JPH10172573A - Lithium secondary battery negative electrode, its manufacture, and secondary battery using negative electrode - Google Patents
Lithium secondary battery negative electrode, its manufacture, and secondary battery using negative electrodeInfo
- Publication number
- JPH10172573A JPH10172573A JP8333543A JP33354396A JPH10172573A JP H10172573 A JPH10172573 A JP H10172573A JP 8333543 A JP8333543 A JP 8333543A JP 33354396 A JP33354396 A JP 33354396A JP H10172573 A JPH10172573 A JP H10172573A
- Authority
- JP
- Japan
- Prior art keywords
- pvdf
- electrode
- negative electrode
- binder
- secondary battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Carbon And Carbon Compounds (AREA)
- Paints Or Removers (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、炭素材料を負極と
するリチウム二次電池用負極とその製造方法及びこれを
用いた二次電池に関し、更に詳しくは、負極の結着剤と
してポリフッ化ビニリデンとポリメタクリル酸メチルの
2種類の高分子化合物を用い、この配合比と製造方法を
適正化することにより電極としての結着剤の状態を最適
化した、サイクル特性の極めて優れた負極及びその製造
方法、これを用いた二次電池に関するものである。The present invention relates to a negative electrode for a lithium secondary battery using a carbon material as a negative electrode, a method for producing the same, and a secondary battery using the same. More specifically, the present invention relates to a polyvinylidene fluoride as a binder for the negative electrode. Negative electrode with excellent cycle characteristics, optimized using two kinds of polymer compounds, polymethyl methacrylate and polymethyl methacrylate, by optimizing the compounding ratio and the manufacturing method, and having excellent cycle characteristics The present invention relates to a method and a secondary battery using the same.
【0002】[0002]
【従来の技術】近年、ポータブル電話機、ビデオカメ
ラ、ノート型パソコン等の小型化および携帯化、あるい
は電気自動車の実用化に向けて、より高エネルギー密度
の二次電池が要望されているが、その中でも、3V以上
の出力が可能な炭素材料を負極とし、比較的安全性の高
い非水電解液を使用したリチウム二次電池が期待されて
いる。これらの二次電池用炭素材料としては、天然に産
出される黒鉛もしくは有機原料を2000℃以上の高温
で焼成し、グラファイト構造が発達した平坦な電位特性
を有する黒鉛系炭素材料、あるいは有機原料を1000
℃以下の比較的低温で焼成し、黒鉛系材料よりも大きな
充放電容量が期待できるコークス系炭素材料等が用いら
れる。2. Description of the Related Art In recent years, secondary batteries with higher energy density have been demanded for miniaturization and portability of portable telephones, video cameras, notebook computers, and the like, or practical use of electric vehicles. In particular, a lithium secondary battery using a non-aqueous electrolytic solution having relatively high safety as a negative electrode and a carbon material capable of outputting 3 V or more is expected. As a carbon material for these secondary batteries, graphite produced naturally or an organic raw material is fired at a high temperature of 2000 ° C. or higher, and a graphite-based carbon material having a flat potential characteristic with a developed graphite structure, or an organic raw material is used. 1000
A coke-based carbon material or the like, which is fired at a relatively low temperature of not more than ℃ and is expected to have a larger charge / discharge capacity than graphite-based materials, is used.
【0003】また、これらリチウム二次電池の正極に
は、LiMn2 O4 等のスピネル構造化合物や、一般的
にLiMO2 で表せられるα−NaFeO2 構造を有す
るリチウム遷移金属複合酸化物等が利用できる。ここで
MはCo,Ni,Al,Mn,Ti,Fe等から選ばれ
る単独もしくは2種以上の金属元素である。さらには、
リチウムの挿入可能なMnO2 やV2 O5 等の金属酸化
物やTiS2 やZnS2 等の金属硫化物、電気化学的酸
化還元活性を有するポリアニリンやポリピロール等のπ
共役系高分子、分子内に硫黄結合を形成したり、硫黄結
合の開裂を利用するジスルフィド化合物等を用いること
も可能である。In addition, a spinel structure compound such as LiMn 2 O 4 or a lithium transition metal composite oxide having an α-NaFeO 2 structure generally represented by LiMO 2 is used for the positive electrode of these lithium secondary batteries. it can. Here, M is a single metal element or two or more metal elements selected from Co, Ni, Al, Mn, Ti, Fe and the like. Moreover,
Metal oxides such as MnO 2 and V 2 O 5 into which lithium can be inserted, metal sulfides such as TiS 2 and ZnS 2 , and π such as polyaniline and polypyrrole having electrochemical redox activity
It is also possible to use a conjugated polymer, a disulfide compound that forms a sulfur bond in the molecule, or utilizes cleavage of the sulfur bond.
【0004】また、非水電解液としては、リチウム塩を
有機溶媒に溶解したものが用いられる。リチウム塩とし
ては、主にLiClO4 、LiPF6 、LiBF4 、L
iCF3 SO3 等が使用され、有機溶媒としてはエチレ
ンカーボネート、プロピレンカーボネート、γ−ブチロ
ラクトン、スルホラン、ジエチルカーボネート、ジメチ
ルカーボネート、ジメトキシエタン、ジエトキシエタ
ン、2−メチル−テトラヒドロフラン、各種グライム類
等を単独若しくは2種類以上混合したものが用いられ
る。一方、電解液に代えて、ポリエチレンオキサイド構
造を含む高分子化合物にリチウム塩を溶解した固体電解
質、ポリアクリロニトリルやポリフッ化ビニリデン等の
高分子を有機溶媒で可塑化したゲル状電解質等を用いる
ことも可能である。As the non-aqueous electrolyte, a solution in which a lithium salt is dissolved in an organic solvent is used. As the lithium salt, LiClO 4 , LiPF 6 , LiBF 4 , L
iCF 3 SO 3 and the like are used, and as an organic solvent, ethylene carbonate, propylene carbonate, γ-butyrolactone, sulfolane, diethyl carbonate, dimethyl carbonate, dimethoxyethane, diethoxyethane, 2-methyl-tetrahydrofuran, various glymes, etc. are used alone. Alternatively, a mixture of two or more types is used. On the other hand, instead of the electrolytic solution, a solid electrolyte in which a lithium salt is dissolved in a polymer compound having a polyethylene oxide structure, a gel electrolyte in which a polymer such as polyacrylonitrile or polyvinylidene fluoride is plasticized with an organic solvent, or the like may be used. It is possible.
【0005】電極(正極、負極)の製造方法としては、
結着剤の役目をする少量のポリフッ化ビニリデン(以下
PVDFという)等の高分子化合物を有機溶剤に溶解し
たものに各種活物質、および適宜炭素や金属の微粉体か
らなる導電助剤を分散させてペースト状にした電極合剤
を電極芯材に塗布した後、有機溶剤を除去する方法が広
く行われている。その他では、高分子のラテックスやデ
イスパージョンを結着剤として利用する方法もある。[0005] As a method of manufacturing electrodes (positive electrode, negative electrode),
A small amount of a high molecular compound such as polyvinylidene fluoride (hereinafter referred to as PVDF) serving as a binder is dissolved in an organic solvent to disperse various active materials and, as appropriate, a conductive aid made of fine powder of carbon or metal. A method of applying an electrode mixture in a paste form to an electrode core material and then removing an organic solvent is widely used. In addition, there is a method using a polymer latex or dispersion as a binder.
【0006】また、電極芯材としては、正極の場合はア
ルミ箔やフィルム状カーボン、負極の場合は銅箔が広く
用いられる。As the electrode core material, aluminum foil or film-like carbon is widely used for the positive electrode, and copper foil is widely used for the negative electrode.
【0007】電極の特性にとっては、使用する材料の種
類や配合比だけでなく、電極中での各構成成分の好まし
い状態、あるいはそれを実現するための製造方法が重要
となる。そのような例として、特開平4−249859
が上げられる。この中ではX線回折ピークによって関連
づけれれるPVDFの結晶状態が電池のサイクル特性に
与える影響が述べられている。[0007] For the characteristics of the electrode, not only the types and mixing ratios of the materials to be used, but also the preferable state of each component in the electrode, or a manufacturing method for realizing it is important. As such an example, see Japanese Patent Application Laid-Open No.
Is raised. In this publication, the influence of the crystalline state of PVDF associated with the X-ray diffraction peak on the cycle characteristics of the battery is described.
【0008】一方、電極合剤と電極芯材との接着性は、
電極特性、とりわけサイクル特性にとって極めて重要で
ある。即ち、接着性に劣る場合、充放電を繰り返すうち
に電極合剤の剥離が起こり、早期の劣化を招く。また、
接着性が向上した場合、電池製造工程での電極芯材(集
電体)からの電極合剤の剥離が少なくなり、歩留りの上
昇にもつながる。電極合剤と電極芯材との接着性の向上
を目的とした技術として、特開平6−52861の例が
挙げられる。この中では結着剤として、PVDFと金属
と良好な接着性を有するポリメタクリレート、特にポリ
メタクリル酸メチル(以下PMMAという)との混合物
が使用され、PMMA10〜90重量%(実施例では5
0重量%)を電極合剤中に加えることにより、サイクル
特性が向上することが述べられている。前記の混合物に
ついての本発明者らの種々の検討結果によると、PVD
FとPMMAの配合比と製造方法によっては、かならず
しもサイクル特性が向上しないという問題がある。On the other hand, the adhesiveness between the electrode mixture and the electrode core material is as follows:
It is extremely important for electrode characteristics, especially cycle characteristics. That is, when the adhesiveness is poor, the electrode mixture is peeled off during repeated charging and discharging, leading to early deterioration. Also,
When the adhesiveness is improved, peeling of the electrode mixture from the electrode core material (current collector) in the battery manufacturing process is reduced, which leads to an increase in yield. JP-A-6-52861 is an example of a technique for improving the adhesion between an electrode mixture and an electrode core material. In this, a mixture of PVDF and polymethacrylate having good adhesion to metal, particularly polymethyl methacrylate (hereinafter referred to as PMMA) is used as a binder, and 10 to 90% by weight of PMMA (5% in Example) is used.
0% by weight) in the electrode mixture improves cycle characteristics. According to various studies by the present inventors on the above-mentioned mixture, PVD
There is a problem that the cycle characteristics are not always improved depending on the mixing ratio of F and PMMA and the production method.
【0009】一般的に、二次電池の高性能化において
は、電池容量の増加と充放電サイクルに伴う容量の低下
をできるだけ抑制することが重要である。既に市販され
ているリチウムイオン電池に代表される非水電解質二次
電池についても例外ではなく、現在でも数多くの企業や
研究機関で検討され、より一層の高性能化が希求されて
いる。炭素電極を負極として用いるリチウム二次電池に
おいては、炭素負極の充放電サイクル特性は極めて重要
であるが、炭素負極に関しては充放電に伴う体積変化が
大きく、結着剤の変成や電極合剤の集電体からの剥離あ
るいは電極の割れによる劣化が問題となる。In general, in order to improve the performance of a secondary battery, it is important to suppress a decrease in capacity due to an increase in battery capacity and a charge / discharge cycle as much as possible. Non-aqueous electrolyte secondary batteries typified by already commercially available lithium-ion batteries are no exception, and many companies and research institutes are currently studying them, and there is a need for even higher performance. In a lithium secondary battery using a carbon electrode as a negative electrode, the charge / discharge cycle characteristics of the carbon negative electrode are extremely important.However, the volume change of the carbon negative electrode accompanying charge / discharge is large, Degradation due to peeling from the current collector or cracking of the electrode becomes a problem.
【0010】[0010]
【発明が解決しようとする課題】本発明の課題は、炭素
材料を負極とするリチウム二次電池用負極の結着剤とし
て、PVDFとPMMAの2種類の高分子化合物を用い
てポリマー複合物とし、この両者の配合比と結着剤の状
態(ポリマー複合物の結晶質の状態)を最適化すること
により、電極合剤と集電体との接着性及び製造加工、使
用中に割れ等を生じない柔軟性に優れた負極、すなわち
電池サイクル特性に優れ、電池製造時の歩留りの上昇を
達成する負極を見出すことである。本発明の他の課題
は、前記の特性を有する負極の最適な製造方法を見出す
ことであり、また、このような負極を用いたリチウム二
次電池を提供することである。An object of the present invention is to provide a polymer composite using two types of polymer compounds, PVDF and PMMA, as a binder for a negative electrode for a lithium secondary battery using a carbon material as a negative electrode. By optimizing the compounding ratio of the two and the state of the binder (the crystalline state of the polymer composite), the adhesion between the electrode mixture and the current collector, the manufacturing process, cracking during use, etc. An object of the present invention is to find a negative electrode having excellent flexibility which does not occur, that is, a negative electrode which is excellent in battery cycle characteristics and achieves an increase in yield during battery production. Another object of the present invention is to find an optimal method for producing a negative electrode having the above-mentioned characteristics, and to provide a lithium secondary battery using such a negative electrode.
【0011】[0011]
【課題を解決するための手段】上記の課題を達成するた
めの請求項1の発明は、リチウムの吸蔵放出が可能な炭
素粉末と結着剤との混合ペーストを集電体に塗布してな
るリチウム二次電池用負極であって、前記結着剤はポリ
フッ化ビニリデン(PVDF)55〜80重量%とポリ
メタクリル酸メチル(PMMA)20〜45重量%のポ
リマー複合物からなり、かつ前記ポリマー複合物中のP
VDFが、X線回折における回折角17.7度付近、1
8.5度付近、20.1度付近でのPVDF結晶固有の
ピークを有しない非晶質又はピークが抑制された不完全
結晶質の状態にあることを特徴とするリチウム二次電池
用負極であり、According to a first aspect of the present invention, there is provided a current collector comprising a mixed paste of a carbon powder capable of inserting and extracting lithium and a binder. A negative electrode for a lithium secondary battery, wherein the binder comprises a polymer composite of 55 to 80% by weight of polyvinylidene fluoride (PVDF) and 20 to 45% by weight of polymethyl methacrylate (PMMA). P in things
When the VDF has a diffraction angle of about 17.7 degrees in X-ray diffraction,
A negative electrode for a lithium secondary battery, which is in an amorphous state having no peak unique to PVDF crystal at about 8.5 degrees or about 20.1 degrees or in an incompletely crystalline state with suppressed peaks. Yes,
【0012】請求項2の発明は、前記結着剤が、PVD
F55〜65重量%とPMMA35〜45重量%のポリ
マー複合物からなることを特徴とする請求項1に記載の
リチウム二次電池用負極であり、According to a second aspect of the present invention, the binder is PVD.
The negative electrode for a lithium secondary battery according to claim 1, comprising a polymer composite of F55 to 65 wt% and PMMA 35 to 45 wt%.
【0013】また、請求項3の発明は、前記請求項1に
記載の炭素粉末と溶剤に溶解した結着剤とからなる混合
ペーストを集電体に塗布し、次に前記の溶剤を散逸させ
た後、これを180〜250℃の温度に加熱し、前記の
範囲の温度から室温まで急冷して電極とすることを特徴
とするリチウム二次電池用負極の製造方法である。According to a third aspect of the present invention, a mixed paste comprising the carbon powder according to the first aspect and a binder dissolved in a solvent is applied to a current collector, and then the solvent is dissipated. After that, this is heated to a temperature of 180 to 250 ° C. and rapidly cooled from the temperature in the above range to room temperature to form an electrode, which is a method for producing a negative electrode for a lithium secondary battery.
【0014】更に、請求項4の発明は、前記請求項1に
記載の負極を用いたことを特徴とするリチウム二次電池
である。Further, a fourth aspect of the present invention is a lithium secondary battery using the negative electrode according to the first aspect.
【0015】[0015]
【発明の実施の形態】以下、前記各発明について、詳細
に説明する。 (1)請求項1、2の発明について 請求項1の発明は、リチウムの吸蔵放出が可能な炭素粉
末と結着剤との混合ペーストを集電体に塗布してなるリ
チウム二次電池用負極であって、前記結着剤はPVDF
55〜80重量%とPMMA20〜45重量%のポリマ
ー複合物からなり、かつ前記ポリマー複合物中のPVD
Fが、X線回折における回折角17.7度付近、18.
5度付近、20.1度付近でのPVDF結晶固有のピー
クを有しない非晶質又はピークが抑制された不完全結晶
質の状態にあることを発明の要旨とするリチウム二次電
池用負極である。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, each of the above inventions will be described in detail. (1) Regarding the first and second aspects of the invention The first aspect of the invention provides a negative electrode for a lithium secondary battery obtained by applying a mixed paste of a carbon powder capable of inserting and extracting lithium and a binder to a current collector. Wherein the binder is PVDF
55-80% by weight of PMMA and 20-45% by weight of polymer composite, and PVD in said polymer composite
F: near 17.7 degrees of diffraction angle in X-ray diffraction;
A negative electrode for a lithium secondary battery according to the gist of the invention, which is in an amorphous state having no peak unique to PVDF crystals at about 5 degrees or 20.1 degrees or in an incompletely crystalline state in which the peak is suppressed. is there.
【0016】本発明において、結着剤を構成するPVD
FとPMMAの配合比率は、各々55〜80重量%と2
0〜45重量%にする。結着剤中のPMMAを20〜4
5重量%に限定したのは、45重量%を越えると、PV
DFとPMMAとの複合物は硬質化し、電極としての柔
軟性を失ってしまうことと、充放電におけるサイクル特
性(例えば、放電容量維持率)が劣るためである。ま
た、20重量%未満では、やはり充放電におけるサイク
ル特性(例えば、放電容量維持率)が劣るためである。In the present invention, PVD constituting the binder
The mixing ratio of F and PMMA is 55 to 80% by weight and 2 respectively.
