[go: up one dir, main page]

JPH10249208A - Binucleic iron complex catalyst - Google Patents

Binucleic iron complex catalyst

Info

Publication number
JPH10249208A
JPH10249208A JP9055233A JP5523397A JPH10249208A JP H10249208 A JPH10249208 A JP H10249208A JP 9055233 A JP9055233 A JP 9055233A JP 5523397 A JP5523397 A JP 5523397A JP H10249208 A JPH10249208 A JP H10249208A
Authority
JP
Japan
Prior art keywords
catalyst
iron complex
reduction
oxygen
oxygen reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9055233A
Other languages
Japanese (ja)
Other versions
JP3432692B2 (en
Inventor
Hidetoshi Tsuchida
英俊 土田
Kimihisa Yamamoto
公寿 山元
Kenichi Koyaizu
研一 小柳津
Hariyono Agusu
ハリヨノ アグス
Junichiro Natori
潤一郎 名取
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagaku Gijutsu Shinko Jigyodan
Original Assignee
Kagaku Gijutsu Shinko Jigyodan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagaku Gijutsu Shinko Jigyodan filed Critical Kagaku Gijutsu Shinko Jigyodan
Priority to JP05523397A priority Critical patent/JP3432692B2/en
Publication of JPH10249208A publication Critical patent/JPH10249208A/en
Application granted granted Critical
Publication of JP3432692B2 publication Critical patent/JP3432692B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a catalyst which is useful for the reduction of dissolved oxygen contained in an organic solvent into water and as an oxygen reduction electrode catalyst for a fuel cell and is highly active catalytically and further, is exceedingly stable by using a trivalent binucleic iron complex catalyst for oxidation and reduction with a specific range of oxidation-reduction potential. SOLUTION: A trivalent binucleic iron complex catalyst for oxygen reduction with an oxidation potential of 0-2V is prepared and used for oxygen reduction. In this case, the binucleic iron complex to be used is of such a type that two iron atoms are crosslinked with an oxoligand. Further, the iron complex catalyst for oxygen reduction which is prepared is to be used under acidic conditions. In addition, the iron complex is formed by causing a mononuclear iron complex to chemically react with a strong base, and the ligand to be used is a large-ring ligand such as tetraphenylporphyrin, octaethylporphyrin or protoporphyrin. Besides, each of the complexes with a μ-OXO ligation is best suitably used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この出願の発明は、鉄二核錯
体触媒に関するものである。さらに詳しくは、この出願
の発明は、水および有機溶媒中の溶存酸素の還元や、燃
料電池の酸素還元電極触媒、あるいは酸素酸化触媒等と
して有用な、新しい鉄二核錯体触媒に関するものであ
る。
TECHNICAL FIELD The invention of this application relates to a dinuclear iron catalyst. More specifically, the invention of this application relates to a new iron dinuclear complex catalyst useful as a reduction of dissolved oxygen in water and an organic solvent, an oxygen reduction electrode catalyst of a fuel cell, an oxygen oxidation catalyst, and the like.

【0002】[0002]

【従来の技術とその課題】従来より、酸素や電解還元に
ついては、1電子還元によるスーパーオキシドの生成
や、2電子還元による過酸化水素の生成が知られている
が、4電子還元による水の生成を可能とする方法やその
ための触媒に関してはあまり知られていない。4電子還
元では最も高い電位で酸素を還元することになるので、
この4電子還元を可能とする触媒が見出されるとする
と、この触媒は酸化力の強い酸化剤として利用されるこ
とにもなる。しかも4電子還元では水を生成するため、
そのための触媒は、クリーンなエネルギー変換系を提供
することができることになる。
2. Description of the Related Art Conventionally, as for oxygen and electrolytic reduction, generation of superoxide by one-electron reduction and generation of hydrogen peroxide by two-electron reduction are known. Little is known about the methods that allow for the formation and the catalysts therefor. Since four-electron reduction reduces oxygen at the highest potential,
If a catalyst capable of performing this four-electron reduction is found, this catalyst will be used as an oxidizing agent having a strong oxidizing power. In addition, since water is generated by four-electron reduction,
A catalyst for that purpose can provide a clean energy conversion system.

