JPH11254107A - Casting method of ferritic stainless steel molten steel - Google Patents
Casting method of ferritic stainless steel molten steelInfo
- Publication number
- JPH11254107A JPH11254107A JP7332798A JP7332798A JPH11254107A JP H11254107 A JPH11254107 A JP H11254107A JP 7332798 A JP7332798 A JP 7332798A JP 7332798 A JP7332798 A JP 7332798A JP H11254107 A JPH11254107 A JP H11254107A
- Authority
- JP
- Japan
- Prior art keywords
- ferritic stainless
- stainless steel
- molten
- weight
- molten steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910001220 stainless steel Inorganic materials 0.000 title claims abstract description 38
- 238000005266 casting Methods 0.000 title claims abstract description 24
- 238000000034 method Methods 0.000 title claims abstract description 24
- 229910000831 Steel Inorganic materials 0.000 title claims description 49
- 239000010959 steel Substances 0.000 title claims description 49
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 17
- 239000001301 oxygen Substances 0.000 claims abstract description 17
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910000861 Mg alloy Inorganic materials 0.000 claims abstract description 8
- 239000011651 chromium Substances 0.000 claims description 9
- 229910052804 chromium Inorganic materials 0.000 claims description 8
- 229910000838 Al alloy Inorganic materials 0.000 claims description 5
- 230000007797 corrosion Effects 0.000 abstract description 16
- 238000005260 corrosion Methods 0.000 abstract description 16
- 230000000694 effects Effects 0.000 abstract description 5
- 230000002411 adverse Effects 0.000 abstract description 3
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 239000013078 crystal Substances 0.000 description 51
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 12
- 238000007670 refining Methods 0.000 description 11
- 238000011156 evaluation Methods 0.000 description 7
- 238000005096 rolling process Methods 0.000 description 7
- 238000009749 continuous casting Methods 0.000 description 6
- 238000007711 solidification Methods 0.000 description 6
- 230000008023 solidification Effects 0.000 description 6
- 238000001816 cooling Methods 0.000 description 5
- 238000011081 inoculation Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 238000003825 pressing Methods 0.000 description 5
- 230000007547 defect Effects 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 150000001247 metal acetylides Chemical class 0.000 description 3
- 230000037303 wrinkles Effects 0.000 description 3
- 229910000599 Cr alloy Inorganic materials 0.000 description 2
- 239000000788 chromium alloy Substances 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 239000002054 inoculum Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910018505 Ni—Mg Inorganic materials 0.000 description 1
- 229910007981 Si-Mg Inorganic materials 0.000 description 1
- 229910008316 Si—Mg Inorganic materials 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000002932 luster Substances 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Landscapes
- Continuous Casting (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、鋳造された鋳片を
圧延加工した鋼板にプレス等の二次加工を施した際に発
生するリジングを防止するフェライト系ステンレス溶鋼
の鋳造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for casting molten ferritic stainless steel which prevents ridging which occurs when a cast slab is subjected to secondary processing such as pressing on a rolled steel plate.
【0002】[0002]
【従来の技術】フェライト系ステンレス鋼板は、耐食性
に優れており、美しい光沢を長期間にわたり保ち続ける
こと、及び比較的安価であることから、厨房器具や家電
製品等に広く使用されている。このフェライト系ステン
レス鋼板は、転炉や電気炉等を用いてクロムを含有した
溶鋼を溶製し、真空精錬を行った後、連続鋳造あるいは
造塊鋳造法等により得られた鋳片を圧延加工して薄い鋼
板を製造し、この鋼板にプレス成形等の二次加工を施し
て用いられている。しかし、フェライト系ステンレス鋼
板にプレス成形等の二次加工を施した場合、リジングと
呼ばれる結晶粒ごとの変形に起因した微小な凹凸(し
わ)の表面欠陥が発生することが知られており、程度が
酷い場合は、表面の美観を損なうだけでなく、微小割れ
の起因となるので、研磨等の手段により除去しなければ
ならない。このリジングの発生は、鋳片の結晶組織が大
きいと発生することも知られている。一般の鋳片の結晶
組織は、図3に示すように、鋳型の一次冷却で最初に凝
固するチル晶30では、比較的に小さい結晶組織である
が、内部では、冷却が緩慢となり大きいデンドライト3
1の結晶組織となる。この結晶組織は、圧延加工中及び
圧延加工後の鋼板の結晶組織としても大きくなり、プレ
ス成形等の二次加工の際に、結晶粒ごとの伸びの差が発
生して微小な表面の凹凸(しわ)がおきる。また、リジ
ングは、オーステナイト系ステンレス鋼板に比べて、相
変態がなく結晶組織の大きいフェライト系ステンレス鋼
板に顕著に発生する。このリジングを防止する方法とし
て、特開平7−15137号公報に示すように、溶鋼に
添加した際に溶解しないNi酸化物、Ti酸化物、その
他炭化物等を5重量%以下の範囲で添加して、微細な結
晶組織を形成するか、又は「鉄と鋼(1974年4−S
79)」に示すように、窒化物を形成する元素を添加し
て窒化物の形成により、微細な結晶組織を形成する方法
等が提案されている。また、一般的に用いられている結
晶組織の微細化の方法としては、低温鋳造や電磁撹拌を
行って柱状晶の成長を抑制して等軸晶を形成することが
行われている。2. Description of the Related Art Ferritic stainless steel sheets are widely used in kitchen appliances and home electric appliances because they have excellent corrosion resistance, maintain beautiful luster for a long period of time, and are relatively inexpensive. This ferritic stainless steel sheet is produced by melting molten steel containing chromium using a converter or an electric furnace, performing vacuum refining, and then rolling a slab obtained by continuous casting or ingot casting. In this way, a thin steel plate is manufactured and subjected to secondary processing such as press forming. However, when secondary processing such as press forming is performed on ferritic stainless steel sheet, it is known that surface defects such as fine irregularities (wrinkles) due to deformation of each crystal grain called ridging occur. Is severe, it not only impairs the appearance of the surface but also causes micro-cracks, so it must be removed by means such as polishing. It is also known that this ridging occurs when the crystal structure of the slab is large. As shown in FIG. 3, the crystal structure of a general slab is a relatively small crystal structure in a chill crystal 30 which is first solidified by primary cooling of a mold, but the cooling is slow inside and a large dendrite 3 is formed inside.
1 crystal structure. This crystal structure also increases as the crystal structure of the steel sheet during and after rolling, and during secondary processing such as press forming, a difference in elongation for each crystal grain is generated, and fine surface irregularities ( Wrinkles). In addition, ridging is remarkably generated in a ferritic stainless steel sheet having no phase transformation and a large crystal structure as compared with an austenitic stainless steel sheet. As a method for preventing this ridging, as disclosed in JP-A-7-15137, Ni oxides, Ti oxides, and other carbides that do not dissolve when added to molten steel are added in a range of 5% by weight or less. , Forming a fine crystalline structure, or "iron and steel (4-S
79)), a method of forming a fine crystal structure by adding a nitride-forming element to form a nitride has been proposed. Further, as a commonly used method for refining the crystal structure, low-temperature casting or electromagnetic stirring is performed to suppress the growth of columnar crystals to form equiaxed crystals.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、溶鋼に
溶解しないNi酸化物、Ti酸化物、その他炭化物等を
5重量%以下の範囲で添加して、微細な結晶組織を形成
する方法では、Ni酸化物、Ti酸化物、炭化物等が溶
鋼に溶けないために、溶鋼の全体に均一に分散させるこ
とが困難であり、添加物が凝集し、微細な結晶組織の形
成効率の低下及び添加物の凝集物が圧延時に疵となる。
更に、この添加物の凝集を防止するには、添加方法に特
別の工夫を要するが具体的な手段がなく実現の可能性が
ない等の問題がある。また、窒化物を形成する元素を添
加して窒化物を形成することにより、微細な結晶組織を
形成する方法では、例えば、Tiを添加する場合でみる
と、0.15重量%以上の添加が必要であり、介在物の
増加、耐食性の低下等の材質への悪影響や合金コストの
上昇等の問題がある。更に、一般的に用いられている結
晶組織の微細化の方法においても微細な結晶組織の形成
効率が低く、特に、低温鋳造では、低温度によるノズル
詰まりや地金付着等の鋳造の支障を招く等の問題があ
る。However, in the method of forming a fine crystal structure by adding Ni oxides, Ti oxides, other carbides and the like insoluble in molten steel in a range of 5% by weight or less, the Ni oxide , Oxides of Ti, carbides, etc. do not dissolve in the molten steel, making it difficult to uniformly disperse them throughout the molten steel, causing the additives to agglomerate, lowering the efficiency of forming a fine crystal structure, and agglomerating the additives. The material becomes flawed during rolling.
Furthermore, in order to prevent the aggregation of the additives, special measures are required for the addition method, but there is a problem that there is no specific means and there is no possibility of realization. In a method of forming a fine crystal structure by adding a nitride-forming element to form a nitride, for example, when adding Ti, 0.15% by weight or more is added. It is necessary, and there are problems such as an increase in inclusions, an adverse effect on the material such as a decrease in corrosion resistance, and an increase in alloy cost. Further, even in a commonly used method for refining a crystal structure, the efficiency of forming a fine crystal structure is low. Particularly, in low-temperature casting, there is a problem in casting such as nozzle clogging and metal adhesion due to low temperature. There are problems such as.
【0004】本発明はかかる事情に鑑みてなされたもの
で、鋳片の凝固組織を微細にすることにより、リジング
の発生を防止し、鋳片の介在物による品質低下及び耐食
性の低下等の材質への悪影響の少ないフェライト系ステ
ンレス溶鋼の鋳造方法を提供することを目的とする。[0004] The present invention has been made in view of the above circumstances, by preventing the occurrence of ridging by minimizing the solidification structure of the slab, to reduce the quality and corrosion resistance of the slab due to inclusions in the slab. It is an object of the present invention to provide a method of casting molten ferritic stainless steel that has little adverse effect on steel.
【0005】[0005]
【課題を解決するための手段】前記目的に沿う請求項1
記載のフェライト系ステンレス溶鋼の鋳造方法は、クロ
ムを10〜30重量%含有するフェライト系ステンレス
溶鋼に、金属Mg又はMg合金を添加して、前記フェラ
イト系ステンレス溶鋼の酸素含有量に対するMg%を下
記(1)式の範囲にして鋳造する。 3/8×(T.O)≦(Mg%)≦5×(T.O)+0.05・・・(1) ただし、T.Oは、フェライト系ステンレス溶鋼中の全
酸素含有量(重量%) Mg%は、フェライト系ステンレス溶鋼中のMg含有量
(重量%) ここで、フェライト系ステンレス溶鋼のクロムの含有量
が10重量%より少ないと製品の耐食性が低下する。ま
た、クロムの含有量が30重量%より多いと高価な合金
の多量な使用となりコストが大幅に上昇するが、製品の
耐食性はそれほど向上しない。また、Mg%が酸素含有
量3/8×(T.O)より少なくなると、フェライト系
ステンレス溶鋼内に、生成する接種核の絶対量が不足し
て、凝固した鋳片の結晶組織を微細化できない。Mg含
有量が5×(T.O)+0.05を超えると微細化の効
果が飽和し添加する金属Mg等のコストが上昇する。According to the present invention, there is provided a semiconductor device comprising:
The casting method of the molten ferritic stainless steel described in the above is to add a metal Mg or an Mg alloy to a molten ferritic stainless steel containing 10 to 30% by weight of chromium, and to set Mg% to the oxygen content of the molten ferritic stainless steel as follows. The casting is performed within the range of the equation (1). 3/8 × (TO) ≦ (Mg%) ≦ 5 × (TO) +0.05 (1) O is the total oxygen content in molten ferritic stainless steel (% by weight) Mg is the Mg content in molten ferritic stainless steel (% by weight) Here, the chromium content of the molten ferritic stainless steel is 10% by weight. If the amount is less, the corrosion resistance of the product decreases. On the other hand, if the chromium content is more than 30% by weight, a large amount of expensive alloy is used and the cost is greatly increased, but the corrosion resistance of the product is not so improved. On the other hand, when the content of Mg is less than 3/8 × (TO), the absolute amount of inoculation nuclei generated in the molten ferritic stainless steel is insufficient, and the crystal structure of the solidified slab is refined. Can not. If the Mg content exceeds 5 × (TO) +0.05, the effect of miniaturization is saturated, and the cost of the added metallic Mg or the like increases.
【0006】請求項2記載のフェライト系ステンレス溶
鋼の鋳造方法は、請求項1記載のフェライト系ステンレ
ス溶鋼の鋳造方法において、前記フェライト系ステンレ
ス溶鋼がAl又はAl合金によって脱酸されている。According to a second aspect of the present invention, there is provided a method for casting a molten ferritic stainless steel according to the first aspect, wherein the molten ferritic stainless steel is deoxidized with Al or an Al alloy.
【0007】[0007]
【発明の実施の形態】続いて、添付した図面を参照しつ
つ、本発明を具体化した実施の形態につき説明し、本発
明の理解に供する。図1は本発明の一実施の形態に係る
フェライト系ステンレス溶鋼の鋳造方法に用いる連続鋳
造装置の概略図、図2は鋳片の断面の凝固組織図であ
る。図1に示すように、連続鋳造装置Aは、フェライト
系ステンレス溶鋼(以下溶鋼と称する)10をタンディ
ッシュ11に設けた浸漬ノズル12から鋳型13に注湯
し、鋳型13による一次冷却により凝固殻を形成して
後、引き続き、支持セグメント14によって鋳片15を
支持し、冷却水ノズル(図示せず)から散水して凝固を
促進する。更に、鋳片15は、圧下セグメント16によ
り所定の押し込み量で圧下され、ピンチロール17によ
り連続して引き抜かれ、所定のサイズに切断されて後、
圧延加工される。DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention. FIG. 1 is a schematic view of a continuous casting apparatus used in a method for casting molten ferritic stainless steel according to an embodiment of the present invention, and FIG. 2 is a solidification structure diagram of a cross section of a slab. As shown in FIG. 1, a continuous casting apparatus A pours a molten ferritic stainless steel (hereinafter, referred to as molten steel) 10 into a mold 13 from an immersion nozzle 12 provided in a tundish 11, and performs primary cooling by the mold 13 to solidify the solidified shell. Is formed, the slab 15 is subsequently supported by the support segments 14, and water is sprayed from a cooling water nozzle (not shown) to promote solidification. Further, the slab 15 is lowered by a predetermined pushing amount by the pressing segment 16, continuously pulled out by the pinch roll 17, cut into a predetermined size,
Rolled.
【0008】次に、連続鋳造装置Aを適用した本発明の
一実施の形態に係るフェライト系ステンレス溶鋼の鋳造
方法について説明する。溶鋼10は、転炉あるいは電気
炉等でクロム合金を添加し、Cを0.60重量%程度に
脱炭精錬した後、真空二次精錬(図示せず)を行い、C
が0.050重量%、Crが10.0重量%に調整さ
れ、必要に応じてSi、Mn等を含有している。この溶
鋼10は、タンディッシュ11に設けた浸漬ノズル12
から鋳型13に注湯されて、鋳型13による一次冷却と
支持セグメント14に付設した冷却水ノズル(図示せ
ず)からの散水によって凝固して鋳片15となる。この
鋳片15は、ピンチロール17により所定の鋳造速度
(m/分)となるように連続して引き抜きを行った。更
に、ピンチロール17による鋳片15の引き抜きの際
に、圧下セグメント16により5〜10mmの押し込み
量に相当する圧下が施され、内部に形成されたセンター
ポロシティ等の内部欠陥が圧着される。また、溶鋼10
は、転炉、電気炉や真空二次精錬(図示せず)により溶
製する過程において、フリーの酸素及びFeO、SiO
2 、MnO、Al2 O3 等の酸化物を含有しており、こ
れ等を合計した酸素含有量(T.O)は、脱酸剤を調整
して0.0025重量%とした。そして、タンディッシ
ュ11内の溶鋼10に金属Mgの粒を添加して、そのM
g%が3/8×(T.O)〜5×(T.O)+0.05
値に見合う0.0009〜0.0625重量%の範囲に
なるように添加した。Next, a method of casting molten ferritic stainless steel according to one embodiment of the present invention using the continuous casting apparatus A will be described. The molten steel 10 is prepared by adding a chromium alloy in a converter or an electric furnace or the like, decarbonizing and refining C to about 0.60% by weight, and then performing vacuum secondary refining (not shown).
Is adjusted to 0.050% by weight and Cr to 10.0% by weight, and contains Si, Mn and the like as necessary. The molten steel 10 is provided with a dipping nozzle 12 provided in a tundish 11.
Is poured into a mold 13 and solidified into a slab 15 by primary cooling by the mold 13 and water spraying from a cooling water nozzle (not shown) attached to the support segment 14. The slab 15 was continuously drawn by a pinch roll 17 at a predetermined casting speed (m / min). Further, when the slab 15 is pulled out by the pinch roll 17, a reduction corresponding to a pressing amount of 5 to 10 mm is performed by the reduction segment 16, and internal defects such as center porosity formed inside are pressed. In addition, molten steel 10
Is free oxygen and FeO, SiO in the process of melting by a converter, an electric furnace or a vacuum secondary refining (not shown).
2 , oxides such as MnO and Al 2 O 3 , and the total oxygen content (TO) of these oxides was adjusted to 0.0025% by weight by adjusting the deoxidizing agent. Then, particles of metallic Mg are added to the molten steel 10 in the tundish 11 so that the M
g% is 3/8 × (TO) to 5 × (TO) +0.05
It was added so as to be in the range of 0.0009 to 0.0625% by weight corresponding to the value.
【0009】添加された金属Mgは、溶鋼10に含有す
る酸素及び酸化物と反応してMgOを生成し、このMg
Oが溶鋼10中に分散する。このMgOは、溶鋼10が
鋳型13及び支持セグメント14内で冷却されて凝固す
る際に、MgOの格子定数0.4213nm(ナノメー
タ)がδ−鉄の格子定数0.4054nm(ナノメー
タ)に極めて近似するために、接種核(この核を起点に
溶鋼が最初に凝固する)として作用する。その結果、M
gOを核として凝固を開始し、引き続き結晶粒に成長す
る。そして、隣合う結晶粒が接したところで結晶粒の成
長が止まる。従って、溶鋼10の中にMgOが多量に分
散される程、結晶粒が小さくなり、結晶組織を微細にで
きる。しかし、添加された金属Mgに対し、溶鋼10内
の酸素含有量(T.O)が極めて少ないと、金属Mgの
一部がMgOを形成し、他はMgとして溶鋼10中に存
在する傾向を示す。また、MgOは、溶鋼10に混入す
るAl2 O3 と反応してMgO・Al2 O3 を容易に形
成し、このMgO・Al2 O3 が接種核として作用す
る。この理由から、Mg濃度が3/8×(T.O)より
低下すると、接種核の絶対量が不足すること、及び溶鋼
内に混在するAl2 O3 を活用し、最小限の酸素を用い
た接種核(MgO・Al2 O3 )を形成できず、接種核
となるMgO(MgO・Al2 O3 )量が不足するの
で、凝固した鋳片の結晶組織を微細化できない。一方、
Mg濃度が5×(T.O)+0.05値を超えると、い
かに金属Mgを添加しても微細化の働きが飽和して顕著
な効果が現れず、金属Mg等のコストが上昇する等の問
題が発生する。また、金属Mgの添加量に対して、酸素
含有量(T.O)に余裕がある場合は、接種核としてM
gOとMgO・Al2 O3 が混在する場合もある。な
お、Al2 O3 源としては、溶鋼10を転炉、電気炉や
真空二次精錬(図示せず)により溶製する際に、耐火物
の溶出や脱酸生成物として溶鋼10内に混入しており、
Al2 O3 の一部あるいは全てを用いることで、MgO
・Al2 O3のスピネル化合物が形成される。また、連
続鋳造された鋳片15を顕微鏡で5倍に拡大し、鋳片1
5の表層から8mmの範囲の結晶組織のスケッチを図2
に示すが、鋳型13の一次冷却で最初に凝固したチル晶
20の内側に存在する結晶組織も微細な等軸結晶21を
形成しており、結晶組織の微細化が十分になされてお
り、しかも、表層から8mm以上の内部も等軸結晶21
に相当する微細な結晶組織にすることができた。この鋳
片15を用いて圧延加工した鋼板も微細な結晶組織を備
えており、プレス加工した製品にリジングの発生はなか
った。なお、溶鋼10のMg%を高めるために、金属M
gの粒の他にSi−Mg合金、Ni−Mg等Mg合金を
用いることもできる。The added metallic Mg reacts with oxygen and oxides contained in the molten steel 10 to produce MgO,
O is dispersed in the molten steel 10. When the molten steel 10 is cooled and solidified in the mold 13 and the support segment 14, the MgO lattice constant of 0.4213 nm (nanometer) is very close to the lattice constant of δ-iron of 0.4054 nm (nanometer). Therefore, it acts as an inoculation nucleus (from which the molten steel solidifies first). As a result, M
Solidification starts with gO as a nucleus and subsequently grows into crystal grains. Then, when the adjacent crystal grains come into contact with each other, the growth of the crystal grains stops. Therefore, the more the MgO is dispersed in the molten steel 10, the smaller the crystal grains become, and the finer the crystal structure can be. However, if the oxygen content (TO) in the molten steel 10 is extremely small with respect to the added metallic Mg, a part of the metallic Mg forms MgO, and the others tend to be present in the molten steel 10 as Mg. Show. Further, MgO is a MgO · Al 2 O 3 easily formed by reacting, Al 2 O 3, based on mixed in the molten steel 10, this MgO · Al 2 O 3 acts as an inoculum nucleus. For this reason, when the Mg concentration is lower than 3/8 × (TO), the absolute amount of the inoculation nucleus becomes insufficient, and Al 2 O 3 mixed in the molten steel is used to minimize the use of oxygen. can not form had been inoculated nuclei (MgO · Al 2 O 3), since the MgO serving as inoculation nuclei (MgO · Al 2 O 3) amount is insufficient, not be fine crystal structure of the solidified slab. on the other hand,
If the Mg concentration exceeds 5 × (TO) +0.05, no matter how much metallic Mg is added, the refining function is saturated and no remarkable effect is exhibited, and the cost of metallic Mg increases. Problems occur. When the oxygen content (TO) has a margin with respect to the addition amount of metallic Mg, M
In some cases, gO and MgO.Al 2 O 3 are mixed. As a source of Al 2 O 3 , when molten steel 10 is smelted by a converter, an electric furnace, or vacuum secondary refining (not shown), it is mixed into molten steel 10 as a product of elution of refractories and deoxidation products. And
By using part or all of Al 2 O 3 , MgO
A spinel compound of Al 2 O 3 is formed. Also, the continuously cast slab 15 was magnified 5 times with a microscope,
FIG. 2 shows a sketch of the crystal structure in the range of 8 mm from the surface layer of FIG.
As shown in the figure, the crystal structure existing inside the chill crystal 20 solidified first by the primary cooling of the mold 13 also forms a fine equiaxed crystal 21, and the crystal structure is sufficiently refined. The equiaxed crystal 21 is also 8 mm or more from the surface layer.
Could be obtained. The steel sheet rolled using the slab 15 also had a fine crystal structure, and no ridging occurred in the pressed product. In addition, in order to increase Mg% of molten steel 10, metal M
In addition to the g particles, a Mg alloy such as a Si-Mg alloy or Ni-Mg can be used.
【0010】また、前記タンディッシュ11内の溶鋼1
0を予めAl又はAl合金を添加して脱酸を行って後
に、前述した様に酸素含有量(T.O)0.0025重
量%に対し、3/8×(T.O)〜5×(T.O)+
0.05値に見合う0.0009〜0.0625重量%
の範囲のMg%になるようにタンディッシュ11内の溶
鋼10に金属Mgの粒を添加することもできる。溶鋼1
0を予めAl又はAl合金を添加して脱酸を行うことに
より、転炉、電気炉及び二次精錬(図示せず)等によっ
て過剰に含有する酸素含有量を適正に低減できるので、
接種核として作用しないAl2 O3 等の介在物を減少で
き、製品の耐食性の向上や介在物に起因する欠陥の発生
を防止できるのでより好ましい結果が得られる。Further, the molten steel 1 in the tundish 11 is
0 was previously deoxidized by adding Al or an Al alloy, and then, as described above, with respect to the oxygen content (TO) of 0.0025% by weight, 3/8 × (TO) to 5 × (TO) +
0.0009-0.0625% by weight corresponding to 0.05 value
It is also possible to add particles of metallic Mg to the molten steel 10 in the tundish 11 so that the Mg content falls within the range of Mg%. Molten steel 1
By adding Al or Al alloy in advance and performing deoxidation, the oxygen content excessively contained in the converter, electric furnace, secondary refining (not shown), etc. can be appropriately reduced.
Inclusions such as Al 2 O 3 that do not act as inoculation nuclei can be reduced, and the corrosion resistance of the product can be improved and defects caused by the inclusions can be prevented.
【0011】[0011]
【実施例】次に、フェライト系ステンレス溶鋼の鋳造方
法の実施例について説明する。まず、溶鋼は、転炉ある
いは電気炉等でクロム合金を添加し、Cを0.60重量
%程度に脱炭精錬した後、真空二次精錬を行なったもの
を用いた。組成としては、Cを0.010〜0.051
重量%、Siを0.33〜0.40重量%、Mnを0.
18〜0.35重量%、Pを0.010〜0.029重
量%、Sを0.003〜0.005重量%、クロムを1
0〜30重量%、Alを0.001重量%、Nを0.0
072〜0.0124重量%、T.Oを0.0069〜
0.0084重量%含有したAl脱酸を行わない場合
で、タンディッシュ11内に、金属Mgの粒を添加し、
酸素含有量(T.O)に対するMg%を3/8×(T.
O)以上、且つ5×(T.O)+0.05以下に調整し
て鋳造した。この鋳片の結晶組織の微細化の状態(結晶
粒径)及びプレス加工後の耐食性とリジング発生ランク
を調査した(表1の実施例NO.1〜3)。なお、リジ
ングの評価は、JIS5号の引張り試験片を作成して表
面を鏡面研磨したものに、15%の引張り変形を与えた
後の表面のリジング(しわ)の高さからAランク(10
μm以下)、Bランク(10〜20μm未満)、Cラン
ク(20μm以上)とした。EXAMPLE Next, an example of a method for casting a ferritic stainless steel molten steel will be described. First, the molten steel was prepared by adding a chromium alloy in a converter or an electric furnace, decarbonizing and refining C to about 0.60% by weight, and then performing vacuum secondary refining. As a composition, C is 0.010 to 0.051.
% By weight, 0.33 to 0.40% by weight of Si, and 0.1% of Mn.
18 to 0.35% by weight, P is 0.010 to 0.029% by weight, S is 0.003 to 0.005% by weight, and chromium is 1%.
0 to 30% by weight, 0.001% by weight of Al, 0.0% by weight of N
072 to 0.0124% by weight; O from 0.0069 to
When the Al deoxidation containing 0.0084% by weight is not performed, the metal Mg particles are added into the tundish 11,
Mg% with respect to the oxygen content (TO) is 3/8 × (TO.
O) or more and 5 × (TO) +0.05 or less. The state of refinement (crystal grain size) of the crystal structure of the cast slab, the corrosion resistance after press working, and the ridging rank were examined (Examples Nos. 1 to 3 in Table 1). The evaluation of ridging was made based on the height of ridging (wrinkles) on the surface after 15% tensile deformation was applied to a JIS No. 5 tensile test piece prepared and mirror polished on the surface.
μm), rank B (less than 10 to 20 μm), and rank C (more than 20 μm).
【0012】まず、実施例NO.1は、T.Oを0.0
072重量%含有し、Mg%を0.0028重量%に調
整した場合であり、平均の結晶粒径1.5mmの微細な
結晶組織が得られ、プレス加工後の耐食性及びリジング
発生ランクもAの良好であり、総合評価が良好(○)な
結果であった。更に、実施例NO.2及びNO.3は、
それぞれT.Oを0.0069重量%、0.0084重
量%含有し、Mg%について、NO.2では、0.08
35重量%、NO.3は、0.0056重量%に調整し
た場合であり、NO.2は、平均の結晶粒径が0.7m
m、NO.3は、平均の結晶粒径が1.2mmである微
細な結晶組織が得られ、同様にプレス加工後の耐食性及
びリジング発生ランクもAの良好であり、総合評価が良
好(○)な結果であった。First, in Example NO. 1 is T. O to 0.0
072% by weight and Mg% adjusted to 0.0028% by weight. A fine crystal structure having an average crystal grain size of 1.5 mm was obtained. The corrosion resistance after press working and the ridging generation rank were also A. The results were good, and the overall evaluation was good (○). Further, in Example NO. 2 and NO. 3 is
T. O is contained in 0.0069% by weight and 0.0084% by weight. In 2, it is 0.08
35% by weight, NO. No. 3 is a case where it was adjusted to 0.0056% by weight. 2 has an average crystal grain size of 0.7 m
m, NO. No. 3, a fine crystal structure having an average crystal grain size of 1.2 mm was obtained, and similarly, the corrosion resistance after press working and the ridging rank were good in A, and the overall evaluation was good ()). there were.
【0013】[0013]
【表1】 [Table 1]
【0014】また、Cを0.010〜0.051重量
%、Siを0.33〜0.40重量%、Mnを0.18
〜0.35重量%、Pを0.010〜0.029重量
%、Sを0.003〜0.005重量%、クロムを10
〜30重量%、Alを0.050〜0.160重量%、
Nを0.0072〜0.0124重量%含む溶鋼に、A
lを添加して脱酸を行いT.Oを0.0023〜0.0
057重量%とした場合で、それぞれの酸素含有量
(T.O)に対してMg%を前述の範囲に調整し、結晶
組織の微細化の状態(結晶粒径)及びプレス加工後の耐
食性とリジング発生ランクを調査した(表2の実施例N
O.4〜6)。実施例NO.4は、Mg%を0.060
5重量%に調整した場合であり、平均の結晶粒径が1.
5mmである微細な結晶組織が得られ、プレス加工後の
耐食性及びリジング発生ランクもAの良好であり、総合
評価が良好(○)な結果であった。更に、実施例NO.
5は、Mg%を0.0023重量%、NO.6は、Mg
%を0.0045重量%に調整した場合であり、NO.
5は平均の結晶粒径が0.7mm、NO.6は平均の結
晶粒径が1.2mmである微細な結晶組織が得られ、同
様にプレス加工後の耐食性及びリジング発生ランクもA
の良好であり、総合評価が良好(○)な結果であった。C is 0.010 to 0.051% by weight, Si is 0.33 to 0.40% by weight, and Mn is 0.18% by weight.
~ 0.35 wt%, P is 0.010-0.029 wt%, S is 0.003-0.005 wt%, and chromium is 10
-30% by weight, Al is 0.050-0.160% by weight,
In molten steel containing 0.0072 to 0.0124% by weight of N,
Deacidification was performed by adding T.l. O is 0.0023 to 0.0
In the case of 057% by weight, Mg% was adjusted to the above-mentioned range with respect to each oxygen content (TO), and the state of refinement of the crystal structure (crystal grain size) and the corrosion resistance after press working were determined. The ridging occurrence rank was investigated (Example N in Table 2).
O. 4-6). Example NO. 4 is Mg 60%
5% by weight, and the average crystal grain size is 1.
A fine crystal structure of 5 mm was obtained, the corrosion resistance after press working and the ridging rank were good in A, and the overall evaluation was good ((). Further, in Example NO.
No. 5, 0.0023% by weight of Mg%, NO. 6 is Mg
% Was adjusted to 0.0045% by weight.
No. 5 has an average crystal grain size of 0.7 mm and NO. In No. 6, a fine crystal structure having an average crystal grain size of 1.2 mm was obtained. Similarly, the corrosion resistance and ridging rank after pressing were A.
And the overall evaluation was good (良好).
【0015】[0015]
【表2】 [Table 2]
【0016】これに対して、表3に示すように、Mg%
を0.0025重量%とした比較例NO.1及びMg%
を0.0012重量%とした比較例NO.3では、Mg
Oの絶対量が不足して、MgOの接種核としての働きが
少なく、平均の結晶粒径が4.5mmと、粗大組織とな
り、プレス加工の際にリジングが発生(ランクC)し
て、表面光沢が悪くなり、総合評価は悪い(×)結果と
なった。更に、Mg%を0.0660重量%にして上限
を超えた比較例NO.2では、過剰に金属Mgを添加し
てMg%を高くし過ぎたので、製品の耐食性が低下し、
総合評価として悪い(×)結果となった。On the other hand, as shown in Table 3, Mg%
Comparative Example NO. 1 and Mg%
Comparative Example NO. In 3,
Since the absolute amount of O is insufficient, the function of MgO as an inoculum nucleus is small, the average crystal grain size is 4.5 mm, and a coarse structure is formed. Ridging occurs during press working (rank C), and The gloss became poor, and the overall evaluation was poor (x). Further, in Comparative Example NO. In the case of 2, the metal Mg was added excessively and the Mg% was made too high, so that the corrosion resistance of the product was lowered,
Poor (x) result as overall evaluation.
【0017】[0017]
【表3】 [Table 3]
【0018】また、溶鋼を前述の組成条件及び金属Mg
の添加条件等を同じにして、造塊鋳造を実施し、鋳片の
凝固した結晶組織及びプレス加工後のリジングの発生状
況、表面光沢等を調査したが、前記の連続鋳造装置Aを
用いた場合と同等の結果であった。Further, the molten steel is made to have the above-described composition conditions and metallic Mg.
Ingot casting was performed under the same addition conditions, and the solidified crystal structure of the slab and the occurrence of ridging after press working, surface gloss, etc. were investigated. The result was equivalent to the case.
【0019】以上、本発明の実施の形態を説明したが、
本発明はこれらの実施の形態に限定されるものではな
く、要旨を逸脱しない条件の変更等は全て本発明の適用
範囲である。例えば、金属MgあるいはMg合金の添加
方法として、粒状物に代えて金属MgあるいはMg合金
のワイヤーを用いるか、又は、取鍋の溶鋼中に金属Mg
あるいはMg合金を添加して、Mg%を高めても良い。
また、本実施の形態では、鋳片に圧下する方法を用いた
が、圧下を施さないで圧延加工を行うこともできる。The embodiments of the present invention have been described above.
The present invention is not limited to these embodiments, and all changes in conditions without departing from the gist are within the scope of the present invention. For example, as a method of adding metallic Mg or Mg alloy, a wire of metallic Mg or Mg alloy is used instead of granular material, or metallic Mg is added to molten steel in a ladle.
Alternatively, a Mg alloy may be added to increase Mg%.
Further, in the present embodiment, the method of rolling down the cast slab is used, but rolling can be performed without rolling down.
【0020】[0020]
【発明の効果】請求項1及び請求項2記載のフェライト
系ステンレス溶鋼の鋳造方法は、クロムを10〜30重
量%含有するフェライト系ステンレス溶鋼に、Mg又は
Mg合金を添加して、前記フェライト系ステンレス溶鋼
の酸素含有量に対するMg%を3/8×(T.O)≦
(Mg%)≦5×(T.O)+0.05の範囲にして鋳
造するので、鋳片の結晶組織を微細化し、プレス等の二
次加工の際に発生するリジングを防止し、研磨等をする
ことなく優れた表面光沢と耐食性を保持できる。According to the present invention, there is provided a method for casting ferritic stainless steel molten steel, comprising adding Mg or a Mg alloy to molten ferritic stainless steel containing 10 to 30% by weight of chromium. Mg% with respect to the oxygen content of the molten stainless steel is 3/8 × (TO) ≦
(Mg%) ≦ 5 × (TO) +0.05, so that the casting is refined and the rigging generated during secondary processing such as pressing is prevented, and the polishing is performed. And excellent surface gloss and corrosion resistance can be maintained without reducing the surface gloss.
【0021】特に、請求項2記載のフェライト系ステン
レス溶鋼の鋳造方法は、前記フェライト系ステンレス溶
鋼がAl又はAl合金によって脱酸されているので、過
剰な酸素含有量を抑制し、酸化物の混入による介在物に
起因する欠陥及び酸化物の混入による耐食性の低下を防
止できる。In particular, in the method for casting ferritic stainless steel molten steel according to claim 2, since the ferritic stainless steel molten steel is deoxidized by Al or an Al alloy, an excessive oxygen content is suppressed and an oxide is mixed. Therefore, it is possible to prevent a decrease in corrosion resistance due to inclusion of a defect and an oxide due to inclusions due to inclusion.
【図1】本発明の一実施の形態に係るフェライト系ステ
ンレス溶鋼の鋳造方法に用いる連続鋳造装置の概略図で
ある。FIG. 1 is a schematic view of a continuous casting apparatus used for a method for casting ferritic stainless steel molten steel according to an embodiment of the present invention.
【図2】鋳片の部分断面の凝固組織図である。FIG. 2 is a solidification structure diagram of a partial cross section of a slab.
【図3】従来の鋳片の部分断面の凝固組織図である。FIG. 3 is a solidification structure diagram of a partial cross section of a conventional slab.
