JPH10208773A - Manufacture of polymer electrolyte secondary battery - Google Patents
Manufacture of polymer electrolyte secondary batteryInfo
- Publication number
- JPH10208773A JPH10208773A JP9009501A JP950197A JPH10208773A JP H10208773 A JPH10208773 A JP H10208773A JP 9009501 A JP9009501 A JP 9009501A JP 950197 A JP950197 A JP 950197A JP H10208773 A JPH10208773 A JP H10208773A
- Authority
- JP
- Japan
- Prior art keywords
- polymer electrolyte
- positive electrode
- secondary battery
- negative electrode
- electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、固体ポリマー電解
質層を備えるポリマー電解質二次電池の製造方法に関す
るものである。The present invention relates to a method for producing a polymer electrolyte secondary battery having a solid polymer electrolyte layer.
【0002】[0002]
【従来の技術】近年、電子機器の発達にともない、小型
で軽量、かつエネルギー密度が高く、更に繰り返し充放
電が可能な二次電池の開発が要望されている。このよう
な二次電池としては、リチウムまたはリチウム合金を活
物質とする負極と、モリブデン、バナジウム、チタンあ
るいはニオブなどの酸化物、硫化物もしくはセレン化物
を活物質とする正極とを具備したリチウム二次電池が知
られている。しかしながら、リチウムまたはリチウム合
金を活物質とする負極を備えた二次電池は、充放電サイ
クルを繰り返すと負極にリチウムのデンドライトが発生
するため、充放電サイクル寿命が短いという問題点があ
る。2. Description of the Related Art In recent years, with the development of electronic equipment, there has been a demand for the development of a secondary battery that is small, lightweight, has a high energy density, and can be repeatedly charged and discharged. As such a secondary battery, a lithium secondary battery including a negative electrode using lithium or a lithium alloy as an active material and a positive electrode using an oxide, sulfide, or selenide such as molybdenum, vanadium, titanium, or niobium as an active material is used. Secondary batteries are known. However, a secondary battery provided with a negative electrode using lithium or a lithium alloy as an active material has a problem that the charge / discharge cycle life is short because lithium dendrites are generated in the negative electrode when charge / discharge cycles are repeated.
【0003】このようなことから、負極に、例えばコー
クス、黒鉛、炭素繊維、樹脂焼成体、熱分解気相炭素の
ようなリチウムイオンを吸蔵放出する炭素質材料を用
い、LiPF6 のような電解質およびエチレンカーボネ
ート、プロピレンカーボネートのような非水溶媒からな
る電解液を用いた非水溶媒二次電池が提案されている。
前記非水溶媒二次電池は、デンドライト析出による負極
特性の劣化を改善することができるため、電池寿命と安
全性を向上することができる。[0003] For this reason, the negative electrode, for example coke, graphite, carbon fiber, resin fired body, a lithium ion, such as pyrolytic vapor carbon using a carbonaceous material for absorbing and releasing, electrolytes such as LiPF 6 A non-aqueous solvent secondary battery using an electrolytic solution comprising a non-aqueous solvent such as ethylene carbonate and propylene carbonate has been proposed.
The non-aqueous solvent secondary battery can improve the negative electrode characteristics due to the precipitation of dendrite, and thus can improve the battery life and safety.
【0004】一方、米国特許第5,296,318号明
細書には正極、負極および電解質層にポリマーを添加す
ることにより柔軟性が付与されたハイブリッドポリマー
電解質を有する再充電可能なリチウムインターカレーシ
ョン電池、つまりポリマー電解質二次電池が開示されて
いる。このようなポリマー電解質二次電池は、集電体に
活物質、非水電解液およびこの電解液を保持するポリマ
ーを含む正極層を積層した正極と集電体にリチウムイオ
ンを吸蔵放出し得る炭素質材料、非水電解液およびこの
電解液を保持するポリマーを含む負極層を積層した負極
との間に非水電解液およびこの電解液を保持するポリマ
ーを含む固体ポリマー電解質層が介在された構造を有す
る。On the other hand, US Pat. No. 5,296,318 discloses a rechargeable lithium intercalation having a hybrid polymer electrolyte which has been made flexible by adding polymers to the cathode, anode and electrolyte layers. A battery, that is, a polymer electrolyte secondary battery is disclosed. Such a polymer electrolyte secondary battery has a positive electrode in which a current collector has a positive electrode layer containing an active material, a non-aqueous electrolyte and a polymer holding the electrolyte, and a carbon capable of inserting and extracting lithium ions in the current collector. Structure in which a non-aqueous electrolyte and a solid polymer electrolyte layer containing a polymer holding the electrolytic solution are interposed between a negative electrode in which a negative electrode layer containing the electrolyte material, the non-aqueous electrolyte and the polymer holding the electrolyte is laminated Having.