【0003】たとえばこれまでにも、平滑な白金電極
は、強酸性下で酸素4電子還元を可能とする酸素還元と
して燃料電池に使用されている。しかしながら、これま
での酸素4電子還元系では過電圧が大きいことから、こ
のエネルギーロスを解決することを必要となる。そこ
で、これまでにも、そのための手段として数多くの電子
移動速度増加剤、すなわち電極触媒系の提案がなされて
きている。まず、コバルトポルフィリン二核錯体による
解決方法が試みられている(たとえば、F.C. Ansonet,
al., J. Am. Chem. Soc.,1980,102,602
7)。だが、触媒の作動速度が遅く、酸素還元電流が低
いレベルに留まる結果となっている。しかも、錯体の合
成が極めて困難で収率も悪く、酸素と錯体の反応機構も
充分に解明されていない。
[0003] For example, a smooth platinum electrode has been used in a fuel cell as an oxygen reduction which enables oxygen four-electron reduction under strong acidity. However, since the conventional oxygen four-electron reduction system has a large overvoltage, it is necessary to solve this energy loss. Therefore, a number of electron transfer speed increasing agents, that is, electrode catalyst systems have been proposed as means for that purpose. First, a solution using a cobalt porphyrin binuclear complex has been attempted (for example, FC Ansonet,
al., J. Am. Chem. Soc., 1980, 102, 602.
7). However, the operation speed of the catalyst is slow, and the oxygen reduction current remains at a low level. Moreover, the synthesis of the complex is extremely difficult and the yield is poor, and the reaction mechanism between oxygen and the complex has not been sufficiently elucidated.

【0004】また、酸素の4電子還元触媒として、一つ
のコバルトポルフィリン錯体に複数の電子供与錯体(た
とえばルテニウムアンミン錯体)を連結した多核錯体系
が報告されている(たとえば、F.C. Anson et, al., J.
Am. Chem. Soc.,1991,113,9564)。だ
が、観測された還元作動電位は期待されたほど高いもの
ではなく、しかも、錯体が分解したり、あるいは電極表
面から溶液中に溶け出す場合があり、とても実用に耐え
得ないのが実情である。
As a four-electron reduction catalyst for oxygen, a polynuclear complex system in which a plurality of electron-donating complexes (for example, ruthenium ammine complexes) are linked to one cobalt porphyrin complex has been reported (for example, FC Anson et. Al. , J.
Am. Chem. Soc., 1991, 113, 9564). However, the observed reduction action potential is not as high as expected, and the complex may decompose or dissolve out of the electrode surface into the solution, making it extremely unpractical. .

【0005】そこでこの出願の発明は、以上のとおりの
従来の技術的限界を越えて、酸素還元電位が高く、触媒
活性が高いと共にその安定性にも優れ、その調製も容易
な、酸素4電子還元を可能とする、鉄二核錯体触媒を提
供することを目的としている。
Therefore, the invention of this application exceeds the conventional technical limits as described above, and has a high oxygen reduction potential, high catalytic activity, excellent stability, and easy preparation. An object of the present invention is to provide a dinuclear iron catalyst capable of reduction.

【0006】[0006]

