JPH09263909A - Nonoriented silicon steel sheet excellent in core loss characteristic - Google Patents
Nonoriented silicon steel sheet excellent in core loss characteristicInfo
- Publication number
- JPH09263909A JPH09263909A JP8070222A JP7022296A JPH09263909A JP H09263909 A JPH09263909 A JP H09263909A JP 8070222 A JP8070222 A JP 8070222A JP 7022296 A JP7022296 A JP 7022296A JP H09263909 A JPH09263909 A JP H09263909A
- Authority
- JP
- Japan
- Prior art keywords
- less
- iron loss
- phase particles
- steel sheet
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Soft Magnetic Materials (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、無方向性電磁鋼
板、特に、部品に加工後磁性焼鈍が行われるセミプロセ
ス無方向性電磁鋼板に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-oriented electrical steel sheet, and more particularly to a semi-processed non-oriented electrical steel sheet in which a component is magnetically annealed after working.
【0002】[0002]
【従来の技術】無方向性電磁鋼板は、発電機、電動機、
小型変圧器などの電気機器に広範囲に利用されている
が、その低鉄損化は省エネルギー化のために不可欠であ
り、永遠のテーマになっている。2. Description of the Related Art Non-oriented electrical steel sheets are used in generators, electric motors,
It is widely used in electrical equipment such as small transformers, but its low iron loss is indispensable for energy saving and has become an eternal theme.
【0003】一方、セミプロセス無方向性電磁鋼板の使
用にあたって、こうした低鉄損化は勿論のこと、部品加
工後に行われる磁性焼鈍をより低温短時間化し、生産性
の向上や低コスト化を図りたいという使用者側からの要
望がある。On the other hand, when using a semi-processed non-oriented electrical steel sheet, not only the iron loss is reduced, but also the magnetic annealing performed after the parts are processed is made at a lower temperature for a shorter time to improve the productivity and reduce the cost. There is a desire from the user side.
【0004】図3に、現行のセミプロセス無方向性電磁
鋼板の鉄損値(W15/50 )の磁性焼鈍温度依存性の1例
を示す。図のデータは、図中に示した成分系の試料を用
い、磁性焼鈍時間を現行の2時間としたときの値であ
る。FIG. 3 shows an example of the magnetic annealing temperature dependency of the iron loss value (W 15/50 ) of the existing semi-processed non-oriented electrical steel sheet. The data in the figure are values when the magnetic annealing time is set to the current 2 hours using the sample of the component system shown in the figure.
【0005】焼鈍温度を750℃以上にすれば安定して
低鉄損値が得られるが、750℃未満に下げると急激に
鉄損値が増加する。したがって現状では750℃×2時
間の磁性焼鈍が行われているが、これを730℃×1時
間程度に低温短時間化したいという具体的な要望があ
る。When the annealing temperature is 750 ° C. or higher, a low iron loss value can be stably obtained, but when the annealing temperature is lowered to less than 750 ° C., the iron loss value rapidly increases. Therefore, at present, magnetic annealing is performed at 750 ° C. for 2 hours, but there is a specific demand to reduce the temperature to 730 ° C. for 1 hour at a low temperature.
【0006】図3の焼鈍温度を下げると急激に鉄損値が
増加する原因としては、結晶粒径が焼鈍温度の低下とと
もに小さくなることによると考えられる。実際、750
℃焼鈍の結晶粒径は約45μmであったのに対し、73
0℃では25μm以下であった。It is considered that the reason why the iron loss value rapidly increases when the annealing temperature in FIG. 3 is lowered is that the grain size becomes smaller as the annealing temperature lowers. In fact, 750
While the crystal grain size of the annealing at ℃ was about 45μm, 73
It was 25 μm or less at 0 ° C.
【0007】結晶粒径を大きくして低鉄損化を図る手段
として、焼鈍時に結晶粒界移動のピンニングサイトとな
り易い鋼中の介在物、析出物、晶出物などの第二相粒子
の数を減らしたり、その形状を制御してピンニング機能
を失わせたりする方法が提案されている。As a means for increasing the grain size to reduce iron loss, the number of second phase grains such as inclusions, precipitates and crystallized substances in the steel which are likely to become pinning sites for grain boundary migration during annealing. It has been proposed to reduce the number of lines and control its shape to lose the pinning function.
【0008】例えば、SiおよびS量に対しMn量の範
囲を特定し、凝固過程でのMnSを粗大化させてそのピ
ンニング機能を失わせる特開平3ー249115号公報
に記載の方法、スラブの加熱温度を1150℃以下の低
温にしMnSの再固溶を抑制し、後工程におけるピンニ
ングサイトとなり易い微細MnSの再析出を防ぐ特開昭
62ー199720号公報に記載の方法、鋼中のSiO
2 、MnO、Al2 O 3 の酸化物のうちMnOの比率を
低下させて酸化物の融点を上げ、ピンニングサイトとな
り易い微細酸化物の生成を防止する特開平1ー1522
39号公報に記載の方法、鋼中に直径0.5〜5μmの
酸化物を10〜500個/mm2 分散させ、これを核に
MnSを凝集析出させてピンニングサイトとなり易い微
細MnSの再析出を防ぐ特公平5ー69910号公報に
記載の方法などがある。For example, the range of Mn content relative to Si and S content is
The enclosure is specified and MnS in the solidification process is coarsened to
Japanese Patent Laid-Open No. 3-249115, which loses the training function
In the method described in 1), the heating temperature of the slab is set to 1150 ° C or lower.
Temperature to suppress re-dissolution of MnS,
To prevent reprecipitation of fine MnS, which easily forms ligsite
62-199720 method, SiO in steel
Two, MnO, AlTwoO ThreeOf the oxides of
It lowers the melting point of the oxide to increase the pinning site.
To prevent the formation of fine oxides that tend to be easily removed
39, the diameter of 0.5-5 μm in steel.
10-500 oxides / mmTwoDisperse and use this as the core
A small amount of MnS tends to be aggregated and precipitated to form a pinning site.
Japanese Patent Publication No. 5-69910 which prevents reprecipitation of fine MnS
There is a method of description.
【0009】[0009]
【発明が解決しようとする課題】しかしながら、本発明
者らが上記特許公報に記載されている低鉄損化に有利な
第二相粒子の制御法をセミプロセス無方向性電磁鋼板に
おける磁性焼鈍の低温短時間化に適用できるかどうかを
検討したところ、730℃×1時間の条件では、現行法
で得られるような低い鉄損値が得られなかった。However, the inventors of the present invention have described the method of controlling the second phase particles, which is advantageous for reducing iron loss, described in the above-mentioned patent publication, in the magnetic annealing of a semi-process non-oriented electrical steel sheet. As a result of studying whether it can be applied to a low temperature and a short time, it was not possible to obtain a low iron loss value as obtained by the current method under the condition of 730 ° C. × 1 hour.
【0010】本発明はこのような課題を解決するために
なされたもので、磁性焼鈍を低温短時間化しても、現行
法で得られるものと同等以下の低い鉄損値の得られる鉄
損特性に優れた無方向性電磁鋼板を提供することを目的
とする。The present invention has been made in order to solve such a problem, and has an iron loss characteristic which can obtain a low iron loss value equal to or less than that obtained by the current method even if the magnetic annealing is performed at a low temperature for a short time. An object is to provide an excellent non-oriented electrical steel sheet.
【0011】[0011]
【課題を解決するための手段】上記課題は、下記の条件
を満足することを特徴とする鉄損特性に優れた無方向性
電磁鋼板により解決される。The above problems can be solved by a non-oriented electrical steel sheet having excellent iron loss characteristics, which is characterized by satisfying the following conditions.
【0012】(イ)重量%で、C:0.01%以下、S
i:1%以下、Mn:0.1〜0.8%、S:0.01
%以下、Al:0.004%以下、Cu:0.05%以
下を含む鋼であって、かつ(ロ)鋼中に含まれる第二相
粒子の数を顕微鏡観察により単位面積当たりの個数とし
て求めたとき、直径0.1〜0.5μmの第二相粒子が
500〜5000個/mm2 、直径0.5μmを超える
第二相粒子が500個/mm2 以下である。(B) Weight%, C: 0.01% or less, S
i: 1% or less, Mn: 0.1 to 0.8%, S: 0.01
% Or less, Al: 0.004% or less, Cu: 0.05% or less, and (b) the number of second phase particles contained in the steel as the number per unit area by microscopic observation. When determined, the number of second phase particles having a diameter of 0.1 to 0.5 μm is 500 to 5000 particles / mm 2 , and the number of second phase particles having a diameter of more than 0.5 μm is 500 particles / mm 2 or less.
【0013】まず、現行のセミプロセス無方向性電磁鋼
板の磁性焼鈍前に存在する鋼中の第二相粒子の存在状態
を調査する目的で、図3に示した試料の電子顕微鏡観察
を行った。その結果、直径0.1〜0.5μm程度のM
nSーMnO、直径0.5μmを超えるSiO2 、Si
O2 ーMnSおよび多数の直径数10nm程度のCuS
が観察された。First, for the purpose of investigating the existing state of the second phase particles in the steel existing before the magnetic annealing of the existing semi-processed non-oriented electrical steel sheet, the sample shown in FIG. 3 was observed by an electron microscope. . As a result, M with a diameter of 0.1 to 0.5 μm
nS-MnO, SiO 2 over 0.5 μm, Si
O 2 -MnS and many CuS with a diameter of about 10 nm
Was observed.
【0014】そこで、こうした第二相粒子の存在状態が
磁性焼鈍後の鉄損値にどのような影響を与えるかを検討
するため、図3に示した成分系の鋼を用い、その鋳造凝
固時の冷却速度を変えて第二相粒子の存在状態を変えた
試料を作成し、磁性焼鈍前の電子顕微鏡観察や730℃
×1時間の磁性焼鈍後の鉄損値測定を行った。Therefore, in order to examine how the state of existence of such second phase particles influences the iron loss value after magnetic annealing, the steel of the component system shown in FIG. The sample was prepared by changing the cooling rate of the second phase particles to change the existing state of the second phase particles, and observed by an electron microscope before magnetic annealing or at 730 ° C.
The iron loss value was measured after magnetic annealing for × 1 hour.
【0015】図4に、鋳造凝固時の冷却速度と第二相粒
子の存在状態の関係を示す。なお、図には鉄損値(W
15/50 )も示してある。FIG. 4 shows the relationship between the cooling rate during solidification by casting and the state of existence of the second phase particles. Note that the iron loss value (W
15/50 ) is also shown.
【0016】ここで、第二相粒子の数とは、電子顕微鏡
観察によりサイズ別にカウントし、単位視野面積(1m
m2 )当たりの個数で表した数である(以後、第二相粒
子の数はこの定義による)。Here, the number of the second phase particles is counted by size by observation with an electron microscope, and the unit visual field area (1 m
m 2 ) is the number expressed per number (hereinafter, the number of second phase particles is according to this definition).
【0017】鋳造凝固時の冷却速度を現行の2℃/秒か
ら10℃/秒に早めると、直径0.1〜0.5μmの第
二相粒子の数が増え、730℃×1時間の磁性焼鈍でも
図3に示した現行法で得られる鉄損値(W15/50 =4.
5w/kg)より低い値(W 15/50 =3.9w/kg)
の得られることがわかる。Whether the cooling rate at the time of solidification by casting is the current 2 ° C / sec
When accelerated to 10 ° C / sec from the
The number of two-phase particles has increased, and even in magnetic annealing at 730 ° C for 1 hour
The iron loss value (W15/50= 4.
5w / kg) lower value (W 15/50= 3.9w / kg)
You can see that
【0018】この鋳造凝固時の冷却速度を早めた試料の
第二相粒子の形態分析を行ったところ、微細なCuSが
激減しており、CuとSの大部分は直径0.1〜0.5
μmの第二相粒子であるMnSーMnOの粒子中にCu
Sとして存在していることが判明した。このことから、
鋳造凝固時の冷却速度を早めることによってMnSーM
nOの粒子数が増え、それを核としたCuSの凝集粗大
化が促進され、粒成長性が向上し低鉄損化が図れたもの
と推察される。When the morphological analysis of the second phase particles of the sample with the faster cooling rate during casting and solidification was performed, fine CuS was drastically reduced, and most of Cu and S had a diameter of 0.1 to 0. 5
Cu in the MnS-MnO particles that are the second phase particles of μm
It was found to exist as S. From this,
By increasing the cooling rate during solidification of casting, MnS-M
It is presumed that the number of nO particles increased, the coagulation and coarsening of CuS centered on the nO particles were promoted, the grain growth property was improved, and the iron loss was reduced.
【0019】このように、直径0.1〜0.5μmの第
二相粒子の数を増やすことにより微細なCuSの悪影響
を低減すれば、低温短時間の磁性焼鈍でも現行法で得ら
れる値以下の低い鉄損値の得られることがわかったの
で、その数の適性範囲を調査した。As described above, if the adverse effect of fine CuS is reduced by increasing the number of the second phase particles having a diameter of 0.1 to 0.5 μm, the value is less than the value obtained by the current method even in the magnetic annealing at low temperature for a short time. Since it was found that a low iron loss value was obtained, the suitable range of the number was investigated.
【0020】表1に示す成分系の鋼1〜鋼4を用い、鋳
造凝固時の冷却速度を変えて直径0.1〜0.5μmの
第二相粒子の数を変え、730℃×1時間の磁性焼鈍後
の鉄損値(W15/50 )を調査した。Using steels 1 to 4 of the composition system shown in Table 1, the cooling rate at the time of solidification by casting was changed to change the number of second phase particles having a diameter of 0.1 to 0.5 μm, and 730 ° C. for 1 hour. The iron loss value (W 15/50 ) after magnetic annealing was investigated.
【0021】図1に、各鋼の直径0.1〜0.5μmの
第二相粒子の数と鉄損値(W15/50)の関係を示す。図
の黒色に塗り潰した印は、現行法で得られる、すなわち
現行の第二相粒子の存在状態を有する各鋼を用い現行の
750℃×2時間の磁性焼鈍をしたときに得られる、鉄
損値(W15/50 )以下となった試料を示している。FIG. 1 shows the relationship between the number of second phase particles having a diameter of 0.1 to 0.5 μm and the iron loss value (W 15/50 ) of each steel. The black mark in the figure indicates the iron loss value obtained by the current method, that is, when the current 750 ° C x 2 hours magnetic annealing is performed using each steel having the existing state of the second phase particles. (W 15/50 ) It shows the sample below.
【0022】直径0.1〜0.5μmの第二相粒子の数
を500〜5000個/mm2 に調整することにより、
730℃×1時間でも現行の場合より低い鉄損値の得ら
れることがわかる。また、800〜3500個/mm2
にすれば、粒子の個数に依存することなく安定して低鉄
損値が得られるようになる。By adjusting the number of the second phase particles having a diameter of 0.1 to 0.5 μm to 500 to 5000 particles / mm 2 ,
It can be seen that even at 730 ° C. for 1 hour, a lower iron loss value can be obtained than in the current case. In addition, 800 to 3500 pieces / mm 2
By doing so, a low iron loss value can be stably obtained without depending on the number of particles.
【0023】直径0.1〜0.5μmの第二相粒子の数
が500個/mm2 未満で鉄損値が高くなる理由は、上
記したように、このような第二相粒子の存在状態では多
数の微細CuSが存在し、粒成長を阻害するためと考え
られる。また、この数が5000個/mm2 を超えると
鉄損値が高くなる理由は、このサイズの粒子でも、その
数が多過ぎると粒成長を妨げる効果を有するようになる
ためと推察される。The reason why the iron loss value becomes high when the number of the second phase particles having a diameter of 0.1 to 0.5 μm is less than 500 particles / mm 2 is, as described above, the existence state of the second phase particles. Then, it is considered that a large number of fine CuS exist and inhibit grain growth. Further, the reason why the iron loss value becomes high when the number exceeds 5000 / mm 2 is presumed that even particles of this size have an effect of hindering grain growth when the number is too large.
【0024】これらの試料の直径0.5μmを超える第
二相粒子の数はいずれも500個/mm2 以下であった
が、このサイズの粒子もなんらかの影響を鉄損に与える
可能性があるので、表1に示す鋼1〜鋼4を用い、溶鋼
の脱ガス時間(脱酸後の還流時間)を変えて粒子の数を
変え、上記と同様の調査を行った。このとき、直径0.
1〜0.5μmの第二相粒子の数は本発明範囲内にして
ある。The number of the second phase particles having a diameter of more than 0.5 μm in these samples was 500 particles / mm 2 or less, but particles of this size may have some influence on iron loss. Using Steels 1 to 4 shown in Table 1, the number of particles was changed by changing the degassing time (refluxing time after deoxidation) of the molten steel, and the same investigation as above was performed. At this time, the diameter is 0.
The number of 1-0.5 μm second phase particles is within the scope of the invention.
【0025】図2に、各鋼の直径0.5μmを超える第
二相粒子の数と鉄損値(W15/50 )の関係を示す。図の
黒色に塗り潰した印は、図1と同様、現行法で得られる
鉄損値(W15/50 )以下となった試料を示している。FIG. 2 shows the relationship between the number of second phase particles of each steel having a diameter of more than 0.5 μm and the iron loss value (W 15/50 ). Like in FIG. 1, the black-filled marks in the figure indicate samples having iron loss values (W 15/50 ) or less obtained by the current method.
【0026】直径0.5μmを超える第二相粒子の数が
500個/mm2 以下であれば、730℃×1時間でも
現行の場合より低い鉄損値の得られることがわかる。ま
た、400個/mm2 以下にすれば、粒子の個数に依存
することなく安定して低鉄損値が得られるようになる。It can be seen that when the number of second phase particles having a diameter of more than 0.5 μm is 500 particles / mm 2 or less, a lower iron loss value can be obtained even at 730 ° C. for 1 hour than in the current case. If the number is 400 particles / mm 2 or less, a low iron loss value can be stably obtained without depending on the number of particles.
【0027】直径0.5μmを超える第二相粒子の数が
500個/mm2 を超えると鉄損値が高くなる理由は、
このサイズの粒子数が増えると磁壁移動が妨げられ、ヒ
ステリシス損が増大するためと考えられる。The reason why the iron loss value becomes high when the number of second phase particles having a diameter of more than 0.5 μm exceeds 500 particles / mm 2 is as follows.
It is considered that when the number of particles of this size increases, the domain wall movement is hindered and the hysteresis loss increases.
【0028】以上述べたように、第二相粒子の存在形態
を制御することが本発明の核心であるが、その効果を有
効に引き出し、また、電磁鋼板として必要な他の特性を
満足させるには、以下のように成分を限定する必要があ
る。As described above, the core of the present invention is to control the existence form of the second phase particles, but in order to bring out the effect effectively and to satisfy other properties required as a magnetic steel sheet. Needs to limit the components as follows.
【0029】C:0.01%を超えると、鉄損値の増大
や磁束密度の低下を招くので0.01%以下とする。C: If it exceeds 0.01%, the iron loss value increases and the magnetic flux density decreases, so the content is made 0.01% or less.
【0030】Si:1%超えると、SiO2 の数が増大
し本発明の効果が得られなくなるので1%以下とする。Si: If it exceeds 1%, the number of SiO 2 increases and the effect of the present invention cannot be obtained, so the content is made 1% or less.
【0031】Mn:0.1%未満だと、熱間圧延時に赤
熱脆性を引き起こす恐れがあり、0.8%を超えると、
磁束密度の低下を招くので0.1〜0.8%とする。If Mn: less than 0.1%, red hot embrittlement may occur during hot rolling, and if it exceeds 0.8%,
Since it causes a decrease in magnetic flux density, it is set to 0.1 to 0.8%.
【0032】S:0.01%を超えると、CuS、Mn
Sなどの硫化物の数が増大し本発明の効果が得られなく
なり、また、赤熱脆性を引き起こす恐れもあるので0.
01%以下とする。S: If it exceeds 0.01%, CuS, Mn
Since the number of sulfides such as S increases, the effect of the present invention cannot be obtained, and red hot brittleness may occur.
It is set to 01% or less.
【0033】Al:0.004%を超えると、微細なA
lNが増え本発明の効果が得られなくなるので0.00
4%以下とする。Al: If it exceeds 0.004%, fine A
Since 1N increases and the effect of the present invention cannot be obtained, 0.00
4% or less.
【0034】Cu:0.05%を超えると、粒成長を阻
害する微細なCuSの生成を充分に制御できなくなり、
本発明の効果が得られなくなるので0.05%以下とす
る。Cu: If it exceeds 0.05%, the formation of fine CuS that inhibits grain growth cannot be sufficiently controlled,
The effect of the present invention cannot be obtained, so the content is made 0.05% or less.
【0035】上記成分元素の含有量に加えて、重量%
で、C:0.005%以下、P:0.2%以下、N:
0.005%以下にすることが下記の理由で好ましい。In addition to the contents of the above component elements, weight%
C: 0.005% or less, P: 0.2% or less, N:
It is preferably 0.005% or less for the following reason.
【0036】C:0.005%以下にすると、磁気時効
を防止できるので好ましい。C: 0.005% or less is preferable because magnetic aging can be prevented.
【0037】P:鋼板の打抜き性を向上させる成分であ
るが、多量に添加すると鋼板が脆くなるので0.2%以
下にすることが好ましい。P: A component that improves the punchability of the steel sheet, but if added in a large amount, the steel sheet becomes brittle, so it is preferably made 0.2% or less.
【0038】N:上記Alの含有量によっては、微細な
AlNが増え粒成長を阻害し、鉄損値の増大を招くので
0.005%以下することが好ましい。N: Depending on the content of Al, fine AlN increases and hinders grain growth, leading to an increase in iron loss value, so it is preferably 0.005% or less.
【0039】[0039]
【発明の実施の形態】Cu含有量を0.05重量%以下
にするには、Cu含有量の少ない原料や副原料を用いて
精錬すればよい。BEST MODE FOR CARRYING OUT THE INVENTION In order to reduce the Cu content to 0.05% by weight or less, refining may be performed using a raw material or an auxiliary raw material having a low Cu content.
【0040】S含有量を0.01重量%以下にするに
は、溶銑で脱Sしても、取鍋精錬で脱Sしてもよく、ま
た、S含有量の少ない原料や副原料を用いて精錬しても
よい。In order to reduce the S content to 0.01% by weight or less, either S removal by hot metal or S removal by ladle refining may be used, and a raw material or an auxiliary raw material having a low S content may be used. You may refine it.
【0041】磁気特性向上のためにSb、Sn、B、Z
rを添加しても、本発明の効果が損なわれることはな
い。Sb, Sn, B, Z for improving magnetic characteristics
Addition of r does not impair the effects of the present invention.
【0042】直径0.5μmを超える第二相粒子の数の
調整は、脱ガス時間以外に、鋳造中の溶鋼の流れや電磁
攪拌を調整することによっても可能である。The number of the second phase particles having a diameter of more than 0.5 μm can be adjusted by adjusting the flow of molten steel and electromagnetic stirring during casting in addition to the degassing time.
【0043】こうした溶鋼は、転炉あるいは電炉によっ
て製造できる。鋳造凝固時の冷却速度を早めるには、冷
却スプレーの能力を強化したり、鋳片の厚みを薄くする
ことにより可能である。Such molten steel can be manufactured by a converter or an electric furnace. The cooling rate at the time of solidification by casting can be increased by enhancing the ability of cooling spray or by reducing the thickness of the slab.
【0044】鋳造は造塊鋳造、連続鋳造どちらでもよ
い。鋳造後は、造塊鋳造の場合は分塊圧延を経て、連続
鋳造の場合はそのまま、再加熱後あるいは再加熱されず
に、熱間圧延され、さらに冷間圧延後焼鈍される通常の
無方向性電磁鋼板と同様な工程で製造される。The casting may be either ingot casting or continuous casting. After casting, it undergoes slabbing in the case of ingot casting, as it is in the case of continuous casting, and is hot-rolled after reheating or without reheating. It is manufactured in the same process as the magnetic electrical steel sheet.
【0045】なお、熱延板熱処理を施したり、冷間圧延
と焼鈍を繰り返し行っても本発明の効果は得られる。The effect of the present invention can be obtained even if heat treatment of a hot-rolled sheet is performed or cold rolling and annealing are repeated.
【0046】本発明の構成要件である第二相粒子とし
て、直径0.1〜0.5μmのMnSーMnO(ーCu
S)、直径0.5μmを超えるSiO2 、SiO2 ーM
nSを例示したが、本発明の効果はこれらの種類の粒子
に限定されることなく、他の硫化物、酸化物、炭化物、
窒化物などでも同様な効果が得られる。As the second phase particles which are a constituent feature of the present invention, MnS--MnO (-Cu) having a diameter of 0.1 to 0.5 .mu.m.
S), SiO 2 over 0.5 μm, SiO 2 -M
Although nS is exemplified, the effect of the present invention is not limited to these types of particles, and other sulfides, oxides, carbides,
A similar effect can be obtained with nitride or the like.
【0047】[0047]
【実施例】表1に、本実施例に用いた17種の成分系の
鋼を示す。鋼1〜鋼11は本発明鋼であり、鋼12〜鋼
17は鋼2をベースとした比較鋼である。鋼12ではS
i量が、鋼13ではMn量が、鋼15ではS量が、鋼1
6ではAl量が,鋼17ではCu量が本発明範囲より多
く、また、鋼14ではMn量が本発明範囲より少なくな
っている。なお、いずれの鋼においても、残部はFeお
よび不可避的不純物からなる。EXAMPLES Table 1 shows the steels of the 17 kinds of components used in this example. Steels 1 to 11 are steels of the present invention, and steels 12 to 17 are comparative steels based on steel 2. S for Steel 12
i amount, Mn amount in Steel 13, S amount in Steel 15, Steel 1
6, the amount of Al is larger than that of the present invention, and the amount of Cu of steel 17 is larger than that of the present invention, and the amount of Mn of steel 14 is smaller than that of the present invention. The balance of any of the steels is Fe and inevitable impurities.
【0048】これらの鋼を溶製後、表2、表3に示すよ
うに脱ガス時間と鋳造凝固後の冷却速度を変えて、第二
相粒子の存在状態を種々変えたスラブを作製した。After smelting these steels, as shown in Tables 2 and 3, the degassing time and the cooling rate after casting and solidification were changed to prepare slabs in which the state of existence of the second phase particles was variously changed.
【0049】これらのスラブを仕上温度810℃、巻取
温度670℃の条件で熱間圧延し、板厚2.3mmの熱
延板を作製した。These slabs were hot-rolled under the conditions of finishing temperature of 810 ° C. and winding temperature of 670 ° C. to prepare hot-rolled sheets having a plate thickness of 2.3 mm.
【0050】これらの熱延板を酸洗後、板厚0.5mm
まで冷間圧延し、690〜730℃で焼鈍して試料N
o.1〜32のセミプロセス電磁鋼板を作製した。After pickling these hot rolled sheets, the sheet thickness is 0.5 mm.
Cold rolled to 690 to 730 ° C and annealed to sample N
o. 1-32 semi-process electromagnetic steel sheets were produced.
【0051】これらの試料に730℃×1時間あるいは
750℃×1〜2時間の磁性焼鈍を施し、鉄損W15/50
と磁束密度B50を求めた。ここで、鉄損W15/50 と磁束
密度B50は、25cmエプスタイン試験(JISC25
50)により鋼板の長手方向と幅方向で測定し、それを
平均した値である。These samples were subjected to magnetic annealing at 730 ° C. for 1 hour or 750 ° C. for 1 to 2 hours, and iron loss W 15/50
And the magnetic flux density B 50 was determined. Here, the iron loss W 15/50 and the magnetic flux density B 50 are measured by the 25 cm Epstein test (JISC25
50) is a value obtained by measuring in the longitudinal direction and the width direction of the steel sheet and averaging them.
【0052】また、各試料の磁性焼鈍前の鋼中の第二相
粒子の存在状態をSEMやTEMの電子顕微鏡で観察
し、サイズ別に単位面積当たりの第二相粒子の数を求め
た。Further, the existence state of the second phase particles in the steel before magnetic annealing of each sample was observed with an electron microscope of SEM or TEM, and the number of the second phase particles per unit area was obtained for each size.
【0053】なお、表1には、比較として、各鋼の現行
法によって作製した試料を現行の750℃×2時間で磁
性焼鈍したときの鉄損W15/50 と磁束密度B50も示して
ある。For comparison, Table 1 also shows the iron loss W 15/50 and the magnetic flux density B 50 when magnetically annealing the samples produced by the current method for each steel at the current 750 ° C. for 2 hours. .
【0054】結果を表2、表3に示す。成分と第二相粒
子の存在状態が本発明の範囲内にある試料では、730
℃×1時間の磁性焼鈍により現行法で得られる値以下の
鉄損値が得られる。なお、一部の試料に対しては、75
0℃×1〜2時間の磁性焼鈍も行ったが、それにより7
30℃×1時間の磁性焼鈍の場合よりさらに低い鉄損値
が得られる。The results are shown in Tables 2 and 3. In the sample in which the state of existence of the components and the second phase particles is within the range of the present invention, 730
By magnetic annealing at ℃ × 1 hour, the iron loss value below the value obtained by the current method can be obtained. For some samples, 75
Magnetic annealing was also performed at 0 ° C for 1 to 2 hours.
Even lower iron loss values can be obtained than in the case of magnetic annealing at 30 ° C. for 1 hour.
【0055】一方、Si、S、Al、Cu量が本発明範
囲より多かったり、第二相粒子の存在状態が本発明範囲
外であると、730℃×1時間の磁性焼鈍では現行法で
得られる値以下の鉄損値は得られない。On the other hand, if the amount of Si, S, Al, Cu is larger than the range of the present invention or the state of the second phase particles is outside the range of the present invention, the magnetic annealing at 730 ° C. for 1 hour can be obtained by the current method. The iron loss value below the value cannot be obtained.
【0056】Mn量が本発明範囲より多いと、鉄損値に
は問題がないが、磁束密度が著しく低下する。When the amount of Mn is more than the range of the present invention, there is no problem in the iron loss value, but the magnetic flux density is remarkably reduced.
【0057】また、Si量も本発明範囲より多いと磁束
密度の著しく低下を招くが、高Siの高グレード電磁鋼
板に適用すれば問題とならない磁束密度の値である。Further, if the amount of Si is larger than the range of the present invention, the magnetic flux density is remarkably lowered, but it is a value of the magnetic flux density which is not a problem when applied to a high-grade high-grade electrical steel sheet of high Si.
【0058】なお、Mn量が本発明範囲より少ない試料
14には、熱間圧延時に割れが観察された。In Sample 14, in which the amount of Mn was less than the range of the present invention, cracking was observed during hot rolling.
【0059】[0059]
【表1】 [Table 1]
【0060】[0060]
【表2】 [Table 2]
【0061】[0061]
【表3】 [Table 3]
【0062】[0062]
【発明の効果】本発明は以上説明したように構成されて
いるので、磁性焼鈍を低温短時間化しても、現行法で得
られるものと同等以下の低い鉄損値の得られる無方向性
電磁鋼板およびその製造方法を提供できる。Since the present invention is configured as described above, a non-oriented electrical steel sheet which can obtain a low iron loss value equal to or less than that obtained by the current method even if the magnetic annealing is performed at a low temperature for a short time. And the manufacturing method for the same can be provided.
【図1】直径0.1〜0.5μmの第二相粒子の数と鉄
損値(W15/50 )の関係を示す図である。FIG. 1 is a diagram showing the relationship between the number of second phase particles having a diameter of 0.1 to 0.5 μm and the iron loss value (W 15/50 ).
【図2】直径0.5μmを超える第二相粒子の数と鉄損
値(W15/50 )の関係を示す図である。FIG. 2 is a diagram showing the relationship between the number of second phase particles having a diameter of more than 0.5 μm and the iron loss value (W 15/50 ).
【図3】現行のセミプロセス無方向性電磁鋼板の鉄損値
(W15/50 )の磁性焼鈍温度依存性の1例を示す図であ
る。FIG. 3 is a diagram showing an example of the magnetic annealing temperature dependency of the iron loss value (W 15/50 ) of a current semi-process non-oriented electrical steel sheet.
【図4】鋳造凝固時の冷却速度と第二相粒子の存在状態
の関係を示す図である。FIG. 4 is a diagram showing a relationship between a cooling rate during solidification by casting and a state of existence of second phase particles.
Claims (2)
鉄損特性に優れた無方向性電磁鋼板。 (イ)重量%で、C:0.01%以下、Si:1%以
下、Mn:0.1〜0.8%、S:0.01%以下、A
l:0.004%以下、Cu:0.05%以下を含む鋼
であって、かつ(ロ)鋼中に含まれる第二相粒子の数を
顕微鏡観察により単位面積当たりの個数として求めたと
き、直径0.1〜0.5μmの第二相粒子が500〜5
000個/mm2 、直径0.5μmを超える第二相粒子
が500個/mm2 以下である。1. A non-oriented electrical steel sheet having excellent iron loss characteristics, which satisfies the following conditions. (A) In% by weight, C: 0.01% or less, Si: 1% or less, Mn: 0.1 to 0.8%, S: 0.01% or less, A
l: 0.004% or less, Cu: 0.05% or less, and (b) When the number of second phase particles contained in the steel is determined as the number per unit area by microscopic observation. , The second phase particles having a diameter of 0.1 to 0.5 μm are 500 to 5
The number of second-phase particles exceeding 000 particles / mm 2 and a diameter of 0.5 μm is 500 particles / mm 2 or less.
鉄損特性に優れた無方向性電磁鋼板。 (イ)重量%で、C:0.005%以下、Si:1%以
下、Mn:0.1〜0.8%、P:0.2%以下、S:
0.01%以下、Al:0.004%以下、N:0.0
05%以下、Cu:0.05%以下を含む鋼であって、
かつ(ロ)鋼中に含まれる第二相粒子の数を顕微鏡観察
により単位面積当たりの個数として求めたとき、直径
0.1〜0.5μmの第二相粒子が500〜5000個
/mm2 、直径0.5μmを超える第二相粒子が500
個/mm2 以下である。2. A non-oriented electrical steel sheet having excellent iron loss characteristics, which satisfies the following conditions. (A) In% by weight, C: 0.005% or less, Si: 1% or less, Mn: 0.1 to 0.8%, P: 0.2% or less, S:
0.01% or less, Al: 0.004% or less, N: 0.0
A steel containing 0.05% or less and Cu: 0.05% or less,
Moreover, when the number of the second phase particles contained in the steel (b) is determined as the number per unit area by microscopic observation, the second phase particles having a diameter of 0.1 to 0.5 μm are 500 to 5000 particles / mm 2. , 500 second phase particles with a diameter of more than 0.5 μm
The number of pieces / mm 2 or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8070222A JPH09263909A (en) | 1996-03-26 | 1996-03-26 | Nonoriented silicon steel sheet excellent in core loss characteristic |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8070222A JPH09263909A (en) | 1996-03-26 | 1996-03-26 | Nonoriented silicon steel sheet excellent in core loss characteristic |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09263909A true JPH09263909A (en) | 1997-10-07 |
Family
ID=13425315
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8070222A Pending JPH09263909A (en) | 1996-03-26 | 1996-03-26 | Nonoriented silicon steel sheet excellent in core loss characteristic |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09263909A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101485036B1 (en) * | 2012-10-29 | 2015-01-21 | 주식회사 포스코 | Steel and manufacturing method of it |
JP2019521246A (en) * | 2016-05-30 | 2019-07-25 | 宝山鋼鉄股▲ふん▼有限公司Baoshan Iron & Steel Co.,Ltd. | Non-oriented silicon steel sheet with high magnetic induction and low core loss and method of manufacturing the same |
WO2021037064A1 (en) * | 2019-08-26 | 2021-03-04 | 宝山钢铁股份有限公司 | Cu-containing non-oriented electrical steel sheet and manufacturing method therefor |
US12104215B2 (en) | 2018-11-26 | 2024-10-01 | Baoshan Iron & Steel Co., Ltd. | High-magnetic-induction low-iron-loss non-oriented silicon steel sheet and manufacturing method therefor |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6241290B2 (en) * | 1982-10-20 | 1987-09-02 | Kawasaki Steel Co | |
JPH03104844A (en) * | 1989-09-18 | 1991-05-01 | Nippon Steel Corp | Nonoriented silicon steel sheet excellent in magnetic characteristics and its manufacture |
JPH06128618A (en) * | 1992-10-19 | 1994-05-10 | Nkk Corp | Production of electric steel sheet containing a little inclusion |
-
1996
- 1996-03-26 JP JP8070222A patent/JPH09263909A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6241290B2 (en) * | 1982-10-20 | 1987-09-02 | Kawasaki Steel Co | |
JPH03104844A (en) * | 1989-09-18 | 1991-05-01 | Nippon Steel Corp | Nonoriented silicon steel sheet excellent in magnetic characteristics and its manufacture |
JPH06128618A (en) * | 1992-10-19 | 1994-05-10 | Nkk Corp | Production of electric steel sheet containing a little inclusion |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101485036B1 (en) * | 2012-10-29 | 2015-01-21 | 주식회사 포스코 | Steel and manufacturing method of it |
JP2019521246A (en) * | 2016-05-30 | 2019-07-25 | 宝山鋼鉄股▲ふん▼有限公司Baoshan Iron & Steel Co.,Ltd. | Non-oriented silicon steel sheet with high magnetic induction and low core loss and method of manufacturing the same |
US12104215B2 (en) | 2018-11-26 | 2024-10-01 | Baoshan Iron & Steel Co., Ltd. | High-magnetic-induction low-iron-loss non-oriented silicon steel sheet and manufacturing method therefor |
WO2021037064A1 (en) * | 2019-08-26 | 2021-03-04 | 宝山钢铁股份有限公司 | Cu-containing non-oriented electrical steel sheet and manufacturing method therefor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6794630B2 (en) | Electromagnetic steel sheet and its manufacturing method | |
JP6855684B2 (en) | Electromagnetic steel sheet and its manufacturing method | |
KR101598312B1 (en) | Anisotropic electromagnetic steel sheet and method for producing same | |
EP1818420B1 (en) | Grain-oriented electromagnetic steel sheet and process for producing the same | |
JP4880467B2 (en) | Improved manufacturing method of non-oriented electrical steel sheet | |
JP2019026891A (en) | Nonoriented magnetic steel sheet, and method of producing the same | |
KR100479992B1 (en) | A non-oriented steel sheet with excellent magnetic property and a method for producing it | |
JP7253054B2 (en) | Non-oriented electrical steel sheet with excellent magnetism and its manufacturing method | |
EP0655509B1 (en) | Non-oriented silicon steel sheet and method | |
JP2004292829A (en) | Non-oriented electrical steel sheet | |
JPH09263909A (en) | Nonoriented silicon steel sheet excellent in core loss characteristic | |
JP3843955B2 (en) | Non-oriented electrical steel sheet | |
JPH0967654A (en) | Nonoriented silicon steel sheet excellent in core loss characteristics | |
JPH09302414A (en) | Production of nonoriented silicon steel sheet excellent in low magnetic field characteristics | |
JPH0967653A (en) | Nonoriented silicon steel sheet excellent in core loss characteristics | |
JP4288801B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
CN113166871A (en) | Non-oriented electrical steel sheet and method for manufacturing the same | |
JPH03134140A (en) | Electromagnetic steel sheet for magnetic shielding and its manufacturing method | |
JP2000017330A (en) | Production of nonoriented silicon steel sheet low in iron loss | |
JP3952762B2 (en) | Non-oriented electrical steel sheet with excellent iron loss and caulking properties | |
JP4192403B2 (en) | Electrical steel sheet used under DC bias | |
JP3424178B2 (en) | Non-oriented electrical steel sheet with low iron loss | |
WO2022219742A1 (en) | Hot-rolled steel sheet for non-oriented electrical steel sheet and method for manufacturing same | |
JP4288811B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
JP3766745B2 (en) | Non-oriented electrical steel sheet with low iron loss after magnetic annealing |