[go: up one dir, main page]

JPH09270393A - Laser light irradiation device - Google Patents

Laser light irradiation device

Info

Publication number
JPH09270393A
JPH09270393A JP8076813A JP7681396A JPH09270393A JP H09270393 A JPH09270393 A JP H09270393A JP 8076813 A JP8076813 A JP 8076813A JP 7681396 A JP7681396 A JP 7681396A JP H09270393 A JPH09270393 A JP H09270393A
Authority
JP
Japan
Prior art keywords
laser light
substrate
irradiation
slit
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8076813A
Other languages
Japanese (ja)
Inventor
Takashi Kuwabara
隆 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP8076813A priority Critical patent/JPH09270393A/en
Publication of JPH09270393A publication Critical patent/JPH09270393A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)
  • Recrystallisation Techniques (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

(57)【要約】 【課題】 ラインビームを照射するレーザー光照射装置
において、ラインビームの照射光強度分布を平坦化し
て、低照射光強度領域における微結晶形成を防ぎ、結晶
粒の大きな非単結晶半導体層を得る。 【解決手段】 被処理基板に近接してスリット20を設
けた。スリット20はラインビームの光強度が低下する
照射ビームの両端領域を遮断するので、中央の光強度分
布が平坦になった領域の光のみが基板に照射される。照
射領域では再結晶化が均一にかつ十分に行われ、微結晶
粒が形成されて残り、結晶化が不十分になることが防が
れるので、ラインビーム複数回走査することで大面積の
結晶化アニールが良好に行われる。
(57) Abstract: In a laser light irradiation device for irradiating a line beam, the irradiation light intensity distribution of the line beam is flattened to prevent the formation of fine crystals in a low irradiation light intensity region and to prevent non-single crystal grains with large crystal grains. A crystalline semiconductor layer is obtained. A slit is provided in the vicinity of a substrate to be processed. Since the slit 20 blocks both end regions of the irradiation beam in which the light intensity of the line beam is reduced, only the light in the central region where the light intensity distribution is flat is applied to the substrate. In the irradiation area, recrystallization is uniformly and sufficiently performed, and it is possible to prevent fine crystal grains from being formed and remaining, resulting in insufficient crystallization. Good chemical annealing is performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、レーザー光の照射
装置に関し、特に、レンズ光学系の構成により、照射レ
ーザーを線状にして、これを走査することにより、大面
積の照射を可能にしたレーザー光照射装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser beam irradiating device, and in particular, it is possible to irradiate a large area by linearly irradiating an irradiating laser with a lens optical system and scanning it. The present invention relates to a laser light irradiation device.

【0002】[0002]

【従来の技術】近年、レーザー光を用いた微細加工技術
が半導体装置の製造にも適用され、量産性、低コストが
実現されている。また、画像表示装置として、液晶表示
装置(LCD:liquid crystal display)は、小型、薄
型、低消費電力などの利点から、OA機器、AV機器等
の分野で実用化が進められており、特に、各画素に画像
情報の書き換えタイミングを制御するスイッチング素子
として、薄膜トランジスタ(TFT:thin filmtransis
tor)を配置したアクティブマトリクス型は、大画面、
高精細の動画表示が可能となるため、各種テレビジョ
ン、パーソナルコンピュータなどのディスプレイに用い
られている。
2. Description of the Related Art In recent years, fine processing technology using laser light has been applied to the manufacture of semiconductor devices, and mass productivity and low cost have been realized. Further, as an image display device, a liquid crystal display device (LCD: liquid crystal display) is being put into practical use in the fields of OA equipment, AV equipment and the like because of its advantages such as small size, thinness and low power consumption. A thin film transistor (TFT) is used as a switching element for controlling the rewriting timing of image information in each pixel.
The active-matrix type with a large screen,
Since it enables high-definition moving image display, it is used for displays of various televisions, personal computers, and the like.

【0003】薄膜トランジスタは、絶縁性の基板上に金
属層とともに半導体層を形成することにより形成された
電界効果型トランジスタ(FET:field effecttransi
stor)である。アクティブマトリクス型LCDにおいて
は、TFTは、液晶を挟んだ一対の基板間に形成され
た、液晶を駆動するため各キャパシタンスの一方の電極
に接続されている。LCDの分野でも、絶縁性基板上に
TFTを作り込む際の製造、あるいは、修正において、
レーザー加工技術が用いられている。
A thin film transistor is a field effect transistor (FET) formed by forming a semiconductor layer together with a metal layer on an insulating substrate.
stor). In the active matrix type LCD, the TFT is connected to one electrode of each capacitance for driving the liquid crystal formed between a pair of substrates sandwiching the liquid crystal. In the field of LCD as well, in manufacturing or modifying TFTs on an insulating substrate,
Laser processing technology is used.

【0004】特に、半導体層として、それまで多用され
てきた非晶質シリコン(a−Si)に代わって、多結晶
シリコン(p−Si)を用いたLCDが開発され、p−
Siの結晶粒の形成あるいは成長のためにレーザー光を
用いたアニールが用いられている。一般に、p−Siは
a−Siに比べて移動度が高く、TFTが小型化され、
高精細化が実現される。また、ゲートセルフアライン構
造による微細化、寄生容量の縮小による高速化が達成さ
れるため、n−chTFTとp−chTFTの電気的相
補結線構造即ちCMOSを形成することにより、高速駆
動回路を構成することができる。このため、駆動回路部
を同一基板上に表示画素部と一体形成することにより、
製造コストの削減、LCDモジュールの小型化が実現さ
れる。
In particular, an LCD using polycrystalline silicon (p-Si) as a semiconductor layer has been developed in place of amorphous silicon (a-Si) which has been widely used until now.
Annealing using a laser beam is used to form or grow Si crystal grains. Generally, p-Si has a higher mobility than a-Si, and the size of the TFT is reduced.
High definition is realized. Further, since the gate self-alignment structure achieves miniaturization and reduction in parasitic capacitance to achieve higher speed, a high-speed drive circuit is formed by forming an electrically complementary connection structure of n-ch TFTs and p-ch TFTs, that is, CMOS. be able to. Therefore, by integrally forming the drive circuit section and the display pixel section on the same substrate,
The manufacturing cost is reduced and the LCD module is downsized.

【0005】絶縁性基板上へのp−Siの成膜方法とし
ては、低温で生成したa−Siをアニールすることによ
る再結晶化、あるいは、高温状態での固相成長法等があ
るが、いずれの場合も、900℃以上の高温での処理で
あるため、耐熱性の点で、絶縁性基板として安価なソー
ダガラス基板を使うことができず、高価な石英ガラス基
板が必要となり、コストがかかっていた。これに対し、
レーザーアニールを用いて、600℃以下の比較的低温
でのシリコン再結晶化処理を行い、絶縁性基板として、
安価なソーダガラス基板を用いる方法が開発されてい
る。このような、TFT基板製造の全工程において、温
度を600℃以下にしたプロセスは、低温プロセスと呼
ばれ、低コストのLCDの量産には必須のプロセスであ
る。
As a method of forming p-Si on an insulating substrate, there are recrystallization by annealing a-Si produced at a low temperature, solid phase growth method at a high temperature, and the like. In either case, since the treatment is performed at a high temperature of 900 ° C. or higher, an inexpensive soda glass substrate cannot be used as an insulating substrate in terms of heat resistance, and an expensive quartz glass substrate is required, resulting in cost reduction. It was hanging. In contrast,
Laser annealing is used to perform silicon recrystallization treatment at a relatively low temperature of 600 ° C. or lower, and as an insulating substrate,
A method using an inexpensive soda glass substrate has been developed. Such a process in which the temperature is set to 600 ° C. or lower in all steps of manufacturing the TFT substrate is called a low temperature process, and is an essential process for mass production of low-cost LCDs.

【0006】図5は、このようなレーザーアニールを行
うためのレーザー光照射装置の構成を示す概念図であ
る。図中、(1)はレーザー発振源、(2,11)はミ
ラー、(3,4,5,6)はシリンドリカルレンズ、
(7,8,9,12,13)は集光レンズ、(10)は
線幅方向のスリット、(14)は表面にa−Si等の非
単結晶半導体層が形成された被処理基板(20)を支持
するステージである。レーザー発振源(1)から照射さ
れたレーザー光は、シリンドリカルレンズ(3,5)及
び(4,6)からなるコンデンサーレンズにより、各々
上下左右方向に対して強度の出力分布がフラットな平行
光に変形される。この平行光は、図6に示すように、レ
ンズ(8,9,12,13)により一方向に収束される
とともに、図7に示すように、レンズ(7)により他の
一方向に引き延ばされて線状にされ、被処理基板(2
0)に照射される。被処理基板(20)を載置したステ
ージ(14)は、照射ラインビームの線幅方向に走査さ
れ、大面積処理による高スループットでのレーザーアニ
ールが実現される。
FIG. 5 is a conceptual diagram showing the structure of a laser light irradiation apparatus for performing such laser annealing. In the figure, (1) is a laser oscillation source, (2,11) is a mirror, (3,4,5,6) is a cylindrical lens,
(7, 8, 9, 12, 13) is a condenser lens, (10) is a slit in the line width direction, and (14) is a substrate to be processed having a non-single crystal semiconductor layer such as a-Si formed on its surface ( 20) for supporting stage 20). The laser light emitted from the laser oscillation source (1) is converted into parallel light with a flat intensity distribution in the vertical and horizontal directions by the condenser lens composed of the cylindrical lenses (3, 5) and (4, 6). Be transformed. This parallel light is converged in one direction by the lens (8, 9, 12, 13) as shown in FIG. 6, and is expanded in the other direction by the lens (7) as shown in FIG. The substrate to be processed (2
0) is irradiated. The stage (14) on which the substrate (20) to be processed is placed is scanned in the direction of the line width of the irradiation line beam, and high-throughput laser annealing is realized by large-area processing.

【0007】[0007]

【発明が解決しようとする課題】このラインビームの、
位置に対する照射光強度の分布は、図8に示すように、
ライン幅Wに対して、鋭いエッジを有したフラットな性
質をもつが、ライン長方向に対しては図9に示すよう
に、両端が低下した光強度分布となっており、ライン長
方向に関してビーム形状が悪いものとなっていた。即
ち、被処理基板のうち、図9の、ビーム線幅L1の範囲
にある領域では、十分な強度Iaで均一にレーザービー
ムが照射されるので、a−Si膜の再結晶化が良好に行
われ、十分に大きな結晶粒径を有したp−Si膜を形成
することができるが、照射ビームの両端において、光強
度の低下したL2領域内の、かつ、L1領域外において
は、強度Iaよりも低い強度Ibで十分に強いレーザー照
射が行われない。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
The distribution of the irradiation light intensity with respect to the position is as shown in FIG.
Although it has a flat property with a sharp edge with respect to the line width W, the light intensity distribution is lowered at both ends in the line length direction as shown in FIG. The shape was bad. That is, in the region of the substrate to be processed, which is within the range of the beam line width L1 in FIG. 9, the laser beam is uniformly irradiated with a sufficient intensity Ia, so that the recrystallization of the a-Si film is performed well. It is possible to form a p-Si film having a sufficiently large crystal grain size, but at both ends of the irradiation beam, within the L2 region where the light intensity is reduced and outside the L1 region, the intensity is larger than the intensity Ia. However, a sufficiently strong laser irradiation is not performed with a low intensity Ib.

【0008】このような、ライン長方向での両端の強度
の低下は、コヒーレント光の共振により極めて大きなエ
ネルギーをもつレーザー光の周波数成分光のうち、より
波長の短い成分が大きく屈折した結果、このような強度
分布となったものと考えられる。このような、強度の不
足したレーザー照射領域では、再結晶化された粒径が十
分に大きくならず、微結晶状態で膜中に存在したものと
なる。この微結晶状態での膜は、再び、十分な強度Ia
をもってレーザー光照射を行っても、結晶化がそれ以上
には進まず、粒径を大きくすることができないので、微
結晶状態のままとなる。
Such a decrease in the intensity at both ends in the line length direction results from the large refraction of the shorter wavelength component of the frequency component light of the laser light having extremely large energy due to the resonance of the coherent light. It is considered that the intensity distribution became like this. In such a laser-irradiated region with insufficient strength, the recrystallized grain size does not become sufficiently large, and the grains are present in the film in a microcrystalline state. The film in this microcrystalline state again has a sufficient strength Ia.
Even if laser light irradiation is carried out, the crystallization does not proceed further and the grain size cannot be increased, so that it remains in the microcrystalline state.

【0009】例えば、図5に示すレーザー光照射装置に
おいて、ラインビームのライン長は、80〜150mm
程度が得られ、その両端5mmは、図9における強度が
低下した領域となる。一方、被処理基板(20)は、9
5×130mmのLCDパネル1枚分に相当する基板が
9枚含まれたマザーガラス基板であり、ラインビームを
複数回走査することにより、全体に満遍なくレーザー光
を照射するが、1度低強度での照射を受けた領域では、
シリコン層が微結晶シリコン層として形成されてしま
い、所定のオーバーラップをもって再度のレーザー光照
射を行ってもこの微結晶シリコンは、粒径を大きくする
ことなく、そのままで残ってしまう。即ち、1度のビー
ムラインの走査において、走査領域の端部に沿って微結
晶粒からなるシリコン層が帯状に形成される。
For example, in the laser light irradiation device shown in FIG. 5, the line length of the line beam is 80 to 150 mm.
The degree is obtained, and the both ends of 5 mm are regions where the strength is reduced in FIG. On the other hand, the substrate (20) to be processed is 9
It is a mother glass substrate that contains 9 substrates corresponding to 1 LCD panel of 5 × 130 mm. By scanning the line beam multiple times, the laser beam is evenly distributed over the entire substrate, but with a low intensity once. In the area exposed to
The silicon layer is formed as a microcrystalline silicon layer, and even if the laser light irradiation is performed again with a predetermined overlap, the microcrystalline silicon remains as it is without increasing the grain size. That is, in one scanning of the beam line, a silicon layer made of fine crystal grains is formed in a band shape along the end portion of the scanning region.

【0010】このように、再結晶化が十分に行われず
に、移動度が低いp−SiからなるTFTは、十分なO
N電流が得られない。このため、レーザー光照射のライ
ンビームエッジ部が、画素部に当たる場合は、その領域
において、TFTのON電流が他の領域よりも低下し
て、コントラスト比が低下するなどの問題が生じる。ま
た、ラインビームのエッジ部が、画素部周辺の駆動回路
部に当たる場合は、TFTのON抵抗が増大して、動作
速度が低下し、誤動作などを招いてしまう。特に、大画
面、高精細のLCDにおいては、画素数が多くなると、
画素への書き込み時間が短くなり、また、駆動回路部に
おけるパルス幅も短くなるので、ON電流の低下は、致
命的な欠陥となる。
As described above, a TFT made of p-Si having a low mobility without being sufficiently recrystallized has a sufficient O 2 content.
N current cannot be obtained. For this reason, when the line beam edge portion of the laser light irradiation hits the pixel portion, the ON current of the TFT in that region is lower than that in the other regions, and the contrast ratio is lowered. Further, when the edge portion of the line beam hits the drive circuit portion around the pixel portion, the ON resistance of the TFT increases, the operating speed decreases, and malfunction occurs. Especially in a large-screen, high-definition LCD, if the number of pixels increases,
Since the writing time to the pixel is shortened and the pulse width in the drive circuit section is also shortened, the decrease in ON current is a fatal defect.

【0011】また、レンズ光学系の設計によって、ビー
ムライン幅と、マザーガラス基板に基板に含まれるLC
Dパネルになる領域との寸法を合わせて、ビームライン
走査のエッジに当たる帯状領域をLCDパネルになる領
域の間の、使用されない部分に合わせることで、上述の
問題は防がれる。しかし、これでは、高価なレーザー照
射装置に適用されるLCDパネルのサイズが初めから決
定されたものとなるので、色々なサイズのLCDパネル
には使用されず、コストの増大を招いていた。
Further, depending on the design of the lens optical system, the beam line width and the LC included in the mother glass substrate are included.
By matching the dimensions with the area that will be the D panel and matching the strip area that hits the edge of the beamline scan to the unused portion between the areas that will be the LCD panel, the above problems will be avoided. However, in this case, since the size of the LCD panel applied to the expensive laser irradiation device is determined from the beginning, it is not used for LCD panels of various sizes, which causes an increase in cost.

【0012】[0012]

【課題を解決するための手段】本発明はこの課題を解決
するために成され、レーザー光の発振源と、この発振源
から照射されたレーザー光を複数のレンズの組み合わせ
からなる光学系より構成され、前記レーザー光を線状に
変形して目標物に照射するレーザー光照射装置におい
て、前記線状のレーザー光の線長方向の端部が前記目標
物に照射されないように遮断した構成である。
The present invention has been made in order to solve this problem, and comprises an oscillation source of laser light and an optical system composed of a combination of a plurality of lenses for the laser light emitted from this oscillation source. In the laser light irradiation device that deforms the laser light linearly and irradiates the target object, the end portion in the line length direction of the linear laser light is blocked so as not to be irradiated to the target object. .

【0013】これにより、強度の低下した、レーザー光
が目標物に照射されることがなくなり、十分な再結晶化
が行われずに微結晶が形成されて、この微結晶粒を大き
くすることができずに、移動度が低下してしまうといっ
た問題が防がれる。特に、前記レーザー光の線長方向の
端部の遮断は、前記目標物に近接して設けられたスリッ
トにより行われている構成である。
[0013] As a result, the target is not irradiated with the laser beam whose strength is lowered, and microcrystals are formed without sufficient recrystallization, so that the microcrystal grains can be enlarged. Instead, the problem that the mobility is lowered can be prevented. In particular, the blocking of the end portion of the laser light in the line length direction is performed by a slit provided close to the target object.

【0014】これにより、スリットを通り抜けた光は、
全ての領域において、均一にかつ十分な強度を有し、照
射領域と非照射領域との境の明確な線状光線となるの
で、照射領域においても強度が不足して、結晶粒の小さ
な微結晶が形成されてしまうといったことが防がれる。
また、前記スリットは、その開口部の大きさを可変とし
た構成である。
As a result, the light passing through the slit is
It has a uniform and sufficient intensity in all areas and has a clear linear ray at the boundary between the irradiation area and the non-irradiation area. It is possible to prevent the formation of.
Further, the slit has a configuration in which the size of the opening is variable.

【0015】これにより、レーザー光照射装置が使用で
きる被処理基板のサイズによる制約がなくなり、汎用性
が高まり、ランニングコストを下げることができる。
As a result, there is no restriction due to the size of the substrate to be processed that can be used by the laser light irradiation device, the versatility is increased, and the running cost can be reduced.

【0016】[0016]

【発明の実施の形態】図1は、本発明の実施形態にかか
るレーザー光照射装置の構成を示す概念図である。図
中、(1)はレーザー発振源、(2,11)はミラー、
(3,4,5,6)はシリンドリカルレンズ、(7,
8,9,12,13)はレンズ、(10)は線幅方向の
スリット、(14)は被処理基板(20)を支持するス
テージである。また、ステージ(14)に近接された位
置には、線長方向のスリット(30)が設けられてい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a conceptual diagram showing the structure of a laser beam irradiation apparatus according to an embodiment of the present invention. In the figure, (1) is a laser oscillation source, (2, 11) is a mirror,
(3, 4, 5, 6) are cylindrical lenses, (7,
8, 9, 12, 13) are lenses, (10) is a slit in the line width direction, and (14) is a stage for supporting the substrate (20) to be processed. Further, a slit (30) in the line length direction is provided at a position close to the stage (14).

【0017】この構成で、レーザー発振源(1)から照
射されたレーザー光は、シリンドリカルレンズ(3,
5)及び(4,6)からなるコンデンサーレンズによ
り、各々上下左右方向に対して強度の出力分布がフラッ
トな平行光に変形される。この平行光は、一方向につい
て、従来と同様、図5に示すように、レンズ(8,9,
12,13)に収束されて、ライン状にされる。また、
これに直交する他の一方向については、図2に示すよう
に、レンズ(7)により一方向に引き延ばされ、かつ、
スリット(30)により、その両端部が遮断されて、被
処理基板(20)へと照射される。このように、一方向
については、収束され、他の一方向については引き延ば
されて線状にされたラインビームは被処理基板(20)
に照射され、これと同時に、被処理基板(20)を載置
したステージ(14)は、照射ラインビームの線幅方向
に移動する。こうした、ラインビームの走査により、大
面積処理が可能となり、高スループットでのレーザーア
ニールが実現される。
With this structure, the laser light emitted from the laser oscillation source (1) is emitted from the cylindrical lens (3
By the condenser lens composed of 5) and (4, 6), the output distribution of the intensity is transformed into flat light in the vertical and horizontal directions. As shown in FIG. 5, the parallel light is transmitted through the lenses (8, 9,
12 and 13) to form a line. Also,
In the other direction orthogonal to this, as shown in FIG. 2, the lens (7) extends in one direction, and
Both ends of the slit (30) are blocked, and the substrate (20) to be processed is irradiated. In this way, the line beam that is converged in one direction and extended and linearized in the other direction is processed substrate (20).
At the same time, the stage (14) on which the substrate (20) to be processed is placed moves in the line width direction of the irradiation line beam. By such scanning of the line beam, a large area can be processed, and laser annealing with high throughput can be realized.

【0018】本発明では、図1に示すように、スリット
(30)を、被処理基板(20)に近接配置している。
このスリット(30)は、図2に示すように、レンズ
(7)によりレーザー光が引き延ばされたラインビーム
の両端の所定の線幅分を遮断するものである。この時、
スリット(30)を通過して、被処理基板(20)に照
射されるラインビームの線長Loは、図9に示す、照射
強度分布のフラットな部分の線長L1以下に設定され、
被処理基板(20)へは、ラインビーム強度分布のフラ
ットな部分のみが照射されるようになっている。即ち、
レーザー光が被処理基板へ照射される光強度分布は、図
3のように、線長Loの範囲で、鋭いエッジを有したフ
ラットなものとなり、かつ、その強度はIaで十分に大
きくなっている。
In the present invention, as shown in FIG. 1, the slit (30) is arranged close to the substrate (20) to be processed.
As shown in FIG. 2, the slit (30) cuts off a predetermined line width at both ends of the line beam in which the laser beam is extended by the lens (7). This time,
The line length Lo of the line beam which passes through the slit (30) and is irradiated onto the substrate (20) to be processed is set to be equal to or less than the line length L1 of the flat portion of the irradiation intensity distribution shown in FIG.
The substrate (20) to be processed is irradiated with only the flat portion of the line beam intensity distribution. That is,
As shown in FIG. 3, the light intensity distribution of the laser beam applied to the substrate to be processed becomes flat with sharp edges in the range of the line length Lo, and its intensity becomes sufficiently large at Ia. There is.

【0019】このため、被処理基板(20)に照射され
るラインビームは、その照射領域と非照射領域との境が
明確になり、照射領域において、基板(20)上に形成
されたa−Siは、十分なアニールを受けて再結晶化
し、十分に大きなシリコン結晶粒からなる、移動度の高
いp−Siに形成される。このため、僅かのオーバーラ
ップをもって、基板上を順次に走査していくことによ
り、全領域にわたって満遍なく再結晶化される。
Therefore, in the line beam with which the substrate (20) to be processed is irradiated, the boundary between the irradiation region and the non-irradiation region becomes clear, and a- formed on the substrate (20) in the irradiation region. Si is sufficiently annealed to be recrystallized and is formed into p-Si having high mobility and made of sufficiently large silicon crystal grains. Therefore, by sequentially scanning the substrate with a slight overlap, recrystallization is uniformly performed over the entire region.

【0020】従って、被処理基板(20)であるマザー
ガラス基板上に形成されたp−Si膜が、全ての領域に
おいて十分に高い移動度をもって形成されるので、この
p−SiからなるTFTは、画素部にあっては、十分な
ON電流が得られ、高精細、大画面ディスプレイにおい
て、画素数が増加して画素への書き込み時間が短くなっ
ても、十分な電荷供給が行われるので、コントラスト比
が向上される。また駆動回路部においても、レスポンス
が高く、高速動作が行えるので、大画面、高精細に対応
したパルス幅の短い駆動も可能となる。
Therefore, since the p-Si film formed on the mother glass substrate which is the substrate (20) to be processed is formed with sufficiently high mobility in all regions, the TFT made of this p-Si is formed. In the pixel portion, a sufficient ON current can be obtained, and in a high-definition, large-screen display, sufficient charge can be supplied even if the number of pixels increases and the writing time to the pixels becomes short. The contrast ratio is improved. Further, also in the driving circuit portion, since the response is high and the high speed operation can be performed, it is possible to perform driving with a short pulse width corresponding to a large screen and high definition.

【0021】また、スリット(30)は、被処理基板
(20)に十分に近接された位置に設置されている。こ
れは、スリット(30)が、被処理基板(20)から離
れれば離れるほど、レーザー光の回折が顕著になり、こ
の回折光成分により、ラインビームの線長方向の端部で
再び低強度光成分が生じるのを防ぐためである。本実施
形態においては、スリット(30)は、被処理基板(2
0)から30cm程度の距離をもって近接している。
The slit (30) is installed at a position sufficiently close to the substrate (20) to be processed. This is because the further the slit (30) is from the substrate (20) to be processed, the more the diffraction of the laser light becomes remarkable, and the diffracted light component again causes the low-intensity light to reappear at the end portion in the line length direction of the line beam. This is to prevent components from being produced. In the present embodiment, the slit (30) is used for processing the substrate (2
0) and are close to each other with a distance of about 30 cm.

【0022】更に、スリット(30)として、その開口
部の大きさを可変としたスリットを用いることで、ライ
ンビームの照射線長を自在に調整することができる。こ
れにより、被処理基板(20)であるマザーガラス基板
の寸法や、マザーガラス基板に含まれるLCDパネルに
使用される領域のサイズが変わっても、その時々に応じ
て、スリット(30)の開口部の大きさを変えることで
対応することができる。即ち、同一のレーザー光照射装
置で、複数のサイズのLCDパネルの製造に適用される
ので、高価なレーザー光照射装置を効率的に使用するこ
とができ、その量産性と製造品質の高さから、かえって
コストの低下がなされる。
Further, by using a slit having a variable opening size as the slit (30), the irradiation line length of the line beam can be freely adjusted. As a result, even if the size of the mother glass substrate that is the substrate to be processed (20) or the size of the area used for the LCD panel included in the mother glass substrate changes, the opening of the slit (30) is changed depending on the time. It can be handled by changing the size of the part. That is, since the same laser light irradiation device is applied to the manufacture of LCD panels of a plurality of sizes, an expensive laser light irradiation device can be used efficiently, and because of its high mass productivity and high manufacturing quality. On the contrary, the cost is reduced.

【0023】図4は、本発明の他の実施形態にかかるレ
ーザー光照射装置の要部構成図である。本実施形態で
は、図1及び図2において、レーザー光をライン長方向
に引き延ばす凸レンズ(7)を、凹レンズ(40)に置
き換えたものである。この場合も、図2と同様、その光
強度分布の、両端の所定の線長分を遮断するスリット
(30)を設けることにより、図3の如く、鋭いエッジ
を有したフラットな光強度分布を得ることができる。な
お、凸レンズ(7)を用いた場合とは、焦点位置が変わ
るため、スリット(30)の位置及びその開口部の大き
さは、若干の設計変更が必要であるが、スリット(4
0)を抜けるラインビームの線長Loが、ラインビーム
の光強度分布のフラットな部分の線長L1以下に設定す
ることは同じである。
FIG. 4 is a schematic view of the essential parts of a laser beam irradiation apparatus according to another embodiment of the present invention. In this embodiment, the convex lens (7) for extending the laser beam in the line length direction in FIG. 1 and FIG. 2 is replaced with a concave lens (40). Also in this case, as in the case of FIG. 2, by providing the slits (30) for blocking predetermined line lengths at both ends of the light intensity distribution, a flat light intensity distribution having sharp edges as shown in FIG. 3 is obtained. Obtainable. Since the focus position is different from that in the case where the convex lens (7) is used, the position of the slit (30) and the size of the opening thereof need to be slightly changed in design, but the slit (4
The line length Lo of the line beam passing through 0) is set to be equal to or less than the line length L1 of the flat portion of the light intensity distribution of the line beam.

【0024】[0024]

【発明の効果】以上の説明から明らかな如く、本発明に
より、ラインビーム状のレーザー光照射装置において、
ラインビームの線長方向の端部の照射光強度の低い領域
を遮断したことにより、照射領域と非照射領域との照射
光有無が明確になり、照射領域全域において均一な照射
光強度分布が得られ、十分なアニールが行われる。これ
により、非単結晶半導体層の結晶粒径を十分に大きくす
ることができるとともに、非照射領域においては、アニ
ールは完全に防がれるので、不十分なアニールによる微
結晶の形成が免れる。このため、不十分なアニールによ
り一度形成された微結晶粒が、続くラインビームの走査
時のオーバーラップ部分においても結晶化が進まずに、
微結晶のまま残って、その領域の結晶粒が小さく、移動
度が上がらないといったことが防がれ、大面積のアニー
ルを良好に行うことができる。
As is apparent from the above description, according to the present invention, in a line beam laser light irradiation apparatus,
By blocking the area of low irradiation light intensity at the end of the line beam in the line length direction, the presence or absence of irradiation light in the irradiation area and non-irradiation area becomes clear, and a uniform irradiation light intensity distribution is obtained in the entire irradiation area. And sufficient annealing is performed. Accordingly, the crystal grain size of the non-single-crystal semiconductor layer can be made sufficiently large, and annealing can be completely prevented in the non-irradiation region, so that the formation of microcrystals due to insufficient annealing is avoided. For this reason, the fine crystal grains once formed by insufficient annealing do not progress crystallization even in the overlapping portion during the scanning of the subsequent line beam,
It is possible to prevent that the microcrystals remain as they are, the crystal grains in the region are small, and the mobility does not increase, and the large area annealing can be favorably performed.

【0025】また、低照射光強度領域の遮断として、開
口部の大きさを可変にできるスリットを用いることで、
ラインビームの線長が、被処理基板のサイズに合わせて
自在に制御して走査幅を調整することができるので、各
種サイズのパネルの製造に適用され、汎用性が高まり、
ランニングコストが下がる。
Further, by using a slit capable of varying the size of the opening to block the low irradiation light intensity region,
Since the line length of the line beam can be freely controlled according to the size of the substrate to be processed and the scanning width can be adjusted, it is applied to the production of panels of various sizes, and the versatility is increased.
Running costs are reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態にかかるレーザー光照射装置
の概念図である。
FIG. 1 is a conceptual diagram of a laser light irradiation device according to an embodiment of the present invention.

【図2】本発明の実施形態にかかるレーザー光照射装置
の光学系の構成図である。
FIG. 2 is a configuration diagram of an optical system of the laser light irradiation apparatus according to the embodiment of the present invention.

【図3】本発明の実施形態にかかるレーザー光照射装置
の光強度分布図である。
FIG. 3 is a light intensity distribution chart of the laser light irradiation apparatus according to the embodiment of the present invention.

【図4】本発明の他の実施形態にかかるレーザー光照射
装置の光学系の構成図である。
FIG. 4 is a configuration diagram of an optical system of a laser light irradiation device according to another embodiment of the present invention.

【図5】従来のレーザー光照射装置の概念図である。FIG. 5 is a conceptual diagram of a conventional laser light irradiation device.

【図6】レーザー光照射装置の光学系の構成図である。FIG. 6 is a configuration diagram of an optical system of a laser light irradiation device.

【図7】レーザー光照射装置の光学系の構成図である。FIG. 7 is a configuration diagram of an optical system of a laser light irradiation device.

【図8】レーザー光照射装置の光強度分布図である。FIG. 8 is a light intensity distribution chart of the laser light irradiation device.

【図9】従来のレーザー光照射装置の光強度分布図であ
る。
FIG. 9 is a light intensity distribution chart of a conventional laser light irradiation device.

【符号の説明】 1 レーザー光発振源 2,7 ミラー 3,4,5,6 シリンドリカルレンズ 7,8,9,12,13 レンズ 10,30 スリット 14 ステージ 20 被処理基板 40 凹レンズ[Explanation of reference numerals] 1 laser light oscillation source 2,7 mirror 3,4,5,6 cylindrical lens 7,8,9,12,13 lens 10,30 slit 14 stage 20 processed substrate 40 concave lens

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 レーザー光の発振源と、この発振源から
照射されたレーザー光を複数のレンズの組み合わせから
なる光学系より構成され、前記レーザー光を線状に変形
して目標物に照射するレーザー光照射装置において、 前記線状のレーザー光の線長方向の端部が前記目標物に
照射されないように遮断したことを特徴とするレーザー
光照射装置。
1. An oscillation source of laser light and an optical system composed of a combination of a plurality of lenses for irradiating the laser light emitted from the oscillation source, and the laser light is linearly deformed and applied to a target object. In the laser light irradiation device, the end portion of the linear laser light in the line length direction is blocked so that the target object is not irradiated with the laser light irradiation device.
【請求項2】 前記レーザー光の線長方向の端部の遮断
は、前記目標物に近接して設けられたスリットにより行
われていることを特徴とする請求項1記載のレーザー光
照射装置。
2. The laser light irradiation apparatus according to claim 1, wherein the blocking of the end portion of the laser light in the line length direction is performed by a slit provided in the vicinity of the target object.
【請求項3】 前記スリットは、その開口部の大きさが
可変であることを特徴とする請求項2記載のレーザー光
照射装置。
3. The laser light irradiation device according to claim 2, wherein the size of the opening of the slit is variable.
JP8076813A 1996-03-29 1996-03-29 Laser light irradiation device Pending JPH09270393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8076813A JPH09270393A (en) 1996-03-29 1996-03-29 Laser light irradiation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8076813A JPH09270393A (en) 1996-03-29 1996-03-29 Laser light irradiation device

Publications (1)

Publication Number Publication Date
JPH09270393A true JPH09270393A (en) 1997-10-14

Family

ID=13616122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8076813A Pending JPH09270393A (en) 1996-03-29 1996-03-29 Laser light irradiation device

Country Status (1)

Country Link
JP (1) JPH09270393A (en)

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003229377A (en) * 2001-11-30 2003-08-15 Semiconductor Energy Lab Co Ltd Laser irradiation device
JP2003243304A (en) * 2001-12-11 2003-08-29 Semiconductor Energy Lab Co Ltd Manufacturing method of semiconductor device
JP2003249461A (en) * 2001-12-20 2003-09-05 Semiconductor Energy Lab Co Ltd Irradiation method of laser light
JP2004072086A (en) * 2002-06-14 2004-03-04 Semiconductor Energy Lab Co Ltd Method for laser irradiation and laser irradiator
JP2004193201A (en) * 2002-12-09 2004-07-08 Semiconductor Energy Lab Co Ltd Laser irradiation method
JP2004221560A (en) * 2002-12-25 2004-08-05 Semiconductor Energy Lab Co Ltd Laser irradiation method, laser irradiation equipment and semiconductor device manufacturing method
US6797550B2 (en) 2001-12-21 2004-09-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method therefor
JP2004289140A (en) * 2003-03-03 2004-10-14 Semiconductor Energy Lab Co Ltd Laser irradiation device, laser irradiation method, and manufacturing method of semiconductor device
US6911358B2 (en) 2001-12-28 2005-06-28 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US6979605B2 (en) 2001-11-30 2005-12-27 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method for a semiconductor device using a marker on an amorphous semiconductor film to selectively crystallize a region with a laser light
US6984573B2 (en) 2002-06-14 2006-01-10 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and apparatus
JP2006066904A (en) * 2004-07-30 2006-03-09 Semiconductor Energy Lab Co Ltd Laser irradiation apparatus and laser irradiation method
SG120880A1 (en) * 2001-08-31 2006-04-26 Semiconductor Energy Lab Laser irradiation method, laser irradiation apparatus, and method of manufacturing a semiconductor device
US7050878B2 (en) 2001-11-22 2006-05-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductror fabricating apparatus
JP2006516356A (en) * 2002-08-19 2006-06-29 ザ トラスティーズ オブ コロンビア ユニヴァーシティ イン ザ シティ オブ ニューヨーク Method and apparatus for laser crystallization processing of film region of substrate and structure of such film region to minimize edge region
US7109069B2 (en) 2001-12-21 2006-09-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US7133737B2 (en) 2001-11-30 2006-11-07 Semiconductor Energy Laboratory Co., Ltd. Program for controlling laser apparatus and recording medium for recording program for controlling laser apparatus and capable of being read out by computer
US7135389B2 (en) 2001-12-20 2006-11-14 Semiconductor Energy Laboratory Co., Ltd. Irradiation method of laser beam
JP2007043191A (en) * 2001-08-31 2007-02-15 Semiconductor Energy Lab Co Ltd Device for laser irradiation and method of laser irradiation
US7214573B2 (en) 2001-12-11 2007-05-08 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device that includes patterning sub-islands
WO2007069516A1 (en) * 2005-12-16 2007-06-21 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus, laser irradiation method, and manufacturing method of semiconductor device
JP2008112981A (en) * 2006-10-03 2008-05-15 Semiconductor Energy Lab Co Ltd Laser irradiation device, and laser irradiation method
US7387922B2 (en) 2003-01-21 2008-06-17 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method, method for manufacturing semiconductor device, and laser irradiation system
US7445974B2 (en) 2001-11-30 2008-11-04 Semiconductor Energy Laboratory Co., Ltd. Laser beam irradiating apparatus, laser beam irradiating method, and method of manufacturing a semiconductor device
US7476629B2 (en) 2003-04-21 2009-01-13 Semiconductor Energy Laboratory Co., Ltd. Beam irradiation apparatus, beam irradiation method, and method for manufacturing thin film transistor
JP2009514224A (en) * 2005-10-28 2009-04-02 サイマー・インコーポレーテッド System and method for generating laser light shaped as a line beam
JP2009283691A (en) * 2008-05-22 2009-12-03 Japan Steel Works Ltd:The Method for irradiating laser light and laser light irradiation device
US7812283B2 (en) 2004-03-26 2010-10-12 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method, laser irradiation apparatus, and method for fabricating semiconductor device
US7915099B2 (en) 2003-04-21 2011-03-29 Semiconductor Energy Laboratory Co., Ltd. Beam irradiation apparatus, beam irradiation method, and method for manufacturing semiconductor device
US8012861B2 (en) 2007-11-21 2011-09-06 The Trustees Of Columbia University In The City Of New York Systems and methods for preparing epitaxially textured polycrystalline films
US8221544B2 (en) 2005-04-06 2012-07-17 The Trustees Of Columbia University In The City Of New York Line scan sequential lateral solidification of thin films
US8278659B2 (en) 1996-05-28 2012-10-02 The Trustees Of Columbia University In The City Of New York Uniform large-grained and grain boundary location manipulated polycrystalline thin film semiconductors formed using sequential lateral solidification and devices formed thereon
US8415670B2 (en) 2007-09-25 2013-04-09 The Trustees Of Columbia University In The City Of New York Methods of producing high uniformity in thin film transistor devices fabricated on laterally crystallized thin films
US8426296B2 (en) 2007-11-21 2013-04-23 The Trustees Of Columbia University In The City Of New York Systems and methods for preparing epitaxially textured polycrystalline films
US8440581B2 (en) 2009-11-24 2013-05-14 The Trustees Of Columbia University In The City Of New York Systems and methods for non-periodic pulse sequential lateral solidification
US8445365B2 (en) 2003-09-19 2013-05-21 The Trustees Of Columbia University In The City Of New York Single scan irradiation for crystallization of thin films
US8479681B2 (en) 2002-08-19 2013-07-09 The Trustees Of Columbia University In The City Of New York Single-shot semiconductor processing system and method having various irradiation patterns
US8507334B2 (en) 2001-08-27 2013-08-13 Semiconductor Energy Laboratory Co., Ltd. Method of laser irradiation, laser irradiation apparatus, and method of manufacturing a semiconductor device
US8525075B2 (en) 2004-05-06 2013-09-03 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus
US8557040B2 (en) 2007-11-21 2013-10-15 The Trustees Of Columbia University In The City Of New York Systems and methods for preparation of epitaxially textured thick films
US8569155B2 (en) 2008-02-29 2013-10-29 The Trustees Of Columbia University In The City Of New York Flash lamp annealing crystallization for large area thin films
US8598588B2 (en) 2005-12-05 2013-12-03 The Trustees Of Columbia University In The City Of New York Systems and methods for processing a film, and thin films
US8614471B2 (en) 2007-09-21 2013-12-24 The Trustees Of Columbia University In The City Of New York Collections of laterally crystallized semiconductor islands for use in thin film transistors
US8663387B2 (en) 2003-09-16 2014-03-04 The Trustees Of Columbia University In The City Of New York Method and system for facilitating bi-directional growth
US8715412B2 (en) 2003-09-16 2014-05-06 The Trustees Of Columbia University In The City Of New York Laser-irradiated thin films having variable thickness
US8734584B2 (en) 2004-11-18 2014-05-27 The Trustees Of Columbia University In The City Of New York Systems and methods for creating crystallographic-orientation controlled poly-silicon films
US8796159B2 (en) 2003-09-16 2014-08-05 The Trustees Of Columbia University In The City Of New York Processes and systems for laser crystallization processing of film regions on a substrate utilizing a line-type beam, and structures of such film regions
US8802580B2 (en) 2008-11-14 2014-08-12 The Trustees Of Columbia University In The City Of New York Systems and methods for the crystallization of thin films
US9087696B2 (en) 2009-11-03 2015-07-21 The Trustees Of Columbia University In The City Of New York Systems and methods for non-periodic pulse partial melt film processing
TWI504466B (en) * 2011-12-20 2015-10-21 Ap Systems Inc Laser annealing apparatus
US9646831B2 (en) 2009-11-03 2017-05-09 The Trustees Of Columbia University In The City Of New York Advanced excimer laser annealing for thin films
CN109950144A (en) * 2019-04-08 2019-06-28 京东方科技集团股份有限公司 A kind of laser annealing apparatus
JP2020046339A (en) * 2018-09-20 2020-03-26 パイオニア株式会社 Light projection device, light projection/reception device, and ranging device

Cited By (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8859436B2 (en) 1996-05-28 2014-10-14 The Trustees Of Columbia University In The City Of New York Uniform large-grained and grain boundary location manipulated polycrystalline thin film semiconductors formed using sequential lateral solidification and devices formed thereon
US8278659B2 (en) 1996-05-28 2012-10-02 The Trustees Of Columbia University In The City Of New York Uniform large-grained and grain boundary location manipulated polycrystalline thin film semiconductors formed using sequential lateral solidification and devices formed thereon
US8680427B2 (en) 1996-05-28 2014-03-25 The Trustees Of Columbia University In The City Of New York Uniform large-grained and gain boundary location manipulated polycrystalline thin film semiconductors formed using sequential lateral solidification and devices formed thereon
US9910285B2 (en) 2001-08-27 2018-03-06 Semiconductor Energy Laboratory Co., Ltd. Method of laser irradiation, laser irradiation apparatus, and method of manufacturing a semiconductor device
US9564323B2 (en) 2001-08-27 2017-02-07 Semiconductor Energy Laboratory Co., Ltd. Method of laser irradiation, laser irradiation apparatus, and method of manufacturing a semiconductor device
US10488671B2 (en) 2001-08-27 2019-11-26 Semiconductor Energy Laboratory Co., Ltd. Method of laser irradiation, laser irradiation apparatus, and method of manufacturing a semiconductor device
US8507334B2 (en) 2001-08-27 2013-08-13 Semiconductor Energy Laboratory Co., Ltd. Method of laser irradiation, laser irradiation apparatus, and method of manufacturing a semiconductor device
US8722521B2 (en) 2001-08-27 2014-05-13 Semiconductor Energy Laboratory Co., Ltd. Method of laser irradiation, laser irradiation apparatus, and method of manufacturing a semiconductor device
JP2007043191A (en) * 2001-08-31 2007-02-15 Semiconductor Energy Lab Co Ltd Device for laser irradiation and method of laser irradiation
US7078281B2 (en) 2001-08-31 2006-07-18 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device by providing a mirror in the attenuation region
US7927983B2 (en) 2001-08-31 2011-04-19 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method, laser irradiation apparatus, and method of manufacturing a semiconductor device
KR100884221B1 (en) * 2001-08-31 2009-02-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Laser irradiation method, laser irradiation device and semiconductor device manufacturing method
SG120880A1 (en) * 2001-08-31 2006-04-26 Semiconductor Energy Lab Laser irradiation method, laser irradiation apparatus, and method of manufacturing a semiconductor device
KR100915312B1 (en) * 2001-08-31 2009-09-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Laser irradiation method, laser irradiation apparatus, and method of manufacturing a semiconductor device
US7439115B2 (en) 2001-11-22 2008-10-21 Semiconductor Eneregy Laboratory Co., Ltd. Semiconductor fabricating apparatus
US7050878B2 (en) 2001-11-22 2006-05-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductror fabricating apparatus
US7510920B2 (en) 2001-11-30 2009-03-31 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method for a thin film transistor that uses a pulse oscillation laser crystallize an amorphous semiconductor film
JP2007258738A (en) * 2001-11-30 2007-10-04 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device
US7588974B2 (en) 2001-11-30 2009-09-15 Semiconductor Energy Laboratory Co., Ltd. Program for controlling laser apparatus and recording medium for recording program for controlling laser apparatus and capable of being read out by computer
US6979605B2 (en) 2001-11-30 2005-12-27 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method for a semiconductor device using a marker on an amorphous semiconductor film to selectively crystallize a region with a laser light
US7133737B2 (en) 2001-11-30 2006-11-07 Semiconductor Energy Laboratory Co., Ltd. Program for controlling laser apparatus and recording medium for recording program for controlling laser apparatus and capable of being read out by computer
US7105048B2 (en) 2001-11-30 2006-09-12 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus
US7445974B2 (en) 2001-11-30 2008-11-04 Semiconductor Energy Laboratory Co., Ltd. Laser beam irradiating apparatus, laser beam irradiating method, and method of manufacturing a semiconductor device
JP2004179474A (en) * 2001-11-30 2004-06-24 Semiconductor Energy Lab Co Ltd Laser irradiation device
JP2003229377A (en) * 2001-11-30 2003-08-15 Semiconductor Energy Lab Co Ltd Laser irradiation device
US7214573B2 (en) 2001-12-11 2007-05-08 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device that includes patterning sub-islands
JP2003243304A (en) * 2001-12-11 2003-08-29 Semiconductor Energy Lab Co Ltd Manufacturing method of semiconductor device
US7560397B2 (en) 2001-12-11 2009-07-14 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and method of manufacturing a semiconductor device
US7135389B2 (en) 2001-12-20 2006-11-14 Semiconductor Energy Laboratory Co., Ltd. Irradiation method of laser beam
JP2003249461A (en) * 2001-12-20 2003-09-05 Semiconductor Energy Lab Co Ltd Irradiation method of laser light
US7109069B2 (en) 2001-12-21 2006-09-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US7319055B2 (en) 2001-12-21 2008-01-15 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a semiconductor device utilizing crystallization of semiconductor region with laser beam
US8093593B2 (en) 2001-12-21 2012-01-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having multichannel transistor
US6797550B2 (en) 2001-12-21 2004-09-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method therefor
US7129121B2 (en) 2001-12-28 2006-10-31 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US7635883B2 (en) 2001-12-28 2009-12-22 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US6911358B2 (en) 2001-12-28 2005-06-28 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US7560660B2 (en) 2002-06-14 2009-07-14 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and apparatus
JP2004072086A (en) * 2002-06-14 2004-03-04 Semiconductor Energy Lab Co Ltd Method for laser irradiation and laser irradiator
US6984573B2 (en) 2002-06-14 2006-01-10 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and apparatus
JP2006516356A (en) * 2002-08-19 2006-06-29 ザ トラスティーズ オブ コロンビア ユニヴァーシティ イン ザ シティ オブ ニューヨーク Method and apparatus for laser crystallization processing of film region of substrate and structure of such film region to minimize edge region
US8883656B2 (en) 2002-08-19 2014-11-11 The Trustees Of Columbia University In The City Of New York Single-shot semiconductor processing system and method having various irradiation patterns
US8411713B2 (en) 2002-08-19 2013-04-02 The Trustees Of Columbia University In The City Of New York Process and system for laser crystallization processing of film regions on a substrate to minimize edge areas, and structure of such film regions
JP4873858B2 (en) * 2002-08-19 2012-02-08 ザ トラスティーズ オブ コロンビア ユニヴァーシティ イン ザ シティ オブ ニューヨーク Method and apparatus for laser crystallization processing of film region of substrate and structure of such film region to minimize edge region
US8479681B2 (en) 2002-08-19 2013-07-09 The Trustees Of Columbia University In The City Of New York Single-shot semiconductor processing system and method having various irradiation patterns
JP2004193201A (en) * 2002-12-09 2004-07-08 Semiconductor Energy Lab Co Ltd Laser irradiation method
JP2004221560A (en) * 2002-12-25 2004-08-05 Semiconductor Energy Lab Co Ltd Laser irradiation method, laser irradiation equipment and semiconductor device manufacturing method
US7387922B2 (en) 2003-01-21 2008-06-17 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method, method for manufacturing semiconductor device, and laser irradiation system
JP2004289140A (en) * 2003-03-03 2004-10-14 Semiconductor Energy Lab Co Ltd Laser irradiation device, laser irradiation method, and manufacturing method of semiconductor device
US7915099B2 (en) 2003-04-21 2011-03-29 Semiconductor Energy Laboratory Co., Ltd. Beam irradiation apparatus, beam irradiation method, and method for manufacturing semiconductor device
US7476629B2 (en) 2003-04-21 2009-01-13 Semiconductor Energy Laboratory Co., Ltd. Beam irradiation apparatus, beam irradiation method, and method for manufacturing thin film transistor
US8663387B2 (en) 2003-09-16 2014-03-04 The Trustees Of Columbia University In The City Of New York Method and system for facilitating bi-directional growth
US8796159B2 (en) 2003-09-16 2014-08-05 The Trustees Of Columbia University In The City Of New York Processes and systems for laser crystallization processing of film regions on a substrate utilizing a line-type beam, and structures of such film regions
US8715412B2 (en) 2003-09-16 2014-05-06 The Trustees Of Columbia University In The City Of New York Laser-irradiated thin films having variable thickness
US9466402B2 (en) 2003-09-16 2016-10-11 The Trustees Of Columbia University In The City Of New York Processes and systems for laser crystallization processing of film regions on a substrate utilizing a line-type beam, and structures of such film regions
US8445365B2 (en) 2003-09-19 2013-05-21 The Trustees Of Columbia University In The City Of New York Single scan irradiation for crystallization of thin films
US9296068B2 (en) 2004-03-26 2016-03-29 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and laser irradiation apparatus
US7812283B2 (en) 2004-03-26 2010-10-12 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method, laser irradiation apparatus, and method for fabricating semiconductor device
US8525075B2 (en) 2004-05-06 2013-09-03 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus
JP2006066904A (en) * 2004-07-30 2006-03-09 Semiconductor Energy Lab Co Ltd Laser irradiation apparatus and laser irradiation method
US8734584B2 (en) 2004-11-18 2014-05-27 The Trustees Of Columbia University In The City Of New York Systems and methods for creating crystallographic-orientation controlled poly-silicon films
US8221544B2 (en) 2005-04-06 2012-07-17 The Trustees Of Columbia University In The City Of New York Line scan sequential lateral solidification of thin films
US8617313B2 (en) 2005-04-06 2013-12-31 The Trustees Of Columbia University In The City Of New York Line scan sequential lateral solidification of thin films
JP2009514224A (en) * 2005-10-28 2009-04-02 サイマー・インコーポレーテッド System and method for generating laser light shaped as a line beam
US8598588B2 (en) 2005-12-05 2013-12-03 The Trustees Of Columbia University In The City Of New York Systems and methods for processing a film, and thin films
US8455790B2 (en) 2005-12-16 2013-06-04 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus, laser irradiation method, and manufacturing method of semiconductor device
WO2007069516A1 (en) * 2005-12-16 2007-06-21 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus, laser irradiation method, and manufacturing method of semiconductor device
JP2008112981A (en) * 2006-10-03 2008-05-15 Semiconductor Energy Lab Co Ltd Laser irradiation device, and laser irradiation method
US8614471B2 (en) 2007-09-21 2013-12-24 The Trustees Of Columbia University In The City Of New York Collections of laterally crystallized semiconductor islands for use in thin film transistors
US9012309B2 (en) 2007-09-21 2015-04-21 The Trustees Of Columbia University In The City Of New York Collections of laterally crystallized semiconductor islands for use in thin film transistors
US8415670B2 (en) 2007-09-25 2013-04-09 The Trustees Of Columbia University In The City Of New York Methods of producing high uniformity in thin film transistor devices fabricated on laterally crystallized thin films
US8557040B2 (en) 2007-11-21 2013-10-15 The Trustees Of Columbia University In The City Of New York Systems and methods for preparation of epitaxially textured thick films
US8426296B2 (en) 2007-11-21 2013-04-23 The Trustees Of Columbia University In The City Of New York Systems and methods for preparing epitaxially textured polycrystalline films
US8871022B2 (en) 2007-11-21 2014-10-28 The Trustees Of Columbia University In The City Of New York Systems and methods for preparation of epitaxially textured thick films
US8012861B2 (en) 2007-11-21 2011-09-06 The Trustees Of Columbia University In The City Of New York Systems and methods for preparing epitaxially textured polycrystalline films
US8569155B2 (en) 2008-02-29 2013-10-29 The Trustees Of Columbia University In The City Of New York Flash lamp annealing crystallization for large area thin films
JP2009283691A (en) * 2008-05-22 2009-12-03 Japan Steel Works Ltd:The Method for irradiating laser light and laser light irradiation device
US8802580B2 (en) 2008-11-14 2014-08-12 The Trustees Of Columbia University In The City Of New York Systems and methods for the crystallization of thin films
US9087696B2 (en) 2009-11-03 2015-07-21 The Trustees Of Columbia University In The City Of New York Systems and methods for non-periodic pulse partial melt film processing
US9646831B2 (en) 2009-11-03 2017-05-09 The Trustees Of Columbia University In The City Of New York Advanced excimer laser annealing for thin films
US8440581B2 (en) 2009-11-24 2013-05-14 The Trustees Of Columbia University In The City Of New York Systems and methods for non-periodic pulse sequential lateral solidification
US8889569B2 (en) 2009-11-24 2014-11-18 The Trustees Of Columbia University In The City Of New York Systems and methods for non-periodic pulse sequential lateral soldification
TWI504466B (en) * 2011-12-20 2015-10-21 Ap Systems Inc Laser annealing apparatus
JP2020046339A (en) * 2018-09-20 2020-03-26 パイオニア株式会社 Light projection device, light projection/reception device, and ranging device
CN109950144A (en) * 2019-04-08 2019-06-28 京东方科技集团股份有限公司 A kind of laser annealing apparatus

Similar Documents

Publication Publication Date Title
JPH09270393A (en) Laser light irradiation device
JP3306300B2 (en) Laser annealing method for semiconductor film
JP3349355B2 (en) Laser annealing method for semiconductor film
KR100510001B1 (en) Manufacturing method of semiconductor device
US20110104908A1 (en) Laser Mask and Crystallization Method Using the Same
US8853590B2 (en) Device for irradiating a laser beam
JPH1187720A (en) Semiconductor device and liquid crystal display device
US20090263978A1 (en) Laser mask and crystallization method using the same
US6451636B1 (en) Semiconductor device and display device having laser-annealed semiconductor element
US7767558B2 (en) Method of crystallizing amorphous silicon and device fabricated using the same
JP3477888B2 (en) Method for manufacturing thin film semiconductor device
US7250331B2 (en) Mask for crystallizing and method of crystallizing amorphous silicon using the same
GB2415829A (en) Selective crystallization of driving circuit and pixel regions of LCD substrates
JP3671011B2 (en) Laser annealing method for semiconductor film
JPH10199808A (en) Method of crystallizing silicon film
US20060276013A1 (en) Sequential lateral solidification mask
JP3276900B2 (en) Semiconductor device and display device
JP3671010B2 (en) Laser annealing method for semiconductor film
JPH0945632A (en) Laser annealing method and melt crystallization method of semiconductor film
JP3702232B2 (en) Laser annealing method for semiconductor film
JPH10125599A (en) Crystallization method of silicon thin film
JP2002198377A (en) Thin film transistor and its fabrication method
JPH1187670A (en) Fabrication of semiconductor device