【課題を解決するための手段】この出願の発明は、上記
の課題を解決するものとして、0〜2Vまでの酸化還元
電位を有する酸素還元用の3価の二核鉄錯体触媒を提供
する。そして、この発明は、上記の態様として、二核の
鉄錯体は、二つの鉄原子がオキソ配位子によって架橋さ
れたものである酸素還元用鉄錯体触媒をはじめ、二核の
鉄錯体からなり、酸性条件下に使用される酸素還元用鉄
錯体触媒や、鉄錯体は、単核鉄錯体が強塩基との反応に
より形成される二核錯体である酸素還元用鉄錯体触媒、
配位子が、テトラフェニルポルフィリン、オクタエチル
ポルフィリン、プロトポルフィリンIXのような大環状配
位子である酸素還元用鉄錯体触媒等も提供する。
DISCLOSURE OF THE INVENTION The present invention provides a trivalent dinuclear iron complex catalyst for oxygen reduction having an oxidation-reduction potential of 0 to 2 V as an object of the present invention. In the present invention, as the above embodiment, the binuclear iron complex includes a binuclear iron complex, including an oxygen reduction iron complex catalyst in which two iron atoms are cross-linked by an oxo ligand. An iron complex catalyst for oxygen reduction used under acidic conditions, and an iron complex is an iron complex catalyst for oxygen reduction, which is a binuclear complex formed by the reaction of a mononuclear iron complex with a strong base.
Also provided is an iron complex catalyst for oxygen reduction, wherein the ligand is a macrocyclic ligand such as tetraphenylporphyrin, octaethylporphyrin, and protoporphyrin IX.

【0007】また、この出願の発明は、上記のいずれか
の酸素還元用触媒からなる有機物の酸素酸化触媒をも提
供する。たとえば、酸化電位0〜1.5Vの、芳香族化
合物の酸素酸化触媒等を提供する。
The invention of this application also provides an organic oxygen oxidation catalyst comprising any of the above-described oxygen reduction catalysts. For example, an aromatic compound oxygen oxidation catalyst having an oxidation potential of 0 to 1.5 V is provided.

【0008】[0008]

【発明の実施の形態】この出願の発明は、上記のとおり
の鉄錯体を触媒とすることにより酸素還元を可能とする
ものであるが、以下にさらに詳細に説明する。まず、こ
の発明の酸素還元触媒に用いる鉄錯体としては、たとえ
ば配位子がテトラフェニルポルフィリン、オクタエチル
ポルフィリン、プロトポルフィリンIXのような大環状配
位子で構成される二核錯体である。ここでは、二つの鉄
はオキソ配位子によって架橋されているものが特徴の一
つとして示される。たとえば、特に、テトラフェニルポ
ルフィリンが例示される。
BEST MODE FOR CARRYING OUT THE INVENTION The invention of this application enables oxygen reduction by using the above-mentioned iron complex as a catalyst, which will be described in more detail below. First, the iron complex used in the oxygen reduction catalyst of the present invention is, for example, a binuclear complex whose ligand is composed of a macrocyclic ligand such as tetraphenylporphyrin, octaethylporphyrin, and protoporphyrin IX. Here, one of the features is that the two irons are bridged by an oxo ligand. For example, particularly, tetraphenylporphyrin is exemplified.

【0009】そしてこの発明の鉄系酸素還元触媒では、
活性状態での鉄の数が重要である。たとえば、この発明
により提供されるμ−オキソ型の二核錯体は単核の鉄錯
体よりも高い4電子還元反応選択性を持っていること
で、触媒活性が発現する。この発明に使用することので
きる鉄錯体を例示すれば、μ−オキソビス(テトラフェ
ニルポルフィリナート鉄(III))錯体、μ−オキソビス
(オクタエチルポルフィリナート鉄(III))錯体、μ−
オキソビス(プロトポルフィリナート−IX鉄(III))錯
体等が挙げられる。
In the iron-based oxygen reduction catalyst of the present invention,
The number of iron in the active state is important. For example, the μ-oxo-type binuclear complex provided by the present invention has higher four-electron reduction reaction selectivity than a mononuclear iron complex, and thus exhibits catalytic activity. Examples of iron complexes that can be used in the present invention include a μ-oxobis (tetraphenylporphyrinatoiron (III)) complex, a μ-oxobis (octaethylporphyrinatoiron (III)) complex, and a μ-oxobis (octaethylporphyrinatoiron (III)) complex.
Oxobis (protoporphyrinato-IX iron (III)) complex and the like.