0-45% by weight. 20-4 PMMA in the binder
The reason for limiting to 5% by weight is that if it exceeds 45% by weight, PV
This is because the composite of DF and PMMA becomes hard and loses flexibility as an electrode, and the cycle characteristics in charge and discharge (for example, discharge capacity retention ratio) are inferior. Also, when the content is less than 20% by weight, the cycle characteristics in charge and discharge (for example, the discharge capacity retention ratio) are also poor.
【0017】図3は、結着剤中のPMMAの比率(重量
%)と充放電サイクル試験における放電容量維持率
(%)の関係を示したグラフである。これから明らかな
ごとく、前記結着剤中のPMMAは、20〜45重量%
(請求項1)が好ましく、さらに好ましくは35〜45
重量%(請求項2)である。FIG. 3 is a graph showing the relationship between the ratio (% by weight) of PMMA in the binder and the discharge capacity retention rate (%) in the charge / discharge cycle test. As is clear from this, PMMA in the binder is 20 to 45% by weight.
(Claim 1) is preferred, and more preferably 35 to 45.
% By weight (claim 2).
【0018】次に、本発明に係わる結着剤は、前記の組
成のポリマー複合物からなるものであるが、そのポリマ
ー複合物中のPVDFが、X線回折における回折角1
7.7度付近、18.5度付近、20.1度付近でのP
VDF結晶固有のピークを有しない非晶質又はピークが
抑制された不完全結晶質の状態にあることを特徴とする
ものである。Next, the binder according to the present invention comprises a polymer composite having the above-mentioned composition, and the PVDF in the polymer composite has a diffraction angle of 1 in X-ray diffraction.
P near 7.7 degrees, 18.5 degrees, and 20.1 degrees
It is characterized by being in an amorphous state having no peak unique to the VDF crystal or in an incomplete crystalline state in which the peak is suppressed.
【0019】ここで、本発明におけるポリマー複合物に
ついて説明する。T.Nishiらが、Macromo
recules誌(Vol.8,No.6,1975
年,P909)に報告しているように、PVDFとPM
MAは、高分子化合物であるにもかかわらず、強い相互
作用のため、ある条件下では分子レベルで相溶するポリ
マーアロイとして知られている。例えば、200℃程度
の溶融状態では相溶状態にあるが、凝固させ150℃以
下にすると、PVDFとPMMAは相分離を起こす。し
かしながら、溶融させ相溶状態にあるPVDFとPMM
Aとの複合物を急冷した場合、相溶状態が凍結され相分
離を部分的若しくは完全に抑制することが可能となる。
また、このことにより、PVDFの結晶状態をコントロ
ールすることも可能となる。特にPMMAを一定以上の
割合に増加させた場合、PVDFの結晶化を実質的に完
全に抑制することも可能となる。本発明は、PVDFと
PMMAとからなるポリマーアロイの前記の知見に基づ
いて、これを炭素電極(負極)の結着剤に適用、検討す
ることにより、完成したものである。Here, the polymer composite of the present invention will be described. T. Nishi et al., Macromo
recules (Vol. 8, No. 6, 1975)
Year, P909), PVDF and PM
MA is known as a polymer alloy that is compatible at a molecular level under certain conditions due to strong interaction despite being a polymer compound. For example, in a molten state at about 200 ° C., they are in a compatible state, but when solidified to 150 ° C. or lower, phase separation occurs between PVDF and PMMA. However, PVDF and PMM which are melted and in a compatible state
When the composite with A is quenched, the compatible state is frozen and the phase separation can be partially or completely suppressed.
This also makes it possible to control the crystal state of PVDF. In particular, when PMMA is increased to a certain ratio or more, crystallization of PVDF can be substantially completely suppressed. The present invention has been completed by applying and examining a polymer alloy composed of PVDF and PMMA to a binder for a carbon electrode (negative electrode) based on the above findings.
【0020】上記のPVDFとPMMAの複合物を炭素
電極(負極)の結着剤として使用した場合、PVDF固
有の回折角17.7度付近、18.5度付近および2
0.1度付近に存在するピークが全く存在しない、即ち
結着剤(ポリマー複合物)中のPVDFを非晶質とする
必要がある。又は、PVDF固有の回折角17.7度付
近、18.5度付近および20.1度付近に存在するピ
ークが抑制されている、即ち結着剤(ポリマー複合物)
中のPVDFを不完全な結晶質とする必要がある。言い
換えると本発明は、結着剤(ポリマー複合物)中のPV
DFを非晶質とするか若しくは不完全結晶質とするもの
で、結晶質にしないことが重要である。When the above composite of PVDF and PMMA is used as a binder for a carbon electrode (negative electrode), the diffraction angles unique to PVDF are around 17.7 °, 18.5 ° and 28.5 °.
There is no peak at around 0.1 degree, that is, the PVDF in the binder (polymer composite) needs to be amorphous. Alternatively, the peaks existing near the PVDF-specific diffraction angles of 17.7 degrees, 18.5 degrees, and 20.1 degrees are suppressed, that is, the binder (polymer composite)
It is necessary to make the PVDF therein incompletely crystalline. In other words, the present invention relates to a method for producing PV in a binder (polymer composite).
It is important that the DF is made amorphous or incompletely crystalline and not crystalline.
【0021】図1は、本発明に係わる電極A−1、B−
2の結着剤中のPVDFの結晶状態について、X線回折
による回折角2θの回折線強度を測定し、図示したもの
である。 また、比較のため、PVDFのみで結晶性の
もの及び本発明の範囲外の電極C−2、E−1について
も同様に測定して図示した。図1から明らかなごとく、
結晶性のPVDFは、回折角17.7度付近、18.5
度付近および20.1度付近に、PVDF固有の回折線
強度のピークが存在することがわかる。一方、本発明に
係わる電極A−1には、回折角17.7度付近、18.
5度付近および20.1度付近に存在するはずのPVD
F固有のピークが全く観測されず、結着剤中のPVDF
は、非晶質であることがわかる。また、本発明に係わる
電極B−2は、PVDF固有のピークが、回折角17.
7度付近、18.5度付近および20.1度付近におい
て、抑制されており、結着剤中のPVDFが、不完全な
結晶状態にあることがわかる。さらに、本発明の範囲外
の電極C−2、E−1については、PVDFのみで結晶
性のものの回折線強度と全く同様であり、回折角17.
7度付近、18.5度付近および20.1度付近におい
て、PVDF固有のピークが観測されるため、この結着
剤中のPVDFは、結晶質であることがわかる。FIG. 1 shows electrodes A-1 and B- according to the present invention.
2 shows the results obtained by measuring the diffraction line intensity at a diffraction angle of 2θ by X-ray diffraction for the crystalline state of PVDF in the binder of No. 2. Also, for comparison, PVDF alone, which is crystalline, and electrodes C-2 and E-1 outside the scope of the present invention were similarly measured and shown. As is clear from FIG.
Crystalline PVDF has a diffraction angle of around 17.7 degrees, 18.5
It can be seen that there are peaks of diffraction line intensity unique to PVDF near the temperature and around 20.1 °. On the other hand, the electrode A-1 according to the present invention has diffraction angles of about 17.7 degrees, 18.
PVD that should be around 5 degrees and around 20.1 degrees
F-specific peak was not observed at all and PVDF in the binder
Is amorphous. In the electrode B-2 according to the present invention, the peak unique to PVDF has a diffraction angle of 17.
It is suppressed at around 7 degrees, around 18.5 degrees, and around 20.1 degrees, indicating that the PVDF in the binder is in an incomplete crystalline state. Further, for the electrodes C-2 and E-1 outside the range of the present invention, the diffraction line intensity of PVDF alone is the same as that of the crystalline one, and the diffraction angle is 17.
Since peaks specific to PVDF are observed at around 7 degrees, around 18.5 degrees, and around 20.1 degrees, it is understood that the PVDF in this binder is crystalline.
【0022】本発明の負極電極は、PVDFとPMMA
の複合物からなる結着剤の組成を前記のごとくし、且つ
結着剤(ポリマー複合物)中のPVDFを非晶質又は
不完全な結晶質とすることによって、電極としての柔軟
性に富み、且つ充放電におけるサイクル特性(例えば、
放電容量維持率)を向上することが可能となる。The negative electrode of the present invention comprises PVDF and PMMA.
By making the composition of the binder composed of the composite of the above as described above and making the PVDF in the binder (polymer composite) amorphous or incompletely crystalline, the electrode has high flexibility. And cycle characteristics in charge and discharge (for example,
Discharge capacity retention ratio) can be improved.
【0023】なお、結着剤中のPVDFの結晶化の度合
いとサイクル特性としての放電容量維持率との間には、
相関関係があり、以下このことについて説明する。電極
の製造方法が同一な電極について、電極中のPMMAの
比率と放電容量維持率の関係を図3のグラフに示す。It should be noted that between the degree of crystallization of PVDF in the binder and the discharge capacity retention rate as cycle characteristics,
There is a correlation, and this will be described below. FIG. 3 is a graph showing the relationship between the ratio of PMMA in the electrode and the discharge capacity retention ratio for electrodes having the same electrode manufacturing method.
【0024】図3からわかるように、結着剤中のPMM
Aの本発明の範囲20〜45重量%(請求項1)におい
て、その比率45重量%以下では、PMMAの配合比の
増大に伴い、放電容量維持率は上昇する。これは、先に
示したX線回折におけるPVDF固有のピークの発達が
抑制されたことに起因するものと考えられる。即ち、結
着剤中のPMMAが、45重量%以下の領域において
は、前記ピークが抑制されるほど、サイクル維持に伴う
電極の劣化は抑制されるが、PMMAの比率としては、
放電容量維持率が80%を越える20重量%以上が好ま
しい。さらには、前記PVDFのピークが完全に抑制さ
れ(ピーク無)、放電容量維持率が90%を越える35
重量%以上が非常に好ましいことは明らかである(PM
MA35〜45重量%、請求項2)。As can be seen from FIG. 3, PMM in the binder
In the range of 20 to 45% by weight of A in the present invention (claim 1), if the ratio is 45% by weight or less, the discharge capacity retention ratio increases with an increase in the mixing ratio of PMMA. This is considered to be due to suppression of the development of the peak unique to PVDF in the X-ray diffraction described above. That is, in the region where the PMMA in the binder is 45% by weight or less, the more the peak is suppressed, the more the deterioration of the electrode due to the cycle maintenance is suppressed, but the PMMA ratio is as follows:
The discharge capacity retention ratio is preferably 20% by weight or more exceeding 80%. Further, the peak of the PVDF is completely suppressed (no peak), and the discharge capacity retention ratio exceeds 90%.
Obviously, weight% or more is very preferable (PM
MA 35 to 45% by weight, claim 2).
【0025】しかしながら、PMMAの比率が45重量
%を越えた場合、急激な特性の低下をまねく。これは、
前記のようにPVDFとPMMAとの複合物の見かけの
ガラス転移温度が上昇し、電極が硬質化してしまい、大
きな体積変化を伴う炭素負極の充放電反応に悪影響を与
えるためと推測される。また、この場合、前記のよう
に、電池の製造過程等で電極の割れが生じやすくなり、
歩留りの低下をもまねく。However, when the proportion of PMMA exceeds 45% by weight, the characteristics are sharply reduced. this is,
As described above, it is presumed that the apparent glass transition temperature of the composite of PVDF and PMMA increases, the electrode becomes hard, and adversely affects the charge / discharge reaction of the carbon negative electrode accompanied by a large volume change. Further, in this case, as described above, the electrode is easily cracked in the battery manufacturing process and the like,
It leads to a decrease in yield.
【0026】(2)請求項3の発明について 請求項3の発明は、請求項1の発明に係わるリチウム二
次電池用負極の製造方法である。即ち、前記請求項1に
記載の炭素粉末と溶剤に溶解した結着剤とからなる混合
ペーストを集電体に塗布し、次に前記の溶剤を散逸させ
た後、これを180〜250℃の温度に加熱し、前記の
範囲の温度から室温まで急冷して電極とするものであ
る。(2) Regarding the Invention of Claim 3 The invention of claim 3 is a method for manufacturing a negative electrode for a lithium secondary battery according to the invention of claim 1. That is, a mixed paste consisting of the carbon powder according to claim 1 and a binder dissolved in a solvent is applied to a current collector, and then the solvent is dissipated. The electrode is heated to a temperature and rapidly cooled from the temperature in the above range to room temperature to form an electrode.
【0027】本発明に係わる電極の製造においては、P
VDFとPMMAの複合体が溶融する180℃以上の温
度(180〜250℃)から、室温まで急冷処理(例え
ば、20℃の室温までに要する時間を1分以内とする)
する必要がある。加熱温度をこのように限定したのは、
180℃未満では、室温まで急冷しても、結着剤(ポリ
マー複合物)中のPVDFが非晶質又は不完全な結晶質
とならず、そのため充放電におけるサイクル特性が劣る
ためであり、また、250℃を越えると高分子成分の分
解をまねく恐れがあり、好ましくないからである。ま
た、加熱温度が180〜250℃の範囲であっても、徐
冷(例えば、20℃の室温までに要する時間が30分)
した場合は、前記と同様に、結着剤(ポリマー複合物)
中のPVDFが非晶質又は不完全な結晶質とならず、充
放電におけるサイクル特性が劣る。In the production of the electrode according to the present invention, P
From the temperature of 180 ° C or higher (180-250 ° C) at which the composite of VDF and PMMA melts, quenching treatment to room temperature (for example, the time required to reach 20 ° C room temperature is within 1 minute)
There is a need to. The reason for limiting the heating temperature in this way is that
If the temperature is lower than 180 ° C., even when rapidly cooled to room temperature, the PVDF in the binder (polymer composite) does not become amorphous or incompletely crystalline, so that the cycle characteristics in charge and discharge are inferior. If the temperature exceeds 250 ° C., the polymer component may be decomposed, which is not preferable. Also, even if the heating temperature is in the range of 180 to 250 ° C., it is gradually cooled (for example, the time required to reach room temperature of 20 ° C. is 30 minutes).
If so, the binder (polymer composite) as described above
The PVDF inside does not become amorphous or incompletely crystalline, and the cycle characteristics in charge and discharge are inferior.
【0028】なお、後に示す実施例からも明らかなごと
く、結着剤中のPMMAの比率が40重量%で同じ場合
でも、電極の製造方法の相違及びそれに起因する結着剤
の状態の違いから、サイクル特性に大きな差が生じるた
め、前記の電極の製造方法を採用することによって、結
着剤(ポリマー複合物)中のPVDFの結晶状態を前記
のように保つことが極めて重要である。As will be apparent from the examples described later, even when the ratio of PMMA in the binder is 40% by weight and the same, the difference in the method of manufacturing the electrodes and the difference in the state of the binder resulting therefrom. Since a large difference occurs in the cycle characteristics, it is extremely important to maintain the crystalline state of PVDF in the binder (polymer composite) as described above by employing the above-described electrode manufacturing method.
【0029】また、急冷処理の冷却の温度は、室温以下
なら良い。冷却方法としても、冷風の使用や液体窒素や
冷水等の冷媒に浸漬する方法等でもよい。なお、急冷処
理後の更なる加熱は、PVDFとPMMAの相分離およ
びPVDFの部分的な結晶化をまねくため、あまり好ま
しくないが、120℃以下の比較的低温による加熱であ
れば、かまわない。Further, the cooling temperature in the quenching process may be at room temperature or lower. As a cooling method, a method using cold air, a method of immersing in a refrigerant such as liquid nitrogen or cold water, or the like may be used. In addition, further heating after the quenching treatment is not preferable because it causes phase separation of PVDF and PMMA and partial crystallization of PVDF, but heating at a relatively low temperature of 120 ° C. or less is acceptable.
【0030】(3)請求項4の発明について 請求項4の発明は、前記請求項1に記載の負極を用いた
ことを特徴とするリチウム二次電池である。本発明のリ
チウム二次電池においては、負極は当然のことながら前
記の本発明の負極を用いるものであるが、正極及び非水
電解質等は、前述の公知のものが使用できる。(3) Regarding the Invention of Claim 4 The invention of claim 4 is a lithium secondary battery using the negative electrode according to claim 1. In the lithium secondary battery of the present invention, the negative electrode uses the above-described negative electrode of the present invention as a matter of course. As the positive electrode and the non-aqueous electrolyte, the above-mentioned known ones can be used.
【0031】本発明の炭素負極電極および当該負極に用
いたリチウム二次電池においては、負極の結着剤として
用いるPVDFとPMMAとの配合比を限定し、また負
極電極の製造方法を特化することにより、電極芯材と電
極合剤との接着性の向上および負極電極中の結着剤の結
晶状態をコントロールして、充放電のサイクル特性の向
上と柔軟性のある電極による電池製造時の歩留りの向上
を達成することができる。In the carbon negative electrode of the present invention and the lithium secondary battery used for the negative electrode, the mixing ratio of PVDF and PMMA used as a binder for the negative electrode is limited, and the method of manufacturing the negative electrode is specialized. By improving the adhesiveness between the electrode core material and the electrode mixture and controlling the crystalline state of the binder in the negative electrode, the charge / discharge cycle characteristics are improved and the battery is manufactured using a flexible electrode during battery production. An improvement in yield can be achieved.
【0032】[0032]
【実施例】次に、本発明の実施例(本発明例)を詳細に
説明する。また、適宜本発明の効果をより明確にするた
めの比較例も合わせて示す。 〔実施例1〕表1に示すように、PVDFとPMMAと
からなる種々の組成の結着剤10重量部を、1−メチル
−2−ピロリドンに溶解した溶液に、平均粒径が29μ
mで平均層間距離が0.343nmの無定形炭素材料粉
末90重量部を加え混練することにより電極合剤ペース
トを作製した。上記ペーストを厚さ35μmの銅箔上
に、炭素粉末が約0.01g/cm2 になるように塗布
し、200℃で加熱することにより、1−メチル−2−
ピロリドンを散逸させ乾燥させた。この際、電極の冷却
は200℃から迅速に室温(20℃)雰囲気に放置する
ことにより急冷した。なお、室温までに要した時間は2
5秒であった。その後1t/cm2 の圧力でプレス成形
することにより、電極を作成した。Next, examples of the present invention (examples of the present invention) will be described in detail. In addition, comparative examples for further clarifying the effects of the present invention are also shown. Example 1 As shown in Table 1, 10 parts by weight of a binder having various compositions composed of PVDF and PMMA were dissolved in 1-methyl-2-pyrrolidone in a solution having an average particle size of 29 μm.
An electrode mixture paste was prepared by adding and kneading 90 parts by weight of an amorphous carbon material powder having an average interlayer distance of 0.343 nm. The above paste was applied on a copper foil having a thickness of 35 μm so that the carbon powder was about 0.01 g / cm 2 , and heated at 200 ° C. to obtain 1-methyl-2-
The pyrrolidone was dissipated and dried. At this time, the electrode was rapidly cooled by leaving it in a room temperature (20 ° C.) atmosphere immediately from 200 ° C. The time required to reach room temperature is 2
5 seconds. Thereafter, an electrode was formed by press molding at a pressure of 1 t / cm 2 .
【0033】[0033]
【表1】 [Table 1]
【0034】表1に示すごとく、本発明例は、結着剤の
組成が発明の範囲内のもの(試験No.1〜6)で、そ
れぞれ電極名をA−1、A−2、A−3、B−1、B−
2、B−3とした。比較例は、結着剤の組成が発明の範
囲外のもの(試験No.7〜10)で、それぞれ電極名
をC−1、C−2、D−1、D−2とした。上述の条件
で作成した電極A群〜D群について、結着剤の結晶状態
を調べるために、X線回折により回折角2θの回折線強
度を測定した。測定には理学電機製RINT−2400
型X線測定装置を用い、光学系の測定条件は以下のごと
くした。 光学系の測定条件:X線源はCuをターゲットとし、波
長1.5405Å (CuKα線) X線強度は60kV×200mA 発散スリットは1° 受光スリットは0.30mm 散乱スリットは1° スキャンスピードは2.0°/min 湾曲モノクロメーターを使用As shown in Table 1, in the present invention, the composition of the binder was within the range of the invention (Test Nos. 1 to 6), and the electrode names were A-1, A-2 and A-, respectively. 3, B-1, B-
2, B-3. In Comparative Examples, the composition of the binder was out of the range of the invention (Test Nos. 7 to 10), and the electrode names were C-1, C-2, D-1, and D-2, respectively. For the electrode groups A to D prepared under the above-described conditions, in order to examine the crystal state of the binder, the diffraction line intensity at a diffraction angle 2θ was measured by X-ray diffraction. Rig-2400 manufactured by Rigaku Denki
Using an X-ray X-ray measuring apparatus, the measurement conditions of the optical system were as follows. Optical system measurement conditions: X-ray source is Cu target, wavelength 1.540540 (CuKα ray) X-ray intensity is 60 kV × 200 mA, divergence slit is 1 °, light receiving slit is 0.30 mm, scattering slit is 1 °, scan speed is 2 .0 ° / min using curved monochromator
【0035】上記の電極A−1、B−2、C−2のX線
回折の測定結果を図1に示す。また、比較のため、PV
DFのみで結晶性のものについてのX線回折による回折
角2θの回折線強度も併せて記した。図1から明らかな
ように、結晶性のPVDFは、回折角17.7度付近、
18.5度付近および20.1度付近に、PVDF固有
の回折線強度のピークが存在することがわかる。一方、
本発明に係わる電極A−1には、回折角17.7度付
近、18.5度付近および20.1度付近に存在するは
ずのPVDF固有のピークが全く観測されなかった。即
ち、本発明に係わる結着剤中のPVDFは、非晶質であ
ること意味する。また、本発明に係わる電極B−2は、
PVDF固有のピークが、回折角17.7度付近、1
8.5度付近および20.1度付近において、抑制され
ていることがわかる。即ち、これは結着剤中のPVDF
が、不完全な結晶状態にあることを意味する。FIG. 1 shows the results of X-ray diffraction measurement of the electrodes A-1, B-2 and C-2. For comparison, PV
The diffraction line intensity at a diffraction angle of 2θ by X-ray diffraction for crystalline DF alone is also shown. As is clear from FIG. 1, the crystalline PVDF has a diffraction angle around 17.7 degrees,
It can be seen that there are peaks of diffraction line intensity unique to PVDF around 18.5 degrees and around 20.1 degrees. on the other hand,
In the electrode A-1 according to the present invention, no peak unique to PVDF, which should exist near the diffraction angles of about 17.7 degrees, about 18.5 degrees, and about 20.1 degrees, was not observed at all. That is, it means that the PVDF in the binder according to the present invention is amorphous. Further, the electrode B-2 according to the present invention comprises:
The peak unique to PVDF has a diffraction angle of about 17.7 degrees, 1
It can be seen that it is suppressed around 8.5 degrees and around 20.1 degrees. That is, this is the PVDF in the binder
Means incomplete crystal state.
【0036】さらに、本発明の範囲外の電極C−2につ
いては、回折角17.7度付近、18.5度付近および
20.1度付近において、PVDF固有のピークが観測
される。これは、結着剤のPVDFとPMMAの組成比
が本発明の範囲外であると、PVDFが結晶状態になる
ことを意味するものである。表1に、前記各電極につい
てのX線回折における各回折角(17.7度付近、1
8.5度付近および20.1度付近)のピークの程度を
示す。なお表において、無は固有のピークが全くない、
抑制は固有のピークが抑制されている、有は固有のピー
クがあることを意味する。Further, for the electrode C-2 outside the range of the present invention, peaks unique to PVDF are observed at diffraction angles of about 17.7 degrees, about 18.5 degrees, and about 20.1 degrees. This means that if the composition ratio of PVDF and PMMA of the binder is out of the range of the present invention, the PVDF will be in a crystalline state. Table 1 shows each diffraction angle (about 17.7 degrees, 1
Around 8.5 degrees and around 20.1 degrees). In the table, “No” has no unique peak,
Suppression means that a unique peak is suppressed, and presence means that there is a unique peak.
【0037】これらの各電極について、成形中(ここで
はプレス成形)での割れの有無を観察し、その結果を表
1に記した。For each of these electrodes, the presence or absence of cracks during molding (here, press molding) was observed, and the results are shown in Table 1.
【0038】また、これらの各電極について、サイクル
特性としての放電容量維持率を測定した。この測定は、
対極および参照極にリチウム金属を用い、電解液にエチ
レンカーボネートとジメチルカーボネートを体積比1:
1の割合で混合した溶液にLiPF6 を1モル/リット
ルの割合で溶解した非水電解液を用いて、図2に示すよ
うな三極式の試験セルを組み立て、25℃の恒温槽中
で、0.5mA/cm2 の電流密度で、金属リチウム参
照極に対して、充電下限電圧を0V、また放電上限電圧
を3Vとし、充放電試験を行った。ただし、ここでは、
リチウムが炭素電極に吸蔵される反応を充電とし、炭素
電極からリチウムが放出される反応を放電とした。この
サイクル特性は、3サイクルの放電容量を100%とし
た時の、各電極の100サイクル目の放電容量維持率で
示した。これらの結果を表1に併記した。For each of these electrodes, the discharge capacity retention as a cycle characteristic was measured. This measurement is
Lithium metal is used for the counter electrode and the reference electrode, and ethylene carbonate and dimethyl carbonate are used as an electrolyte in a volume ratio of 1:
Using a non-aqueous electrolyte obtained by dissolving LiPF 6 at a rate of 1 mol / liter in a solution mixed at a rate of 1, a triode-type test cell as shown in FIG. 2 was assembled. At a current density of 0.5 mA / cm 2 , a charge lower limit voltage was set to 0 V and a discharge upper limit voltage was set to 3 V with respect to a metallic lithium reference electrode, and a charge / discharge test was performed. However, here,
The reaction in which lithium was stored in the carbon electrode was defined as charging, and the reaction in which lithium was released from the carbon electrode was defined as discharging. This cycle characteristic is shown by the discharge capacity retention rate of the 100th cycle of each electrode when the discharge capacity of three cycles is 100%. These results are shown in Table 1.
【0039】表1から明らかなごとく、結着剤の組成
が、本発明の範囲(本発明例No.1〜6、電極A群〜
B群)のものについては、結着剤中のPVDFが非晶質
か又は不完全な結晶状態のもので、いずれも成形での割
れは認められなく、サイクル特性としての放電容量維持
率が高い。結着剤の組成が、本発明の範囲外(比較例N
o.7〜10)のものについては、No.7(電極C−
1)、No.8(電極C−2)は割れは認められない
が、PVDFが結晶質となり、サイクル特性としての放
電容量維持率が低い。また、No.9(電極D−1)、
No.10(電極D−2)は、成形での割れ(約10〜
25%の割合で割れ)が認められ、非晶質であるが放電
容量維持率が低いことがわかる。As is clear from Table 1, the composition of the binder is within the range of the present invention (Examples Nos. 1 to 6 of the present invention, electrode A group)
In the case of group B), PVDF in the binder was in an amorphous or imperfect crystalline state, no cracks were observed in molding, and the discharge capacity retention rate as cycle characteristics was high. . The composition of the binder is out of the range of the present invention (Comparative Example N
o. Nos. 7 to 10), No. 7 (electrode C-
1), No. 8 (electrode C-2) did not show any cracks, but PVDF became crystalline, and the discharge capacity retention rate as cycle characteristics was low. In addition, No. 9 (electrode D-1),
No. 10 (electrode D-2) is cracked by molding (about 10 to 10).
Cracks were observed at a rate of 25%, indicating that the discharge capacity retention rate was low although it was amorphous.
【0040】〔実施例2〕実施例1、表1の試験No.
1と同一組成の結着剤(PVDF60重量%とPMMA
40重量%)を用いて、実施例1と同様に、電極合剤ペ
ーストを製造し、またこのペーストを集電体に塗布、乾
燥し、電極を作製した。なお、この電極の製造において
は、表2に示すごとく、混合ペーストを集電体に塗布し
て溶剤を散逸させた後に、表2に示すごとく、種々の温
度に再加熱し、室温までの急冷の条件を種々変えて電極
を製造した。Example 2 In Example 1, the test No.
1 having the same composition as that of No. 1 (PVDF 60% by weight and PMMA
In the same manner as in Example 1, an electrode mixture paste was produced, and the paste was applied to a current collector and dried to produce an electrode. In the manufacture of this electrode, as shown in Table 2, after the mixed paste was applied to the current collector to dissipate the solvent, the mixture was reheated to various temperatures as shown in Table 2, and rapidly cooled to room temperature. Were manufactured under various conditions.
【0041】[0041]
【表2】 [Table 2]
【0042】加熱温度200℃から室温まで徐冷したも
の(室温20℃までに要した時間、30分のもの)を比
較例No.16(電極E−1、基準)とした。また、本
発明例は、180〜250℃に加熱後急冷したもので、
No.11〜13(電極E−1〜3)であり、比較例
は、この条件をはずれるもので、No.14〜16(電
極E−1−4、E−1−5、E−1)である。A sample which was gradually cooled from a heating temperature of 200 ° C. to room temperature (the time required for the room temperature to reach 20 ° C., 30 minutes) was prepared in Comparative Example No. 16 (electrode E-1, reference). In addition, the example of the present invention is a material that is rapidly cooled after heating to 180 to 250 ° C.
No. Nos. 11 to 13 (electrodes E-1 to 3). 14 to 16 (electrodes E-1-4, E-1-5, E-1).
【0043】これらの各電極について、実施例1と同様
にX線回折による測定を行い、結着剤中のPVDFにつ
いて、回折角17.7度付近、18.5度付近および2
0.1度付近のPVDF固有のピークの程度を測定し、
その結果を表2に記した。また、これらの各電極につい
て、実施例1と同様に、成形中(ここではプレス成形)
での割れの有無を観察し、その結果を表2に記した。更
に、各電極について、実施例1と同様に、試験セルを組
み立て、同一の試験条件で充放電試験を行い、サイクル
特性としての放電容量維持率を測定し、その結果を表2
に併記した。Each of these electrodes was measured by X-ray diffraction in the same manner as in Example 1. For PVDF in the binder, the diffraction angles were around 17.7 °, 18.5 °, and 2 °.
Measure the degree of PVDF specific peak around 0.1 degree,
The results are shown in Table 2. Further, for each of these electrodes, during molding (here, press molding), as in Example 1.
The presence or absence of cracks was observed, and the results are shown in Table 2. Further, for each electrode, a test cell was assembled in the same manner as in Example 1, a charge / discharge test was performed under the same test conditions, and a discharge capacity retention ratio as a cycle characteristic was measured.
It was also described in.
【0044】本発明例No.11〜13(電極E−1−
1〜3)のX線回折による測定の結果は、前記の電極A
群と同様、PVDF固有の回折ピークは全く観測されな
く(非晶質)、また、放電容量維持率も高い。Inventive Example No. 11 to 13 (electrode E-1-
The results of the measurement by X-ray diffraction of 1) to 3) are as follows.
Similar to the group, no diffraction peak specific to PVDF is observed at all (amorphous), and the discharge capacity retention ratio is high.
【0045】また、比較例No.16(電極E−1)の
X線回折による測定の結果を図1に併記した。図1、表
2から明らかなごとく、回折角17.7度付近、18.
5度付近および20.1度付近のピークは、PVDF単
独の場合と同程度まで発達していた。従って、No.1
6(電極E−1)の結着剤中のPVDFは、結晶質であ
り、放電容量維持率も低い。Further, in Comparative Example No. FIG. 1 also shows the result of measurement by X-ray diffraction of Sample No. 16 (electrode E-1). As is clear from FIG. 1 and Table 2, the diffraction angle is around 17.7 degrees, and 18.
The peaks around 5 degrees and around 20.1 degrees developed to the same extent as in the case of PVDF alone. Therefore, No. 1
PVDF in the binder of No. 6 (electrode E-1) is crystalline and has a low discharge capacity retention ratio.
【0046】また、比較例No.14(電極E−1−
4)、No.15(電極E−1−5)は、加熱温度の低
いものであるが、X線回折による測定結果は電極E−1
と同様で、PVDF固有の回折ピークを有し(結着剤中
のPVDFは、結晶質)、また容量維持率も低い。Also, in Comparative Example No. 14 (electrode E-1-
4), no. 15 (electrode E-1-5) has a lower heating temperature, but the measurement result by X-ray diffraction shows that the electrode E-1
As in the case of (1), it has a diffraction peak unique to PVDF (PVDF in the binder is crystalline), and the capacity retention is low.
【0047】なお、本発明において、結着剤を溶解する
のに使用する溶剤は1−メチル−2−ピロリドンに限ら
ず、PVDFとPMMAの両高分子成分に対して、溶解
性を有するものであればよい。そのような例として、
N,N−ジメチルホルムアミドやジメチルスルフォキシ
ド等があげられる。また、高分子成分を必ずしも有機溶
剤に溶解させる必要はなく、PVDFとPMMAの微粉
末を両方若しくは片方を単に分散させた状態で使用して
も良い。また、本発明において、炭素材料はその種類に
制限されるものではなく、黒鉛系若しくはコークス系の
どちらに対しても適用可能である。In the present invention, the solvent used for dissolving the binder is not limited to 1-methyl-2-pyrrolidone, but has a solubility in both polymer components of PVDF and PMMA. I just need. As such an example,
N, N-dimethylformamide, dimethylsulfoxide and the like can be mentioned. Further, the polymer component does not necessarily need to be dissolved in an organic solvent, and PVDF and PMMA fine powder may be used in a state where both or one of them is simply dispersed. Further, in the present invention, the type of the carbon material is not limited to the type thereof, and can be applied to either graphite or coke.
【0048】[0048]
【発明の効果】以上詳述したごとく、本発明は、炭素材
料を負極とするリチウム二次電池用負極において、その
負極の結着剤としてポリフッ化ビニリデン(PVDF)
とポリメタクリル酸メチル(PMMA)の2種類の高分
子化合物を用い、この配合比と製造方法を適正化するこ
とにより、ポリマー複合物としての結着剤の状態を最適
化(PVDFの非結晶質化若しくは不完全結晶質化)
し、サイクル特性の極めて優れた負極及び二次電池を提
供することができる。また、前記電極は、電極製造の際
若しくは使用中に割れにくく、歩留りの向上に伴う低コ
スト化、特性の向上が可能となる効果がある。As described above in detail, the present invention relates to a negative electrode for a lithium secondary battery using a carbon material as a negative electrode, wherein polyvinylidene fluoride (PVDF) is used as a binder for the negative electrode.
Optimizing the state of the binder as a polymer composite by optimizing the compounding ratio and the manufacturing method using two types of polymer compounds, polymethyl methacrylate (PMMA) and non-crystalline PVDF Or incomplete crystallization)
In addition, a negative electrode and a secondary battery having extremely excellent cycle characteristics can be provided. In addition, the electrode is less likely to crack during manufacturing or use of the electrode, and has the effect of enabling cost reduction and improvement in characteristics with improvement in yield.
【図1】X線回折による本発明例(A−1、B−2)及
び比較例(C−2、E−1)の負極電極、結晶性PVD
F単独の典型的な回折パターンである。FIG. 1 shows a negative electrode, crystalline PVD of inventive examples (A-1, B-2) and comparative examples (C-2, E-1) by X-ray diffraction.
It is a typical diffraction pattern of F alone.
【図2】本発明例および比較例中の充放電サイクル試験
に使用した、三極式セルの概略図である。FIG. 2 is a schematic diagram of a three-electrode cell used for a charge / discharge cycle test in the present invention examples and comparative examples.
【図3】電極A群〜D群に関する結着剤中のPMMAの
比率と、充放電サイクル試験における放電容量維持率の
関係を示したグラフである。FIG. 3 is a graph showing a relationship between a ratio of PMMA in a binder for electrodes A to D and a discharge capacity retention rate in a charge / discharge cycle test.
1 炭素試験電極 2 銅箔 3 ステンレスリード線 4 ポリプロピレン製不織布 5 ポリエチレン製セパレーター 6 金属リチウム参照極 7 白金リード線 8 金属リチウム対極 9 ステンレスリード線 10 電解液 11 電解槽 12 テフロン栓 DESCRIPTION OF SYMBOLS 1 Carbon test electrode 2 Copper foil 3 Stainless steel lead wire 4 Polypropylene nonwoven fabric 5 Polyethylene separator 6 Metal lithium reference electrode 7 Platinum lead wire 8 Metal lithium counter electrode 9 Stainless steel lead wire 10 Electrolyte 11 Electrolyte tank 12 Teflon stopper
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01M 10/40 H01M 10/40 Z //(C09D 127/16 133:12) ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification symbol FI H01M 10/40 H01M 10/40 Z // (C09D 127/16 133: 12)
Claims (4)
結着剤との混合ペーストを集電体に塗布してなるリチウ
ム二次電池用負極であって、前記結着剤はポリフッ化ビ
ニリデン(PVDF)55〜80重量%とポリメタクリ
ル酸メチル(PMMA)20〜45重量%のポリマー複
合物からなり、かつ前記ポリマー複合物中のPVDF
が、X線回折における回折角17.7度付近、18.5
度付近、20.1度付近でのPVDF結晶固有のピーク
を有しない非晶質又はピークが抑制された不完全結晶質
の状態にあることを特徴とするリチウム二次電池用負
極。1. A negative electrode for a lithium secondary battery obtained by applying a mixed paste of a carbon powder capable of inserting and extracting lithium and a binder to a current collector, wherein the binder is polyvinylidene fluoride (PVD). (PVDF) 55-80% by weight and polymethyl methacrylate (PMMA) 20-45% by weight of a polymer composite, and PVDF in said polymer composite
Has a diffraction angle of about 17.7 degrees in X-ray diffraction, and 18.5.
A negative electrode for a lithium secondary battery, wherein the negative electrode is in an amorphous state having no peak unique to PVDF crystals at about 20.1 degrees or in an incompletely crystalline state with suppressed peaks.
%とPMMA35〜45重量%のポリマー複合物からな
ることを特徴とする請求項1に記載のリチウム二次電池
用負極。2. The negative electrode for a lithium secondary battery according to claim 1, wherein the binder comprises a polymer composite of 55 to 65% by weight of PVDF and 35 to 45% by weight of PMMA.
した結着剤とからなる混合ペーストを集電体に塗布し、
次に前記の溶剤を散逸させた後、これを180〜250
℃の温度に加熱し、前記の範囲の温度から室温まで急冷
して電極とすることを特徴とするリチウム二次電池用負
極の製造方法。3. A current collector is coated with a mixed paste comprising the carbon powder according to claim 1 and a binder dissolved in a solvent,
Next, after dissipating the solvent,
A method for producing a negative electrode for a lithium secondary battery, wherein the electrode is heated to a temperature of ° C and rapidly cooled from a temperature in the above range to room temperature to form an electrode.
徴とするリチウム二次電池。4. A lithium secondary battery using the negative electrode according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8333543A JPH10172573A (en) | 1996-12-13 | 1996-12-13 | Lithium secondary battery negative electrode, its manufacture, and secondary battery using negative electrode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8333543A JPH10172573A (en) | 1996-12-13 | 1996-12-13 | Lithium secondary battery negative electrode, its manufacture, and secondary battery using negative electrode |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10172573A true JPH10172573A (en) | 1998-06-26 |
Family
ID=18267228
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8333543A Pending JPH10172573A (en) | 1996-12-13 | 1996-12-13 | Lithium secondary battery negative electrode, its manufacture, and secondary battery using negative electrode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10172573A (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001082403A1 (en) * | 2000-04-22 | 2001-11-01 | Winterberg Franz W | Method for producing rechargeable lithium-polymer batteries and a battery produced according to said method |
FR2852148A1 (en) * | 2003-03-07 | 2004-09-10 | Batscap Sa | Composite material for use in the construction of electrochemical batteries and supercapacitors comprising active electrode material, an electroconductive material, an organic binder and a salt |
KR100560531B1 (en) * | 1999-07-08 | 2006-03-15 | 삼성에스디아이 주식회사 | A binder for a lithium secondary battery and a lithium secondary battery comprising the same |
JP2006107767A (en) * | 2004-09-30 | 2006-04-20 | Dainippon Printing Co Ltd | Coating composition for active substance layer, electrode plate for nonaqueous electrolyte solution secondary battery, and nonaqueous electrolyte solution secondary battery |
JP2006147513A (en) * | 2004-11-22 | 2006-06-08 | Nippon Tomuseru:Kk | Electrochemical property measuring cell and electrochemical property measuring method using the same |
JP2006179191A (en) * | 2004-12-20 | 2006-07-06 | Daihatsu Motor Co Ltd | Electrochemical cell |
KR100660144B1 (en) | 2006-03-08 | 2006-12-20 | 한국타이어 주식회사 | Thermoplastic Materials for Injection Molding of Fuel Cell Separator |
CN100365080C (en) * | 2003-08-01 | 2008-01-30 | 阿托菲纳公司 | PVDF-based PTC coatings and their application in self-regulating heating systems |
US7462420B2 (en) * | 2002-11-11 | 2008-12-09 | Nissan Motor Co., Ltd. | Electrode with a phase-separated binder that includes a vinylidene fluoride binder polymer and a polyether polar polymer with a lithium salt |
JP2009246137A (en) * | 2008-03-31 | 2009-10-22 | Jsr Corp | Lithium-ion capacitor |
KR101120437B1 (en) | 2006-10-23 | 2012-03-13 | 주식회사 엘지화학 | Negative Electrode Coated with Conductive Polymer in Uniform Pattern and Secondary Battery Containing the Same |
JP2013084351A (en) * | 2011-10-06 | 2013-05-09 | Nippon Zeon Co Ltd | Composite particle for electrochemical device electrode, electrochemical device electrode material, and electrochemical device electrode |
JP2014191937A (en) * | 2013-03-26 | 2014-10-06 | Hitachi High-Technologies Corp | Lithium ion battery manufacturing method and manufacturing apparatus |
WO2018128139A1 (en) * | 2017-01-06 | 2018-07-12 | 三井化学株式会社 | Non-aqueous electrolyte secondary battery and material for use in same |
JP2020526882A (en) * | 2017-07-07 | 2020-08-31 | ピーピージー・インダストリーズ・オハイオ・インコーポレイテッドPPG Industries Ohio,Inc. | Electrode Binder Slurry Composition for Lithium Ion Power Storage Equipment |
JP2020535609A (en) * | 2017-09-29 | 2020-12-03 | 輝能科技股▲分▼有限公司Prologium Technology Co., Ltd. | Flexible battery |
JP2021048111A (en) * | 2019-09-20 | 2021-03-25 | 日本電気硝子株式会社 | Electrode for secondary battery and manufacturing method thereof |
US11424451B2 (en) | 2017-07-07 | 2022-08-23 | Ppg Industries Ohio, Inc. | Electrode slurry composition for lithium ion electrical storage devices |
US11799086B2 (en) | 2017-07-07 | 2023-10-24 | Ppg Industries Ohio, Inc. | Electrode binder slurry composition for lithium ion electrical storage devices |
-
1996
- 1996-12-13 JP JP8333543A patent/JPH10172573A/en active Pending
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100560531B1 (en) * | 1999-07-08 | 2006-03-15 | 삼성에스디아이 주식회사 | A binder for a lithium secondary battery and a lithium secondary battery comprising the same |