【0005】ところで、前記ポリマー電解質二次電池を
携帯電話等の小型の電子機器に搭載する場合には次のよ
うな方法により製造されたものを使用することが考えら
れる。すなわち、正負極およびこれらの正負極の間に介
在した固体ポリマー電解質層からなる小面積の平板状素
電池を多数作製し、これらの素電池を積層した後、前記
正負極の集電体から延出されたリードを互いに接続する
ことにより小型のポリマー電解質二次電池を製造する。When the polymer electrolyte secondary battery is mounted on a small electronic device such as a mobile phone, it is conceivable to use a battery manufactured by the following method. That is, a large number of small-area flat-plate cells each including a positive electrode and a negative electrode and a solid polymer electrolyte layer interposed between these positive and negative electrodes were produced, and after stacking these cells, the current was collected from the current collector of the positive and negative electrodes. A small-sized polymer electrolyte secondary battery is manufactured by connecting the ejected leads to each other.
【0006】しかしながら、このような方法においては
小面積の平板状素電池を多数作製する必要があるばかり
か、前記平板状素電池が保形性に劣り取扱い難くために
作業が煩雑化すると共にコスト高になるという問題があ
った。However, in such a method, not only is it necessary to manufacture a large number of small-sized flat plate cells, but also the flat plate cells are inferior in shape retention and difficult to handle, thus complicating the operation and reducing the cost. There was a problem of getting high.
【0007】[0007]
【発明が解決しようとする課題】本発明は、小型で高エ
ネルギー密度のポリマー電解質二次電池を簡単な工程に
より製造することが可能な方法を提供しようとするもの
である。SUMMARY OF THE INVENTION An object of the present invention is to provide a method capable of manufacturing a small, high energy density polymer electrolyte secondary battery by a simple process.
【0008】[0008]
【課題を解決するための手段】本発明に係るポリマー電
解質二次電池は、リチウムイオンを吸蔵・放出可能な正
極および負極と、これら正負極間に介在された非水電解
液を含む固体ポリマー電解質層とを有するシート状素電
池を作製する工程と、素電池の両面に複数の切り込み部
をそれぞれ互いに対向し、かつ長さ方向に亘って互いに
平行になるように形成する工程と、前記素電池を前記切
り込み部に沿って折り畳んで積層化する工程とを具備し
たことを特徴とするものである。前記切り込み部は、前
記シート状素電池にその素電池を折り畳んだ時に山側で
深く、谷側で浅くなるように形成されることが好まし
い。A polymer electrolyte secondary battery according to the present invention comprises a solid polymer electrolyte containing a positive electrode and a negative electrode capable of inserting and extracting lithium ions, and a non-aqueous electrolyte interposed between the positive and negative electrodes. A sheet-shaped unit cell having a plurality of layers, a step of forming a plurality of cut portions on both surfaces of the unit cell so as to face each other, and to be parallel to each other over a length direction; Is folded along the cut portion and laminated. It is preferable that the cut portion is formed so as to be deep on the mountain side and shallow on the valley side when the unit cell is folded in the sheet-shaped unit cell.
【0009】[0009]
【発明の実施の形態】以下、本発明に係るポリマー電解
質二次電池の製造方法を図1〜図3を参照して詳細に説
明する。 i)まず、図1に示すように正極1、固体ポリマー電解
質層2、負極3、固体ポリマー電解質層2および正極1
を積層することによりシート状素電池4を作製する。つ
づいて、前記素電池4の両面に複数の切り込み部5a、
5bをそれぞれ互いに対向し、かつ長さ方向に亘って互
いに平行になるように形成する。この時、前記切り込み
部5a、5bを前記シート状素電池4にその素電池の折
り畳み時に山側で深く、谷側で浅くなるようすると共
に、山側の切り込み部5aを線状に、谷側の切り込み部
5bを溝状に切欠して形成する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a method for manufacturing a polymer electrolyte secondary battery according to the present invention will be described in detail with reference to FIGS. i) First, as shown in FIG. 1, the positive electrode 1, the solid polymer electrolyte layer 2, the negative electrode 3, the solid polymer electrolyte layer 2, and the positive electrode 1
Are laminated to produce a sheet-shaped unit cell 4. Subsequently, a plurality of cuts 5a are formed on both sides of the unit cell 4,
5b are formed so as to face each other and to be parallel to each other over the length direction. At this time, the notches 5a and 5b are formed in the sheet-shaped unit cell 4 so that when the unit cell is folded, the notches 5a and 5b are deeper on the hill side and shallower on the valley side. The portion 5b is formed by cutting out in a groove shape.
【0010】前記シート状素電池4は、次のような方法
により作製される。 (正極素材の作製)まず、非水電解液を保持するポリマ
ーの溶液を調製し、前記溶液に例えばDBP(ジブチル
フタレート)などの可塑剤、活物質及び導電材料を添加
した後、これらを混合し、正極用ペーストを調製する。
つづいて、この正極用ペーストをAl製の多孔質集電体
11の両面に塗工した後、乾燥させることにより電解液
未含浸の正極素材を作製する。The sheet-shaped unit cell 4 is manufactured by the following method. (Preparation of Positive Electrode Material) First, a solution of a polymer holding a non-aqueous electrolyte is prepared, and a plasticizer such as DBP (dibutyl phthalate), an active material, and a conductive material are added to the solution, and these are mixed. Then, a positive electrode paste is prepared.
Subsequently, this positive electrode paste is applied to both surfaces of the porous current collector 11 made of Al, and then dried to produce a positive electrode material not impregnated with an electrolytic solution.