【0010】いずれのものにおいても、この発明では中
心金属の鉄の2価〜4価の原子価変換が触媒活性の役割
を担い、配位子は主に酸化還元電位の調節に寄与される
ものと考えている。このため、前記に例示の配位子以外
であっても、溶液中で安定に鉄二核錯体を形成するもの
は、この触媒に含まれるものである。この発明の酸素還
元触媒は、構造が明確であるうえ、これを溶存させると
酸性下で0V以上の高い電位で酸素の2電子、または4
電子での電解還元を選択度高く可能とする。そして、4
電子還元の選択性が高いため、均一系で、有機化合物の
酸素酸化反応を促進させる触媒としても働く。また、触
媒を電極表面に固定して、不均一系電極触媒とすること
もでき、燃料電池の酸素還元電極、酸素検出用センサー
などに利用することができる。
[0010] In any of the present invention, divalent to tetravalent valence conversion of iron as the central metal plays a role of catalytic activity in the present invention, and the ligand mainly contributes to the regulation of redox potential. I believe. For this reason, even if it is other than the ligands exemplified above, those which stably form a binuclear iron complex in a solution are included in this catalyst. The oxygen reduction catalyst of the present invention has a well-defined structure and, when dissolved, has two electrons or four oxygen atoms at a high potential of 0 V or more under acidic conditions.
Electrolytic reduction with electrons can be performed with high selectivity. And 4
Since it has high selectivity for electron reduction, it also works as a catalyst that promotes the oxygen oxidation reaction of organic compounds in a homogeneous system. Further, the catalyst can be fixed on the electrode surface to form a heterogeneous electrode catalyst, and can be used for an oxygen reduction electrode of a fuel cell, a sensor for detecting oxygen, and the like.

【0011】この発明の酸素還元触媒は、系の酸素還元
等に応じて2電子過程、4電子過程の制御が可能のほ
か、たとえば活性酸素の溶存が好ましくないような酸素
酸化反応、高電位(酸素4電子還元熱力学電位)での酸
素還元等の利用目的に応じての使い分けが可能である。
以下、実施例を示し、さらに詳しく発明の実施の形態に
ついて説明する。
The oxygen reduction catalyst of the present invention can control a two-electron process and a four-electron process in accordance with the oxygen reduction of the system and the like. It can be used properly according to the purpose of use such as oxygen reduction at oxygen four-electron reduction thermodynamic potential).
Hereinafter, examples will be shown and embodiments of the present invention will be described in more detail.

【0012】[0012]

【実施例】実施例1 蒸留精製ジクロロメタン25mLにμ−オキソビス(テ
トラフェニルポルフィリナート鉄(III))錯体0.01
7gとテトラブチルアンモニウムテトラフルオロホウ酸
塩0.83gを加え、純粋アルゴン気流下、常温で攪拌
しながらトリフルオロ酢酸5滴を滴下した。これを常温
で10分程度攪拌したあと、アルゴン気流下で3室式電
気化学測定セルに移動し、密閉の後、系を酸素ガスで置
換した。
EXAMPLE 1 0.01 μ-oxobis (tetraphenylporphyrinato iron (III)) complex was dissolved in 25 mL of dichloromethane purified by distillation.
7 g and tetrabutylammonium tetrafluoroborate (0.83 g) were added, and 5 drops of trifluoroacetic acid were added dropwise while stirring at room temperature under a pure argon stream. After stirring the mixture at room temperature for about 10 minutes, the mixture was moved to a three-chamber electrochemical measurement cell under an argon stream, and after sealing, the system was replaced with oxygen gas.

【0013】次いで、上記セルを用いて電解を行った。
電解には、作用電極にグラッシーカーボンディスク電
極、白金リング電極、対極に白金ワイヤー電極、参照電
極に銀/塩化銀電極を用いた。ディスク電極電位を掃引
して酸素還元電位に設定し、同時に生成する過酸化水素
を独立に一定電位に設定したリング電極で酸化すること
により検出した。
Next, electrolysis was performed using the above cell.
For electrolysis, a glassy carbon disk electrode, a platinum ring electrode, a platinum wire electrode as a counter electrode, and a silver / silver chloride electrode as a reference electrode were used as working electrodes. The potential of the disk electrode was swept to set the oxygen reduction potential, and simultaneously detected hydrogen peroxide was detected by independently oxidizing with a ring electrode set to a constant potential.

【0014】測定は静止系(サイクリックボルタンメト
リー)と対流系(回転リングディスクボルタンメトリ
ー)の両方で実施し、検出電流をX−Yレコーダーを用
いてグラフ用紙に記録した。検出測定の結果、0.2V
に酸素4電子還元に由来する還元電流がディスク上で検
出された。リング電極で検出された過酸化水素の電流値
にごくわずかであった。使用した回転リングディスク電
極の形状に由来する補足率Nは、フェロセン/フェロセ
ニウム対を用いて0.39と決定された。アルゴン雰囲
気下では、上述の酸素還元由来の還元電流は当然観測さ
れず、溶存錯体由来の酸化還元波(0.05V)のみと
なる。酸素雰囲気下での補足率の値より、4電子還元の
選択性は90%以上と決定された。
The measurement was carried out in both a stationary system (cyclic voltammetry) and a convection system (rotating ring disk voltammetry), and the detected current was recorded on graph paper using an XY recorder. 0.2V as a result of detection measurement
A reduction current derived from oxygen four-electron reduction was detected on the disk. The current value of hydrogen peroxide detected at the ring electrode was very small. The capture factor N, derived from the shape of the rotating ring disk electrode used, was determined to be 0.39 using a ferrocene / ferrocenium pair. Under an argon atmosphere, the above-mentioned reduction current derived from oxygen reduction is naturally not observed, but only a redox wave (0.05 V) derived from a dissolved complex. The selectivity of the four-electron reduction was determined to be 90% or more from the value of the capture ratio under an oxygen atmosphere.

【0015】この触媒系を用いてアルゴン雰囲気下で過
酸化水素の電解還元を実施したが、接触還元波は見られ
なかった。以上の事実より、触媒を介した酸素の直接4
電子還元による水生成が確認された。実施例2 超純水25mLにアンモニウムヘキサフルオロリン酸塩
0.41gをいれ、純粋アルゴン気流下、常温で攪拌し
ながらテトラフルオロホウ酸を0.5Mになるまで滴下
した。これを常温で10分程度攪拌したあと、アルゴン
気流下で3室式電気化学測定セルに移動し、密閉の後、
系を酸素ガスで置換した。0.5mMトルエン溶液5μ
Lのμ−オキソビス(テトラフェニルポルフィリナート
鉄(III))錯体をスピンコーティングにより電極に修飾
した。
[0015] Electrolytic reduction of hydrogen peroxide was carried out in an argon atmosphere using this catalyst system, but no catalytic reduction wave was observed. Based on the above facts, the direct transfer of oxygen through the catalyst
Water generation by electron reduction was confirmed. Example 2 0.41 g of ammonium hexafluorophosphate was added to 25 mL of ultrapure water, and tetrafluoroboric acid was added dropwise to the mixture under a pure argon stream at room temperature while stirring at room temperature. This was stirred at room temperature for about 10 minutes, and then moved to a three-chamber electrochemical measurement cell under an argon stream, and after sealing,
The system was replaced with oxygen gas. 0.5mM toluene solution 5μ
The μ-oxobis (tetraphenylporphyrinatoiron (III)) complex of L was modified on the electrode by spin coating.

【0016】電解には、作用電極にグラッシーカーボン
ディスク電極、白金リング電極、対極に白金ワイヤー電
極、参照電極に飽和カロメル電極を用い、ディスク電極
電位を掃引して酸素還元電位に設定、同時に生成する過
酸化水素を独立に一定電位に設定したリング電極で酸化
することにより検出した。測定は静止系(サイクリック
ボルタンメトリー)と対流系(回転リングディスクボル
タンメトリー)の両方で実施し、検出電流をX−Yレコ
ーダーを用いてグラフ用紙に記録した。
In the electrolysis, a glassy carbon disk electrode and a platinum ring electrode are used as a working electrode, a platinum wire electrode is used as a counter electrode, and a saturated calomel electrode is used as a reference electrode. Hydrogen peroxide was detected by independently oxidizing with a ring electrode set at a constant potential. The measurement was performed in both a stationary system (cyclic voltammetry) and a convection system (rotating ring disk voltammetry), and the detected current was recorded on graph paper using an XY recorder.