WO2001082403A1 (en) * | 2000-04-22 | 2001-11-01 | Winterberg Franz W | Method for producing rechargeable lithium-polymer batteries and a battery produced according to said method |
US7462420B2 (en) * | 2002-11-11 | 2008-12-09 | Nissan Motor Co., Ltd. | Electrode with a phase-separated binder that includes a vinylidene fluoride binder polymer and a polyether polar polymer with a lithium salt |
WO2004082047A3 (en) * | 2003-03-07 | 2005-09-29 | Batscap Sa | Method for producing electrode composite material |
JP4939927B2 (en) * | 2003-03-07 | 2012-05-30 | バスキャップ | Method for producing composite material for electrode |
JP2006522441A (en) * | 2003-03-07 | 2006-09-28 | バスキャップ | Method for producing composite material for electrode |
WO2004082047A2 (en) * | 2003-03-07 | 2004-09-23 | Batscap | Method for producing electrode composite material |
FR2852148A1 (en) * | 2003-03-07 | 2004-09-10 | Batscap Sa | Composite material for use in the construction of electrochemical batteries and supercapacitors comprising active electrode material, an electroconductive material, an organic binder and a salt |
US8632904B2 (en) | 2003-03-07 | 2014-01-21 | Blue Solutions | Method of producing electrode composite material |
CN100365080C (en) * | 2003-08-01 | 2008-01-30 | 阿托菲纳公司 | PVDF-based PTC coatings and their application in self-regulating heating systems |
JP2006107767A (en) * | 2004-09-30 | 2006-04-20 | Dainippon Printing Co Ltd | Coating composition for active substance layer, electrode plate for nonaqueous electrolyte solution secondary battery, and nonaqueous electrolyte solution secondary battery |
JP2006147513A (en) * | 2004-11-22 | 2006-06-08 | Nippon Tomuseru:Kk | Electrochemical property measuring cell and electrochemical property measuring method using the same |
JP4580751B2 (en) * | 2004-11-22 | 2010-11-17 | 有限会社日本トムセル | Electrochemical property measuring cell and electrochemical property measuring method using the same |
JP2006179191A (en) * | 2004-12-20 | 2006-07-06 | Daihatsu Motor Co Ltd | Electrochemical cell |
JP4541869B2 (en) * | 2004-12-20 | 2010-09-08 | ダイハツ工業株式会社 | Electrochemical cell |
KR100660144B1 (en) | 2006-03-08 | 2006-12-20 | 한국타이어 주식회사 | Thermoplastic Materials for Injection Molding of Fuel Cell Separator |
KR101120437B1 (en) | 2006-10-23 | 2012-03-13 | 주식회사 엘지화학 | Negative Electrode Coated with Conductive Polymer in Uniform Pattern and Secondary Battery Containing the Same |
JP2009246137A (en) * | 2008-03-31 | 2009-10-22 | Jsr Corp | Lithium-ion capacitor |
JP2013084351A (en) * | 2011-10-06 | 2013-05-09 | Nippon Zeon Co Ltd | Composite particle for electrochemical device electrode, electrochemical device electrode material, and electrochemical device electrode |
JP2014191937A (en) * | 2013-03-26 | 2014-10-06 | Hitachi High-Technologies Corp | Lithium ion battery manufacturing method and manufacturing apparatus |
CN110140245B (en) * | 2017-01-06 | 2022-10-25 | 三井化学株式会社 | Nonaqueous electrolyte secondary battery and material used therein |
WO2018128139A1 (en) * | 2017-01-06 | 2018-07-12 | 三井化学株式会社 | Non-aqueous electrolyte secondary battery and material for use in same |
JPWO2018128139A1 (en) * | 2017-01-06 | 2019-11-14 | 三井化学株式会社 | Nonaqueous electrolyte secondary battery and material used therefor |
EP3567663A4 (en) * | 2017-01-06 | 2020-07-29 | Mitsui Chemicals, Inc. | SECONDARY BATTERY WITH WATER-FREE ELECTROLYTE AND MATERIAL FOR USE IN IT |
CN110140245A (en) * | 2017-01-06 | 2019-08-16 | 三井化学株式会社 | Non-aqueous electrolyte secondary battery and its used in material |
JP2020526882A (en) * | 2017-07-07 | 2020-08-31 | ピーピージー・インダストリーズ・オハイオ・インコーポレイテッドPPG Industries Ohio,Inc. | Electrode Binder Slurry Composition for Lithium Ion Power Storage Equipment |
US12191496B2 (en) | 2017-07-07 | 2025-01-07 | Ppg Industries Ohio, Inc. | Electrode binder slurry composition for lithium ion electrical storage devices |
US11843118B2 (en) | 2017-07-07 | 2023-12-12 | Ppg Industries Ohio, Inc. | Electrode binder slurry composition for lithium ion electrical storage devices |
US11799086B2 (en) | 2017-07-07 | 2023-10-24 | Ppg Industries Ohio, Inc. | Electrode binder slurry composition for lithium ion electrical storage devices |
US11764361B2 (en) | 2017-07-07 | 2023-09-19 | Ppg Industries Ohio, Inc. | Electrode slurry composition for lithium ion electrical storage devices |
US11424451B2 (en) | 2017-07-07 | 2022-08-23 | Ppg Industries Ohio, Inc. | Electrode slurry composition for lithium ion electrical storage devices |
JP2020535609A (en) * | 2017-09-29 | 2020-12-03 | 輝能科技股▲分▼有限公司Prologium Technology Co., Ltd. | Flexible battery |
EP3690989A4 (en) * | 2017-09-29 | 2021-06-09 | Prologium Technology Co., Ltd. | SOFT BATTERY |
US12107207B2 (en) | 2017-09-29 | 2024-10-01 | Prologium Technology Co., Ltd. | Flexible battery |
CN114128003A (en) * | 2019-09-20 | 2022-03-01 | 日本电气硝子株式会社 | Electrode for secondary battery and method for manufacturing same |
WO2021054245A1 (en) * | 2019-09-20 | 2021-03-25 | 日本電気硝子株式会社 | Secondary cell electrode and method for manufacturing same |
JP2021048111A (en) * | 2019-09-20 | 2021-03-25 | 日本電気硝子株式会社 | Electrode for secondary battery and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105280881B (en) | High power secondary battery with splendid conductive anode material and the use anode material | |
JPH10172573A (en) | Lithium secondary battery negative electrode, its manufacture, and secondary battery using negative electrode | |
JP3978881B2 (en) | Non-aqueous electrolyte and lithium secondary battery using the same | |
CN105186038B (en) | Lithium secondary battery and the nonaqueous electrolytic solution wherein used | |
EP2874211B1 (en) | Transition metal-pyrophosphate anode active material, manufacturing method therefor, and lithium secondary battery or hybrid capacitor comprising same | |
JP3304267B2 (en) | Non-aqueous secondary battery and method for producing negative electrode active material | |
CN111480251A (en) | Negative electrode for lithium secondary battery, method for preparing same, and lithium secondary battery comprising same | |
CN107069091A (en) | Lithium secondary battery and the nonaqueous electrolytic solution wherein used | |
JPH06325765A (en) | Nonaqueous electrolytic secondary battery and its manufacture | |
EP3016197B1 (en) | Lithium secondary battery | |
JP2000353526A (en) | Positive electrode active material composition for lithium secondary battery and method for producing positive electrode using the same | |
JP2971451B1 (en) | Lithium secondary battery | |
JP4149815B2 (en) | Nonionic surfactant-containing electrolyte and lithium ion battery using the same | |
JP5002872B2 (en) | Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, lithium secondary battery, and method for producing positive electrode active material for lithium secondary battery | |
EP2768065A1 (en) | Nonaqueous electrolyte secondary cell and method for producing nonaqueous electrolyte secondary cell | |
KR20210053059A (en) | Negative electrode active material, method for manufacturing the same, negative electrode and secondary battery comprising the same | |
EP2874210A1 (en) | Transition metal-metaphosphate anode active material, manufacturing method therefor, and lithium secondary battery or hybrid capacitor comprising same | |
EP4243113A1 (en) | Electrode for secondary battery, method for manufacturing same, and secondary battery comprising electrode | |
WO2012025963A1 (en) | Nonaqueous-electrolyte battery | |
JP7301449B2 (en) | Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery containing the same | |
KR101423818B1 (en) | Pretreatment method and using method of lithium ion secondary battery | |
CN114586199A (en) | Negative electrode active material, method for producing the same, and negative electrode and secondary battery including the same | |
JP2015133193A (en) | Nonaqueous electrolyte secondary battery | |
US20120091403A1 (en) | Lithium ion rechargeable batteries & the additive for lithium ion rechargeable batteries which prevents increase of the viscosity | |
JP4994628B2 (en) | Nonaqueous electrolyte secondary battery |