【0011】前記非水電解液を保持するポリマーとして
は、例えばポリエチレンオキサイド誘導体、ポリプロピ
レンオキサイド誘導体、前記誘導体を含むポリマー、ビ
ニリデンフロライド(VdF)とヘキサフルオロプロピ
レン(HFP)との共重合体等を用いることができる。
前記共重合体において、VdFは共重合体の骨格部で機
械的強度の向上に寄与し、HFPは前記共重合体に非晶
質の状態で取り込まれ、非水電解液の保持と電解液中の
リチウムイオンの透過部として機能する。前記HFPの
共重合割合は、前記共重合体の合成方法にも依存する
が、通常、最大で20重量%前後である。Examples of the polymer holding the non-aqueous electrolyte include a polyethylene oxide derivative, a polypropylene oxide derivative, a polymer containing the derivative, and a copolymer of vinylidene fluoride (VdF) and hexafluoropropylene (HFP). Can be used.
In the copolymer, VdF contributes to the improvement of mechanical strength in the skeleton portion of the copolymer, and HFP is incorporated in the copolymer in an amorphous state, and the non-aqueous electrolyte is retained and the Functions as a lithium ion transmission part. The copolymerization ratio of the HFP depends on the method of synthesizing the copolymer, but is usually at most about 20% by weight.
【0012】前記可塑剤は、前記固体電解質層の強度等
の機械的特性の改善や電解液含浸量を向上させて充放電
特性を改善する目的で添加される。前記活物質として
は、種々の酸化物(例えばLiMn2 O4 などのリチウ
ムマンガン複合酸化物、二酸化マンガン、例えばLiN
iO2 などのリチウム含有ニッケル酸化物、例えばLi
CoO2 などのリチウム含有コバルト酸化物、リチウム
含有ニッケルコバルト酸化物、リチウムを含む非晶質五
酸化バナジウムなど)や、カルコゲン化合物(例えば、
二硫化チタン、二硫化モリブテンなど)等を挙げること
ができる。中でも、リチウムマンガン複合酸化物、リチ
ウム含有コバルト酸化物、リチウム含有ニッケル酸化物
を用いるのが好ましい。The plasticizer is added for the purpose of improving mechanical properties such as the strength of the solid electrolyte layer and improving the impregnation amount of the electrolytic solution to improve the charge / discharge characteristics. Examples of the active material include various oxides (for example, lithium manganese composite oxide such as LiMn 2 O 4 , manganese dioxide such as LiN
Lithium-containing nickel oxide such as iO 2 , for example, Li
A lithium-containing cobalt oxide such as CoO 2 , a lithium-containing nickel cobalt oxide, an amorphous vanadium pentoxide containing lithium, and a chalcogen compound (for example,
Titanium disulfide, molybdenum disulfide, etc.). Among them, it is preferable to use a lithium manganese composite oxide, a lithium-containing cobalt oxide, and a lithium-containing nickel oxide.
【0013】前記導電性材料としては、例えば、人造黒
鉛、カーボンブラック(例えばアセチレンブラックな
ど)、ニッケル粉末等を挙げることができる。前記多孔
質集電体11は、例えばAl製メッシュ、Al製エキス
パンドメタル、Al製パンチドメタル等を用いることが
できる。Examples of the conductive material include artificial graphite, carbon black (eg, acetylene black), nickel powder, and the like. As the porous current collector 11, for example, an Al mesh, an Al expanded metal, an Al punched metal, or the like can be used.
【0014】(固体電解質素材の作製)非水電解液を保
持するポリマーの溶液を調製し、この溶液に例えばDB
P(ジブチルフタレート)などの溶媒可溶性の可塑剤を
添加し、これを成膜、乾燥することにより電解液未含浸
の電解質素材を作製する。(Preparation of Solid Electrolyte Material) A solution of a polymer holding a non-aqueous electrolyte is prepared, and this solution is mixed with, for example, DB.
A solvent-soluble plasticizer such as P (dibutyl phthalate) is added, and a film is formed and dried to prepare an electrolyte material not impregnated with an electrolyte.
【0015】前記非水電解液を保持するポリマーとして
は、前述した正極素材の作製で説明したのと同様なもの
が用いられる。 (負極素材の作製)まず、非水電解液を保持するポリマ
ーの溶液を調製し、この溶液に例えばDBP(ジブチル
フタレート)などの可塑剤、活物質を添加した後、これ
らを混合し、負極用ペーストを調製する。この負極用ペ
ーストをCu製の多孔質集電体31に塗工した後、乾燥
させることにより電解液未含浸の負極素材を作製する。As the polymer for holding the non-aqueous electrolyte, the same polymer as described in the above-described preparation of the positive electrode material is used. (Preparation of Negative Electrode Material) First, a polymer solution holding a non-aqueous electrolyte is prepared, and a plasticizer such as DBP (dibutyl phthalate) and an active material are added to the solution. Prepare a paste. This negative electrode paste is applied to a porous current collector 31 made of Cu, and then dried to produce a negative electrode material not impregnated with an electrolyte.