【0017】検出測定の結果、−0.2Vに酸素4電子
還元に由来する還元電流がディスク上で検出された。リ
ング電極で検出された過酸化水素の電流値にごくわずか
であった。使用した回転リングディスク電極の形状に由
来する補足率Nは、フェロシアン/フェリシアン対を用
いて0.36と決定された。アルゴン雰囲気下では、上
述の酸素還元由来の還元電流は当然観測されず、溶存錯
体由来の酸化還元電位(−0.35)のみとなる。酸素
雰囲気下での補足率の値より、4電子還元の選択性は8
8%以上と決定された。
As a result of the detection measurement, a reduction current derived from oxygen four-electron reduction was detected on the disk at -0.2 V. The current value of hydrogen peroxide detected at the ring electrode was very small. The capture rate N, derived from the shape of the rotating ring disk electrode used, was determined to be 0.36 using a Ferrocyan / Felician pair. Under an argon atmosphere, the above-described reduction current derived from oxygen reduction is naturally not observed, but only the redox potential (−0.35) derived from the dissolved complex. From the value of the capture rate under an oxygen atmosphere, the selectivity of four-electron reduction is 8
It was determined to be 8% or more.

【0018】この触媒系を用いてアルゴン雰囲気下で過
酸化水素の電解還元を実施したが、接触還元波は見られ
なかった。以上の事実より、触媒を介した酸素の直接4
電子還元による水生成が確認された。
Electrolytic reduction of hydrogen peroxide was carried out in an argon atmosphere using this catalyst system, but no catalytic reduction wave was observed. Based on the above facts, the direct transfer of oxygen through the catalyst
Water generation by electron reduction was confirmed.

【0019】[0019]

【発明の効果】この発明の酸素還元触媒は、酸素還元電
位が高く、触媒活性が高く、その安定性にも優れてい
る。そして、これを均一系触媒として使用することによ
り、有機化合物の酸素酸化を図ることができ、進んで選
択的な4電子酸化による水の生成を伴う高い酸化電位を
引き出すことができる。また、不均一系電極表面触媒と
して用いることにより、燃料電池の酸素還元電極、酸素
センサーとしての用途を提供するため、産業に資すると
ころが極めて大きい。
The oxygen reduction catalyst of the present invention has a high oxygen reduction potential, high catalytic activity, and excellent stability. By using this as a homogeneous catalyst, oxygen oxidation of an organic compound can be achieved, and a high oxidation potential accompanying water generation by selective four-electron oxidation can be obtained. In addition, the use as a heterogeneous electrode surface catalyst provides applications as an oxygen reduction electrode and an oxygen sensor of a fuel cell, and thus greatly contributes to industry.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 0〜2Vまでの酸化電位を有する酸素還
元用の3価の二核鉄錯体触媒。
1. A trivalent dinuclear iron complex catalyst having an oxidation potential of 0 to 2 V for oxygen reduction.
【請求項2】 二核の鉄錯体は、二つの鉄原子がオキソ
配位子によって架橋されたものである請求項1の酸素還
元用鉄錯体触媒。
2. The iron complex catalyst for oxygen reduction according to claim 1, wherein the binuclear iron complex has two iron atoms cross-linked by an oxo ligand.
【請求項3】 二核の鉄錯体からなり、酸性条件下に使
用される請求項1の酸素還元用鉄錯体触媒。
3. The iron complex catalyst for oxygen reduction according to claim 1, which comprises a binuclear iron complex and is used under acidic conditions.
【請求項4】 鉄錯体は、単核鉄錯体が強塩基との反応
により形成される二核錯体である請求項1の酸素還元用
鉄錯体触媒。
4. The iron complex catalyst for oxygen reduction according to claim 1, wherein the iron complex is a binuclear complex formed by reacting a mononuclear iron complex with a strong base.
【請求項5】 配位子が、テトラフェニルポルフィリ
ン、オクタエチルポルフィリン、プロトポルフィリンIX
のような大環状配位子である請求項1の酸素還元用鉄錯
体触媒。
5. The ligand is tetraphenylporphyrin, octaethylporphyrin, protoporphyrin IX.
The iron complex catalyst for oxygen reduction according to claim 1, which is a macrocyclic ligand such as
【請求項6】 錯体は、μ−オキソ二核錯体である請求
項1ないし5のいずれかの酸素還元用鉄錯体触媒。
6. The oxygen reduction iron complex catalyst according to claim 1, wherein the complex is a μ-oxo binuclear complex.
【請求項7】 請求項1ないし6のいずれかの酸素還元
触媒からなる有機物の酸素酸化触媒。
7. An organic oxygen oxidation catalyst comprising the oxygen reduction catalyst according to claim 1.
【請求項8】 酸化電位0〜1.5Vの請求項9の芳香
族化合物の酸素酸化触媒。
8. The catalyst for oxidizing oxygen of an aromatic compound according to claim 9, which has an oxidation potential of 0 to 1.5 V.
JP05523397A 1997-03-10 1997-03-10 Binuclear iron complex catalyst Expired - Fee Related JP3432692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05523397A JP3432692B2 (en) 1997-03-10 1997-03-10 Binuclear iron complex catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05523397A JP3432692B2 (en) 1997-03-10 1997-03-10 Binuclear iron complex catalyst

