加工性が悪いが、磁気特性は優れて
いる。これに対し、この発明の合金は、加工性が大幅に
優れ、Cr含有により耐食性も良く、しかも鉄損が鋼種10
とほぼ同等にまで低減されている。Steel type 10 is an example in which the purity is further increased within the scope of the present invention, and shows that the toughness and the iron loss are further improved, and the magnetic material becomes an extremely excellent magnetic material. Steel type 11.
This is an example in which even if the amount is increased to 4 wt%, the toughness is ensured by increasing the amount of Cr accordingly and making it extremely high in purity. In this case, the specific resistance is high, and the iron loss is further reduced. Steel type 12 shows Fe-6.5 wt% Si, which has the lowest iron loss among binary alloys of Fe-Si, as a comparison.
This composition has extremely poor workability, but has excellent magnetic properties. On the other hand, the alloy of the present invention has significantly excellent workability, has good corrosion resistance due to the inclusion of Cr, and has an iron loss of 10%.
It has been reduced to almost the same.
【0038】(実施例2)実施例1と同様の工程によっ
て表5に示す種々の成分組成になる合金を溶製した。溶
製後は実施例1と同様の工程によって鋼板を作製し、評
価を行った。ただし、温間圧延については、2.3 mm厚の
熱延板の表面をショットブラストで手入れをしてから、
300 ℃に加熱し、そのまま繰り返し圧下して板厚が0.2
mmになるまで温間圧延を行った。なお、遷移温度が200
℃を超える場合には、加熱温度を450 ℃とし、パスごと
に再加熱する方法で温間圧延とした。熱延板の靱性、薄
板の磁気特性、電気抵抗、、耐食性の評価条件は実施例
1と共通である。評価結果を表6に示す。Example 2 Alloys having various component compositions shown in Table 5 were melted by the same steps as in Example 1. After the smelting, a steel sheet was prepared in the same process as in Example 1 and evaluated. However, for warm rolling, after the surface of a 2.3 mm thick hot-rolled sheet is cleaned with shot blast,
Heat to 300 ° C and repeatedly reduce the thickness to 0.2mm
Warm rolling was performed until the thickness reached mm. The transition temperature is 200
When the temperature exceeds ℃, the heating temperature was set to 450 ℃, and warm rolling was performed by reheating each pass. The evaluation conditions for the toughness of the hot-rolled sheet, the magnetic properties, the electrical resistance, and the corrosion resistance of the thin sheet are the same as those in Example 1. Table 6 shows the evaluation results.
【0039】[0039]
【表5】 [Table 5]
【0040】[0040]
【表6】 [Table 6]
【0041】鋼種21は、比較のための従来成分系(6.5
wt%Si)である。この組成は極めて脆く、通常の冷間な
いし温間圧延は困難であるが、磁気特性、特に1kHz 以
上の特性が良好である。この発明においては、この6.5
wt%Si鋼よりも加工性が格段に優れること、すなわち延
性−脆性遷移温度が200 ℃以下、好ましくは100 ℃以
下、更に好ましくは70℃以下であること、また、高周波
鉄損が6.5 wt%Si鋼に匹敵するか、それを凌駕するこ
と、すなわち、上記の鉄損測定条件における鉄損値が20
W/kg以下、好ましくは18W/kg以下であることを基本理念
としている。鋼種22は、Crが不足した比較例であり、靱
性が悪く、加工性に問題がある。鋼種23及び24はこの発
明の組成範囲にあり、遷移温度が低く通常の温間圧延が
可能な靱性を有するとともに、鋼種23においては6.5 wt
%Si鋼よりも更に低い鉄損、鋼種24においてもほぼ匹敵
する鉄損である。鋼種25はSi量が、鋼種26はAl量がそれ
ぞれ過剰であり、靱性が劣化している。Steel type 21 was prepared using a conventional component system (6.5
wt% Si). Although this composition is extremely brittle, it is difficult to perform normal cold or warm rolling, but has good magnetic properties, especially properties at 1 kHz or higher. In the present invention, this 6.5
Workability is much better than wt% Si steel, that is, the ductile-brittle transition temperature is 200 ° C or lower, preferably 100 ° C or lower, more preferably 70 ° C or lower, and the high-frequency iron loss is 6.5 wt%. Comparing or surpassing Si steel, that is, the iron loss value under the above iron loss measurement conditions is 20
The basic principle is to be at most W / kg, preferably at most 18 W / kg. Steel type 22 is a comparative example having a shortage of Cr, has poor toughness, and has a problem in workability. Steel types 23 and 24 are in the composition range of the present invention, and have low transition temperature and toughness that enables normal warm rolling.
The iron loss is even lower than that of the% Si steel, and the iron loss is almost comparable even with steel type 24. Steel type 25 has an excessive amount of Si and steel type 26 has an excessive amount of Al, and the toughness is deteriorated.
【0042】鋼種27は、この発明において更にP、Mnを
追加して添加した例であって、通常の温間圧延が可能で
あり、かつ、低鉄損である。鋼種28及び29は、他の例に
比べてC+N量を増やした例で、鋼28はこの発明の範囲
内の場合、鋼種29がこの発明の範囲を超えて高過ぎる場
合であり、鋼種29は靱性が劣化しているほか、鉄損も上
昇している。Steel type 27 is an example in which P and Mn are further added in the present invention, and can be subjected to ordinary warm rolling and has low iron loss. Steel types 28 and 29 are examples in which the amount of C + N is increased as compared with the other examples. When steel 28 is within the scope of the present invention, steel type 29 is too high beyond the scope of the present invention. The toughness has deteriorated and the iron loss has also increased.
【0043】鋼種30及び鋼種31は、この発明の範囲内で
更に純度を高めた例であり、靱性も鉄損特性も更に改善
し、極めて優秀な磁性材料となることを示している。鋼
種32は、通常のけい素鋼板に近い3.4 wt%Si鋼の比較例
であり、極めて鉄損が高い。Steel type 30 and steel type 31 are examples in which the purity is further increased within the scope of the present invention, and the toughness and iron loss characteristics are further improved, indicating that they are extremely excellent magnetic materials. Steel type 32 is a comparative example of 3.4 wt% Si steel which is close to a normal silicon steel sheet, and has extremely high iron loss.
【0044】(実施例3)この実施例では、製品の板厚
の効果を示す。まず、実施例1と同様の工程によって表
7に示す種々の成分組成になる合金を溶製した。溶製後
は実施例1と同様の工程によって鋼板を作製し、評価を
行った。ただし、温間圧延については、2.3 mm厚の熱延
板の表面をショットブラストで手入れをしてから、300
℃に加熱し、そのまま繰り返し圧下して板厚が0.2 mmに
なるまで温間圧延を行った。薄板の磁気特性、電気抵
抗、、耐食性の評価条件は実施例1と共通である。評価
結果を表8に示す。(Embodiment 3) This embodiment shows the effect of the thickness of a product. First, alloys having various component compositions shown in Table 7 were produced by the same steps as in Example 1. After the smelting, a steel sheet was prepared in the same process as in Example 1 and evaluated. However, for warm rolling, the surface of a 2.3 mm thick hot-rolled sheet was
C., and was repeatedly rolled down to perform warm rolling until the sheet thickness became 0.2 mm. The evaluation conditions for the magnetic properties, electric resistance, and corrosion resistance of the thin plate are the same as those in the first embodiment. Table 8 shows the evaluation results.
【0045】[0045]
【表7】 [Table 7]
【0046】[0046]
【表8】 [Table 8]
【0047】この発明の成分系(鋼種42及び43)であれ
ば、板厚を0.25mm以下とすれば20W/kg以下の低鉄損とす
ることができるが、従来の3 wt%Si鋼(鋼種41)は、0.
1 mm程度までの減厚が必要である。この発明の成分系に
あっても、20W/kg以下とするには、板厚は0.4 mm以下と
することが必要である。With the component system of the present invention (steel types 42 and 43), if the plate thickness is 0.25 mm or less, a low iron loss of 20 W / kg or less can be obtained. Steel type 41) is 0.
It is necessary to reduce the thickness to about 1 mm. Even in the case of the component system of the present invention, the plate thickness needs to be 0.4 mm or less in order to make it 20 W / kg or less.
【0048】(実施例4)この実施例では、熱延板の板
厚の効果を示す。鋼種は実施例3の鋼種43(4.1wt%Cr
−4Z2 wt%Si−0.9 wt%Al)を用い、実施例1と同様の
工程によって溶製した。得られた鋳塊から40mm×60mm×
100 mmの圧延素材を切り出し、Ar中で1100℃に加熱して
30min 保持したのち、60mmを20mmに減厚する形状に粗圧
延し、更に1100℃に再加熱して15min 保持してから、所
定の板厚までに熱間圧延した。熱延板から、板厚1.0 m
m、幅10mm、長さ55mm、切り欠き2 mmVノッチのシャル
ピー試験片を圧延方向と平行に採取し、25℃おきの温度
でシャルピー衝撃値を測定して、脆性破面率が50%にな
る温度、すなわち延性−靱性遷移温度を靱性の指標とし
て求めた。(Embodiment 4) In this embodiment, the effect of the thickness of the hot rolled sheet is shown. The steel type was steel type 43 of Example 3 (4.1 wt% Cr
-4Z2 wt% Si-0.9 wt% Al) and melted by the same process as in Example 1. 40mm x 60mm x from the obtained ingot
Cut out 100 mm rolled material and heat it to 1100 ° C in Ar
After holding for 30 minutes, rough rolling was performed to reduce the thickness from 60 mm to 20 mm, reheating to 1100 ° C. and holding for 15 minutes, followed by hot rolling to a predetermined thickness. 1.0 m thick from hot rolled sheet
m, width 10mm, length 55mm, notch 2mm V-notch A Charpy test specimen is taken in parallel with the rolling direction, and the Charpy impact value is measured at every 25 ° C, and the brittle fracture ratio becomes 50%. The temperature, that is, the transition temperature between ductility and toughness, was determined as an index of toughness.
【0049】次に、熱延板の表面をショットブラストで
手入れをしてから、冷間圧延及び温間圧延試験を行っ
た。途中焼鈍は実施せず、1 回の圧下で0.1 〜0.2 mmず
つロール間隙を減ずるように設定し、最終0.20mmまで圧
延した。冷間圧延の場合は熱延板を室温でそのまま圧延
した。温間圧延の場合は、熱延板を150 ℃に予熱してか
ら圧延した。ただし、この場合も途中での再加熱は行わ
なかった。表9に示す結果のとおり、熱延板を薄くする
と靱性が著しく向上し、冷間圧延ないし温間圧延での圧
延性が改善される。この効果は、熱延板厚が3.0 mm以下
で薄くなるほど顕著である。Next, after the surface of the hot-rolled sheet was treated by shot blast, cold rolling and warm rolling tests were performed. The intermediate annealing was not performed, and the rolling was set to reduce the roll gap by 0.1 to 0.2 mm at a time of one press, and the roll was rolled to a final 0.20 mm. In the case of cold rolling, the hot-rolled sheet was directly rolled at room temperature. In the case of warm rolling, the hot rolled sheet was preheated to 150 ° C. and then rolled. However, in this case, reheating was not performed in the middle. As shown in the results shown in Table 9, when the hot-rolled sheet is thinned, the toughness is significantly improved, and the rollability in cold rolling or warm rolling is improved. This effect is more remarkable as the thickness of the hot-rolled sheet is reduced to 3.0 mm or less.
【0050】[0050]
【表9】 [Table 9]
【0051】[0051]
【発明の効果】かくして、この発明によれば、従来のSi
量6.5 wt%までのFe−Si合金やFe−Al合金に比べて同等
以上の高周波磁気特性を、良好な加工性とともに確保す
ることかできる。しかも、耐食性や製造コスト面からも
有利であり、総合的に極めて優秀な磁性材料を与えるも
のである。Thus, according to the present invention, the conventional Si
Higher-frequency magnetic properties equal to or higher than those of Fe-Si alloys and Fe-Al alloys up to 6.5 wt% can be ensured together with good workability. In addition, it is advantageous in terms of corrosion resistance and manufacturing cost, and gives an extremely excellent magnetic material overall.
Claims (10)
wt%以上10wt%以下を含有し、かつ、C及びNを合計量
で100 wtppm 以下に低減し、残部は鉄及び不可避的不純
物からなり、比抵抗が60μΩcm以上であることを特徴と
する高周波磁気特性に優れるFe−Cr−Si系合金。(1) Cr: 1.5 wt% to 20 wt% and Si: 2.5 wt%
high frequency magnetic material characterized by containing not less than 10 wt% and not more than 10 wt%, reducing C and N to not more than 100 wtppm in total, the balance being iron and unavoidable impurities, and having a specific resistance of not less than 60 μΩcm. Fe-Cr-Si alloy with excellent properties.
し、かつ、C及びNを合計量で100 wtppm 以下に低減
し、残部は鉄及び不可避的不純物からなり、比抵抗が60
μΩcm以上であることを特徴とする高周波磁気特性に優
れるFe−Cr−Si系合金。(2) Cr: 1.5 wt% to 20 wt%, Si: 2.5 wt% to 10 wt% and Al: 5 wt% or less, and the total amount of C and N is reduced to 100 wtppm or less. The balance consists of iron and unavoidable impurities and has a specific resistance of 60.
Fe-Cr-Si based alloy with excellent high frequency magnetic properties characterized by being at least μΩcm.
wt%以上10wt%以下を含み、Mn及びPから選ばれる1種
又は2種をそれぞれ1 wt%以内で含有し、かつ、C及び
Nを合計量で100 wtppm 以下に低減し、残部は鉄及び不
可避的不純物からなり、比抵抗が60μΩcm以上であるこ
とを特徴とする高周波磁気特性に優れるFe−Cr−Si系合
金。(3) Cr: 1.5 wt% to 20 wt% and Si: 2.5 wt%
wt% or more and 10 wt% or less, one or two selected from Mn and P are contained within 1 wt%, respectively, and the total amount of C and N is reduced to 100 wtppm or less, and the balance is iron and iron. An Fe-Cr-Si-based alloy which is composed of unavoidable impurities and has an excellent high-frequency magnetic property, having a specific resistance of 60 μΩcm or more.
み、Mn及びPから選ばれる1種又は2種をそれぞれ1 wt
%以内で含有し、かつ、C及びNを合計量で100 wtppm
以下に低減し、残部は鉄及び不可避的不純物からなり、
比抵抗が60μΩcm以上であることを特徴とする高周波磁
気特性に優れるFe−Cr−Si系合金。4. An alloy containing 1.5 wt% or more and 20 wt% or less of Cr, 2.5 wt% or more and 10 wt% or less of Si and 5 wt% or less of Al, and 1 wt.
% And within 100 wtppm of C and N in total
Reduced to the remainder, consisting of iron and unavoidable impurities,
An Fe-Cr-Si alloy having excellent high-frequency magnetic characteristics, having a specific resistance of 60 µΩcm or more.
る請求項1〜4のいずれか1項に記載の高周波磁気特性
に優れるFe−Cr−Si系合金。5. The Fe—Cr—Si based alloy according to claim 1, wherein the Fe—Cr—Si alloy has a plate thickness of 0.01 to 0.4 mm.
wt%以上10wt%以下を含み、かつ、C及びNを合計量で
100 wtppm 以下に低減したFe−Cr−Si系合金素材を圧延
するに際し、 熱間圧延によって板厚3 mm以下とし、次いで熱延板を焼
鈍することなく冷間又は温間で圧延することを特徴とす
る高周波磁気特性に優れるFe−Cr−Si系合金の製造方
法。6. Cr: 1.5 wt% or more and 20 wt% or less and Si: 2.5 wt%
containing not less than 10 wt% and not more than 10 wt%, and the total amount of C and N
When rolling a Fe-Cr-Si alloy material reduced to 100 wtppm or less, the thickness is reduced to 3 mm or less by hot rolling, and then the hot-rolled sheet is rolled cold or warm without annealing. A method for producing an Fe-Cr-Si alloy having excellent high frequency magnetic properties.
wt%以上10wt%以下を含み、かつ、C及びNを合計量で
100 wtppm 以下に低減したFe−Cr−Si系合金素材を圧延
するに際し、 熱間圧延後の冷間圧延又は温間圧延を、途中焼鈍を施す
ことなしに実施することを特徴とする高周波磁気特性に
優れるFe−Cr−Si系合金の製造方法。7. Cr: 1.5 wt% to 20 wt% and Si: 2.5 wt%
containing not less than 10 wt% and not more than 10 wt%, and the total amount of C and N
When rolling a Fe-Cr-Si based alloy material reduced to 100 wtppm or less, high-frequency magnetic characteristics characterized in that cold rolling or warm rolling after hot rolling is performed without intermediate annealing. Method for producing Fe-Cr-Si-based alloys with excellent performance.
wt%以上10wt%以下を含み、かつ、C及びNを合計量で
100 wtppm 以下に低減したFe−Cr−Si系合金素材を圧延
するに際し、 熱間圧延によって板厚3 mm以下とし、次いで熱延板を焼
鈍することなく冷間圧延又は温間圧延に供し、この冷間
又は温間圧延を、途中焼鈍を施すことなしに実施するこ
とを特徴とする高周波磁気特性に優れるFe−Cr−Si系合
金の製造方法。8. Cr: 1.5 wt% or more and 20 wt% or less and Si: 2.5 wt%
containing not less than 10 wt% and not more than 10 wt%, and the total amount of C and N
When rolling the Fe-Cr-Si alloy material reduced to 100 wtppm or less, the thickness is reduced to 3 mm or less by hot rolling, and then the hot-rolled sheet is subjected to cold rolling or warm rolling without annealing. A method for producing an Fe-Cr-Si-based alloy having excellent high-frequency magnetic characteristics, wherein cold or warm rolling is performed without performing intermediate annealing.
含有するものである請求項6〜8のいずれか1項に記載
の高周波磁気特性に優れるFe−Cr−Si系合金の製造方
法。9. The Fe—Cr—Si alloy according to any one of claims 6 to 8, wherein the Fe—Cr—Si alloy material contains 5 wt% or less of Al. Manufacturing method.
選ばれる1種又は2種をそれぞれ1 wt%以内で含有する
ものである請求項6〜9のいずれか1項に記載の高周波
磁気特性に優れるFe−Cr−Si系合金の製造方法。10. The method according to claim 6, wherein the Fe—Cr—Si based alloy material contains one or two selected from Mn and P within 1 wt% each. Manufacturing method of Fe-Cr-Si based alloy with excellent high frequency magnetic properties.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21534798A JP3224781B2 (en) | 1997-11-04 | 1998-07-30 | Fe-Cr-Si based alloy excellent in high frequency magnetic properties and method for producing the same |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30182897 | 1997-11-04 | ||
JP4480298 | 1998-02-26 | ||
JP10-44802 | 1998-03-31 | ||
JP9-301828 | 1998-03-31 | ||
JP10-85771 | 1998-03-31 | ||
JP8577198 | 1998-03-31 | ||
JP21534798A JP3224781B2 (en) | 1997-11-04 | 1998-07-30 | Fe-Cr-Si based alloy excellent in high frequency magnetic properties and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11343544A true JPH11343544A (en) | 1999-12-14 |
JP3224781B2 JP3224781B2 (en) | 2001-11-05 |
Family
ID=27461591
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21534798A Expired - Fee Related JP3224781B2 (en) | 1997-11-04 | 1998-07-30 | Fe-Cr-Si based alloy excellent in high frequency magnetic properties and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3224781B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11229095A (en) * | 1998-02-10 | 1999-08-24 | Nippon Steel Corp | Non-oriented electrical steel sheet for high frequency and its manufacturing method |
JP2002146492A (en) * | 2000-11-14 | 2002-05-22 | Kawasaki Steel Corp | Laminated silicon steel sheet having excellent workability |
JP2005200755A (en) * | 2004-01-19 | 2005-07-28 | Sumitomo Metal Ind Ltd | Method for producing non-oriented electrical steel sheet |
US7465364B2 (en) | 2002-12-24 | 2008-12-16 | Jfe Steel Corporation | Fe-Cr-Si based non-oriented electromagnetic steel sheet and process for producing the same |
WO2020090156A1 (en) | 2018-10-31 | 2020-05-07 | Jfeスチール株式会社 | Method for manufacturing non-oriented electromagnetic steel sheet |
WO2020136993A1 (en) | 2018-12-27 | 2020-07-02 | Jfeスチール株式会社 | Non-oriented electrical steel sheet and method for producing same |
WO2023112892A1 (en) | 2021-12-16 | 2023-06-22 | Jfeスチール株式会社 | Non-oriented electromagnetic steel sheet and method for manufacturing same |
WO2023112891A1 (en) | 2021-12-16 | 2023-06-22 | Jfeスチール株式会社 | Non-oriented electromagnetic steel sheet and method for manufacturing same |
WO2023149248A1 (en) | 2022-02-02 | 2023-08-10 | Jfeスチール株式会社 | Non-oriented electromagnetic steel sheet and method for producing same |
WO2023149249A1 (en) | 2022-02-02 | 2023-08-10 | Jfeスチール株式会社 | Non-oriented electromagnetic steel sheet and method for manufacturing same |
WO2023149269A1 (en) | 2022-02-02 | 2023-08-10 | Jfeスチール株式会社 | Non-oriented electromagnetic steel sheet and method for manufacturing same |
-
1998
- 1998-07-30 JP JP21534798A patent/JP3224781B2/en not_active Expired - Fee Related
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11229095A (en) * | 1998-02-10 | 1999-08-24 | Nippon Steel Corp | Non-oriented electrical steel sheet for high frequency and its manufacturing method |
JP2002146492A (en) * | 2000-11-14 | 2002-05-22 | Kawasaki Steel Corp | Laminated silicon steel sheet having excellent workability |
JP4581228B2 (en) * | 2000-11-14 | 2010-11-17 | Jfeスチール株式会社 | Laminated electrical steel sheet with excellent workability |
US7465364B2 (en) | 2002-12-24 | 2008-12-16 | Jfe Steel Corporation | Fe-Cr-Si based non-oriented electromagnetic steel sheet and process for producing the same |
JP2005200755A (en) * | 2004-01-19 | 2005-07-28 | Sumitomo Metal Ind Ltd | Method for producing non-oriented electrical steel sheet |
JP4599843B2 (en) * | 2004-01-19 | 2010-12-15 | 住友金属工業株式会社 | Method for producing non-oriented electrical steel sheet |
WO2020090156A1 (en) | 2018-10-31 | 2020-05-07 | Jfeスチール株式会社 | Method for manufacturing non-oriented electromagnetic steel sheet |
KR20210053979A (en) | 2018-10-31 | 2021-05-12 | 제이에프이 스틸 가부시키가이샤 | Method for manufacturing non-oriented electrical steel sheet |
WO2020136993A1 (en) | 2018-12-27 | 2020-07-02 | Jfeスチール株式会社 | Non-oriented electrical steel sheet and method for producing same |
KR20210082516A (en) | 2018-12-27 | 2021-07-05 | 제이에프이 스틸 가부시키가이샤 | Non-oriented electrical steel sheet and its manufacturing method |
WO2023112892A1 (en) | 2021-12-16 | 2023-06-22 | Jfeスチール株式会社 | Non-oriented electromagnetic steel sheet and method for manufacturing same |
WO2023112891A1 (en) | 2021-12-16 | 2023-06-22 | Jfeスチール株式会社 | Non-oriented electromagnetic steel sheet and method for manufacturing same |
KR20240089777A (en) | 2021-12-16 | 2024-06-20 | 제이에프이 스틸 가부시키가이샤 | Non-oriented electrical steel sheet and method of manufacturing the same |
KR20240099335A (en) | 2021-12-16 | 2024-06-28 | 제이에프이 스틸 가부시키가이샤 | Non-oriented electrical steel sheet and method of manufacturing the same |
WO2023149248A1 (en) | 2022-02-02 | 2023-08-10 | Jfeスチール株式会社 | Non-oriented electromagnetic steel sheet and method for producing same |
WO2023149249A1 (en) | 2022-02-02 | 2023-08-10 | Jfeスチール株式会社 | Non-oriented electromagnetic steel sheet and method for manufacturing same |
WO2023149269A1 (en) | 2022-02-02 | 2023-08-10 | Jfeスチール株式会社 | Non-oriented electromagnetic steel sheet and method for manufacturing same |
KR20240121813A (en) | 2022-02-02 | 2024-08-09 | 제이에프이 스틸 가부시키가이샤 | Non-oriented electrical steel sheet and method for manufacturing the same |
KR20240125977A (en) | 2022-02-02 | 2024-08-20 | 제이에프이 스틸 가부시키가이샤 | Non-oriented electrical steel sheet and method for manufacturing the same |
KR20240125976A (en) | 2022-02-02 | 2024-08-20 | 제이에프이 스틸 가부시키가이샤 | Non-oriented electrical steel sheet and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JP3224781B2 (en) | 2001-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3224781B2 (en) | Fe-Cr-Si based alloy excellent in high frequency magnetic properties and method for producing the same | |
WO2016051437A1 (en) | Ferritic stainless steel and method for producing same | |
JP2019173087A (en) | Martensitic stainless hot rolled steel sheet, manufacturing method of disc brake rotor using the steel sheet | |
JP4388613B2 (en) | Ferritic chromium alloyed steel without ridging | |
JP5094887B2 (en) | Manufacturing method of high strength and low specific gravity steel sheet with excellent ductility | |
CN114351060A (en) | Hot-rolled steel strip, preparation method thereof and application thereof in bimetal band saw backing material | |
EP2890825B1 (en) | Ferritic stainless steel with excellent oxidation resistance, good high temperature strength, and good formability | |
JP7223210B2 (en) | Precipitation hardening martensitic stainless steel sheet with excellent fatigue resistance | |
KR100438061B1 (en) | An electromagnetic steel sheet excellent in high-frequency magnetic properties and a method for manufacturing the same | |
JP2002212683A (en) | Ferritic stainless steel sheet having excellent high temperature oxidation resistance | |
JP4173609B2 (en) | Austenitic stainless steel and steel plate for press forming with excellent formability and hot workability | |
JP3870616B2 (en) | Fe-Cr-Si alloy and method for producing the same | |
JP3242007B2 (en) | Ferritic stainless steel for automotive exhaust system members with excellent resistance to oxidation scale peeling | |
JP3280692B2 (en) | Manufacturing method of high strength cold rolled steel sheet for deep drawing | |
JPH07126812A (en) | Ferritic stainless steel sheet excellent in secondary working brittleness and its production | |
JP3758425B2 (en) | Method for producing Fe-Cr-Si electrical steel sheet | |
KR100334148B1 (en) | Fe-Cr-Si STEEL SHEETS HAVING EXCELLENT CORROSION RESISTANCE AND METHOD FOR MANUFACTURING THE SAME | |
JPWO2005100627A1 (en) | Nondirectional electromagnetic copper plate with excellent punching workability and magnetic properties after strain relief annealing and its manufacturing method | |
JPH0633197A (en) | Fe-cr alloy excellent in workability | |
JP2005330527A (en) | Non-oriented electrical steel sheet with excellent magnetic properties | |
JPS5871356A (en) | Ferritic stainless steel with excellent usability, mainly corrosion resistance, and its manufacturing method | |
JP4193227B2 (en) | Fe-Cr-Si steel sheet and method for producing the same | |
JP2001032052A (en) | Fe-Cr-Sx ALLOY EXCELLENT IN HIGH FREQUENCY CORE LOSS CHARACTERISTIC | |
JP4210773B2 (en) | Non-oriented electrical steel sheet | |
JP2002194513A (en) | Silicon-chromium steel sheet superior in working deformation characteristics and manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20010724 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070824 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080824 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080824 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090824 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090824 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100824 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110824 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120824 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120824 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130824 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |