JPH11250891A - Nickel-hydrogen secondary battery - Google Patents
Nickel-hydrogen secondary batteryInfo
- Publication number
- JPH11250891A JPH11250891A JP10051142A JP5114298A JPH11250891A JP H11250891 A JPH11250891 A JP H11250891A JP 10051142 A JP10051142 A JP 10051142A JP 5114298 A JP5114298 A JP 5114298A JP H11250891 A JPH11250891 A JP H11250891A
- Authority
- JP
- Japan
- Prior art keywords
- current collector
- negative electrode
- battery
- nickel
- positive electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 35
- 239000001257 hydrogen Substances 0.000 title claims abstract description 35
- 239000000203 mixture Substances 0.000 claims abstract description 41
- 238000003466 welding Methods 0.000 claims abstract description 28
- 238000007789 sealing Methods 0.000 claims abstract description 12
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000000956 alloy Substances 0.000 claims abstract description 6
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 6
- 238000003860 storage Methods 0.000 claims abstract description 6
- 150000002816 nickel compounds Chemical class 0.000 claims abstract description 4
- 239000002184 metal Substances 0.000 claims description 14
- 229910052751 metal Inorganic materials 0.000 claims description 14
- 229910052987 metal hydride Inorganic materials 0.000 claims description 9
- 238000004804 winding Methods 0.000 claims description 6
- 150000002431 hydrogen Chemical class 0.000 claims description 3
- 239000008151 electrolyte solution Substances 0.000 claims description 2
- 238000007599 discharging Methods 0.000 abstract description 5
- 239000003792 electrolyte Substances 0.000 abstract description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 30
- 238000004519 manufacturing process Methods 0.000 description 14
- 229910052759 nickel Inorganic materials 0.000 description 13
- 239000000843 powder Substances 0.000 description 8
- 239000004020 conductor Substances 0.000 description 7
- 239000011149 active material Substances 0.000 description 6
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 5
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000006260 foam Substances 0.000 description 4
- BFDHFSHZJLFAMC-UHFFFAOYSA-L nickel(ii) hydroxide Chemical compound [OH-].[OH-].[Ni+2] BFDHFSHZJLFAMC-UHFFFAOYSA-L 0.000 description 4
- 229910021503 Cobalt(II) hydroxide Inorganic materials 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 150000001869 cobalt compounds Chemical class 0.000 description 3
- ASKVAEGIVYSGNY-UHFFFAOYSA-L cobalt(ii) hydroxide Chemical compound [OH-].[OH-].[Co+2] ASKVAEGIVYSGNY-UHFFFAOYSA-L 0.000 description 3
- 238000012937 correction Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- -1 nickel hydroxide Chemical class 0.000 description 3
- 238000004080 punching Methods 0.000 description 3
- 230000027756 respiratory electron transport chain Effects 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 238000006276 transfer reaction Methods 0.000 description 3
- PQUXFUBNSYCQAL-UHFFFAOYSA-N 1-(2,3-difluorophenyl)ethanone Chemical compound CC(=O)C1=CC=CC(F)=C1F PQUXFUBNSYCQAL-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 2
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical class C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 150000002815 nickel Chemical class 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229940047670 sodium acrylate Drugs 0.000 description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910001868 water Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910017488 Cu K Inorganic materials 0.000 description 1
- 229910017541 Cu-K Inorganic materials 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- SAXCKUIOAKKRAS-UHFFFAOYSA-N cobalt;hydrate Chemical compound O.[Co] SAXCKUIOAKKRAS-UHFFFAOYSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- HEPLMSKRHVKCAQ-UHFFFAOYSA-N lead nickel Chemical compound [Ni].[Pb] HEPLMSKRHVKCAQ-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Connection Of Batteries Or Terminals (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明はニッケル・水素二次
電池に関し、更に詳しくは、電池の内部抵抗が低いの
で、従来のニッケル・水素二次電池に比べると大電流を
取り出すことができるニッケル・水素二次電池に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nickel-metal hydride secondary battery, and more particularly, to a nickel-metal hydride secondary battery capable of extracting a larger current than a conventional nickel-metal hydride secondary battery because of its low internal resistance. It relates to a hydrogen secondary battery.
【0002】[0002]
【従来の技術】各種の電動工具や電動補助付き自転車、
また最近開発が進められている電気自動車などの駆動電
源としては、充放電が可能でかつ携帯可能という点で各
種の二次電池が使用されている。上記用途に適合する二
次電池には、大電流放電が可能であるという特性が必要
事項とされ、従来からは、ニッケル・カドミウム二次電
池を採用するケースが多い。これはつぎのような理由に
よる。2. Description of the Related Art Various electric tools and bicycles with electric assist,
In addition, various secondary batteries are used as drive power sources for electric vehicles and the like, which are being developed recently because they are chargeable / dischargeable and portable. A secondary battery suitable for the above-mentioned applications is required to have a characteristic of being capable of discharging a large current, and a nickel-cadmium secondary battery has been often used in the past. This is for the following reasons.
【0003】すなわち、ニッケル・カドミウム二次電池
は、その内部抵抗が低く、時間率当たりの放電電流(放
電率)は大きく、また過充・過放電した場合であっても
電池特性の劣化を起こしにくいという特性を備えている
からである。一方、ノート型パソコンや携帯電話などの
小型電子機器の駆動電源としては、前記したニッケル・
カドミウム二次電池よりもニッケル・水素二次電池が広
く使用されている。これはつぎの理由による。That is, a nickel-cadmium secondary battery has a low internal resistance, a large discharge current per hour rate (discharge rate), and causes deterioration of battery characteristics even when overcharged or overdischarged. This is because it has a characteristic of being difficult. On the other hand, as a drive power source for small electronic devices such as notebook computers and mobile phones, the nickel-
Nickel-metal hydride secondary batteries are more widely used than cadmium secondary batteries. This is for the following reason.
【0004】すなわち、ニッケル・水素二次電池は、同
一サイズのニッケル・カドミウム二次電池に比べると、
その内部抵抗が高く、放電率も小さいとはいえ、その放
電容量は1.5〜2倍と大きいので、形状が小型であっ
ても、微小電流で駆動可能な電子機器を長時間に亘って
駆動せしめることができるからである。このニッケル・
水素二次電池には円筒形のものと角形のものがあるが、
円筒形のものについて、その概略を以下に説明する。[0004] That is, a nickel-hydrogen secondary battery has a larger size than a nickel-cadmium secondary battery of the same size.
Although its internal resistance is high and its discharge rate is small, its discharge capacity is as large as 1.5 to 2 times. This is because it can be driven. This nickel
There are two types of hydrogen rechargeable batteries, cylindrical and square.
The outline of the cylindrical shape will be described below.
【0005】最初に、正極と負極の製造について説明す
る。正極の製造に際しては、活物質である水酸化ニッケ
ルのようなニッケル化合物の粉末を主体とし、これとP
TFEのような結着剤と例えばコバルト酸化物やコバル
ト水酸化物のようなコバルト化合物の導電材と水とを混
練して正極合剤のペーストを調製する。[0005] First, the production of a positive electrode and a negative electrode will be described. In the production of the positive electrode, a powder of a nickel compound such as nickel hydroxide, which is an active material, is mainly used.
A paste of a positive electrode mixture is prepared by kneading a binder such as TFE, a conductive material of a cobalt compound such as cobalt oxide or cobalt hydroxide, and water.
【0006】ついで、このペーストの所定量を、例えば
3次元網状構造を有するスポンジ状の金属多孔体や金属
繊維マットなどの耐アルカリ性の金属多孔構造体(集電
体シート)に充填したのち、乾燥、必要に応じては加圧
成形,裁断などを行って、所定の厚みと所定の平面形状
を有するシート状の正極にする。したがって、得られた
正極は、集電体シートの内部空隙部と表面に、乾燥した
正極合剤が担持された状態になっている。そして、正極
の上端部には、小片形状をした例えばニッケル製のタブ
端子が取り付けられる。Next, a predetermined amount of the paste is filled into an alkali-resistant metal porous structure (current collector sheet) such as a sponge-like porous metal having a three-dimensional network structure or a metal fiber mat, and then dried. If necessary, pressure molding, cutting, or the like is performed to obtain a sheet-shaped positive electrode having a predetermined thickness and a predetermined planar shape. Therefore, the obtained positive electrode has a state in which the dried positive electrode mixture is supported on the internal voids and the surface of the current collector sheet. Then, a tab terminal made of, for example, nickel and having a small piece shape is attached to the upper end of the positive electrode.
【0007】一方、負極の製造に際しては、まず、水素
吸蔵合金の粉末を主体とし、更にはカルボキシメチルセ
ルロースのような増粘剤や炭素粉末のような導電材が配
合されている負極合剤のペーストを調製する。ついで、
このペーストの所定量を、所定の開口率を有する例えば
ニッケルパンチングシート(集電体シート)に塗着,乾
燥したのち、圧延処理,裁断などを行って、所定の厚み
と所定の平面形状を有するシート状の負極にする。した
がって、得られた負極は、集電体シートの開口部と表面
に乾燥した負極合剤が担持された状態になっている。On the other hand, in the production of the negative electrode, first, a paste of a negative electrode mixture mainly containing a powder of a hydrogen storage alloy and further containing a thickener such as carboxymethyl cellulose and a conductive material such as carbon powder. Is prepared. Then
A predetermined amount of the paste is applied to, for example, a nickel punching sheet (current collector sheet) having a predetermined opening ratio, dried, and then subjected to a rolling process, cutting, or the like, so as to have a predetermined thickness and a predetermined planar shape. A sheet-shaped negative electrode is used. Therefore, the obtained negative electrode is in a state where the dried negative electrode mixture is carried on the opening and the surface of the current collector sheet.
【0008】そして、この負極の場合、正極の場合と同
じように、端部にタブ端子を取り付けることもある。こ
のようにして製造された正極と負極を用いて、次に、電
極群が製造される。図9、および図9のX−X線に沿う
断面図である図10,図9のXI−XI線に沿う断面図であ
る図11で示したように、まず、集電体シート(ニッケ
ルパンチングシート)1aに負極合剤1bが担持されて
いる負極と、集電体シート(ニッケル発泡体シート)2
aに正極合剤が担持され、また一方の端部にタブ端子2
cが取り付けられている正極2の間に、保液性と電気絶
縁性を備えた例えばポリオレフィン不織布のようなセパ
レータ3を挟んでシート積層体にする。In the case of the negative electrode, a tab terminal may be attached to the end, as in the case of the positive electrode. Next, an electrode group is manufactured using the positive electrode and the negative electrode manufactured as described above. As shown in FIG. 9 and FIG. 10 which is a cross-sectional view taken along line XX of FIG. 9, and FIG. 11 which is a cross-sectional view taken along line XI-XI of FIG. Sheet) 1a on which a negative electrode mixture 1b is supported, and a current collector sheet (nickel foam sheet) 2
a, a positive electrode mixture is carried, and one end has a tab terminal 2
The sheet laminate is formed by sandwiching a separator 3 having liquid retaining properties and electrical insulation properties, for example, a nonwoven fabric of polyolefin, between the positive electrodes 2 to which c is attached.
【0009】そして、このシート積層体の正極2に巻き
芯を配置したのち、負極1が外側となるように巻回して
渦巻形状をした所定外径の電極群を製造する。したがっ
て、電極群の断面構造は、図12で示したように、負極
1と正極2がセパレータを介して交互に積層して成る積
層構造になっていて、その中心部に巻き芯を脱抜したの
ちに残る空孔4が形成されている。Then, after a winding core is disposed on the positive electrode 2 of the sheet laminate, the electrode is wound so that the negative electrode 1 is on the outside, thereby producing a spirally shaped electrode group having a predetermined outer diameter. Therefore, as shown in FIG. 12, the sectional structure of the electrode group has a laminated structure in which the negative electrode 1 and the positive electrode 2 are alternately laminated with the separator interposed therebetween, and the core is removed at the center thereof. A hole 4 remaining afterward is formed.
【0010】そして、この電極群が所定内径の電池缶の
中に挿入され、かつ所定のアルカリ電解液が注液され、
正極端子を備えた封口板で電池缶の上部開口が密閉され
る。このとき、電極群の負極1は電池缶の内壁と接触す
るので電池缶は負極端子として機能する。そして、電極
群の電池缶への挿入時には正極2のタブ端子2cが封口
板に接続される。Then, the electrode group is inserted into a battery can having a predetermined inner diameter, and a predetermined alkaline electrolyte is injected,
The upper opening of the battery can is sealed with a sealing plate provided with a positive electrode terminal. At this time, since the negative electrode 1 of the electrode group contacts the inner wall of the battery can, the battery can functions as a negative electrode terminal. When the electrode group is inserted into the battery can, the tab terminal 2c of the positive electrode 2 is connected to the sealing plate.
【0011】なお、角形電池の電極群の場合は、負極と
正極をセパレータを介して複数枚交互に重ね合わせて所
定の厚みにしたものが用いられる。したがって、この場
合も電極群の断面構造は積層構造になっている。In the case of an electrode group of a prismatic battery, a negative electrode and a positive electrode having a predetermined thickness by alternately stacking a plurality of negative electrodes and a positive electrode via a separator are used. Therefore, also in this case, the sectional structure of the electrode group is a laminated structure.
【0012】[0012]
【発明が解決しようとする課題】ところで、前記したニ
ッケル・カドミウム二次電池は、大電流を取り出すこと
ができるにもかかわらず、電極中のカドミウムが環境に
悪影響を及ぼす虞があるとのことから最近では前記した
電動工具などの駆動電源としては敬遠されはじめ、無公
害でかつニッケル・カドミウム二次電池よりも高容量な
ニッケル・水素二次電池と置換することが検討されてい
る。Incidentally, in the above-mentioned nickel-cadmium secondary battery, although a large current can be taken out, cadmium in the electrode may adversely affect the environment. In recent years, it has begun to be avoided as a drive power source for the above-mentioned electric tool and the like, and it has been studied to replace it with a nickel-hydrogen secondary battery that is non-polluting and has a higher capacity than nickel-cadmium secondary batteries.
【0013】しかしながら、従来から市販されているニ
ッケル・水素二次電池は、1時間率の1〜3倍程度の放
電時にはじめて公称容量に相当する容量を得ることがで
きるので、微小電流で駆動可能な前記小型電子機器の電
源としては有効であるとはいえ、大電流を必要とする電
動工具や電気自動車などの電源としては事実上使用でき
ないという問題があった。However, conventionally commercially available nickel-metal hydride secondary batteries can obtain a capacity corresponding to the nominal capacity only at the time of discharging at a rate of about 1 to 3 times an hour rate, and can be driven with a small current. Although effective as a power source for the small electronic device, there is a problem that it cannot be used practically as a power source for electric tools or electric vehicles that require a large current.
【0014】例えば、従来のニッケル・水素二次電池の
場合、1時間率の5倍を超えるような大電流で放電させ
ると、作動電圧は大幅に低下してしまい、実用に耐え得
ないという現状にある。本発明は、従来のニッケル・水
素二次電池における上記した問題を解決し、高容量でか
つ大電流放電を行っても作動電圧の低下を抑制すること
ができる新規構造のニッケル・水素二次電池の提供を目
的とする。For example, in the case of a conventional nickel-hydrogen secondary battery, if it is discharged with a large current exceeding five times the hourly rate, the operating voltage is greatly reduced, and it is impossible to withstand practical use. It is in. The present invention solves the above-described problems in the conventional nickel-hydrogen secondary battery, and has a novel structure of a nickel-hydrogen secondary battery having a high capacity and capable of suppressing a decrease in operating voltage even when a large current is discharged. The purpose is to provide.
【0015】[0015]
【課題を解決するための手段】本発明者らは、上記目的
を達成するための研究を進めるに当たり、以下のような
考察を行った。 (1)ニッケル・水素二次電池はニッケル・カドミウム
二次電池に比べてその容積エネルギー密度が大きいの
で、同一サイズの電池を同じ時間率で放電させた場合、
ニッケル・水素二次電池の放電電流の方が大きくなる。Means for Solving the Problems The present inventors have made the following considerations in conducting research for achieving the above object. (1) Since nickel-hydrogen secondary batteries have a higher volumetric energy density than nickel-cadmium secondary batteries, when batteries of the same size are discharged at the same time rate,
The discharge current of the nickel-hydrogen secondary battery is larger.
【0016】したがって、ニッケル・水素二次電池を高
い放電率で作動させても電池の作動電圧が低下しないよ
うにするためには、その内部抵抗をできるだけ低くする
ことが必要になる。従来のニッケル・水素二次電池の場
合には、負極と電池缶の内壁との接触界面が一方の導通
経路であった。そして微小電流の取り出し時には、その
接触抵抗は大きな電圧低下を引き起こすことはないが、
放電電流が大きくなると、上記接触抵抗は作動電圧の低
下に大きく影響を与えることになる。Therefore, in order to prevent the operating voltage of the nickel-hydrogen secondary battery from lowering even when it is operated at a high discharge rate, it is necessary to reduce the internal resistance of the battery as much as possible. In the case of a conventional nickel-hydrogen secondary battery, the contact interface between the negative electrode and the inner wall of the battery can was one of the conduction paths. And when taking out a small current, the contact resistance does not cause a large voltage drop,
As the discharge current increases, the contact resistance has a large effect on the decrease in the operating voltage.
【0017】したがって、ニッケル・水素二次電池で大
電流放電を実現するためには、別の低抵抗な導通経路を
組み込むことが必要になってくる。 (2)また、電極群において、正極と負極との対向面積
を大きくすると、両極間を流れる電流の電流密度を小さ
くし、作動電圧の低下を抑制することができる。Accordingly, in order to realize a large current discharge in the nickel-hydrogen secondary battery, it is necessary to incorporate another low-resistance conduction path. (2) In the electrode group, when the facing area between the positive electrode and the negative electrode is increased, the current density of the current flowing between the two electrodes can be reduced, and a decrease in operating voltage can be suppressed.
【0018】したがって、正極と負極との対向面積、基
本的には正極活物質を担持している部分の面積を大きく
することは、大電流放電の実現にとって有効であると考
えられる。以上の観点に立って、本発明者らは鋭意研究
を進め、本発明のニッケル・水素二次電池を開発するに
至った。Therefore, it is considered effective to increase the facing area between the positive electrode and the negative electrode, basically, the area of the portion supporting the positive electrode active material, for realizing a large current discharge. From the above viewpoints, the present inventors have conducted intensive research and have developed the nickel-hydrogen secondary battery of the present invention.
【0019】すなわち、本発明のニッケル・水素二次電
池は、集電体シートにニッケル化合物を主体とする正極
合剤が担持されている正極と、集電体シートに水素吸蔵
合金を主体とする負極合剤が担持されている負極とをセ
パレータを介して交互に積層または巻回して成る構造の
電極群が電池缶の中に電解液と一緒に収容され、前記電
池缶の開口部は正極端子を備えた封口板で密閉されてい
るニッケル・水素二次電池において、少なくとも前記負
極の集電体シートの端部は、そこに溶接して配設された
集電板を介して前記封口板と前記電池缶にそれぞれ導通
していることを特徴とする。とくに、本発明において
は、正極の集電体シートの端部にも集電板が配設され、
また、前記電池群における前記正極の正極合剤が担持さ
れている部部の面積が、電池の理論容量(単位:Ah)当
たり30cm2以上であるニッケル・水素二次電池が提供
される。That is, the nickel-hydrogen secondary battery of the present invention has a positive electrode in which a current collector sheet carries a positive electrode mixture mainly composed of a nickel compound, and a current collector sheet mainly containing a hydrogen storage alloy. An electrode group having a structure in which a negative electrode carrying a negative electrode mixture is alternately laminated or wound via a separator is accommodated in a battery can together with an electrolytic solution, and the opening of the battery can is provided with a positive electrode terminal. In a nickel-hydrogen secondary battery sealed with a sealing plate provided with, at least the end portion of the current collector sheet of the negative electrode, the sealing plate through the current collector plate disposed by welding there. The battery can is electrically connected to each other. In particular, in the present invention, a current collector plate is also provided at the end of the positive electrode current collector sheet,
Further, there is provided a nickel-hydrogen secondary battery in which an area of a portion of the battery group where the positive electrode mixture of the positive electrode is supported is 30 cm 2 or more per theoretical capacity (unit: Ah) of the battery.
【0020】[0020]
【発明の実施の形態】以下、図面に則して本発明のニッ
ケル・水素二次電池を詳細に説明する。図1は、電極群
の下端部と上端部の双方に集電板を配設した本発明の円
筒形ニッケル・水素二次電池の好適な1例を示す断面図
である。図1において、電池缶5の中には、負極1とセ
パレータ3と正極2のシート積層体を渦巻状に巻回して
成る電極群Aが図示しないアルカリ電解液と一緒に収容
されている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a nickel-hydrogen secondary battery of the present invention will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional view showing a preferred example of a cylindrical nickel-metal hydride secondary battery of the present invention in which current collectors are provided at both the lower end and the upper end of an electrode group. In FIG. 1, a battery can 5 accommodates an electrode group A formed by spirally winding a sheet stack of a negative electrode 1, a separator 3, and a positive electrode 2 together with an alkaline electrolyte (not shown).
【0021】そして、電池缶5の缶底には、所定の直径
を有する円板形状の集電板6aが溶接して配設され、そ
の上に前記電極群Aが配設され、そして電極群Aの上に
は、正極端子10を備えた封口板8に溶接されたリード
7に接続して所定の直径を有する集電板6bが配置さ
れ、封口板8はガスケット9を介して電池缶5の上部開
口に嵌め込まれ、そこに加締め加工を施すことにより全
体が密閉された構造になっている。A disk-shaped current collector plate 6a having a predetermined diameter is welded to the bottom of the battery can 5, and the electrode group A is provided thereon. A is connected to a lead 7 welded to a sealing plate 8 provided with a positive electrode terminal 10, and a current collecting plate 6 b having a predetermined diameter is arranged on A, and the sealing plate 8 is connected via a gasket 9 to the battery can 5. Is fitted into the upper opening, and a caulking process is performed on the upper opening to form a completely closed structure.
【0022】ここで、上記した集電板6a,6bはいず
れも電池の内部抵抗を下げるための手段であり、これら
を電極群Aの下端面と上端面にそれぞれ配設しているこ
とが本発明の電池における特徴になっている。なお、本
発明の電池においては、電極群Aの下端面に集電板6a
を配設することが必須要件であり、上端面への集電板6
bの配設は必ずしも必要としない。そして、電極群Aの
上端面に集電板6bを配設することに代えて、例えば正
極の製造時に、その上端に複数個のタブ端子を取り付け
た態様になっていてもよい。しかしながら、複数個のタ
ブ端子の取付の場合に比べると、図1で示したように、
電極群Aの上端面にも集電板6bを配設した場合は、電
池の内部抵抗が下がるという点で有利であるとともに、
電池の組立作業も容易になるので好適である。Here, the above-mentioned current collector plates 6a and 6b are both means for lowering the internal resistance of the battery, and these are arranged on the lower end face and the upper end face of the electrode group A, respectively. This is a feature of the battery of the invention. In the battery of the present invention, the current collector plate 6a is provided on the lower end face of the electrode group A.
Is an essential requirement, and the current collector 6
The arrangement of b is not always necessary. Then, instead of disposing the current collector plate 6b on the upper end surface of the electrode group A, for example, a plurality of tab terminals may be attached to the upper end during the manufacture of the positive electrode. However, as compared with the case of mounting a plurality of tab terminals, as shown in FIG.
The arrangement of the current collecting plate 6b also on the upper end surface of the electrode group A is advantageous in that the internal resistance of the battery is reduced, and
This is preferable because the battery assembling operation is also facilitated.
【0023】まず、上記した電極群Aにおける負極1と
正極2は次のような構造になっている。まず、負極1の
場合、図2および図2のIII−III線に沿う断面図である
図3で示したように、集電体シート1aの一方の端部1
A(図では下端部)には負極合剤1bは担持されておら
ず、端部1Aは集電体シート1aが帯状に表出した状態
になっている。また、正極2の場合には、図4および図
4のV−V線に沿う断面図である図5で示したように、
集電体シート2aの一方の端部2A(図では上端部)は
厚み方向に圧縮されて緻密化した状態になっていて、そ
の端部2Aは、そこに正極合剤2bが担持されない状態
で帯状に表出している。First, the negative electrode 1 and the positive electrode 2 in the above-mentioned electrode group A have the following structure. First, in the case of the negative electrode 1, as shown in FIG. 2 and FIG. 3, which is a cross-sectional view taken along the line III-III of FIG.
A (the lower end in the figure) does not carry the negative electrode mixture 1b, and the end 1A is in a state where the current collector sheet 1a is exposed in a band shape. In the case of the positive electrode 2, as shown in FIG. 4 and FIG. 5, which is a cross-sectional view taken along line VV in FIG.
One end 2A (upper end in the figure) of the current collector sheet 2a is compressed in the thickness direction and is in a densified state, and the end 2A is in a state where the positive electrode mixture 2b is not carried thereon. Appears in a band.
【0024】この電極群Aの製造時にあっては、上記し
た端部1Aと端部2Aが互いに反対方向を向くようにし
て負極1と正極2を重ね合わせたのち負極1を外側にし
て巻回する。したがって、得られた電極群Aは、その一
方の端面(下端面)に負極集電体シート1aの端部1A
が渦巻形状をなして突出しており、また他方の端面(上
端面)には、正極集電体シート2aの端部2Aが同じく
渦巻形状をなして突出している。At the time of manufacturing the electrode group A, the negative electrode 1 and the positive electrode 2 are overlapped so that the end 1A and the end 2A face in opposite directions, and then the negative electrode 1 is wound outside. I do. Therefore, the obtained electrode group A is provided on one end face (lower end face) of the end portion 1A of the negative electrode current collector sheet 1a.
Are formed in a spiral shape, and the end 2A of the positive electrode current collector sheet 2a is also formed in a spiral shape on the other end surface (upper surface).
【0025】そして、得られた電極群Aを電池缶5に挿
入するに際しては、まず、渦巻状に突出している負極集
電体シート1aの端部1Aの上に後述する集電板6aを
配置して当該集電板と前記端部1Aの端面1Bを接触さ
せたのち、その接触部の複数箇所を溶接して電極群Aと
集電板6aを一体化する。ついで、溶接されている集電
板6a側を下にして電極群Aを電池缶5の中に挿入して
前記集電板6aと電池缶5の缶底を接触させる。そし
て、電極群Aの空孔4から上部溶接電極(図示しない)
を挿入して集電板6aを加圧し、また電池缶5の外側に
は下部溶接電極(図示しない)を配置して前記電池缶5
の缶底を上方に加圧し、両電極間に溶接電流を通電する
ことにより、集電板6aを電池缶5の缶底に溶接する。
なお、集電板6aの下面の中心部に小さな突起などを形
成しておくと、上記した溶接の信頼性が高まるので好適
である。When inserting the obtained electrode group A into the battery can 5, first, a current collector plate 6 a, which will be described later, is disposed on the end 1 A of the spirally projecting negative electrode current collector sheet 1 a. After the current collector plate is brought into contact with the end face 1B of the end portion 1A, a plurality of portions of the contact portion are welded to integrate the electrode group A and the current collector plate 6a. Then, the electrode group A is inserted into the battery can 5 with the welded current collector plate 6a side down, and the current collector plate 6a and the bottom of the battery can 5 are brought into contact. Then, an upper welding electrode (not shown) is formed from the hole 4 of the electrode group A.
Is inserted to press the current collector plate 6a, and a lower welding electrode (not shown) is disposed outside the battery
The current collector plate 6a is welded to the can bottom of the battery can 5 by pressurizing the bottom of the can upward and applying a welding current between both electrodes.
It is preferable to form a small projection or the like at the center of the lower surface of the current collector plate 6a, because the reliability of the above-described welding is enhanced.
【0026】そして、正極集電体シート2aの端部2A
の上に集電板6bを配置して当該集電板と前記端部2A
の端面を接触させたのち、その接触部の複数箇所を溶接
して電極群Aと集電板6bを一体化する。このようにし
て組み立てられた図1で示した電池においては、正極端
子10⇔封口板8⇔リード7⇔上部集電板6b⇔正極集
電体シートの端部2A⇔正極2,負極1⇔負極集電体シ
ートの端部1A⇔下部集電板6a⇔電池缶5の導通経路
が形成され、ここを充・放電電流が流れることになる。Then, the end 2A of the positive electrode current collector sheet 2a
A current collecting plate 6b is disposed on the current collecting plate and the end 2A.
After that, the electrode group A and the current collecting plate 6b are integrated by welding a plurality of portions of the contact portion. In the battery shown in FIG. 1 assembled as described above, the positive electrode terminal 10 {the sealing plate 8} the lead 7} the upper current collector 6 b {the end portion 2A of the positive electrode current collector sheet} the positive electrode 2, the negative electrode 1} and the negative electrode A conduction path is formed between the end portion 1A of the current collector sheet, the lower current collector plate 6a, and the battery can 5, through which charging / discharging current flows.
【0027】これら集電板6a,6bの直径は、電池缶
1の内径よりも小さく、その表面が確実に端部1A,端
部2Aと接触可能な状態になっている。なお、集電板6
a,6bの表面のうち、負極集電体シートの端部1A,
正極集電体シートの端部2Aと接触する方の表面に微小
突起を形成しておくと、上記した各端部との接触や点溶
接を行ったときに、当該微小突起が各集電体シートの端
部の端面に食い込むような状態になるため、溶接電流を
流すときの接触抵抗が小さくなり、溶接後における溶接
点の強度が高くなって好適である。The diameter of each of the current collector plates 6a and 6b is smaller than the inner diameter of the battery can 1, so that the surface thereof can be reliably brought into contact with the end portions 1A and 2A. The current collector 6
a, 6b, the end portion 1A of the negative electrode current collector sheet,
If minute projections are formed on the surface of the positive electrode current collector sheet that is in contact with the end 2A, the minute projections may be attached to each of the current collectors when the above-described contact with each end or spot welding is performed. Since the state is such that the sheet bites into the end face of the end of the sheet, the contact resistance when a welding current flows is reduced, and the strength of the welding point after welding is preferably increased.
【0028】そして、これら集電板6a,6bを構成す
る材料としては、アルカリ電解液で侵食されず、比抵抗
が小さく、しかも比較的低コストで入手可能なものが選
定される。例えば、純Niやステンレス鋼,Niめっき
を施した金属などの板を好適とする。また、電池缶5の
内径が一定であるとすれば、集電板6a,6bの厚みが
厚いほど全体としての導体抵抗は低くなって大電流が流
れやすくなる。しかし、あまり厚くするとコスト高や電
池の容量低下を招くことになるので、その厚みは0.1
5〜2.0mm程度に設定することが好ましい。As the material forming the current collector plates 6a and 6b, a material which is not eroded by the alkaline electrolyte, has a low specific resistance, and can be obtained at a relatively low cost is selected. For example, a plate made of pure Ni, stainless steel, Ni-plated metal, or the like is preferable. Further, assuming that the inner diameter of the battery can 5 is constant, the thicker the current collector plates 6a and 6b, the lower the conductor resistance as a whole, so that a large current easily flows. However, if the thickness is too large, the cost and the capacity of the battery are reduced.
It is preferable to set it to about 5 to 2.0 mm.
【0029】集電板と各集電体シートの端部とを例えば
点溶接した場合、その点溶接箇所の個数、すなわち溶接
点の数は、電池の内部抵抗を低めるという点で重要な因
子となる。例えば、電極群Aにおいて、負極集電体シー
トの端部1Aに下部集電板6aが4箇所で溶接されてい
る場合、この負極1を展開したとすると、図6で示した
ように、負極1の端部1Aには4箇所の溶接点B1,B
2,B3,B4が存在することになる。そして、負極1
の全面で生起する電池反応に基づく電子の授受反応は、
これら溶接点B1,B2,B3,B4を経由して実現す
る。すなわち、図6で示した負極1は溶接点B1,B
2,B3,B4にそれぞれ4個のタブ端子が取り付けら
れた状態と同じになっている。したがって、この溶接点
の数が多くなればなるほど、負極1に取り付けられてい
るタブ端子の数が多くなることと同義になり、それは、
負極1の全ての箇所における電子の授受反応にとって、
負極1が全体として低抵抗になっていることを意味す
る。When the current collector plate and the end of each current collector sheet are spot-welded, for example, the number of spot-welded points, that is, the number of weld points, is an important factor in reducing the internal resistance of the battery. Become. For example, in the electrode group A, when the lower current collector plate 6a is welded to the end 1A of the negative electrode current collector sheet at four places, if this negative electrode 1 is developed, as shown in FIG. At one end 1A, four welding points B1, B
2, B3 and B4 exist. And the negative electrode 1
The electron transfer reaction based on the battery reaction that occurs on the entire surface of
It is realized via these welding points B1, B2, B3, B4. That is, the negative electrode 1 shown in FIG.
This is the same as the state in which four tab terminals are attached to 2, B3 and B4, respectively. Therefore, the greater the number of welding points, the greater the number of tab terminals attached to the negative electrode 1, which is equivalent to the following:
For the electron transfer reaction at all points of the negative electrode 1,
This means that the negative electrode 1 has a low resistance as a whole.
【0030】このように溶接点の数が増加することは、
負極1(正極2の場合も同様である)の見掛け上の抵抗
を下げ、ひいては電池全体の内部抵抗を下げるという点
で有効である。しかし、溶接点の数があまり多くなるこ
とは、実際の製造工程においては、集電板との点溶接作
業を多く行うことになるため、製造コストの上昇を招
く。The increase in the number of welding points is as follows.
This is effective in reducing the apparent resistance of the negative electrode 1 (similarly in the case of the positive electrode 2), and thereby reducing the internal resistance of the entire battery. However, if the number of welding points is too large, in the actual manufacturing process, many spot welding operations with the current collector plate are performed, which causes an increase in manufacturing cost.
【0031】なお、放電容量が小さい電池の場合には、
上記した溶接点の数が少なくてもよいが、放電容量が大
きくなると負極1における電子の授受反応も増加するの
で、上記した溶接点の数もそれに対応するために増加さ
せることが必要になってくる。このようなことから、本
発明の電池構造においては、溶接点の数が製造目的の電
池容量との関係で選択されることになる。具体的には、
電池の理論容量(単位:Ah)当たり、4点以上にするこ
とが好ましい。In the case of a battery having a small discharge capacity,
Although the number of the above-mentioned welding points may be small, when the discharge capacity becomes large, the electron transfer reaction in the negative electrode 1 also increases. Therefore, it is necessary to increase the number of the above-mentioned welding points to correspond to the number. come. For this reason, in the battery structure of the present invention, the number of welding points is selected in relation to the battery capacity to be manufactured. In particular,
It is preferable to set the number to 4 or more per theoretical capacity (unit: Ah) of the battery.
【0032】なお、集電板は全体として集電体シートよ
りも低抵抗であることが必要であるが、集電板と各集電
体シートの端部との点溶接を良好に行うためには、溶接
すべき箇所における集電板の抵抗値の方が集電体シート
の端部の抵抗値よりも高くなっていることが必要であ
る。その逆の場合には、溶接電流が両者の接触界面を横
断して流れないので、当該接触界面におけるナゲットの
形成は起こりづらくなる、すなわち良好な溶接状態が実
現しなくなるからである。このことは、用いる集電板に
スリットや穴などを形成することによって達成すること
ができる。The current collector plate needs to have a lower resistance than the current collector sheet as a whole. However, in order to perform spot welding between the current collector plate and the end of each current collector sheet well, It is necessary that the resistance value of the current collector plate at the portion to be welded is higher than the resistance value of the end portion of the current collector sheet. In the opposite case, since the welding current does not flow across the contact interface between the two, the formation of a nugget at the contact interface is unlikely to occur, that is, a good welding condition is not realized. This can be achieved by forming slits, holes, and the like in the current collector used.
【0033】また、電池の内部抵抗を低めるためには、
電極群Aにおける正極2と負極1の対向面積を大きくす
ることが有効である。具体的には、活物質を担持してい
る正極2の面積を大きくする。これは、高い放電率に基
づく大電流に対しても電流密度が小さくなり、更に前記
した集電板の配置による内部抵抗の低下効果とも相俟っ
て、大電流放電が許容されるようになるからである。In order to lower the internal resistance of the battery,
It is effective to increase the facing area between the positive electrode 2 and the negative electrode 1 in the electrode group A. Specifically, the area of the positive electrode 2 supporting the active material is increased. This reduces the current density even for a large current based on a high discharge rate, and further allows the large current discharge to be allowed in combination with the above-described effect of reducing the internal resistance due to the arrangement of the current collector plate. Because.
【0034】具体的には、電極群Aに巻回されている正
極2の面積を、製造目的の電池の理論容量(CT:Ah)
当たり30cm2以上、すなわち、30cm2/Ah以上にする
ことが好適である。より好ましくは、38cm2/Ah以上
にする。正極2の面積を大きくするためには、例えば電
極群Aの外径や高さが一定であれば、正極2の厚みを薄
くすればよい。電極群Aに巻回される正極2の長さは長
くなり、その結果、巻回後の正極の層数も多くなり、電
極群Aにおける正極の面積が広くなるからである。しか
し、あまり薄くすると、正極の強度が低下して巻回時に
ワレや亀裂などが発生し電極群Aの不良本数が増加して
しまうので、厚みの上限は100cm2/Ahに設定するこ
とが好ましい。Specifically, the area of the positive electrode 2 wound around the electrode group A is determined by the theoretical capacity (C T : Ah) of the battery to be manufactured.
It is preferable that the pressure is 30 cm 2 or more, that is, 30 cm 2 / Ah or more. More preferably, it is at least 38 cm 2 / Ah. In order to increase the area of the positive electrode 2, for example, if the outer diameter and the height of the electrode group A are constant, the thickness of the positive electrode 2 may be reduced. This is because the length of the positive electrode 2 wound around the electrode group A increases, and as a result, the number of layers of the positive electrode after winding increases, and the area of the positive electrode in the electrode group A increases. However, if the thickness is too small, the strength of the positive electrode decreases, and cracks and cracks occur during winding and the number of defective electrodes in the electrode group A increases. Therefore, it is preferable to set the upper limit of the thickness to 100 cm 2 / Ah. .
【0035】なお、正極2としては、焼結式,ペースト
式の何れであってもよいが、ペースト式の方が正極合剤
の担持量を多くすることができ、電池の高容量化に対し
ては有効である。ペースト式の正極に担持される正極合
剤は、活物質である水酸化ニッケルの単体粉末や、亜
鉛,コバルト,ビスマス,銅などとニッケルを共沈させ
て製造した粉末を主体とし、これに、導電材と結着剤を
配合して調製される。このときの活物質の配合量は、製
造する電池の理論容量との関係で決められ、それに対応
して導電材や結着剤の配合量が調整される。The positive electrode 2 may be either of a sintered type or a paste type, but the paste type can carry a larger amount of the positive electrode mixture, and can be used for increasing the capacity of the battery. Is effective. The positive electrode mixture supported on the paste-type positive electrode is mainly composed of a single powder of nickel hydroxide, which is an active material, or a powder produced by co-precipitating nickel with zinc, cobalt, bismuth, copper, and the like. It is prepared by blending a conductive material and a binder. At this time, the amount of the active material is determined in relation to the theoretical capacity of the battery to be manufactured, and the amounts of the conductive material and the binder are adjusted accordingly.
【0036】活物質が後者のものである場合は、組み立
てた電池の高温状態における充電効率を高くすることが
できるので好適である。また、活物質として用いる水酸
化ニッケルは、それをX線粉末回折法で測定したときの
(101)面のピーク半価幅が0.8°/2θ(Cu−
Kα)以上、とくに、0.9〜1.0°/2θ(Cu−K
α)になっているものが、利用率,寿命を向上させるこ
とができるので好適である。The case where the active material is the latter is preferable because the charging efficiency of the assembled battery in a high temperature state can be increased. Nickel hydroxide used as an active material has a peak half-value width of (101) plane of 0.8 ° / 2θ (Cu-Cu) measured by X-ray powder diffraction.
Kα) or more, especially 0.9 to 1.0 ° / 2θ (Cu-K
α) is preferable because the utilization factor and the life can be improved.
【0037】導電材としては、コバルト化合物や金属コ
バルトから選ばれる1種以上の粉末が用いられる。コバ
ルト化合物としては、例えば水酸化コバルト,一酸化コ
バルトなどをあげることができる。とくに、水酸化コバ
ルトもしくは一酸化コバルトまたは両者の混合物は正極
の利用率を高めることができるので好適である。また結
着剤としては、例えばカルボキシメチルセルロース,メ
チルセルロース,ポリアクリル酸ナトリウム,ポリビニ
ルアルコール,ビニルアルコールとアクリル酸ナトリウ
ムの共重合体,ポリテトラフルオロエチレンなどを用い
ることができる。As the conductive material, one or more powders selected from a cobalt compound and metallic cobalt are used. Examples of the cobalt compound include cobalt hydroxide and cobalt monoxide. In particular, cobalt hydroxide or cobalt monoxide or a mixture of both is preferable because it can increase the utilization factor of the positive electrode. Examples of the binder include carboxymethylcellulose, methylcellulose, sodium polyacrylate, polyvinyl alcohol, a copolymer of vinyl alcohol and sodium acrylate, and polytetrafluoroethylene.
【0038】そして、上記した組成の正極合剤を担持せ
しめる集電体シートとしては、ニッケルやステンレス
鋼、またはニッケルめっきが施された金属から成り、網
状,スポンジ状,繊維状、またはフェルト状の多孔構造
体を用いることができる。また、ニッケル・水素二次電
池の負極としても、前記した正極の場合と同様に、焼結
式,ペースト式のものが知られている。これらのうち、
焼結式の負極は、電池の高容量化にとっては不利であ
り、また製造工程も複雑でありコスト高を招くという問
題がある。ペースト式の負極は、電池の高容量化を可能
とし、また製造しやすく製造コストも低くなるという点
で有利である。The current collector sheet for supporting the positive electrode mixture having the above-mentioned composition is made of nickel, stainless steel, or nickel-plated metal, and has a net-like, sponge-like, fibrous, or felt-like shape. A porous structure can be used. As the negative electrode of the nickel-metal hydride secondary battery, a sintered type and a paste type are known as in the case of the positive electrode. Of these,
The sintered negative electrode is disadvantageous for increasing the capacity of the battery, and has a problem that the manufacturing process is complicated and the cost is increased. The paste-type negative electrode is advantageous in that the capacity of the battery can be increased and that the production is easy and the production cost is low.
【0039】本発明の電池に組み込む負極1としては、
焼結式,ペースト式の何れのタイプのものを用いること
ができるが、以下に説明するようにして調製された負極
合剤を担持するペースト式の負極を用いると高容量化を
達成することができるので好適である。すなわち、上記
した負極合剤は、水素吸蔵合金の粉末に、結着剤として
のポリテトラフルオロエチレンまたはスチレン・ブタジ
エンゴムや変性スチレン・ブタジエンゴムと、導電材と
しての炭素粉末または/およびニッケル粉末を配合して
配合されたペーストである。As the negative electrode 1 incorporated in the battery of the present invention,
Either a sintering type or a paste type can be used, but a high capacity can be achieved by using a paste type negative electrode carrying a negative electrode mixture prepared as described below. It is preferable because it can be performed. That is, the above-mentioned negative electrode mixture is obtained by adding polytetrafluoroethylene or styrene-butadiene rubber or modified styrene-butadiene rubber as a binder and carbon powder or / and nickel powder as a conductive material to a hydrogen storage alloy powder. This is a blended paste.
【0040】負極合剤を担持せしめる集電体シートとし
ては、ニッケルやステンレス鋼、またはニッケルめっき
が施された金属から成り、網状,スポンジ状,繊維状、
またはフェルト状の多孔構造のものや箔、所望する開口
率のパンチングメタルなどをあげることができる。これ
らのうち、パンチングメタルは、強度,価格の点や、負
極合剤ペーストの塗着性が良好である点で好適である。The current collector sheet for supporting the negative electrode mixture is made of nickel, stainless steel, or nickel-plated metal, and has a net shape, a sponge shape, a fibrous shape, or the like.
Alternatively, a felt-like porous structure or foil, a punching metal having a desired aperture ratio, and the like can be given. Among these, punched metal is preferred in terms of strength and cost, and good coating properties of the negative electrode mixture paste.
【0041】ここで、用いる集電体シートがパンチング
メタルである場合には、次のような態様にすることが好
ましい。すなわち、図2と図3で示した負極1におい
て、集電体シート(パンチングメタル)1aとしては、
その端部1Aが無開口部になっているものを用いること
が好ましい。集電板6aとの溶接点間における抵抗を低
くすることができるからである。Here, when the current collector sheet to be used is a punching metal, it is preferable to adopt the following mode. That is, in the negative electrode 1 shown in FIGS. 2 and 3, the current collector sheet (punched metal) 1a
It is preferable to use an end 1A having no opening. This is because the resistance between the welding points with the current collector plate 6a can be reduced.
【0042】また、端部1Aに開口部が存在していたと
しても、端部1Aにおける開口率は負極合剤が担持され
ている他の箇所における開口率よりも小さくなっていれ
ばよい。その場合も、負極合剤が担持されている他の箇
所に比べて相対的には、溶接点間の抵抗が低くなるから
である。なお、図7で示したように、集電体シート1a
として端部1Aが無開口部になっているものを用い、そ
して、この端部1Aの箇所にも負極合剤1bを担持せし
めたのち、端部1Aの端面1Bに付着している負極合剤
を例えば研削除去して当該端面1Bのみを表出せしめ、
ここに集電板6aを溶接することが好ましい。Even if an opening exists at the end 1A, the opening ratio at the end 1A only needs to be smaller than the opening ratio at other portions where the negative electrode mixture is carried. Also in this case, the resistance between the welding points is relatively lower than at other portions where the negative electrode mixture is carried. As shown in FIG. 7, the current collector sheet 1a
The end 1A is a non-opening part, and the negative electrode mixture 1b is carried on the end 1A, and then the negative electrode mixture adhered to the end face 1B of the end 1A. For example, by grinding to expose only the end face 1B,
Here, it is preferable to weld the current collecting plate 6a.
【0043】この場合の負極は、図2で示した負極の場
合に比べて、無開口部である端部1Aの箇所にも負極合
剤1bが担持されているので負極としての容量は大きく
なるからである。また、無開口部も含めて集電体シート
の全面に負極合剤を担持させたのち、前記無開口部の一
部を裁断除去すると、簡便に、集電体シートの端面を表
出させることができるので製造上好適である。In this case, the capacity of the negative electrode is larger than that of the negative electrode shown in FIG. 2, since the negative electrode mixture 1b is also supported at the end 1A which is a non-opening portion. Because. Further, after the negative electrode mixture is carried on the entire surface of the current collector sheet including the non-opening portion, when a part of the non-opening portion is cut and removed, the end face of the current collector sheet can be easily exposed. Therefore, it is preferable in manufacturing.
【0044】[0044]
【実施例】実施例1〜5,比較例1〜3 図1で示した4/5Aサイズの円筒形ニッケル・水素二
次電池を次のようにして製造した。この電池缶の内径は
16.1mmである。 (1)正極の製造 Ni発泡体シートを集電体シート2aとして用意し、そ
の上端を幅2mmに亘って長さ方向に加圧して緻密化する
ことにより図4と図5で示した端部2Aを設けた。この
端部2Aの厚みは前記Ni発泡体シートの全体の厚みの
1/5になっている。EXAMPLES Examples 1 to 5 and Comparative Examples 1 to 3 A cylindrical nickel-hydrogen secondary battery having a size of 4/5 A shown in FIG. 1 was manufactured as follows. The inner diameter of this battery can is 16.1 mm. (1) Production of Positive Electrode A Ni foam sheet is prepared as a current collector sheet 2a, and its upper end is pressed in the length direction over a width of 2 mm to densify it, thereby obtaining the end portion shown in FIGS. 2A was provided. The thickness of the end 2A is 1/5 of the total thickness of the Ni foam sheet.
【0045】ついで、上記端部2Aを除いた部分のNi
発泡体シートに、水酸化ニッケル粉末を主体とする正極
合剤ペースト2bを充填し、温度100℃で1時間乾燥
したのち、圧延して図4で示した正極2を製造した。こ
のとき、正極合剤の充填量や厚みを変化させることによ
り正極合剤の量は一定量のまま、電極群Aを組み立てた
ときの面積が表1となるような正極にした。Next, the Ni excluding the end 2A
The foam sheet was filled with the positive electrode mixture paste 2b mainly composed of nickel hydroxide powder, dried at a temperature of 100 ° C. for 1 hour, and then rolled to produce the positive electrode 2 shown in FIG. At this time, by changing the filling amount and the thickness of the positive electrode mixture, the amount of the positive electrode mixture was kept constant, and a positive electrode having an area as shown in Table 1 when the electrode group A was assembled was obtained.
【0046】[0046]
【表1】 [Table 1]
【0047】(2)負極の製造 水素吸蔵合金粉末100重量部に対し、アクリル酸ナト
リウムとビニルアルコールの共重合体0.3重量部,カ
ルボキシル化スチレン・ブタジエンゴム(トルエン不溶
分60重量%)1重量部,カーボンブラック1重量部,
ニッケル粉末1重量部の割合で混合し、ここに水50重
量部を添加して撹拌し、負極合剤ペーストを調製した。(2) Production of Negative Electrode For 100 parts by weight of the hydrogen storage alloy powder, 0.3 part by weight of a copolymer of sodium acrylate and vinyl alcohol, carboxylated styrene / butadiene rubber (toluene insoluble content: 60% by weight) Parts by weight, 1 part by weight of carbon black,
Nickel powder was mixed at a ratio of 1 part by weight, and 50 parts by weight of water was added thereto and stirred to prepare a negative electrode mixture paste.
【0048】一方、厚みが0.06mmで、直径1mmの開
口が開口率45%で形成されているニッケルパンチング
シートを集電体シート1aとして用意した。このニッケ
ルパンチングシートに上記の負極合剤ペーストを塗着
し、温度80℃で1時間乾燥したのち圧延して表2で示
したような負極1〜3を製造した。そして各負極の端部
に付着している乾燥合剤を除去し、図2で示したよう
に、幅2mmの端部1Aを表出させた。On the other hand, a nickel punched sheet having a thickness of 0.06 mm and an opening having a diameter of 1 mm and an opening ratio of 45% was prepared as a current collector sheet 1a. The above-mentioned negative electrode mixture paste was applied to this nickel punched sheet, dried at a temperature of 80 ° C. for 1 hour, and then rolled to produce negative electrodes 1 to 3 as shown in Table 2. Then, the dry mixture adhering to the end of each negative electrode was removed, and as shown in FIG. 2, the end 1A having a width of 2 mm was exposed.
【0049】また、端部に幅2mmの無開口部を有するニ
ッケルパンチングシートを用いて表2における負極3の
場合と同様にして負極を製造し、これを負極4とした。Further, a negative electrode was manufactured in the same manner as in the case of the negative electrode 3 in Table 2 using a nickel punched sheet having a non-opening portion having a width of 2 mm at the end, and this was used as a negative electrode 4.
【0050】[0050]
【表2】 [Table 2]
【0051】(3)電極群Aの製造 表1の各正極と表2の各負極とを表3で示したように組
み合わせ、互いの間に厚み0.12mmのポリオレフィン
不織布をセパレータとして挟んでシート積層体とした。
このとき、正極2の端部2Aと負極1の端部1Aは互い
に逆向きとなるように配置されている。(3) Production of Electrode Group A Each positive electrode shown in Table 1 and each negative electrode shown in Table 2 were combined as shown in Table 3, and a sheet of polyolefin nonwoven fabric having a thickness of 0.12 mm was sandwiched therebetween as a separator. A laminate was obtained.
At this time, the end 2A of the positive electrode 2 and the end 1A of the negative electrode 1 are arranged to be opposite to each other.
【0052】このシート積層体を直径4mmの巻き芯を用
いて負極が外側となるように巻回して、外径が16mm,
中心部に直径4mmの空孔4が形成されている表3で示し
たような4種類の電極群Aを製造した。This sheet laminate was wound using a winding core having a diameter of 4 mm so that the negative electrode was on the outside, so that the outer diameter was 16 mm.
Four kinds of electrode groups A as shown in Table 3 having holes 4 having a diameter of 4 mm in the center were manufactured.
【0053】[0053]
【表3】 [Table 3]
【0054】(4)電池の組み立て 電池の組み立てに際し、表4で示したような導通経路を
設計した。(4) Assembling of Battery At the time of assembling the battery, conduction paths as shown in Table 4 were designed.
【0055】[0055]
【表4】 [Table 4]
【0056】表4における負極からの集電手段のうち負
極への集電板の配設は、次のようにして行った。すなわ
ち、直径15.5mmのニッケル製の集電板6aを各電極
群における端部1Aの端面1Bに接触させたのち、20
箇所を点溶接して両者を一体化させ、ついで集電板6a
を下にして電極群Aを電池缶5の中に挿入して集電板に
集電板6aを接触させたのち溶接した。The arrangement of the current collecting plate on the negative electrode among the current collecting means from the negative electrode in Table 4 was performed as follows. That is, after a nickel current collector plate 6a having a diameter of 15.5 mm is brought into contact with the end face 1B of the end portion 1A of each electrode group, 20
The spots are welded together to integrate them, and then the current collector plate 6a
The electrode group A was inserted into the battery can 5 with the electrode facing downward, and the current collecting plate 6a was brought into contact with the current collecting plate and then welded.
【0057】また、正極からの集電手段のうち正極への
集電板の配設は次のようにして行った。すなわち、電極
群Aの上に直径15.5mmのニッケル製集電板6bを配
置して20箇所を点溶接し、更に集電板6bにニッケル
製のリード7を溶接したのち封口板8にも当該リード7
を溶接した。The arrangement of the current collecting plate on the positive electrode among the current collecting means from the positive electrode was performed as follows. That is, a nickel current collector plate 6b having a diameter of 15.5 mm is arranged on the electrode group A, and spot welding is performed at 20 locations. Further, a nickel lead 7 is welded to the current collector plate 6b, and then a sealing plate 8 is also formed. The lead 7
Was welded.
【0058】表4における導通経路2,3,4は次のよ
うにして形成した。まず、表中で正極にタブ端子を配設
とあるものは、正極として表1で示した正極1(導通経
路2の場合)または正極2(導通経路4の場合)を用
い、その端部2Aに幅2mm,厚み0.2mm,長さ15mm
のニッケル製タブ端子を1個(導通経路2の場合)また
は4個(導通経路4の場合)取り付けてそれを封口板8
に接続した。また表中で負極に電池缶の内壁と接触とあ
るものは、表2で示した負極1(導通経路2の場合)ま
たは負極2(導通経路4の場合)であって、かつその端
部1Aにも負極合剤が担持されているものを用いて電極
群を製造し、電池缶の缶底には絶縁板を配置し、その上
に電極群を配設した。The conduction paths 2, 3, and 4 in Table 4 were formed as follows. First, in the case where a tab terminal is disposed on the positive electrode in the table, the positive electrode 1 (in the case of the conduction path 2) or the positive electrode 2 (in the case of the conduction path 4) shown in Table 1 is used as the positive electrode, and its end 2A 2mm wide, 0.2mm thick, 15mm long
(In the case of the conduction path 2) or four (in the case of the conduction path 4) of the nickel tab terminals of FIG.
Connected to. In the table, the negative electrode in contact with the inner wall of the battery can is the negative electrode 1 (in the case of the conductive path 2) or the negative electrode 2 (in the case of the conductive path 4) shown in Table 2 and the end 1A thereof. Also, an electrode group was manufactured using a material carrying a negative electrode mixture, an insulating plate was disposed on the bottom of the battery can, and the electrode group was disposed thereon.
【0059】すなわち、この場合に得られる電池のうち
導通経路1,4の場合は負極に集電板を配設していない
ので、負極と電池缶の接触界面で導通経路が形成されて
いるものになる。以上の方法で組み立てた電池を一括し
て表5に示す。That is, in the case of the conduction paths 1 and 4 of the batteries obtained in this case, since the current collector is not provided on the negative electrode, the conduction path is formed at the contact interface between the negative electrode and the battery can. become. Table 5 shows the batteries assembled by the above method.
【0060】[0060]
【表5】 [Table 5]
【0061】(5)電池の特性 以上の各電池につき、1時間率で1.2時間の放電を行
い、30分の休止ののち、1時間率の10倍の電流で放
電し、そのときの電池の作動電圧を測定した。その結果
を、放電容量/公称容量と作動電圧の関係として図6に
示した。図6から次のことが明らかである。(5) Battery Characteristics Each of the above batteries was discharged for 1.2 hours at an hourly rate, and after a pause of 30 minutes, discharged at a current 10 times the hourly rate. The operating voltage of the battery was measured. The results are shown in FIG. 6 as a relationship between discharge capacity / nominal capacity and operating voltage. The following is clear from FIG.
【0062】1.各実施例電池は、いずれも、上記した
高い放電率においても安定した放電が実現している。し
かし、比較例電池は急激に作動電圧が低下している。実
施例電池では、集電板6a,6bを配置することにより
電池の内部抵抗が低下しているからである。 2.また、同じ実施例電池でも、電極群における正極の
面積が増加するほど大電流放電しても作動電圧の低下が
少なくなっている。1. In each of the batteries of Examples, stable discharge was realized even at the above-described high discharge rate. However, the operating voltage of the battery of the comparative example sharply decreased. This is because in the example battery, the internal resistance of the battery is reduced by disposing the current collecting plates 6a and 6b. 2. In addition, in the same example battery as well, as the area of the positive electrode in the electrode group increases, the operating voltage does not decrease even when a large current is discharged.
【0063】[0063]
【発明の効果】以上の説明で明らかなように、本発明の
ニッケル・水素二次電池は、高容量であり、しかも、従
来のニッケル・水素二次電池では実現できなかったよう
な大電流放電、すなわち1時間率の5倍を超えるような
放電も可能になっている。したがって、この電池は、電
動工具や電気自動車などの駆動源としてその工業的価値
は大である。As is apparent from the above description, the nickel-hydrogen secondary battery of the present invention has a high capacity and a large current discharge which cannot be realized by a conventional nickel-hydrogen secondary battery. That is, a discharge exceeding 5 times the hourly rate is also possible. Therefore, this battery has great industrial value as a drive source for electric tools and electric vehicles.
【図1】本発明のニッケル・水素二次電池の1例を示す
断面図である。FIG. 1 is a sectional view showing an example of a nickel-hydrogen secondary battery of the present invention.
【図2】負極の1例を示す平面図である。FIG. 2 is a plan view showing one example of a negative electrode.
【図3】図2のIII−III線に沿う断面図である。FIG. 3 is a sectional view taken along line III-III in FIG. 2;
【図4】正極の1例を示す平面図である。FIG. 4 is a plan view showing one example of a positive electrode.
【図5】図4のV−V線に沿う断面図である。FIG. 5 is a sectional view taken along line VV in FIG. 4;
【図6】集電板が点溶接された負極の展開図である。FIG. 6 is a development view of a negative electrode to which a current collector plate is spot-welded.
【図7】好適な負極への集電板の配置状態を示す断面図
である。FIG. 7 is a cross-sectional view showing a preferred arrangement state of a current collector plate on a negative electrode.
【図8】放電容量/公称容量と作動電圧との関係を示す
グラフである。FIG. 8 is a graph showing the relationship between discharge capacity / nominal capacity and operating voltage.
【図9】負極とセパレータと正極を重ね合わせた状態を
示す斜視図である。FIG. 9 is a perspective view showing a state in which a negative electrode, a separator, and a positive electrode are overlaid.
【図10】図9のX−X線に沿う断面図である。FIG. 10 is a sectional view taken along line XX in FIG. 9;
【図11】図9のXI−XI線に沿う断面図である。FIG. 11 is a sectional view taken along the line XI-XI in FIG. 9;
【図12】従来の電極群の断面構造を示す断面図であ
る。FIG. 12 is a cross-sectional view showing a cross-sectional structure of a conventional electrode group.
1 負極 1a 集電体シート 1A 集電体シート1aの端部 1b 負極合剤 1B 端部1Aの端面 2 正極 2a 集電体シート 2A 集電体シート2aの端部 2b 正極合剤 2c タブ端子 3 セパレータ 4 空孔 5 電池缶 6a,6b 集電板 7 リード 8 封口板 9 ガスケット 10 正極端子 DESCRIPTION OF SYMBOLS 1 Negative electrode 1a Current collector sheet 1A End of current collector sheet 1a 1b Negative electrode mixture 1B End face of end 1A 2 Positive electrode 2a Current collector sheet 2A End of current collector sheet 2a 2b Positive electrode mixture 2c Tab terminal 3 Separator 4 Hole 5 Battery can 6a, 6b Current collector 7 Lead 8 Sealing plate 9 Gasket 10 Positive electrode terminal
─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成10年4月16日[Submission date] April 16, 1998
【手続補正1】[Procedure amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0061[Correction target item name] 0061
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【0061】(5)電池の特性 以上の各電池につき、1時間率で1.2時間の充電を行
い、30分の休止ののち、1時間率の10倍の電流で放
電し、そのときの電池の作動電圧を測定した。その結果
を、放電容量/公称容量と作動電圧の関係として図6に
示した。図6から次のことが明らかである。[0061] (5) for each cell of the above characteristics of the battery was charged 1.2 hours at 1-hour rate, after a 30 minute pause, discharging at 10 times the current of 1 hour rate, at that time The operating voltage of the battery was measured. The results are shown in FIG. 6 as a relationship between discharge capacity / nominal capacity and operating voltage. The following is clear from FIG.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 武野 和太 東京都品川区南品川3丁目4番10号 東芝 電池株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Kazuta Takeno 3-4-10 Minamishinagawa, Shinagawa-ku, Tokyo Toshiba Battery Corporation
Claims (7)
する正極合剤が担持されている正極と、集電体シートに
水素吸蔵合金を主体とする負極合剤が担持されている負
極とをセパレータを介して交互に積層または巻回して成
る構造の電極群が電池缶の中に電解液と一緒に収容さ
れ、前記電池缶の開口部は正極端子を備えた封口板で密
閉されているニッケル・水素二次電池において、 少なくとも前記負極の集電体シートの端部が、そこに溶
接して配設された集電板を介して前記電池缶に導通して
いることを特徴とするニッケル・水素二次電池。A positive electrode in which a current collector sheet carries a positive electrode mixture mainly composed of a nickel compound, and a negative electrode in which a current collector sheet carries a negative electrode mixture mainly composed of a hydrogen storage alloy. An electrode group having a structure formed by alternately stacking or winding via a separator is housed in a battery can together with an electrolytic solution, and the opening of the battery can is sealed with a sealing plate having a positive electrode terminal. In the hydrogen secondary battery, at least an end portion of the current collector sheet of the negative electrode is electrically connected to the battery can through a current collector plate provided by welding therewith. Hydrogen secondary battery.
して配設された集電板を介して前記封口板に導通してい
る請求項1のニッケル・水素二次電池。2. The nickel-hydrogen secondary battery according to claim 1, wherein the positive electrode current collector sheet is electrically connected to the sealing plate via a current collector plate provided by welding.
が担持されている部分の面積が、電池の理論容量(単
位:Ah)当たり30cm2以上である請求項1または2の
ニッケル・水素二次電池。3. The nickel-hydrogen battery according to claim 1, wherein an area of a portion of the battery group where the positive electrode mixture of the positive electrode is supported is 30 cm 2 or more per theoretical capacity (unit: Ah) of the battery. Next battery.
部と対面する側の面に複数個の微小突起が形成されてお
り、前記集電板と前記集電板シートの端部が点溶接され
ている請求項1〜3のいずれかのニッケル・水素二次電
池。4. The current collector plate has a plurality of minute projections formed on a surface facing an end portion of the current collector sheet, and the current collector plate and an end of the current collector plate sheet are formed. The nickel-metal hydride secondary battery according to any one of claims 1 to 3, wherein the portion is spot-welded.
タルである請求項1〜4のいずれかのニッケル・水素二
次電池。5. The nickel-hydrogen secondary battery according to claim 1, wherein the current collector sheet of the negative electrode is a punched metal.
口部を有するパンチングメタルであり、前記無開口部に
前記集電板が溶接されている請求項5のニッケル・水素
二次電池。6. The nickel-hydrogen secondary battery according to claim 5, wherein the current collector sheet of the negative electrode is a punched metal having a non-opening portion at an end, and the current collector plate is welded to the non-opening portion. battery.
負極合剤が担持され、前記パンチングメタルにおける前
記集電板と対面する端面のみが表出しており、かつ前記
端面に前記集電板が溶接されている請求項5または6の
ニッケル・水素二次電池。7. The negative electrode has a negative electrode mixture carried on the entire surface of a punched metal, and only the end face of the punched metal facing the current collector is exposed, and the current collector is welded to the end face. The nickel-metal hydride secondary battery according to claim 5 or 6, wherein:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10051142A JPH11250891A (en) | 1998-03-03 | 1998-03-03 | Nickel-hydrogen secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10051142A JPH11250891A (en) | 1998-03-03 | 1998-03-03 | Nickel-hydrogen secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11250891A true JPH11250891A (en) | 1999-09-17 |
Family
ID=12878586
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10051142A Pending JPH11250891A (en) | 1998-03-03 | 1998-03-03 | Nickel-hydrogen secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11250891A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11250928A (en) * | 1998-03-03 | 1999-09-17 | Toshiba Battery Co Ltd | Nickel hydrogen secondary battery |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55156365A (en) * | 1979-05-24 | 1980-12-05 | Toshiba Corp | Semiconductor device |
JPH0272564A (en) * | 1988-09-08 | 1990-03-12 | Toshiba Battery Co Ltd | Alkaline storage battery |
JPH0773874A (en) * | 1993-06-30 | 1995-03-17 | Matsushita Electric Ind Co Ltd | Hydrogen storage alloy electrode and sealed nickel hydrogen storage battery using this electrode |
JPH0794181A (en) * | 1993-09-22 | 1995-04-07 | Matsushita Electric Ind Co Ltd | Nonsintered nickel electrode and manufacture thereof |
WO1996001505A1 (en) * | 1994-07-06 | 1996-01-18 | Elmer Hughett | Electric vehicle cell |
JPH09161837A (en) * | 1995-12-06 | 1997-06-20 | Matsushita Electric Ind Co Ltd | Cylindrical battery |
JPH11250928A (en) * | 1998-03-03 | 1999-09-17 | Toshiba Battery Co Ltd | Nickel hydrogen secondary battery |
-
1998
- 1998-03-03 JP JP10051142A patent/JPH11250891A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55156365A (en) * | 1979-05-24 | 1980-12-05 | Toshiba Corp | Semiconductor device |
JPH0272564A (en) * | 1988-09-08 | 1990-03-12 | Toshiba Battery Co Ltd | Alkaline storage battery |
JPH0773874A (en) * | 1993-06-30 | 1995-03-17 | Matsushita Electric Ind Co Ltd | Hydrogen storage alloy electrode and sealed nickel hydrogen storage battery using this electrode |
JPH0794181A (en) * | 1993-09-22 | 1995-04-07 | Matsushita Electric Ind Co Ltd | Nonsintered nickel electrode and manufacture thereof |
WO1996001505A1 (en) * | 1994-07-06 | 1996-01-18 | Elmer Hughett | Electric vehicle cell |
JPH09161837A (en) * | 1995-12-06 | 1997-06-20 | Matsushita Electric Ind Co Ltd | Cylindrical battery |
JPH11250928A (en) * | 1998-03-03 | 1999-09-17 | Toshiba Battery Co Ltd | Nickel hydrogen secondary battery |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11250928A (en) * | 1998-03-03 | 1999-09-17 | Toshiba Battery Co Ltd | Nickel hydrogen secondary battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0725983B1 (en) | Bipolar electrochemical battery of stacked wafer cells | |
US6440607B1 (en) | Nickel-hydrogen secondary cell | |
JP3527586B2 (en) | Manufacturing method of nickel electrode for alkaline storage battery | |
WO2002059986A2 (en) | Electrode with flag-shaped tap | |
US6309775B1 (en) | Prismatic electrochemical cell | |
JP2001006688A (en) | Nickel-hydrogen secondary battery | |
JP2000251871A (en) | Alkaline secondary battery | |
JP2000082491A (en) | Nickel-hydrogen secondary battery | |
JP2000030699A (en) | Nickel-hydrogen secondary battery | |
JPH11250891A (en) | Nickel-hydrogen secondary battery | |
JP2000030736A (en) | Nickel hydrogen secondary battery | |
JP3567021B2 (en) | Alkaline secondary battery | |
JP3407979B2 (en) | Prismatic sealed battery | |
JPH11250928A (en) | Nickel hydrogen secondary battery | |
JP2002280057A (en) | Alkaline secondary battery | |
JPH0547366A (en) | Rectangular metal hydride storage battery | |
CA2173330C (en) | Bipolar electrochemical battery of stacked wafer cells | |
JP2001068145A (en) | Rectangular alkaline secondary battery | |
JP2000260416A (en) | Manufacture of battery | |
JP2001006727A (en) | Alkali secondary battery | |
JP2000299123A (en) | Nickel-hydrogen secondary battery | |
JP2004119133A (en) | Square battery | |
JP2000030701A (en) | Nickel hydrogen secondary battery | |
JPH08138662A (en) | Manufacture of alkaline secondary battery | |
JP2001176540A (en) | Nickel hydrogen secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050302 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071017 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071206 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20080228 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20080228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090422 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090619 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A132 Effective date: 20100519 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20101117 |