Publications (2)

Publication Number Publication Date
JPH10249208A true JPH10249208A (en) 1998-09-22
JP3432692B2 JP3432692B2 (en) 2003-08-04

Family

ID=12992895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05523397A Expired - Fee Related JP3432692B2 (en) 1997-03-10 1997-03-10 Binuclear iron complex catalyst

Country Status (1)

Country Link
JP (1) JP3432692B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003053192A (en) * 2001-08-13 2003-02-25 Osaka Gas Co Ltd Electrode material-complex composite, electrode, electrode for oxidation and method of synthesizing alkanol
JP2006059578A (en) * 2004-08-18 2006-03-02 National Institute Of Advanced Industrial & Technology Cathode electrode catalyst for polymer electrolyte fuel cell and production method thereof
JP2006202688A (en) * 2005-01-24 2006-08-03 Asahi Kasei Corp Metal complex fuel cell electrode catalyst
JP2006202686A (en) * 2005-01-24 2006-08-03 Asahi Kasei Corp Metal compound fuel cell electrode catalyst
JP2008258150A (en) * 2007-03-09 2008-10-23 Sumitomo Chemical Co Ltd Fuel cell electrode catalyst
US8114803B2 (en) 2005-02-03 2012-02-14 Toyota Jidosha Kabushiki Kaisha Catalyst material and process for preparing the same
WO2019203051A1 (en) * 2018-04-18 2019-10-24 国立大学法人名古屋大学 Method for decomposing persistent organic substance using super-powerful catalyst, and super-powerful catalyst