【0016】前記非水電解液を保持するポリマーとして
は、前述した正極素材の作製で説明したのと同様なもの
が用いられる。前記活物質としては、リチウムイオンを
吸蔵放出する炭素質材料を挙げることができる。かかる
炭素質材料としては、例えば、有機高分子化合物(例え
ば、フェノール樹脂、ポリアクリロニトリル、セルロー
ス等)を焼成することにより得られるもの、コークス
や、ピッチを焼成することにより得られるもの、人造グ
ラファイト、天然グラファイト等に代表される炭素質材
料を挙げることができる。中でも、アルゴンガス、窒素
ガス等の不活性ガス雰囲気中において、500℃〜30
00℃の温度で、常圧または減圧下にて前記有機高分子
化合物を焼成して得られる炭素質材料を用いるのが好ま
しい。As the polymer holding the non-aqueous electrolyte, the same polymer as described in the above-described preparation of the positive electrode material is used. Examples of the active material include carbonaceous materials that occlude and release lithium ions. Such carbonaceous materials include, for example, those obtained by firing organic polymer compounds (eg, phenolic resin, polyacrylonitrile, cellulose, etc.), those obtained by firing coke and pitch, artificial graphite, Examples include carbonaceous materials represented by natural graphite and the like. Above all, in an atmosphere of an inert gas such as an argon gas or a nitrogen gas, 500 ° C. to 30 ° C.
It is preferable to use a carbonaceous material obtained by firing the organic polymer compound at a temperature of 00 ° C. under normal pressure or reduced pressure.
【0017】前記多孔質集電体31としては、例えばC
u製メッシュ、Cu製エキスパンドメタル、Cu製パン
チドメタル等を用いることができる。次いで、前記正極
素材、固体電解質素材、負極素材、固体電解質素材およ
び正極素材をこの順序で重ね、加熱融着して積層した
後、この積層物中の前記可塑剤をエタノール等の溶剤で
抽出して除去した後、非水電解液を含浸させる。この工
程によって、前述した図1に示すようにAl製の多孔質
集電体11の両面に活物質、導電性材料、非水電解液お
よびこの非水電解液を保持するポリマーを含む正極層1
2が担持された正極1と、非水電解液およびこの非水電
解液を保持するポリマーを含むポリマー電解質層2と、
Cu製の多孔質集電体31の両面に活物質、非水電解液
およびこの電解液を保持するポリマーを含む負極層32
が担持された負極3と、非水電解液およびこの非水電解
液を保持するポリマーを含むポリマー電解質層2と、A
l製の多孔質集電体11の両面に活物質、導電性材料、
非水電解液およびこの非水電解液を保持するポリマーを
含む正極層12が担持された正極1とがこの順序で積層
されたシート状素電池4を作製する。As the porous current collector 31, for example, C
A mesh made of u, an expanded metal made of Cu, a punched metal made of Cu, or the like can be used. Next, the positive electrode material, the solid electrolyte material, the negative electrode material, the solid electrolyte material and the positive electrode material are stacked in this order, and heat-sealed and stacked, and then the plasticizer in the stacked body is extracted with a solvent such as ethanol. And then impregnated with a non-aqueous electrolyte. By this step, as shown in FIG. 1 described above, the positive electrode layer 1 containing the active material, the conductive material, the non-aqueous electrolyte and the polymer holding the non-aqueous electrolyte on both surfaces of the porous current collector 11 made of Al.
2, a positive electrode 1 carrying a non-aqueous electrolyte, and a polymer electrolyte layer 2 containing a non-aqueous electrolyte and a polymer holding the non-aqueous electrolyte.
A negative electrode layer 32 containing an active material, a non-aqueous electrolyte and a polymer holding the electrolyte on both surfaces of a porous current collector 31 made of Cu
, A polymer electrolyte layer 2 containing a non-aqueous electrolyte and a polymer holding the non-aqueous electrolyte,
active material, conductive material, on both surfaces of a porous current collector 11 made of
A sheet unit cell 4 in which a nonaqueous electrolyte and a positive electrode 1 carrying a positive electrode layer 12 containing a polymer holding the nonaqueous electrolyte are stacked in this order is produced.
【0018】前記非水電解液は、非水溶媒に電解質を溶
解することにより調製される。前記非水溶媒としては、
エチレンカーボネート(EC)、プロピレンカーボネー
ト(PC)、ブチレンカーボネート(BC)、ジメチル
カーボネート(DMC)、ジエチルカーボネート(DE
C)、エチルメチルカーボネート(EMC)、γ−ブチ
ロラクトン(γ−BL)、スルホラン、アセトニトリ
ル、1,2−ジメトキシエタン、1,3−ジメトキシプ
ロパン、ジメチルエーテル、テトラヒドロフラン(TH
F)、2−メチルテトラヒドロフラン等を挙げることが
できる。前記非水溶媒は、単独で使用しても、2種以上
混合して使用しても良い。The non-aqueous electrolyte is prepared by dissolving an electrolyte in a non-aqueous solvent. As the non-aqueous solvent,
Ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DE
C), ethyl methyl carbonate (EMC), γ-butyrolactone (γ-BL), sulfolane, acetonitrile, 1,2-dimethoxyethane, 1,3-dimethoxypropane, dimethyl ether, tetrahydrofuran (TH
F) and 2-methyltetrahydrofuran. The non-aqueous solvents may be used alone or as a mixture of two or more.
【0019】前記電解質としては、例えば、過塩素酸リ
チウム(LiClO4 )、六フッ化リン酸リチウム(L
iPF6 )、ホウ四フッ化リチウム(LiBF4 )、六
フッ化砒素リチウム(LiAsF6 )、トリフルオロメ
タンスルホン酸リチウム(LiCF3 SO3 )、ビスト
リフルオロメチルスルホニルイミドリチウム[LiN
(CF3 SO3 )2 ]等のリチウム塩を挙げることがで
きる。Examples of the electrolyte include lithium perchlorate (LiClO 4 ) and lithium hexafluorophosphate (L
iPF 6 ), lithium borotetrafluoride (LiBF 4 ), lithium arsenic hexafluoride (LiAsF 6 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium bistrifluoromethylsulfonylimide [LiN
(CF 3 SO 3 ) 2 ].
【0020】前記電解質の前記非水溶媒に対する溶解量
は、0.2mol/l〜2mol/lとすることが望ま
しい。なお、前記素電池の作製において前記積層物中の
可塑剤を予め溶媒で抽出せずに、非水電解液で直接可塑
剤を溶解して置換してもよい。The amount of the electrolyte dissolved in the non-aqueous solvent is desirably 0.2 mol / l to 2 mol / l. In the production of the unit cell, the plasticizer in the laminate may not be extracted with a solvent in advance, but may be directly dissolved and replaced with a nonaqueous electrolyte.
【0021】また、前記正極素材、負極素材の作製に際
し、塗布法の代わりに非水電解液を保持するポリマーの
溶液に例えばDBP(ジブチルフタレート)などの可塑
剤、前記活物質を添加した後、これらを混合し、成膜し
たものを多孔質集電体の両面に積層してもよい。In preparing the positive electrode material and the negative electrode material, after adding a plasticizer such as DBP (dibutyl phthalate) and the active material to a polymer solution holding a non-aqueous electrolyte instead of a coating method, These may be mixed and a film formed may be laminated on both surfaces of the porous current collector.
【0022】ii)次いで、図2に示すように前記シート
状素電池4を切り込み部5a、5bに沿って、線状の切
り込み部5aが山側、溝状の切り込み部5bが谷側にな
るように折り曲げ、さらに折り畳むことによって、図3
に示す積層されたポリマー電解質二次電池6を製造す
る。Ii) Next, as shown in FIG. 2, the sheet-shaped unit cell 4 is cut along the cuts 5a and 5b so that the linear cut 5a is on the hill side and the groove-like cut 5b is on the valley side. Fig. 3
The polymer electrolyte secondary battery 6 shown in FIG.
【0023】以上説明した本発明の方法によれば、シー
ト状素電池4を切り込み部5a、5bを形成し、この切
り込み部5a、5bに沿って折り畳むことによって、小
型で高エネルギー密度のポリマー電解質二次電池を簡単
な工程により製造することができる。According to the method of the present invention described above, the sheet-shaped unit cell 4 is formed with the cut portions 5a and 5b and folded along the cut portions 5a and 5b, whereby the polymer electrolyte having a small size and a high energy density is obtained. A secondary battery can be manufactured by a simple process.
【0024】また、前記シート状素電池4に切り込み部
5a、5bを形成するに際し、折り畳み時に線状の切り
込み部5aが山側、溝状の切り込み部5bが谷側になる
よう形成することによって、折り畳んで重ねられる面が
互いに密着するため、よりコンパクトなポリマー電解質
二次電池を製造することができる。Further, when forming the cuts 5a and 5b in the sheet-shaped unit cell 4, the linear cuts 5a are formed on the hill side and the groove-shaped cuts 5b are formed on the valley side when folded. Since the folded surfaces are in close contact with each other, a more compact polymer electrolyte secondary battery can be manufactured.
【0025】なお、シート状素電池としては図1に示す
ように正極1、固体ポリマー電解質層2、負極3、固体
ポリマー電解質層2および正極1を積層した5層構造の
ものに限らず、正負極間に固体ポリマー電解質層を介装
した3層構造のシート状素電池を用いてもよい。The sheet cell is not limited to a five-layer structure in which the positive electrode 1, the solid polymer electrolyte layer 2, the negative electrode 3, the solid polymer electrolyte layer 2 and the positive electrode 1 are laminated as shown in FIG. A three-layer sheet cell having a solid polymer electrolyte layer interposed between the negative electrodes may be used.
【0026】[0026]
【実施例】以下、本発明の実施例を前述した図面を参照
して詳細に説明する。 (実施例1) <正極の作製>予め、アセトン20gにビニリデンフロ
ライド−ヘキサフルオロプロピレン(VdF−HFP)
の共重合体(エルファトケム社製商品名;KYNAR2
801、共重合比[VdF:HFP]が88:12)粉
末2.8gを溶解した後、このアセトン溶液にジブチル
フタレート(DBP)4.3gと、活物質として組成式
がLiCoO2 で表されるリチウム含有コバルト酸化物
(日本重化学工業製)を10.5gすることにより正極
用ペーストを調製した。DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to the drawings. (Example 1) <Preparation of positive electrode> Vinylidene fluoride-hexafluoropropylene (VdF-HFP) was previously added to 20 g of acetone.
Copolymer (trade name, manufactured by Elphatochem; KYNAR2)
801; copolymerization ratio [VdF: HFP]: 88:12) After dissolving 2.8 g of powder, 4.3 g of dibutyl phthalate (DBP) is dissolved in this acetone solution, and the composition formula is represented by LiCoO 2 as an active material. A paste for a positive electrode was prepared by weighing 10.5 g of lithium-containing cobalt oxide (manufactured by Nippon Heavy Chemical Industry).
【0027】厚さ30μmのアルミニウム製メッシュか
らなる多孔質集電体に前記組成の正極用ペーストを2.
5mAh/cm2 となるようナイフコータを用いて塗布
速度1m/minで塗工し、乾燥空気で乾燥することに
より前記多孔質集電体の両面に電解液未含浸正極層が形
成された正極素材を作製した。1. A positive electrode paste of the above composition was placed on a 30 μm-thick porous current collector made of an aluminum mesh.
A positive electrode material in which an electrolyte-unimpregnated positive electrode layer was formed on both surfaces of the porous current collector by applying a coating speed of 1 m / min using a knife coater so as to have a flow rate of 5 mAh / cm 2 and drying with dry air. Produced.
【0028】<負極の作製>前記正極に用いられたのと
同様なビニリデンフロライド−ヘキサフルオロプロピレ
ンの共重合体2.0gをアセトン12gに溶解させてア
セトン溶液を調製した後、このアセトン溶液にジブチル
フタレート(DBP)3.12gを添加後、活物質とし
てメソフェーズピッチ系炭素繊維(株式会社ペトカ社
製)7.37gを添加し、混合することにより負極用ペ
ーストを調製した。この負極用ペーストを厚さ50μm
の銅製メッシュからなる多孔質集電体にナイフコータを
用いて2.5mAh/cm2 となるよう塗布速度1m/
minで塗工し、乾燥空気により乾燥するして前記多孔
質集電体の両面に電解液未含浸負極層が形成された負極
素材を作製した。<Preparation of Negative Electrode> An acetone solution was prepared by dissolving 2.0 g of a vinylidene fluoride-hexafluoropropylene copolymer similar to that used for the positive electrode in 12 g of acetone. After adding 3.12 g of dibutyl phthalate (DBP), 7.37 g of mesophase pitch-based carbon fiber (manufactured by Petka Corporation) as an active material was added and mixed to prepare a paste for a negative electrode. This negative electrode paste is 50 μm thick.
Coating speed of 1 m / cm 2 on a porous current collector made of a copper mesh of 2.5 mAh / cm 2 using a knife coater.
min, and dried with dry air to prepare a negative electrode material in which an electrolyte-unimpregnated negative electrode layer was formed on both surfaces of the porous current collector.
【0029】<固体ポリマー電解質層の作製>前記正極
に用いられたのと同様なビニリデンフロライド−ヘキサ
フルオロプロピレンとの共重合体2.0gをアセトン1
0gに溶解させてアセトン溶液を調製した後、このアセ
トン溶液にジブチルフタレート(DBP)2.0gを添
加後、混合することによって電解質層用ペーストを調製
した。前記ペーストを平滑なガラス板上に乾燥後の膜厚
が70μmになるように塗布した後、正負極と同様に乾
燥し、前記ガラス板から剥し、電解液未含浸固体ポリマ
ー電解質素材を作製した。<Preparation of Solid Polymer Electrolyte Layer> A vinylidene fluoride-hexafluoropropylene copolymer (2.0 g) similar to that used for the positive electrode was mixed with acetone 1
After dissolving it in 0 g to prepare an acetone solution, 2.0 g of dibutyl phthalate (DBP) was added to the acetone solution and mixed to prepare a paste for an electrolyte layer. The paste was applied on a smooth glass plate so that the film thickness after drying became 70 μm, dried in the same manner as the positive and negative electrodes, and peeled off from the glass plate to prepare a solid polymer electrolyte material not impregnated with an electrolyte.
【0030】<非水電解液の調製>エチレンカーボネー
ト(EC)とジメチルカーボネート(DMC)が体積比
で1:1の割合で混合された非水溶媒に電解質としての
LiPF6 をその濃度が1mol/lになるように溶解
させて非水電解液を調製した。<Preparation of Nonaqueous Electrolyte> LiPF 6 as an electrolyte was mixed with a nonaqueous solvent in which ethylene carbonate (EC) and dimethyl carbonate (DMC) were mixed at a volume ratio of 1: 1 at a concentration of 1 mol / mol. 1 to prepare a non-aqueous electrolyte.
【0031】得られた正極素材、固体ポリマー電解質素
材、負極素材、固体ポリマー電解質素材および正極素材
をこの順序で重ね、これらを130℃に加熱した剛性ロ
ールにて加熱圧着して積層した後、この積層体を前記非
水電解液中に2時間浸漬することにより前記正極素材の
電解液未含浸正極層、前記負極素材の電解液未含浸負極
層および前記電解液未含浸ポリマー電解質素材中のDB
Pと前記電解液を置換及び前記ポリマーへの電解液の含
浸を行うことによって、前述した図1に示す幅200m
mのシート状素電池4を作製した。The obtained positive electrode material, solid polymer electrolyte material, negative electrode material, solid polymer electrolyte material and positive electrode material were stacked in this order, and these were laminated by heating and pressing with a rigid roll heated to 130 ° C. By immersing the laminate in the non-aqueous electrolyte for 2 hours, the electrolyte-impregnated positive electrode layer of the positive electrode material, the electrolyte-unimpregnated negative electrode layer of the negative electrode material, and the DB in the electrolyte-unimpregnated polymer electrolyte material
By substituting P and the electrolytic solution and impregnating the polymer with the electrolytic solution, the width of 200 m shown in FIG.
m sheet-shaped unit cells 4 were produced.
【0032】次いで、図1に示すように前記素電池4の
両面に複数の切り込み部5a、5bをそれぞれ互いに対
向し、かつ長さ方向に亘って互いに平行になるように5
0mm間隔で形成した。この時、前記切り込み部5a、
5bを前記シート状素電池4にその素電池の折り畳み時
に山側で深く、谷側で浅くなるようすると共に、山側の
切り込み部5aを線状に、谷側の切り込み部5bを溝状
に切欠して形成した。Next, as shown in FIG. 1, a plurality of cut portions 5a and 5b are formed on both sides of the unit cell 4 so as to face each other and to be parallel to each other in the length direction.
It was formed at 0 mm intervals. At this time, the notches 5a,
5b is cut into the sheet-shaped unit cell 4 so that the unit cell is folded deeper on the mountain side and shallower on the valley side when the cell unit is folded, and the notch 5a on the mountain side is cut out linearly and the notch 5b on the valley side is cut out like a groove. Formed.
【0033】次いで、図2に示すように前記シート状素
電池4を切り込み部5a、5bに沿って、線状の切り込
み部5aが山側、溝状の切り込み部5bが谷側になるよ
うに折り曲げ、さらに折り畳むことによって、図3に示
す積層された幅50mm、奥行100mm、高さ2.8
mmの4層構造のポリマー電解質二次電池6を製造し
た。Next, as shown in FIG. 2, the sheet-shaped unit cell 4 is bent along the cuts 5a and 5b such that the linear cut 5a is on the hill side and the groove-shaped cut 5b is on the valley side. By further folding, the laminated width 50 mm, depth 100 mm, and height 2.8 shown in FIG.
Thus, a polymer electrolyte secondary battery 6 having a four-layer structure of 4 mm was manufactured.
【0034】得られた実施例の二次電池について、充電
電流100mAで、4.2Vまでの定電流定電圧充電を
行った後において、平均3.7V、99.5mAの電流
を5時間に亘って放電することが可能であった。また、
このような充放電を100回繰り返し行っても、初期放
電に対して97%以上の性能を維持していた。With respect to the obtained secondary battery of the embodiment, after charging at a constant current and a constant voltage up to 4.2 V at a charging current of 100 mA, an average current of 3.7 V and 99.5 mA was applied for 5 hours. It was possible to discharge. Also,
Even if such charge / discharge was repeated 100 times, 97% or more of the performance of the initial discharge was maintained.
【0035】[0035]
【発明の効果】以上詳述したように、本発明によれば小
型で高エネルギー密度を有し、携帯電話等の小型電子危
機の電源に有用なポリマー電解質二次電池を簡単に製造
することが可能な製造方法を提供することができる。As described above in detail, according to the present invention, it is possible to easily produce a polymer electrolyte secondary battery having a small size, a high energy density, and a useful power source for a small electronic crisis such as a mobile phone. Possible manufacturing methods can be provided.
【図1】本発明に係るポリマー電解質二次電池の製造工
程を示す概略図。FIG. 1 is a schematic view showing a manufacturing process of a polymer electrolyte secondary battery according to the present invention.
【図2】本発明に係るポリマー電解質二次電池の製造工
程を示す概略図。FIG. 2 is a schematic view showing a manufacturing process of the polymer electrolyte secondary battery according to the present invention.
【図3】本発明に係るポリマー電解質二次電池の製造工
程を示す概略図。FIG. 3 is a schematic view showing a manufacturing process of the polymer electrolyte secondary battery according to the present invention.
1…正極、 2…固体ポリマー電解質層、 3…負極、 4…シート状素電池、 5a、5b…切り込み部、 6…ポリマー電解質二次電池、 11、31…多孔質集電体、 12…正極層、 32…負極層。 DESCRIPTION OF SYMBOLS 1 ... Positive electrode, 2 ... Solid polymer electrolyte layer, 3 ... Negative electrode, 4 ... Sheet cell, 5a, 5b ... Cut part, 6 ... Polymer electrolyte secondary battery, 11, 31 ... Porous current collector, 12 ... Positive electrode Layer 32: Negative electrode layer.
Claims (2)
および負極と、これら正負極間に介在された非水電解液
を含む固体ポリマー電解質層とを有するシート状素電池
を作製する工程と、 素電池の両面に複数の切り込み部をそれぞれ互いに対向
し、かつ長さ方向に亘って互いに平行になるように形成
する工程と、 前記素電池を前記切り込み部に沿って折り畳んで積層化
する工程とを具備したことを特徴とするポリマー電解質
二次電池の製造方法。1. A step of producing a sheet-shaped cell having a positive electrode and a negative electrode capable of inserting and extracting lithium ions, and a solid polymer electrolyte layer containing a non-aqueous electrolyte interposed between the positive and negative electrodes; A step of forming a plurality of cuts on both sides of the battery so as to face each other and to be parallel to each other over the length direction; and a step of folding and stacking the unit cells along the cuts. A method for producing a polymer electrolyte secondary battery, comprising:
にその素電池を折り畳んだ時に山側で深く、谷側で浅く
なるように形成されることを特徴とする請求項1記載の
ポリマー電解質二次電池の製造方法。2. The polymer electrolyte battery according to claim 1, wherein the cut portion is formed such that when the unit cell is folded into the sheet-shaped unit cell, the cut unit is deeper on the mountain side and shallower on the valley side. Manufacturing method of secondary battery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9009501A JPH10208773A (en) | 1997-01-22 | 1997-01-22 | Manufacture of polymer electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9009501A JPH10208773A (en) | 1997-01-22 | 1997-01-22 | Manufacture of polymer electrolyte secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10208773A true JPH10208773A (en) | 1998-08-07 |
Family
ID=11721996
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9009501A Pending JPH10208773A (en) | 1997-01-22 | 1997-01-22 | Manufacture of polymer electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10208773A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10112162A1 (en) * | 2001-03-14 | 2002-10-02 | Bosch Gmbh Robert | Rechargeable battery has stacked electrically conducting layers with edges enclosed by insulating frames, intermediate electrolyte layers; conducting layer frames are fixed to each other |
JP2004006408A (en) * | 1998-09-17 | 2004-01-08 | Toshiba Corp | Nonaqueous electrolyte secondary battery and manufacturing method thereof |
CN108987817A (en) * | 2018-08-02 | 2018-12-11 | 合肥国轩高科动力能源有限公司 | Lithium battery lamination device and lamination method |
WO2023136534A1 (en) * | 2022-01-11 | 2023-07-20 | 주식회사 엘지에너지솔루션 | Method for manufacturing all-solid-state battery |
-
1997
- 1997-01-22 JP JP9009501A patent/JPH10208773A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004006408A (en) * | 1998-09-17 | 2004-01-08 | Toshiba Corp | Nonaqueous electrolyte secondary battery and manufacturing method thereof |
DE10112162A1 (en) * | 2001-03-14 | 2002-10-02 | Bosch Gmbh Robert | Rechargeable battery has stacked electrically conducting layers with edges enclosed by insulating frames, intermediate electrolyte layers; conducting layer frames are fixed to each other |
DE10112162B4 (en) * | 2001-03-14 | 2005-07-14 | Robert Bosch Gmbh | Rechargeable battery |
CN108987817A (en) * | 2018-08-02 | 2018-12-11 | 合肥国轩高科动力能源有限公司 | Lithium battery lamination device and lamination method |
WO2023136534A1 (en) * | 2022-01-11 | 2023-07-20 | 주식회사 엘지에너지솔루션 | Method for manufacturing all-solid-state battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH11307130A (en) | Manufacture of curved battery | |
JPH09199175A (en) | Manufacture of polymer electrolyte secondary cell | |
JPH10214639A (en) | Manufacture of battery | |
JP4476379B2 (en) | Nonaqueous electrolyte secondary battery | |
JP2000133274A (en) | Polymer lithium secondary battery | |
JPH09199136A (en) | Nonaqueous electrolyte secondary battery | |
JPH10208773A (en) | Manufacture of polymer electrolyte secondary battery | |
JP2001023643A (en) | Polymer lithium secondary battery | |
JP2000149994A (en) | Polymer electrolyte lithium secondary battery | |
JPH11260417A (en) | Polymer electrolyte lithium secondary battery | |
JP2002134173A (en) | Method for manufacturing nonaqueous secondary battery | |
JPH10189053A (en) | Manufacture of polyelectrolyte battery | |
JP2001345093A (en) | Positive electrode for nonaqueous secondary cell, negative electrode for nonaqueous secondary cell and nonaqueous secondary cell | |
JPH11214035A (en) | Battery | |
JPH11144738A (en) | Polymer electrolyte secondary battery | |
JP2000058070A (en) | Polymer lithium secondary battery | |
JP2001052750A (en) | Polymer lithium secondary battery | |
JPH11111337A (en) | Polymer electrolyte secondary battery | |
JPH11317221A (en) | Manufacture of curved battery | |
JPH09213369A (en) | Polymer electrolyte secondary battery | |
JPH10144350A (en) | Polymer electrolytic film for polymer electrolyte secondary battery and manufacture of polymer electrolyte secondary battery | |
JP2000164253A (en) | Manufacture of polymer electrolyte secondary battery | |
JP2000323121A (en) | Nonaqueous electrolyte secondary battery and its manufacture | |
JP2001085061A (en) | Electrochemical device | |
JP3751674B2 (en) | Method for producing polymer electrolyte secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040114 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070126 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070710 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20071106 |