A 連続鋳造装置 10 フェライト系ステンレス溶鋼(溶鋼) 11 タンディッシュ 12 浸漬ノズ
ル 13 鋳型 14 支持セグ
メント 15 鋳片 16 圧下セグ
メント 17 ピンチロール 20 チル晶 21 等軸結晶Reference Signs List A continuous casting apparatus 10 ferritic stainless steel molten steel (molten steel) 11 tundish 12 immersion nozzle 13 mold 14 support segment 15 cast slab 16 rolling down segment 17 pinch roll 20 chill crystal 21 equiaxed crystal
フロントページの続き (72)発明者 紀成 康弘 福岡県北九州市戸畑区飛幡町1番1号 新 日本製鐵株式会社八幡製鐵所内 (72)発明者 阿部 雅之 福岡県北九州市戸畑区飛幡町1番1号 新 日本製鐵株式会社八幡製鐵所内Continuing from the front page (72) Inventor Yasuhiro Kinari 1-1-1, Tobata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka New Nippon Steel Corporation Yawata Works (72) Inventor Masayuki Abe 1 Tobata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka No. 1 New Nippon Steel Corporation Yawata Works
Claims (2)
ライト系ステンレス溶鋼に、金属Mg又はMg合金を添
加して、前記フェライト系ステンレス溶鋼の酸素含有量
に対するMg%を下記(1)式の範囲にして鋳造するこ
とを特徴とするフェライト系ステンレス溶鋼の鋳造方
法。 3/8×(T.O)≦(Mg%)≦5×(T.O)+0.05・・・(1) ただし、T.Oは、フェライト系ステンレス溶鋼中の全
酸素含有量(重量%) Mg%は、フェライト系ステンレス溶鋼中のMg含有量
(重量%)1. A molten Mg or Mg alloy is added to a ferritic stainless steel molten steel containing 10 to 30% by weight of chromium, and the Mg content relative to the oxygen content of the ferritic stainless steel molten steel is defined by the following formula (1). A method of casting molten ferritic stainless steel, characterized in that the casting is performed in the following manner. 3/8 × (TO) ≦ (Mg%) ≦ 5 × (TO) +0.05 (1) O is the total oxygen content in the molten ferritic stainless steel (% by weight) Mg% is the Mg content in the ferritic stainless steel molten steel (% by weight)
又はAl合金によって脱酸されていることを特徴とする
請求項1記載のフェライト系ステンレス溶鋼の鋳造方
法。2. The ferritic stainless steel molten steel is Al.
2. The method for casting molten ferritic stainless steel according to claim 1, wherein the ferritic stainless steel is deoxidized by an Al alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7332798A JPH11254107A (en) | 1998-03-06 | 1998-03-06 | Casting method of ferritic stainless steel molten steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7332798A JPH11254107A (en) | 1998-03-06 | 1998-03-06 | Casting method of ferritic stainless steel molten steel |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11254107A true JPH11254107A (en) | 1999-09-21 |
Family
ID=13514975
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7332798A Pending JPH11254107A (en) | 1998-03-06 | 1998-03-06 | Casting method of ferritic stainless steel molten steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11254107A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000061322A1 (en) * | 1999-04-08 | 2000-10-19 | Nippon Steel Corporation | Cast steel piece and steel product excellent in forming characteristics and method for treatment of molted steel therefor and method for production thereof |
-
1998
- 1998-03-06 JP JP7332798A patent/JPH11254107A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000061322A1 (en) * | 1999-04-08 | 2000-10-19 | Nippon Steel Corporation | Cast steel piece and steel product excellent in forming characteristics and method for treatment of molted steel therefor and method for production thereof |
US6585799B1 (en) | 1999-04-08 | 2003-07-01 | Nippon Steel Corporation | Cast steel piece and steel product excellent in forming characteristics and method for treatment of molted steel therefor and method for production thereof |
US6918969B2 (en) | 1999-04-08 | 2005-07-19 | Nippon Steel Corporation | Cast steel and steel material with excellent workability, method for processing molten steel therefor and method for manufacturing the cast steel and steel material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3626278B2 (en) | Method for producing Al-killed steel without clusters | |
EP1589124A1 (en) | High strength high toughness high carbon steel wire rod and process for producing the same | |
CN107574385B (en) | A process method for improving equiaxed crystallinity of bistable ferritic stainless steel continuous casting billet | |
EP2308616A1 (en) | Cast steel and steel material with excellent workability, method for processing molten steel therefor and method for manufacturing the cast steel and steel material | |
JP3896650B2 (en) | Method for producing Ti-containing ultra-low carbon steel | |
JP3732006B2 (en) | Casting method for ferritic stainless steel | |
JPH11254107A (en) | Casting method of ferritic stainless steel molten steel | |
JPS63123556A (en) | Method for manufacturing Cr-Ni stainless steel that does not easily cause cracks during casting and hot rolling processes | |
JP4303578B2 (en) | Method for reducing center defects in continuous cast slabs of steel | |
JP4259097B2 (en) | Ti-containing high workability ferritic chromium steel sheet excellent in ridging resistance and method for producing the same | |
JP3450777B2 (en) | Manufacturing method of stainless steel containing rare earth element | |
JPH11320033A (en) | Casting method of ferritic stainless steel molten steel | |
JP3458831B2 (en) | Method for producing Cr-based stainless steel | |
JP2004204252A (en) | Ti-CONTAINING HIGH-WORKABILITY FERRITIC CHROMIUM STEEL SHEET SUPERIOR IN RIDGING RESISTANCE, AND MANUFACTURING METHOD THEREFOR | |
JP3953626B2 (en) | Ferritic stainless steel excellent in drawing workability and manufacturing method thereof | |
JP4081222B2 (en) | A slab having a fine solidification structure and a steel material processed from the slab | |
CN109382493B (en) | Method for improving peeling defect of hot-rolled pickled plate | |
JP4287974B2 (en) | Method for processing molten steel with finely solidified structure characteristics | |
JP4081218B2 (en) | Continuous casting method | |
JP2004276042A (en) | Continuous casting method of molten steel for non-oriented electrical steel sheet and its slab | |
JPS619554A (en) | Forged steel roll for cold rolling | |
JP2003205348A (en) | Continuous casting method of slab having excellent solidification structure and slab | |
JPH06594A (en) | Production of cr-ni series stainless steel strip having excellent elongation characteristic | |
JPH05195059A (en) | Method for manufacturing thick steel plate having fine metal structure | |
JP2000301306A (en) | Slabs with excellent quality and processing characteristics and steel materials processed from them |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20040901 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Effective date: 20050419 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050426 |
|
A521 | Written amendment |
Effective date: 20050621 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060704 |