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003053192A (en) * 2001-08-13 2003-02-25 Osaka Gas Co Ltd Electrode material-complex composite, electrode, electrode for oxidation and method of synthesizing alkanol
JP4646463B2 (en) * 2001-08-13 2011-03-09 大阪瓦斯株式会社 Electrode material-complex complex, electrode, electrode for oxidation, and method for synthesizing alkanol
JP2006059578A (en) * 2004-08-18 2006-03-02 National Institute Of Advanced Industrial & Technology Cathode electrode catalyst for polymer electrolyte fuel cell and production method thereof
JP2006202688A (en) * 2005-01-24 2006-08-03 Asahi Kasei Corp Metal complex fuel cell electrode catalyst
JP2006202686A (en) * 2005-01-24 2006-08-03 Asahi Kasei Corp Metal compound fuel cell electrode catalyst
US8114803B2 (en) 2005-02-03 2012-02-14 Toyota Jidosha Kabushiki Kaisha Catalyst material and process for preparing the same
JP2008258150A (en) * 2007-03-09 2008-10-23 Sumitomo Chemical Co Ltd Fuel cell electrode catalyst
WO2019203051A1 (en) * 2018-04-18 2019-10-24 国立大学法人名古屋大学 Method for decomposing persistent organic substance using super-powerful catalyst, and super-powerful catalyst
JPWO2019203051A1 (en) * 2018-04-18 2021-05-13 国立大学法人東海国立大学機構 Decomposition method of persistent organic matter using super strong catalyst and super strong catalyst

Also Published As

Publication number Publication date
JP3432692B2 (en) 2003-08-04

Similar Documents

Publication Publication Date Title
Kinzel et al. Transition metal complexes as catalysts for the electroconversion of CO2: an organometallic perspective
Zhang et al. Artificial photosynthesis: opportunities and challenges of molecular catalysts
Collin et al. Electrocatalytic properties of (tetraazacyclotetradecane) nickel (2+) and Ni2 (biscyclam) 4+ with respect to carbon dioxide and water reduction
Wang Recent development of non-platinum catalysts for oxygen reduction reaction
Ye et al. Cobalt tetrabutano-and tetrabenzotetraarylporphyrin complexes: effect of substituents on the electrochemical properties and catalytic activity of oxygen reduction reactions
Rosen et al. Tunable Molecular‐Scale Materials for Catalyzing the Low‐Overpotential Electrochemical Conversion of CO2
Collman et al. Electrocatalytic reduction of dioxygen to water by iridium porphyrins adsorbed on edge plane graphite electrodes
Wombwell et al. Synthetic active site model of the [NiFeSe] hydrogenase
Pugliese et al. Functionalization of carbon nanotubes with nickel cyclam for the electrochemical reduction of CO2
Shi et al. Electrocatalysts for the four-electron reduction of dioxygen based on adsorbed cobalt tetrapyridylporphyrin molecules linked by aquaammine complexes of ruthenium (II)
Das et al. Electrocatalytic Water Oxidation by a Phosphorus–Nitrogen O═ PN3-Pincer Cobalt Complex
Xiao et al. Bioinspired binickel catalyst for carbon dioxide reduction: the importance of metal–ligand cooperation
JP3366566B2 (en) Manganese complex catalyst for oxygen reduction
Dong et al. Electrocatalytic Oxygen Reduction Reaction of Peripheral Functionalized Cobalt Porphyrins (2.1. 2.1)
JP3432692B2 (en) Binuclear iron complex catalyst
Feng et al. Mononuclear ruthenium (II) complex covalently anchored on melem and g-C3N4 as efficient heterogeneous catalysts for chemical water oxidation
Muñoz-Becerra et al. An overview of the catalytic activity of MN4 molecular catalysts for the heterogeneous hydrogen evolution reaction
KR20130085635A (en) Organometal/polymer composite and preparing method of the same, and catalyst for reducing carbon dioxide including the same
Oyaizu et al. (µ-Peroxo) bis [pyridine (phthalocyaninato) iron (III)] as a convenient catalyst for the four-electron reduction of dioxygen
Liang et al. Bioinspired octanuclear copper cubane complex as an efficient molecular electrocatalyst for water oxidation
US6316653B1 (en) Mn4O4-cubane type catalysts
Alqahtani et al. Catalytic activity of the cobalt (2-hydroxybenzylidene) morpholine-4-carbothiohydrazide complex in the hydrogen evolution reaction
Yang et al. Structural evolution of the Ru-bms complex to the real water oxidation catalyst of Ru-bda: the bite angle matters
JP2009234918A (en) Modified metal complex and its use
JP3469022B2 (en) Vanadium complex catalyst

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100523

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees