JPH09145844A - Radiographic image pickup device - Google Patents
Radiographic image pickup deviceInfo
- Publication number
- JPH09145844A JPH09145844A JP7305423A JP30542395A JPH09145844A JP H09145844 A JPH09145844 A JP H09145844A JP 7305423 A JP7305423 A JP 7305423A JP 30542395 A JP30542395 A JP 30542395A JP H09145844 A JPH09145844 A JP H09145844A
- Authority
- JP
- Japan
- Prior art keywords
- visible light
- ccd
- scintillator
- pipe
- hole
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measurement Of Radiation (AREA)
- Solid State Image Pick-Up Elements (AREA)
- Light Receiving Elements (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、放射線撮像装置に
関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiation imaging apparatus.
【0002】[0002]
【従来の技術】放射線撮像装置は、放射線を可視光に変
換するシンチレータを2次元光センサ(以下CCD(Charg
e Coupled Device)と呼ぶ)の受光面上に配置したもの
がよく用いられている。撮像対象を通過した放射線がシ
ンチレータ内で可視光に変換され、その後CCDで画像と
して検出されるしくみになっている。シンチレータの材
料としては、例えばX線の場合、CsIやCdWO4,Gd2O2S
等がある。2. Description of the Related Art A radiation image pickup apparatus is a two-dimensional photosensor (hereinafter, CCD (Charg
e Coupled Device)) is often used. The radiation that has passed through the imaged object is converted into visible light in the scintillator, and then detected by CCD as an image. As the material of the scintillator, for example, in the case of X-ray, CsI, CdWO4, Gd2O2S
Etc.
【0003】しかしながら、このような構造の欠点とし
て、本来は指向性を持った放射線がシンチレータ内で可
視光に変換された時点で指向性を失うために、像が検出
されるべき本来のCCDの画素だけでなく周囲の画素にま
で影響が及び(クロストーク)、放射線画像の解像度が
低下するという、いわゆる画像のにじみ現象が現れやす
いことが指摘されている。However, as a drawback of such a structure, since radiation having originally directivity loses its directivity at the time when it is converted into visible light in the scintillator, the original CCD of which an image should be detected is detected. It has been pointed out that not only pixels but also surrounding pixels are affected (crosstalk), and so-called image bleeding phenomenon that the resolution of a radiation image is lowered is likely to appear.
【0004】これらの欠点を克服する方法として、 (1)シンチレータとCCDの受光面の間に光ファイバ束
を挟み込んだ構造の放射線撮像装置が例えば、テレビジ
ョン学会技術報告(Vol.18,No29,PP.19-24,IPU'94-25(M
ay.1994))に報告されている。この方法は、光ファイバ
の上部にシンチレータの粒子形材料を直接塗布すること
により接着剤の厚みによるクロストークを抑える特徴を
有する。As a method of overcoming these drawbacks, (1) a radiation imaging apparatus having a structure in which an optical fiber bundle is sandwiched between a scintillator and a light receiving surface of a CCD is disclosed in, for example, Technical Report of the Television Society (Vol. 18, No 29, PP.19-24, IPU'94-25 (M
ay.1994)). This method has a feature that the cross-talk due to the thickness of the adhesive is suppressed by directly applying the particle-shaped material of the scintillator on the upper part of the optical fiber.
【0005】また、別の方法としては、 (2)CCDの受光面上にエッチングにより凸状パターン
を形成し、その凸状パターンの上面に蒸着によりシンチ
レータの柱状結晶を成長させることによってクロストー
クを抑える方法が、例えば、特開平5−93780にお
いて発表されている。As another method, (2) a convex pattern is formed on the light-receiving surface of the CCD by etching, and columnar crystals of the scintillator are grown on the upper surface of the convex pattern by crosstalk to cause crosstalk. A method of suppressing is disclosed in, for example, Japanese Patent Laid-Open No. 5-93780.
【0006】[0006]
【発明が解決しようとする課題】上記の(1)のシンチ
レータとCCD受光面の間に光ファイバ束を挟み込む構造
のものは、光ファイバ内で光情報が減衰するため、放射
線撮像装置の感度が低下しやすく、また厚みが増加し素
子自体が大型化してしまうという問題がある。また、上
記(2)の方法も、結晶成長させる過程で不必要な部分
に蒸着されたり、結晶同士を適切な距離で隔てるように
成長させることが困難である等の問題点を有している。In the structure of (1) in which the optical fiber bundle is sandwiched between the scintillator and the CCD light receiving surface, since the optical information is attenuated in the optical fiber, the sensitivity of the radiation imaging apparatus is high. There is a problem that the element itself tends to decrease, and the thickness increases to increase the size of the element itself. Further, the above method (2) also has problems such as vapor deposition in unnecessary portions during the crystal growth process, and it is difficult to grow crystals so that they are separated by an appropriate distance. .
【0007】本発明は、これらの問題点を解決するもの
で、高解像度で感度を下げることなく、大型化すること
なく、かつ容易に製造できる放射線撮像装置を提供する
ことを目的とする。The present invention solves these problems, and an object of the present invention is to provide a radiation imaging apparatus which has a high resolution, does not reduce sensitivity, does not increase in size, and can be easily manufactured.
【0008】[0008]
【課題を解決するための手段】上記の目的を達成するた
めに、本発明の放射線撮像装置は、シンチレータの粒子
形材料と穴の開いた中空の管、及びCCDから構成され、
前記シンチレータの粒子形材料を前記穴の開いた中空の
管に詰め込んだ素子を、CCDの各画素上に前記穴の開い
た中空の管の穴方向とCCDの受光面が垂直になるように
配置するものである。In order to achieve the above object, a radiation imaging apparatus of the present invention comprises a scintillator particle-shaped material, a hollow tube having a hole, and a CCD.
An element in which the particle material of the scintillator is packed in the hollow tube having the hole is arranged on each pixel of the CCD so that the hole direction of the hollow tube having the hole and the light receiving surface of the CCD are perpendicular to each other. To do.
【0009】上記構成において、CCDの各1画素に前記
素子の少なくとも1つが含まれ、1画素に含まれる前記
素子数は全ての画素について同数であることが好まし
い。In the above arrangement, each pixel of the CCD preferably includes at least one of the elements, and the number of elements included in one pixel is preferably the same for all pixels.
【0010】また、前記穴の開いた中空の管は可視光を
吸収または反射する材料から成ることが好ましい。The hollow tube with holes is preferably made of a material that absorbs or reflects visible light.
【0011】また、前記素子とCCDは可視光を透過する
接着剤で接着されることが好ましい。Further, it is preferable that the device and the CCD are bonded with an adhesive that transmits visible light.
【0012】また、前記シンチレータの粒子形材料は、
前記穴の開いた中空の管内で可視光を透過する接着剤に
より固定されることが好ましい。The particle-shaped material of the scintillator is
It is preferably fixed by an adhesive that transmits visible light in the hollow tube having the holes.
【0013】以上の構成により、シンチレータの粒子形
材料を詰めた管外に可視光が漏れることはないのでクロ
ストークが抑えられる。またシンチレータ粒子を詰めた
管とCCDの受光面の間は接着剤層のみであり感度が下が
ることはなく、かつ厚みが増加して素子が大型化するこ
ともない。また、容易に製造が可能である。With the above construction, since visible light does not leak out of the tube filled with the particulate material of the scintillator, crosstalk can be suppressed. Further, since there is only an adhesive layer between the tube filled with scintillator particles and the light receiving surface of the CCD, the sensitivity does not decrease, and the thickness does not increase and the device does not become large. Further, it can be easily manufactured.
【0014】[0014]
(実施例1)以下、本発明の放射線撮像装置の第1の実
施例について、図面を参照しながら説明する。(Embodiment 1) Hereinafter, a first embodiment of the radiation imaging apparatus of the present invention will be described with reference to the drawings.
【0015】図1は、本発明の第1の実施例における放
射線撮像装置の斜視図である。図1において、1はCC
D、2は穴の開いた中空の管、3はシンチレータの粒子
形材料、4は接着剤であり、穴の開いた中空の管2の中
に、シンチレータの粒子形材料3が詰め込まれ、接着剤
4により固定されている。そして穴の開いた中空の管2
はCCDの受光面上に接着剤4により接着されている。こ
こで接着剤4は可視光を透過するものである。FIG. 1 is a perspective view of a radiation imaging apparatus according to the first embodiment of the present invention. In Figure 1, 1 is CC
D, 2 is a hollow tube having a hole, 3 is a scintillator particle-shaped material, 4 is an adhesive, and the scintillator particle-shaped material 3 is packed in the hollow tube 2 having a hole and bonded. It is fixed by the agent 4. And a hollow tube with a hole 2
Are adhered to the light receiving surface of the CCD with an adhesive 4. Here, the adhesive 4 transmits visible light.
【0016】図2は、本発明の第1の実施例における放
射線撮像装置の断面図である。図2において、11はCC
Dにおいて光を電子に変換するフォトダイオードであ
る。またaは放射線の、bは可視光の流れを表す矢印で
ある。図2からわかるように、第1の実施例ではフォト
ダイオード1つに対して、穴の開いた中空の管2が1つ
対応している。FIG. 2 is a sectional view of the radiation imaging apparatus according to the first embodiment of the present invention. In FIG. 2, 11 is CC
It is a photodiode that converts light into electrons at D. Further, a is an arrow of radiation, and b is an arrow representing a flow of visible light. As can be seen from FIG. 2, in the first embodiment, one hollow tube 2 having a hole corresponds to one photodiode.
【0017】以上のように構成された放射線撮像装置に
ついて、以下その動作を図2を用いて説明する。The operation of the radiation imaging apparatus configured as described above will be described below with reference to FIG.
【0018】放射線撮像装置に入射した放射線は、シン
チレータの粒子形材料3により可視光に変換される。変
換された時点で可視光は指向性が無いので、可視光の流
れを表す矢印bのように、穴の開いた中空の管2の穴内
部で四方に広がる。従来の放射線撮像装置ならば、穴方
向に対して斜方向に進む可視光は隣接する画素のフォト
ダイオードに検出され、にじみ現象の原因となる。しか
しながら、穴の開いた中空の管2が可視光を吸収または
反射するものであれば、隣接する画素のフォトダイオー
ドには到達できず、クロストークを防ぐことができる。Radiation incident on the radiation image pickup device is converted into visible light by the particle-shaped material 3 of the scintillator. Since visible light has no directivity at the time of conversion, it spreads in all directions inside the hole of the hollow tube 2 having a hole as shown by an arrow b representing the flow of visible light. In the case of the conventional radiation imaging apparatus, visible light traveling obliquely with respect to the hole direction is detected by the photodiodes of adjacent pixels, which causes a bleeding phenomenon. However, if the hollow tube 2 with a hole absorbs or reflects visible light, it cannot reach the photodiodes of adjacent pixels, and crosstalk can be prevented.
【0019】なお、穴の開いた中空の管2は互いに接し
ていなくてもよいことは言うまでもない。Needless to say, the hollow tubes 2 having holes may not be in contact with each other.
【0020】(実施例2)以下、本発明の放射線撮像装
置の第2の実施例について、図面を参照しながら説明す
る。(Second Embodiment) A second embodiment of the radiation image pickup apparatus of the present invention will be described below with reference to the drawings.
【0021】図3は、本発明の第2の実施例における放
射線撮像装置の断面図である。なお、図2と同じ構成部
分については同じ符号を示した。以下その動作を図3を
用いて説明する。FIG. 3 is a sectional view of a radiation imaging apparatus according to the second embodiment of the present invention. The same components as those in FIG. 2 are designated by the same reference numerals. The operation will be described below with reference to FIG.
【0022】第2の実施例が第1の実施例と異なる点
は、穴の開いた中空の管2において、放射線の入射側の
穴の幅は大きく、CCD1に接する側の穴はフォトダイオ
ード11の幅と等しくなるように絞り込む形に開けられ
ることである。穴の開いた中空の管2内のシンチレータ
の粒子形材料3の量が増えるので、より多くの放射線が
可視光に変換される。さらに、CCD1に接する側の穴は
フォトダイオードの幅と等しくなるように絞り込む形に
開けられているので、可視光のフォトダイオード11で
検出される効率もよい。従って、第1の実施例における
放射線撮像装置より製造は複雑になるが、より検出効率
の高い放射線撮像装置の実現が可能となる。The second embodiment is different from the first embodiment in that in the hollow tube 2 with holes, the width of the hole on the radiation incident side is large and the hole on the side in contact with the CCD 1 is the photodiode 11. It is to be opened in a narrowed shape so that it is equal to the width of. As the amount of scintillator particulate material 3 in the hollow perforated tube 2 increases, more radiation is converted to visible light. Further, since the hole on the side in contact with the CCD 1 is formed so as to be narrowed so as to have the same width as the photodiode, the efficiency of detection by the visible light photodiode 11 is also high. Therefore, although the manufacturing is more complicated than that of the radiation imaging apparatus according to the first exemplary embodiment, it is possible to realize the radiation imaging apparatus with higher detection efficiency.
【0023】(実施例3)以下、本発明の放射線撮像装
置の第3の実施例について、図面を参照しながら説明す
る。(Embodiment 3) A third embodiment of the radiation imaging apparatus of the present invention will be described below with reference to the drawings.
【0024】図4は、本発明の第3の実施例における放
射線撮像装置の断面図である。なお、図2と同じ構成部
分については同じ符号を示した。以下その動作を図4を
用いて説明する。FIG. 4 is a sectional view of a radiation imaging apparatus according to the third embodiment of the present invention. The same components as those in FIG. 2 are designated by the same reference numerals. The operation will be described below with reference to FIG.
【0025】第3の実施例が第1及び第2の実施例と異
なる点は、穴の開いた中空の管2がフォトダイオードの
幅より小さいことである。この構造によっても穴方向に
対して斜方向に進む可視光は、隣接する画素のフォトダ
イオードには検出されないのでクロストークを防ぐこと
ができる。また、この方法は第1及び第2の実施例が、
穴の開いた中空の管2とCCD1を接着する場合、穴の開
いた中空の管2の穴とフォトダイオード11の位置を合
わせなければならないのに対して、穴の開いた中空の管
2の1画素に含まれる数が各画素について同数とみなし
てよいならば、位置合わせの必要がないという利点を持
つ。The third embodiment differs from the first and second embodiments in that the hollow tube 2 with holes is smaller than the width of the photodiode. With this structure as well, visible light traveling in an oblique direction with respect to the hole direction is not detected by the photodiodes of the adjacent pixels, so that crosstalk can be prevented. In addition, this method is the same as the first and second embodiments.
When bonding the hollow tube 2 with holes and the CCD 1, the hole of the hollow tube 2 with holes must be aligned with the position of the photodiode 11, whereas the hollow tube 2 with holes If the number included in one pixel can be regarded as the same number for each pixel, there is an advantage that no alignment is required.
【0026】[0026]
【発明の効果】以上のように、本発明によりシンチレー
タの粒子形材料を詰めた管内で放射線から可視光に変換
された後、管外に漏れることなくCCDの受光面に届くの
でクロストークが抑えられる。またシンチレータ粒子を
詰めた管とCCDの受光面の間は接着剤層のみで、光情報
を減衰させるその他の挿入物はないので感度が下がるこ
とはなく、かつ厚みが増加して素子自体が大型化するこ
ともない。またシンチレータの粒子形材料を詰めた管を
CCDの受光面上に配置するだけであるので容易に製造す
ることができる。As described above, according to the present invention, after the radiation is converted into visible light in the tube filled with the scintillator particle-shaped material, it reaches the light receiving surface of the CCD without leaking out of the tube, so that crosstalk is suppressed. To be In addition, since there is only an adhesive layer between the tube filled with scintillator particles and the light receiving surface of the CCD and there are no other inserts that attenuate optical information, the sensitivity does not decrease, and the thickness increases and the element itself is large There is no turning. In addition, a tube packed with scintillator particulate material
Since it is simply placed on the light receiving surface of the CCD, it can be easily manufactured.
【図1】本発明の第1の実施例における放射線撮像装置
の斜視図FIG. 1 is a perspective view of a radiation imaging apparatus according to a first embodiment of the present invention.
【図2】本発明の第1の実施例における放射線撮像装置
の断面図FIG. 2 is a sectional view of the radiation imaging apparatus according to the first embodiment of the present invention.
【図3】本発明の第2の実施例における放射線撮像装置
の断面図FIG. 3 is a sectional view of a radiation imaging apparatus according to a second embodiment of the present invention.
【図4】本発明の第3の実施例における放射線撮像装置
の断面図FIG. 4 is a sectional view of a radiation imaging apparatus according to a third embodiment of the present invention.
1 CCD 2 穴の開いた中空の管 3 シンチレータの粒子形材料 4 接着剤 5 放射線 6 可視光 11 フォトダイオード 1 CCD 2 Hollow tube with holes 3 Particle-shaped material for scintillator 4 Adhesive 5 Radiation 6 Visible light 11 Photodiode
Claims (5)
粒子形材料と穴の開いた中空の管、及び前記シンチレー
タの粒子形材料により変換された光を映像信号に変換す
る2次元光センサとから構成され、前記シンチレータの
粒子形材料を前記穴の開いた中空の管の中に詰め込んだ
素子を、前記2次元光センサの各画素上に前記穴の開い
た中空の管の穴方向と前記2次元光センサの受光面が垂
直になるように配置することを特徴とする放射線撮像装
置。1. A scintillator particle-shaped material for converting radiation into visible light, a hollow tube with a hole, and a two-dimensional optical sensor for converting the light converted by the scintillator particle-shaped material into an image signal. An element in which the particle material of the scintillator is packed in the hollow tube having the hole, and the direction of the hole of the hollow tube having the hole is provided on each pixel of the two-dimensional optical sensor. A radiation imaging apparatus, characterized in that the light receiving surface of the three-dimensional photosensor is arranged vertically.
または反射する材料により成ることを特徴とする請求項
1記載の放射線撮像装置。2. The radiation imaging apparatus according to claim 1, wherein the hollow tube having the hole is made of a material that absorbs or reflects visible light.
に少なくとも1つ含まれ、1画素に含まれる前記素子数
は、各画素について同数であることを特徴とする請求項
1記載の放射線撮像装置。3. The at least one element is included in each pixel of the two-dimensional photosensor, and the number of elements included in one pixel is the same for each pixel. Radiation imaging device.
を透過する接着剤により接着されることを特徴とする請
求項1記載の放射線撮像装置。4. The radiation image pickup apparatus according to claim 1, wherein the element and the two-dimensional photosensor are bonded to each other with an adhesive that transmits visible light.
の開いた中空の管内で可視光を透過する接着剤により固
定されることを特徴とする請求項1記載の放射線撮像装
置。5. The radiation imaging apparatus according to claim 1, wherein the particle-shaped material of the scintillator is fixed in the hollow tube having the holes by an adhesive that transmits visible light.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7305423A JPH09145844A (en) | 1995-11-24 | 1995-11-24 | Radiographic image pickup device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7305423A JPH09145844A (en) | 1995-11-24 | 1995-11-24 | Radiographic image pickup device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09145844A true JPH09145844A (en) | 1997-06-06 |
Family
ID=17944959
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7305423A Pending JPH09145844A (en) | 1995-11-24 | 1995-11-24 | Radiographic image pickup device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09145844A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015102383A (en) * | 2013-11-22 | 2015-06-04 | 武 高原 | High-resolution fluorescent screen plate, and production method of high-resolution fluorescent screen plate |
-
1995
- 1995-11-24 JP JP7305423A patent/JPH09145844A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015102383A (en) * | 2013-11-22 | 2015-06-04 | 武 高原 | High-resolution fluorescent screen plate, and production method of high-resolution fluorescent screen plate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6909097B2 (en) | Scintillation detector, system and method providing energy and position information | |
EP1118878B1 (en) | Scintillator panel, radiation image sensor, and method for producing the same | |
CN105324683B (en) | X-ray imaging device with the cmos sensor being embedded in TFT tablets | |
US20040012689A1 (en) | Charge coupled devices in tiled arrays | |
JPH0560871A (en) | Radiation detection element | |
US20040089813A1 (en) | Radiation detector, scintillator panel, and methods for manufacturing same | |
US6414316B1 (en) | Protective cover and attachment method for moisture sensitive devices | |
US4939380A (en) | Topographical camera operable by applying a grid-generated Moire image onto a CCD image sensor | |
JP2003017676A (en) | Radiation imaging apparatus and radiation imaging system using the same | |
JPH0727864A (en) | Radiation detector | |
JP2005526961A (en) | X-ray image sensor | |
US6710349B2 (en) | Edge resolved dual scintillator gamma ray detection system and method | |
JPH08211199A (en) | X-ray image pickup device | |
JP2001066369A (en) | Detector of electromagnetic radiation | |
JP4338938B2 (en) | Scintillator device, X-ray detector, X-ray inspection device, and method of manufacturing scintillator device | |
JP2547908B2 (en) | Radiation detector | |
US4621194A (en) | Radiation detecting apparatus | |
JP2002022842A (en) | X-ray image detector | |
US4931647A (en) | Radiation imaging apparatus | |
JP4647828B2 (en) | Scintillator panel and radiation detector using the same | |
CN105989906B (en) | Radiation detecting apparatus, radiation imaging system and manufacture method | |
JP2010096648A (en) | Radiation-into-light transducing element, and radiation detector | |
JP2001153960A (en) | Two-dimensional array type radiation detector | |
JPH09145844A (en) | Radiographic image pickup device | |
JP4083874B2 (en) | Scintillator fiber plate and radiation image sensor |