JPH08296477A - Control method for fuel injection device - Google Patents
Control method for fuel injection deviceInfo
- Publication number
- JPH08296477A JPH08296477A JP12044095A JP12044095A JPH08296477A JP H08296477 A JPH08296477 A JP H08296477A JP 12044095 A JP12044095 A JP 12044095A JP 12044095 A JP12044095 A JP 12044095A JP H08296477 A JPH08296477 A JP H08296477A
- Authority
- JP
- Japan
- Prior art keywords
- cylinder
- fuel
- injection
- fuel injection
- starting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002347 injection Methods 0.000 title claims abstract description 106
- 239000007924 injection Substances 0.000 title claims abstract description 106
- 239000000446 fuel Substances 0.000 title claims abstract description 64
- 238000000034 method Methods 0.000 title claims abstract description 35
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 28
- 239000000779 smoke Substances 0.000 claims abstract description 18
- 238000004880 explosion Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 238000002485 combustion reaction Methods 0.000 description 7
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000002828 fuel tank Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 239000000567 combustion gas Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B3/00—Engines characterised by air compression and subsequent fuel addition
- F02B3/06—Engines characterised by air compression and subsequent fuel addition with compression ignition
Landscapes
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、燃料噴射装置の制御方
法に係わり、特にはディ−ゼルエンジンに用いられる電
子制御式ユニットインジェクタの各気筒ごとに燃料噴射
時期、噴射量を変えることの出来る燃料噴射装置で、低
温時の始動性および始動直後に発生する白煙の排出量を
制御する燃料噴射装置の制御に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of controlling a fuel injection device, and in particular, it is possible to change the fuel injection timing and injection amount for each cylinder of an electronically controlled unit injector used in a diesel engine. The present invention relates to control of a fuel injection device that controls the startability at low temperatures and the amount of white smoke emitted immediately after startup.
【0002】[0002]
【従来の技術】従来、ディ−ゼルエンジンに用いられて
いる電子制御式ユニットインジェクタ燃料噴射制御装置
を説明する。図7はエンジンの電子制御式ユニットイン
ジェクタ燃料噴射装置の全体システム図を示す。図1に
おいて、ユニットインジェクタ10への燃料供給回路
は、フィ−ドポンプ11により、燃料を図示されてない
燃料タンクより吸い上げ、燃料送り回路12を通り、各
気筒に配設されたユニットインジェクタ10に圧送され
る。ユニットインジェクタ10に入つた燃料はカム軸3
0で加圧され、エンジンに必要な量だけ燃焼室内に噴射
し、残つた燃料は燃料戻り回路13を通り、図示されて
ない燃料タンクに戻る。各気筒のユニットインジェクタ
10にはソレノイドバルブ10aが取着されている。ソ
レノイドバルブ10aの開閉により燃料噴射量および燃
料噴射時期が決まる、燃料噴射量および燃料噴射時期の
制御はクランクシャフト回転速度センサ50、気筒別判
別センサ51、エンジン水温センサ53およびアクセク
セルペダル43の開度らの、それぞれの信号をコントロ
−ルユニット40で処理し制御する。例えば、4サイク
ル、直列6気筒、着火順序1,5,3,6,2,4のエ
ンジンの制御を図8で説明する。図8はクランク軸およ
びカム軸から発生するパルス波形の関係を説明する図で
ある。4サイクルなので、クランク軸1回転(360
度)に対し、カム軸は1/2回転(180度)回転する
関係にある、クランク軸の第1気筒が上死点(圧縮)に
ある時、第6気筒は上死点(排気)にある。気筒の判別
はカム軸で行い、着火順序に従つている。即ちクランク
軸の第1気筒が上死点(圧縮)にある時、カム軸が第1
気筒のパルス波形と合わせているので気筒の判別が出来
るようになつている。なおクランク軸には1回転(36
0度)の間に36のパルス波形(1パルス波形あたり1
0度)が等間隔に発生するようにしている。クランク軸
のパルス波形はエンジン回転速度の検出と同時に、クラ
ンク軸の角度位置も検出している。カム軸には1回転
(360度)で6個のパルス波形が等間隔に、また何気
筒目か判断出来るように、基準信号のパルス波形がつい
ている。クランク軸の回転速度および角度位置、カム軸
の気筒の判別のパルス波形の信号により燃料噴射時期、
噴射量の制御がおこなわれる。燃料噴射時期はクランク
軸の角度位置およびカム軸の気筒の判別の信号で各気筒
の噴射時期が決まる。又噴射量はアクセルペダル43の
開度、クランク軸の回転速度の信号により、コントロ−
ルユニット40の内部の図示されない電源供給装置から
ユニットインジェクタ10のソレノイドバルブ10aへ
の通電時間により決まる。従来の電子制御式ユニットイ
ンジェクタの燃料噴射時期、噴射量は各気筒共、変える
ことなく、同じ制御でおこなつている。2. Description of the Related Art A conventional electronically controlled unit injector fuel injection control device used in a diesel engine will be described. FIG. 7 shows an overall system diagram of an electronically controlled unit injector fuel injection device for an engine. In FIG. 1, a fuel supply circuit to the unit injector 10 sucks up fuel from a fuel tank (not shown) by a feed pump 11, passes through a fuel feed circuit 12, and pressure-feeds it to the unit injector 10 arranged in each cylinder. To be done. The fuel that has entered the unit injector 10 is the camshaft 3
The fuel is pressurized at 0 and injected into the combustion chamber in an amount necessary for the engine, and the remaining fuel passes through the fuel return circuit 13 and returns to a fuel tank (not shown). A solenoid valve 10a is attached to the unit injector 10 of each cylinder. The fuel injection amount and the fuel injection timing are determined by opening and closing the solenoid valve 10a. The fuel injection amount and the fuel injection timing are controlled by opening the crankshaft rotation speed sensor 50, the cylinder discrimination sensor 51, the engine water temperature sensor 53, and the access pedal 43. Each signal is processed and controlled by the control unit 40. For example, control of an engine with four cycles, in-line six cylinders, and ignition sequence 1, 5, 3, 6, 2, 4 will be described with reference to FIG. FIG. 8 is a diagram illustrating a relationship between pulse waveforms generated from the crank shaft and the cam shaft. Since it is 4 cycles, one crankshaft rotation (360
Degree), the camshaft has a relationship of rotating 1/2 rotation (180 degrees). When the first cylinder of the crankshaft is at top dead center (compression), the sixth cylinder is at top dead center (exhaust). is there. The cylinder is discriminated by the camshaft, and the ignition order is followed. That is, when the first cylinder of the crankshaft is at top dead center (compression), the camshaft is
Since it is matched with the pulse waveform of the cylinder, it is possible to identify the cylinder. The crankshaft has one revolution (36
36 pulse waveforms (0 per degree) (1 per pulse waveform)
0 degree) is generated at equal intervals. The crankshaft pulse waveform detects not only the engine speed but also the angular position of the crankshaft. The camshaft is provided with 6 pulse waveforms at one rotation (360 degrees) at equal intervals, and a pulse waveform of a reference signal is attached so that the cylinder number can be determined. The fuel injection timing is determined by the rotational speed and angular position of the crankshaft, the pulse waveform signal for determining the cylinder of the camshaft,
The injection amount is controlled. As for the fuel injection timing, the injection timing of each cylinder is determined by the angular position of the crankshaft and the signal for determining the cylinder of the camshaft. The injection amount is controlled by the signals of the opening degree of the accelerator pedal 43 and the rotation speed of the crankshaft.
This is determined by the energization time of the solenoid valve 10a of the unit injector 10 from a power supply device (not shown) inside the unit 40. The fuel injection timing and injection amount of the conventional electronically controlled unit injector are not changed for each cylinder, and the same control is performed.
【0003】[0003]
【発明が解決しようとする課題】エンジンの高出力化お
よび排気ガスNOx の低減対策として、燃焼ガス圧力、
燃焼温度を下げるための有効な手段として、圧縮比を下
げたり、噴射時期遅延を行うことが多い。しかしなが
ら、始動性の悪化および始動白煙の排出の問題を伴うこ
とが多い。特に低温時の始動はスタ−タで始動後、初め
に着火した気筒に引続き、着火順序の通り正確に着火し
ないことが多く、未着火気筒もあれば、着火気筒もあり
不規則で、これを繰り返すため、全気筒完爆の吹き上が
り迄に時間がかかる。また初爆後未着火気筒が多い場合
には、始動操作を繰り返すことになる。白煙は始動時お
よび始動直後に排出し、燃料室が低温の状態での燃料の
ため、不完全燃焼を起しアセトアルデヒドやホルムアル
デヒドが発生し、強い刺激臭を伴う。また未着火気筒の
燃料は油滴の状態で排気ガスに混って排出されるため白
煙発生の原因となる。白煙はないことが理想であるが、
あつても消失までの時間をより短くすることが課題であ
る。As measures for increasing the engine output and reducing exhaust gas NOx, combustion gas pressure,
As an effective means for lowering the combustion temperature, the compression ratio is often lowered or the injection timing is delayed. However, it is often accompanied by problems such as deterioration of startability and discharge of starting white smoke. Especially when starting at low temperature, after starting with a starter, it often follows the first ignited cylinder, does not ignite correctly according to the ignition order, there are unignited cylinders, ignited cylinders are irregular, so this Since it repeats, it takes time to blow up the complete explosion of all cylinders. If many cylinders have not been ignited after the initial explosion, the starting operation will be repeated. White smoke is emitted at the time of starting and immediately after starting, and because the fuel in the fuel chamber is in a low temperature state, incomplete combustion occurs, acetaldehyde and formaldehyde are generated, and a strong irritating odor is generated. Further, the fuel in the non-ignited cylinder is mixed with the exhaust gas in the state of oil drops and is discharged, which causes the generation of white smoke. Ideally, there should be no white smoke,
Even then, the challenge is to shorten the time to disappear.
【0004】本発明は上記従来の問題点の燃料噴射装置
の制御方法に係わり、特にはディ−ゼルエンジンに用い
られる電子制御式ユニットインジェクタの各気筒ごとに
燃料噴射時期、噴射量を変えて、低温時の始動性の向上
および始動直後に発生する白煙の排出量を低減させる燃
料噴射の制御方法の改良を目的とする。The present invention relates to a control method for a fuel injection device of the above conventional problems, and particularly, by changing the fuel injection timing and injection amount for each cylinder of an electronically controlled unit injector used in a diesel engine, An object of the present invention is to improve startability at low temperatures and improve a method for controlling fuel injection that reduces the amount of white smoke emitted immediately after starting.
【0005】[0005]
【課題を解決するための手段】上記目的を達成するため
に、本発明のエンジンの燃料噴射装置の制御方法の第1
発明では、ディ−ゼルエンジンの始動時、水温に応じて
各気筒毎に燃料の噴射時期、噴射量を制御する燃料噴射
の制御方法において、始動時に、初めての着火の気筒を
検出するとともに、エンジンの回転速度および水温に応
じて順次着火する気筒への噴射時期および噴射量を変化
させる指令を制御することにしている。In order to achieve the above object, a first method of controlling a fuel injection device for an engine according to the present invention.
According to the invention, in the fuel injection control method of controlling the fuel injection timing and the injection amount of each cylinder according to the water temperature at the time of starting the diesel engine, at the time of starting, the cylinder for the first ignition is detected, and the engine The command to change the injection timing and the injection amount to the cylinders that are sequentially ignited is controlled according to the rotation speed and the water temperature.
【0006】燃料噴射装置の制御方法の第2発明では、
低温時、始動直後に発生する白煙の排出量を低減させる
ため、各気筒に順次燃料を供給し、各気筒の噴射時期、
噴射量を制御するディ−ゼルエンジンの燃料噴射装置の
制御方法において、気筒着火順序により所定の2グル−
プを形成し、かつ未着火気筒を判別し、着火しない気筒
のグル−プへ燃料の供給を停止することにしている。In the second invention of the control method of the fuel injection device,
At low temperature, in order to reduce the amount of white smoke emitted immediately after starting, fuel is sequentially supplied to each cylinder, the injection timing of each cylinder,
In a method of controlling a fuel injection device of a diesel engine for controlling an injection amount, a predetermined two groups are set depending on a cylinder ignition order.
Of the cylinders that are not ignited and the fuel supply to the group of cylinders that are not ignited is stopped.
【0007】[0007]
【作用】上記の制御方法によれば、始動時、水温に応じ
て噴射時期、噴射量を初期設定し、エンジン回転速度入
力後、初めに着火した気筒を検出するとともに、その後
に続く気筒の噴射時期、噴射量を各気筒毎に水温、エン
ジン回転速度に応じて制御するので、初めに着火した気
筒に引続き、着火順序が確実、正確になり、全気筒完爆
の吹き上がり迄の時間が短くなる。また、低温時、始動
直後に発生する白煙の排出量の低減は、各気筒に順次燃
料を供給し、各気筒の噴射時期、噴射量を制御するディ
−ゼルエンジンの燃料噴射制御方法において、気筒着火
順序により所定の2グル−プを形成し、かつ未着火気筒
を判別し、着火しない気筒のグル−プへの燃料の供給を
停止する。これにより着火しない気筒のグル−プへの燃
料の供給が停止されているので、未燃の燃料がなくなる
とともに、他の着火している気筒のグル−プは、気筒あ
たりの燃料噴射量が、略2倍となるので、燃焼温度も高
くなる。その結果未燃の燃料が少なくり、白煙の排出量
を低減することができるとともに、水温の上昇も速くな
るため燃焼が安定し白煙の消失までの時間をより短くす
るこことが出来る。According to the above control method, at the time of starting, the injection timing and the injection amount are initialized according to the water temperature, the cylinder ignited first is detected after the engine rotation speed is input, and the injection of the subsequent cylinder is performed. The timing and injection amount are controlled for each cylinder according to the water temperature and engine speed, so the ignition sequence is reliable and accurate, following the cylinder that ignited first, and the time until the complete explosion of all cylinders rises is short. Become. Further, at a low temperature, to reduce the amount of white smoke emitted immediately after starting, in the fuel injection control method of the diesel engine, which sequentially supplies fuel to each cylinder, and controls the injection timing and injection amount of each cylinder, A predetermined two groups are formed according to the ignition sequence of the cylinders, the unignited cylinders are discriminated, and the fuel supply to the groups of the cylinders that are not ignited is stopped. Since the supply of fuel to the group of cylinders that do not ignite is stopped by this, unburned fuel disappears, and the fuel injection amount per cylinder of the groups of other ignited cylinders is: Since it is almost doubled, the combustion temperature also rises. As a result, the amount of unburned fuel is reduced, the amount of white smoke emitted can be reduced, and the rise in the water temperature is accelerated, so that the combustion is stabilized and the time until the white smoke disappears can be shortened.
【0008】[0008]
【実施例】以下に、本発明に係わるエンジンの燃料噴射
装置の制御方法につき図面を参照して説明する。なお、
エンジンの燃料噴射量装置の構成は従来例の図7と同一
のため説明は省略する。以下一実施例として、直列6気
筒エンジンの始動および始動直後の制御方法を図1のフ
ロ−チャ−ト図で説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A control method of an engine fuel injection system according to the present invention will be described below with reference to the drawings. In addition,
The structure of the fuel injection amount device of the engine is the same as that of the conventional example shown in FIG. As one embodiment, a control method of the in-line 6-cylinder engine and a control method immediately after the engine start will be described with reference to the flowchart of FIG.
【0009】本発明の理解を容易にするために、まずエ
ンジンの始動から完爆、自立運転を図2において説明す
る。まず始動から完爆の吹き上がり迄に至るまで過程を
説明すると、始動S1はスタ−タで始動後、エンジンの
クランキンで回転速度が上がり初爆S2に至る、初爆で
着火した気筒に引続き、直列6気筒の着火順序1,5,
3,6,2,4で着火する。その際エンジン回転速度の
変動があるが、時間経過と共に少なくなり、完爆の吹き
上がりS3迄に至る。目標回転速度はローアイドルとし
て、当初より設定してる。また、図中のN1:始動可能
回転速度,N2:始動用目標回転速度,N3:自立運転
用目標回転速度下限値,N4:自立運転用目標回転速度
上限値は制御の判断値として、当初より設定し、対象エ
ンジン毎にテスト結果から設定する。In order to facilitate understanding of the present invention, first, engine starting, complete explosion, and self-sustaining operation will be described with reference to FIG. First of all, the process from the start to the complete explosion is explained. After the start S1 is started by the starter, the rotation speed is increased by the engine cranking and the initial explosion S2 is reached. Ignition order 1, 5 of in-line 6 cylinder
Ignite at 3, 6, 2, and 4. At that time, the engine rotation speed fluctuates, but it decreases with the passage of time, and the complete explosion is blown up to S3. The target rotation speed is set as low idle from the beginning. Further, in the figure, N1: startable rotation speed, N2: target rotation speed for start, N3: target rotation speed lower limit value for self-sustaining operation, N4: target rotation speed upper limit value for self-sustaining operation are used as control judgment values from the beginning. Set and set from the test results for each target engine.
【0010】次に本発明のエンジンの始動の作動を図1
のフロ−チャ−ト図に従い説明する。ステップ1ではス
タ−トSWを入力する。ステップ2ではエンジン水温セ
ンサ53から水温(TW)をコントロ−ルユニット40
に入力する。ステップ3では水温に応じて、噴射時期,
噴射量の初期設定をする。なお水温と噴射時期,噴射量
の関係は、例えば、図3に示す通り縦軸に噴射時期、横
軸に水温をとり、水温と噴射時期との関係は、点線の通
り水温が低くなれば、噴射時期を進ませる。同様に縦軸
に噴射量、横軸に水温をとり、水温と噴射量との関係
は、実線の通り水温が低くなれば、噴射量は多くする事
を制御の判断値として、当初より対象エンジン毎にテス
ト結果から設定しコントロ−ルユニット40の図示しな
い、記憶装置に記憶させておく。Next, the operation of starting the engine of the present invention will be described with reference to FIG.
This will be described with reference to the flowchart of FIG. In step 1, the start SW is input. In step 2, the water temperature (TW) is supplied from the engine water temperature sensor 53 to the control unit 40.
To enter. In step 3, depending on the water temperature, the injection timing,
Initialize the injection amount. Note that the relationship between the water temperature, the injection timing, and the injection amount is, for example, as shown in FIG. 3, in which the vertical axis indicates the injection timing and the horizontal axis indicates the water temperature. Advance the injection timing. Similarly, the vertical axis is the injection amount, the horizontal axis is the water temperature, and the relationship between the water temperature and the injection amount is that the injection amount is increased if the water temperature becomes lower as indicated by the solid line. It is set for each test result and stored in a storage device (not shown) of the control unit 40.
【0011】次にステップ4ではエンジン回転速度(N
E)をクランク軸回転速度センサ50より入力する。ス
テップ5ではエンジン回転速度の変動(角速度)により
初めに着火した気筒を認識する、例えば図5に示す通り
縦軸に回転速度変動(角速度)、横軸に経過時間をと
り、着火順序1,5,3,6,2,4に従つて回転速度
変動を見ると、2気筒目および4気筒目は圧縮によるエ
ンジンクランキングの回転速度変動Naがある。経過時
間S1の時、1気筒目が初めて着火すると、燃焼による
回転速度変動がNbまで大きくなる。この時カム軸30
の気筒判別センサ51およびクランク軸回転速度センサ
−50の回転速度変動の変化(NaからNbへ)の信号
がコントロ−ルユニット40に送られ、1気筒目が初め
て着火したことが認識される。その後5気筒目および6
気筒目が引き続き着火した時には実線Bの通りになる
が、着火しない時には点線のCの通りになる。Next, at step 4, the engine speed (N
E) is input from the crankshaft rotation speed sensor 50. In step 5, the cylinder that is ignited first is recognized based on the fluctuation of the engine rotation speed (angular speed). For example, as shown in FIG. 5, the vertical axis represents the rotation speed fluctuation (angular speed) and the horizontal axis represents the elapsed time. , 3, 6, 2, 4, the rotation speed fluctuations Na of the engine cranking due to the compression occur in the second cylinder and the fourth cylinder. When the first cylinder is ignited for the first time at the elapsed time S1, the rotational speed fluctuation due to combustion increases to Nb. At this time, the camshaft 30
The signals of changes in the rotational speed fluctuations (from Na to Nb) of the cylinder discrimination sensor 51 and the crankshaft rotational speed sensor-50 are sent to the control unit 40, and it is recognized that the first cylinder is ignited for the first time. 5th cylinder and 6th
When the cylinder continues to ignite, the solid line B is shown, but when not ignited, the dotted line C is shown.
【0012】ステップ6では、その後に続く気筒の噴射
時期と噴射量を各水温TW,エンジン回転速度NEより
制御する。噴射時期と水温および噴射量と水温との関係
は前記図3の通り行い、噴射時期および噴射量と回転速
度との関係は、例えば、図4に示す通り縦軸に噴射時
期、横軸に回転速度をとり、噴射時期と回転速度との関
係は、点線の通り回転速度を高くなれば、噴射時期を進
ませる。同様に縦軸に噴射量、横軸に回転速度をとり、
噴射量と回転速度との関係は、実線の通り回転速度が高
くなれば、噴射量を多くする事を制御の判断値として、
当初より対象エンジン毎にテスト結果から設定しコント
ロ−ルユニット40の図示しない、記憶装置に記憶させ
ておく。この記憶に応じて制御する。ステップ7では、
エンジン回転速度NEが始動可能回転速度N1より多い
か、否かを判定している。この判定は例えば始動可能回
転速度N1が300rpmを超えた時は次のステップ8
に進み、300rpm以下の時は再びステップ6に戻
る。始動可能回転速度N1は制御の判断値として、当初
より対象エンジン毎にテスト結果から設定しコントロ−
ルユニット40の図示しない、記憶装置に記憶させてお
く。In step 6, the injection timing and injection amount of the subsequent cylinders are controlled based on each water temperature TW and engine speed NE. The relationship between the injection timing and the water temperature and the injection amount and the water temperature is as shown in FIG. 3, and the relationship between the injection timing and the injection amount and the rotation speed is, for example, as shown in FIG. The relationship between the injection timing and the rotation speed is that the injection timing is advanced as the rotation speed increases as indicated by the dotted line. Similarly, the vertical axis is the injection amount and the horizontal axis is the rotation speed.
The relationship between the injection amount and the rotation speed is that the control value is to increase the injection amount as the rotation speed increases as indicated by the solid line.
From the beginning, it is set from the test results for each target engine and stored in a storage device (not shown) of the control unit 40. Control according to this memory. In step 7,
It is determined whether or not the engine rotation speed NE is higher than the startable rotation speed N1. This determination is made in step 8 below when the startable rotation speed N1 exceeds 300 rpm, for example.
If it is less than 300 rpm, the process returns to step 6. The startable rotation speed N1 is set as a control judgment value from the test result for each target engine from the beginning, and is controlled.
It is stored in a storage device (not shown) of the unit 40.
【0013】ステップ8では、全筒エンジン回転速度N
E,水温TWにより噴射時期と噴射量により制御する。
全気筒について、前記の図3および図4により制御す
る。ステップ9は、エンジン回転速度NEが始動用目標
回転速度N2より多いか、否かを判定している。この判
定は例えばエンジン回転速度が始動回転速度N2が67
5rpmを超えた時は次のステップ10に進み、675
rpm以下の時は再びステップ8に戻る。始動用目標回
転速度N2は制御の判断値として、当初より、対象エン
ジン毎にテスト結果から設定しコントロ−ルユニット4
0の図示しない、記憶装置に記憶させておく。以上が始
動から完爆の吹き上がり迄の制御方法である。In step 8, all cylinder engine rotation speed N
E, controlled by the injection timing and injection amount by the water temperature TW.
All cylinders are controlled by the above-mentioned FIGS. 3 and 4. In step 9, it is determined whether or not the engine rotation speed NE is higher than the starting target rotation speed N2. This determination is based on, for example, that the engine rotation speed is 67 and the start rotation speed N2 is 67.
When it exceeds 5 rpm, proceed to the next step 10, 675
When it is less than or equal to rpm, the process returns to step 8. The target rotation speed N2 for starting is set as a control judgment value from the test result for each target engine from the beginning, and is set from the control unit 4.
0 is stored in a storage device (not shown). The above is the control method from the start to the complete explosion.
【0014】次に本発明の燃料噴射装置の制御方法の白
煙の排出量低減の作動を図6のフロ−チャ−ト図に従い
説明する。ステップ10では、実測水温TWが設定水温
TW1より高いか、否かを判定している。この判定は例
えば設定温度TW1が10℃を超えた時は次のステップ
11Bに進み、10℃以下の時は次のステップ11Aに
進む。設定温度TW1の10℃は白煙対策の制御の判断
値として、当初より、対象エンジン毎にテスト結果から
設定しコントロ−ルユニット40の図示しない、記憶装
置に記憶させておく。Next, the operation of reducing the amount of white smoke emitted by the method for controlling the fuel injection device of the present invention will be described with reference to the flowchart of FIG. In step 10, it is determined whether or not the measured water temperature TW is higher than the set water temperature TW1. In this determination, for example, when the set temperature TW1 exceeds 10 ° C, the process proceeds to the next step 11B, and when it is 10 ° C or less, the process proceeds to the next step 11A. The set temperature TW1 of 10 ° C. is set as a judgment value for control against white smoke from the test result for each target engine from the beginning, and is stored in a storage device (not shown) of the control unit 40.
【0015】ステップ11Aでは減筒運転しているか、
否かを判定してる。減筒運転とは例えば6気筒エンジン
で、3気筒着火し、残り3気筒は着火しないで運転する
事をいう。減筒運転している場合には、ステップ16
へ、減筒運転してない場合にはステップ12Aへ、進
む。ステップ12Aではエンジン回転速度NE変動によ
り着火してない気筒があるか、否かを判定してる。前述
の始動時のステップ5と同様、カム軸30の気筒判別セ
ンサ51およびクランク軸回転速度センサ−50の回転
速度の変動の大きさで判断する。即ち着火していない気
筒があれば、回転速度の変動は小さく、着火している気
筒は回転速度の変動は大きくなる。着火していない気筒
がある場合はステップ13Aへ進み、着火してない気筒
がない場合、即ち全気筒着火の場合はステップ19へ進
む。In step 11A, is the cylinder cut-off operation being performed?
I'm judging whether or not. The reduced-cylinder operation means, for example, a 6-cylinder engine operating with three cylinders ignited and the remaining three cylinders not ignited. If the reduced cylinder operation is in progress, step 16
If the reduced-cylinder operation is not performed, the process proceeds to step 12A. In step 12A, it is determined whether or not there is a cylinder that has not ignited due to a change in the engine speed NE. Similar to step 5 at the time of starting, the determination is made based on the magnitude of fluctuations in the rotation speed of the cylinder discrimination sensor 51 of the camshaft 30 and the crankshaft rotation speed sensor-50. That is, if there is a cylinder that is not ignited, the fluctuation of the rotation speed is small, and a cylinder that is ignited has a large fluctuation of the rotation speed. If there is a cylinder that is not ignited, the process proceeds to step 13A, and if there is no cylinder that is not ignited, that is, if all cylinders are ignited, the process proceeds to step 19.
【0016】ステップ13Aでは未着火気筒番号を確認
する、気筒別判別センサ51の検出信号で、どの気筒か
を判別、確認する。ステップ14Bは未着火気筒を含む
前3気筒又は後3気筒の噴射を停止、例えば1気筒目が
未着火気筒の時、1気筒目,2気筒目,3気筒目の噴射
を停止、前3気筒が噴射を停止したことになる。ステッ
プ19ではステップ12Aより着火してない気筒がない
場合、即ち全気筒着火の場合は前3気筒又は後3気筒あ
らかじめ設定した側の噴射を停止し、次のステップ16
へ進む。At step 13A, the cylinder number is confirmed by the detection signal of the cylinder discrimination sensor 51 for confirming the unfired cylinder number. In step 14B, the injection of the front three cylinders or the rear three cylinders including the unfired cylinders is stopped. For example, when the first cylinder is the non-fired cylinders, the injection of the first cylinder, the second cylinder, and the third cylinder is stopped. Has stopped the injection. In step 19, if there is no cylinder that has not been ignited as compared with step 12A, that is, if all cylinders are ignited, the injection on the preset side of the front three cylinders or the rear three cylinders is stopped, and the next step 16
Go to.
【0017】ステップ16では実測のエンジン回転速度
NEが自立運転用目標回転速度下限値N3と同じか、下
限値以下か、否かを判定してる。下限値以下の時はステ
ップ15に進み、下限値を超えいる時はステップ17へ
進む。ステップ15は噴射指令値を上げる、噴射量を多
くして、回転速度を上げる指令を出し、再びステップ1
6に進む。ステップ17では実測のエンジン回転速度N
Eが自立運転用目標回転速度上限値N4と同じか、上限
値以下か、否かを判定してる。上限値以下の時は再びス
テップ10に進み、上限値を超えいる時はステップ18
へ進む。ステップ18では噴射指令値を下げる、噴射量
を少なくして、回転速度を下げる指令を出し、再びステ
ップ17に進む。In step 16, it is determined whether the measured engine speed NE is the same as or lower than the lower limit value N3 of the target rotational speed for self-sustaining operation. When it is less than the lower limit value, the process proceeds to step 15, and when it is less than the lower limit value, the process proceeds to step 17. Step 15 issues an instruction to increase the injection command value, increase the injection amount, and increase the rotation speed, and then execute step 1 again.
Proceed to 6. In step 17, the measured engine speed N
It is determined whether E is equal to or less than the upper limit value N4 of the target rotational speed for self-sustaining operation. If it is less than or equal to the upper limit, proceed to Step 10 again, and if it exceeds the upper limit, go to Step 18
Go to. In step 18, a command for lowering the injection command value, for decreasing the injection amount, and for lowering the rotation speed is issued, and the process proceeds to step 17 again.
【0018】ステップ11Bは減筒運転しているか、否
かを判定してる。減筒運転している場合にはステップ1
2Bへ、減筒運転してない場合にはステップ13Bへ進
む。ステップ12Bは噴射を停止している気筒の噴射開
始する。ステップ13Bは通常制御、全気筒噴射し通常
の制御をする。ステップ20で終了。In step 11B, it is determined whether or not the reduced cylinder operation is being performed. Step 1 if the reduced cylinder operation is in progress
2B, and when the reduced cylinder operation is not in progress, the process proceeds to step 13B. In step 12B, the injection of the cylinder that has stopped the injection is started. In step 13B, normal control is performed and all cylinders are injected to perform normal control. Finished in step 20.
【0019】[0019]
【発明の効果】以上説明したように、本発明によれば、
始動時、水温に応じて噴射時期、噴射量を初期設定し、
エンジン回転速度入力後、初めに着火した気筒を検出す
るとともに、その後に続く気筒の噴射時期、噴射量を各
気筒毎に水温、エンジン回転速度により制御するので、
初めに着火した気筒に引続き、着火順序が確実、正確に
なり、全気筒完爆の吹き上がり迄の時間が短くなり、か
つ始動操作を繰り返すことがなくなるので、始動性が改
善できる。また、低温時、始動直後に発生する白煙の排
出量の低減は、各気筒に順次燃料を供給し、各気筒の噴
射時期、噴射量を制御するディ−ゼルエンジンの燃料噴
射制御方法において、気筒着火順序により所定の2グル
−プを形成し、かつ未着火気筒を判別し、着火しない気
筒のグル−プへの燃料の供給を停止する。これにより着
火しない気筒のグル−プへの燃料の供給が停止されるの
で、未燃の燃料がなくなり、他の着火している気筒のグ
ル−プは、気筒あたりの燃料噴射量が、略2倍となるの
で、燃焼温度も高くなり、その結果未燃の燃料が少なく
り、白煙の排出量を低減することができ、白煙の消失ま
での時間をより短くするという優れた効果が得られる。As described above, according to the present invention,
At start-up, the injection timing and injection amount are initialized according to the water temperature,
After inputting the engine speed, the cylinder that ignited first is detected, and the injection timing and injection amount of the subsequent cylinders are controlled by the water temperature and engine speed for each cylinder.
Following the first ignition of the cylinder, the ignition sequence will be reliable and accurate, the time until the complete explosion of all cylinders will be blown up, and the starting operation will not be repeated, so the startability can be improved. Further, at a low temperature, to reduce the amount of white smoke emitted immediately after starting, in the fuel injection control method of the diesel engine, which sequentially supplies fuel to each cylinder, and controls the injection timing and injection amount of each cylinder, A predetermined two groups are formed according to the ignition sequence of the cylinders, the unignited cylinders are discriminated, and the fuel supply to the groups of the cylinders that are not ignited is stopped. As a result, the supply of fuel to the group of cylinders that do not ignite is stopped, so that there is no unburned fuel and the groups of other ignited cylinders have a fuel injection amount per cylinder of approximately 2 As the combustion temperature becomes higher, the amount of unburned fuel decreases, the amount of white smoke emission can be reduced, and the excellent effect of shortening the time until white smoke disappears can be obtained. To be
【図1】本発明の燃料噴射装置の制御方法の始動のフロ
−チャ−ト図をしめす。FIG. 1 is a flowchart showing the starting of a method for controlling a fuel injection device according to the present invention.
【図2】エンジンの始動から完爆および自立運転を説明
する図である。FIG. 2 is a diagram illustrating complete explosion and self-sustaining operation from engine startup.
【図3】水温と噴射量、噴射時期の関係を説明する図で
ある。FIG. 3 is a diagram illustrating a relationship among a water temperature, an injection amount, and an injection timing.
【図4】回転速度と噴射量、噴射時期の関係を説明する
図である。FIG. 4 is a diagram illustrating a relationship between a rotation speed, an injection amount, and an injection timing.
【図5】時間と回転速度変動の関係を説明する図であ
る。FIG. 5 is a diagram illustrating a relationship between time and rotation speed fluctuation.
【図6】本発明の燃料噴射装置の制御方法の白煙の排出
量低減のフロ−チャ−ト図をしめす。FIG. 6 is a flowchart showing how to reduce the amount of white smoke emitted by the method of controlling the fuel injection device according to the present invention.
【図7】エンジンの電子制御式ユニットインジェクタ燃
料噴射装置の全体システム図をしめす。FIG. 7 shows an overall system diagram of an electronically controlled unit injector fuel injection device for an engine.
【図8】クランク軸およびカム軸から発生するパルス波
形の関係を説明する図である。FIG. 8 is a diagram illustrating a relationship between pulse waveforms generated from a crank shaft and a cam shaft.
10 ユニットインジェクタ 10a ソレノイドバルブ 11 フィ−ドポンプ 12 燃料送り回路 13 燃料戻り回路 20 クランク軸 30 カム軸 40 コントロ−ルユニット 43 アクセルペダル 50 クランクシャフト回転速度センサ 51 気筒判別センサ 53 エンジン水温センサ 10 unit injector 10a solenoid valve 11 feed pump 12 fuel feed circuit 13 fuel return circuit 20 crankshaft 30 camshaft 40 control unit 43 accelerator pedal 50 crankshaft rotation speed sensor 51 cylinder discrimination sensor 53 engine water temperature sensor
Claims (2)
じて各気筒毎に燃料の噴射時期、噴射量を制御する燃料
噴射の制御方法において、始動時に、初めての着火の気
筒を検出するとともに、エンジンの回転速度および水温
に応じて順次着火する気筒への噴射時期および噴射量を
変化させる指令を制御することを特徴とする燃料噴射装
置の制御方法。1. A fuel injection control method for controlling a fuel injection timing and an injection amount for each cylinder according to a water temperature at the time of starting a diesel engine, and at the time of starting, detecting a cylinder that is ignited for the first time. A method for controlling a fuel injection device, comprising: controlling a command for changing an injection timing and an injection amount to cylinders that are sequentially ignited in accordance with an engine rotation speed and a water temperature.
量を低減させるため、各気筒に順次燃料を供給し、各気
筒の噴射時期、噴射量を制御するディ−ゼルエンジンの
燃料噴射装置の制御方法において、気筒着火順序により
所定の2グル−プを形成し、かつ未着火気筒を判別し、
着火しない気筒のグル−プへの燃料の供給を停止するこ
とを特徴とする燃料噴射装置の制御方法。2. A fuel injection for a diesel engine in which fuel is sequentially supplied to each cylinder to control the injection timing and injection amount of each cylinder in order to reduce the amount of white smoke emitted immediately after starting at low temperature. In the control method of the apparatus, a predetermined two group is formed according to the cylinder ignition sequence, and the unignited cylinder is determined,
A method for controlling a fuel injection device, characterized in that the supply of fuel to a group of cylinders that does not ignite is stopped.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12044095A JPH08296477A (en) | 1995-04-24 | 1995-04-24 | Control method for fuel injection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12044095A JPH08296477A (en) | 1995-04-24 | 1995-04-24 | Control method for fuel injection device |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004359316A Division JP2005069237A (en) | 2004-12-13 | 2004-12-13 | Control method of fuel injection device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08296477A true JPH08296477A (en) | 1996-11-12 |
Family
ID=14786265
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12044095A Pending JPH08296477A (en) | 1995-04-24 | 1995-04-24 | Control method for fuel injection device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08296477A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100334984B1 (en) * | 1998-09-04 | 2002-05-02 | 나까무라히로까즈 | The starter controller of internal-combustion engine and the method for controlling the same |
KR100974546B1 (en) * | 2010-05-06 | 2010-08-11 | 곽기영 | A starting control device of diesel engine generator |
JP2013155743A (en) * | 2013-04-10 | 2013-08-15 | Mack Trucks Inc | Method for reducing exhaust emission of diesel engine, background and summary of diesel engine |
CN114352422A (en) * | 2021-12-02 | 2022-04-15 | 潍柴动力股份有限公司 | Starting method and device of engine |
-
1995
- 1995-04-24 JP JP12044095A patent/JPH08296477A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100334984B1 (en) * | 1998-09-04 | 2002-05-02 | 나까무라히로까즈 | The starter controller of internal-combustion engine and the method for controlling the same |
KR100974546B1 (en) * | 2010-05-06 | 2010-08-11 | 곽기영 | A starting control device of diesel engine generator |
JP2013155743A (en) * | 2013-04-10 | 2013-08-15 | Mack Trucks Inc | Method for reducing exhaust emission of diesel engine, background and summary of diesel engine |
CN114352422A (en) * | 2021-12-02 | 2022-04-15 | 潍柴动力股份有限公司 | Starting method and device of engine |
CN114352422B (en) * | 2021-12-02 | 2023-06-02 | 潍柴动力股份有限公司 | Engine starting method and device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5924405A (en) | Apparatus and method for injecting fuel in cylinder injection type engines | |
JP4424147B2 (en) | Exhaust gas purification device for internal combustion engine | |
KR100683540B1 (en) | Fuel injection control device and fuel injection control method for internal combustion engine | |
CN101520013B (en) | Spark-ignition direct-injection cold start strategy using high pressure start | |
US6578551B2 (en) | Fuel injection control for internal combustion engine | |
EP1138897A2 (en) | Emission control device for cylinder fuel injection engine | |
US6499460B2 (en) | Ignition timing control device for internal combustion engine | |
JPH10227244A (en) | Fuel injection controller for direct cylinder injection type spark ignition internal combustion engine | |
JPH06137197A (en) | Control device for internal combustion engine | |
JP4438378B2 (en) | Control device for direct-injection spark-ignition internal combustion engine | |
JPH10176563A (en) | Fuel injection controller for internal combustion engine of cylinder injection type | |
EP1496230B1 (en) | Start-up control of in-cylinder fuel injection spark ignition internal combustion engine | |
JP2004028046A (en) | Starting control device for internal combustion engine | |
JPH08296477A (en) | Control method for fuel injection device | |
JP2005048613A (en) | Fuel injection control device of cylinder direct injection type engine | |
JP2002047976A (en) | Fuel injection controller of diesel engine | |
CN100520025C (en) | Internal combustion engine stop and start method, vehicle and system comprising internal combustion engines | |
US6571775B2 (en) | Fuel injection control for start-up of internal combustion engine | |
JP2005069237A (en) | Control method of fuel injection device | |
JP3407644B2 (en) | Start control device for internal combustion engine | |
JP4126958B2 (en) | In-cylinder injection internal combustion engine start-up control device | |
JP2022108110A (en) | engine controller | |
JP2000097071A (en) | Control device for in-cylinder direct injection engine | |
JP3852217B2 (en) | Engine fuel injector | |
JP3856091B2 (en) | Fuel injection control device for multi-cylinder engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041022 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041026 |
|
A521 | Written amendment |
Effective date: 20041213 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A131 | Notification of reasons for refusal |
Effective date: 20050114 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Effective date: 20050512 Free format text: JAPANESE INTERMEDIATE CODE: A02 |