JPH08285766A - Method and apparatus for measuring concentration of odorant - Google Patents
Method and apparatus for measuring concentration of odorantInfo
- Publication number
- JPH08285766A JPH08285766A JP8853695A JP8853695A JPH08285766A JP H08285766 A JPH08285766 A JP H08285766A JP 8853695 A JP8853695 A JP 8853695A JP 8853695 A JP8853695 A JP 8853695A JP H08285766 A JPH08285766 A JP H08285766A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- odorant
- absorbance
- concentration
- unodorized
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】都市ガスには、ターシャリーブチ
ルメルカプタン(以下、TBMと略称する)、ジメチル
サルファイド(以下、DMSと略称する)、テトラヒド
ロチオフェン(以下、THTと略称する)といった付臭
剤が添加されて使用される。本願は、このような付臭剤
を添加されて使用される都市ガス、プロパンガス等に於
ける、前記付臭剤の濃度の測定技術に関する。[Industrial application] For city gas, odorants such as tertiary butyl mercaptan (hereinafter abbreviated as TBM), dimethyl sulfide (hereinafter abbreviated as DMS), and tetrahydrothiophene (hereinafter abbreviated as THT) Is added and used. The present application relates to a technique for measuring the concentration of the odorant in city gas, propane gas, etc. to which such an odorant is added and used.
【0002】[0002]
【従来の技術】従来、付臭剤濃度を測定する場合は、サ
ンプルガスを送出配管(10〜100kg/cm2程度
の高圧ガス供給配管)から減圧サンプリングし、現場か
ら離れた分析室に設置されたFPD付ガスクロマトグラ
フを利用して、付臭剤濃度を求めている。 2. Description of the Related Art Conventionally, when measuring the odorant concentration, sample gas is decompressed and sampled from a delivery pipe (a high pressure gas supply pipe of about 10 to 100 kg / cm 2 ) and installed in an analysis room away from the site. The odorant concentration is determined using a gas chromatograph with FPD.
【0003】[0003]
【発明が解決しようとする課題】従って、上記の従来技
術においては、以下のような様々な問題があった。 (1) 減圧サンプリングが必要なため、このための希
釈工程を要するとともに、未付臭ガス(例えば都市ガス
の一種である13A)と付臭剤成分を分離しながら、そ
の濃度を測定する必要があるため、測定に時間が掛か
る。従って、例えば高圧配管特定部位で、リアルタイム
での付臭剤濃度の監視が事実上できない。 (2) 希釈を伴うため、測定精度も十分でない。 (3) サンプリングされた後の減圧状態にあるサンプ
ルは、使用されることなく、廃棄される。 本発明の目的は、上記の様々な問題を解消できる付臭剤
濃度の測定方法及び測定装置を得ることにある。Therefore, the above-mentioned prior art has various problems as described below. (1) Since vacuum sampling is required, a dilution step for this is required, and it is necessary to measure the concentration of unodorized gas (for example, 13A which is a kind of city gas) and the odorant component while separating the components. Therefore, it takes time to measure. Therefore, for example, it is practically impossible to monitor the odorant concentration in real time at a specific portion of the high-pressure pipe. (2) The measurement accuracy is not sufficient because it involves dilution. (3) The sample in a depressurized state after being sampled is discarded without being used. An object of the present invention is to obtain a measuring method and a measuring device for the odorant concentration that can solve the above-mentioned various problems.
【0004】[0004]
【課題を解決するための手段】この目的を達成するため
の請求項1に係わり、炭化水素ガスを主成分とする未付
臭ガスに、付臭剤を添加した構成の付臭後ガスに於ける
付臭剤濃度の測定方法の特徴手段は、付臭剤に吸収され
やすく、未付臭ガスに吸収され難い検出用紫外線を、付
臭後ガスに照射して、付臭後ガスを透過してくる検出用
紫外線を受光して、照射強度と受光強度との関係から付
臭後ガスの吸光度を求める第1工程と、第1工程で求め
られた付臭後ガスの吸光度を使用して付臭後ガス中に於
ける付臭剤濃度を求める第2工程を備えたことにある。
請求項1に係わる付臭剤濃度の測定方法において、前記
付臭剤にジメチルサルファイド(DMS)を含む場合
に、波長195nmもしくは波長202nmの紫外線を
含む前記検出用紫外線を使用することが好ましい。これ
が、請求項2に係わる付臭剤濃度の測定方法の特徴手段
である。請求項1に係わる付臭剤濃度の測定方法におい
て、前記付臭剤にターシャリーブチルメルカプタン(T
BM)を含む場合に、波長202nmもしくは波長20
4nmの紫外線を含む前記検出用紫外線を使用すること
が好ましい。これが、請求項3に係わる付臭剤濃度の測
定方法の特徴手段である。さらに、請求項1、2または
3に係わる付臭剤濃度の測定方法において、付臭処理前
の前記未付臭ガスによる前記検出用紫外線の未付臭ガス
吸光度を求める予備工程を備え、前記第1工程において
得られる前記付臭後ガスの吸光度より前記未付臭ガス吸
光度を減算処理して付臭剤吸光度を求め、前記第2工程
において、前記付臭剤吸光度から前記付臭後ガス中に於
ける前記付臭剤濃度を求めることが好ましい。これが、
請求項4に係わる付臭剤濃度の測定方法の特徴手段であ
る。According to the first aspect of the present invention, there is provided a post-odorizing gas comprising an unodorized gas containing hydrocarbon gas as a main component and an odorant added thereto. The characteristic means of the method for measuring the odorant concentration is to irradiate the post-odor gas with ultraviolet rays for detection, which are easily absorbed by the odorant and difficult to be absorbed by unodorized gas, and pass through the post-odor gas. The first step of receiving the ultraviolet ray for detection received and obtaining the absorbance of the post-odor gas from the relationship between the irradiation intensity and the received intensity, and the absorbance of the post-odor gas obtained in the first step The second step is to determine the concentration of the odorant in the post-odor gas.
In the method for measuring the concentration of an odorant according to claim 1, when the odorant contains dimethyl sulfide (DMS), it is preferable to use the ultraviolet ray for detection including an ultraviolet ray having a wavelength of 195 nm or a wavelength of 202 nm. This is a characteristic means of the method for measuring the odorant concentration according to claim 2. The odorant concentration measuring method according to claim 1, wherein the odorant is tertiary butyl mercaptan (T
BM), the wavelength is 202 nm or the wavelength is 20
It is preferable to use the above-mentioned ultraviolet ray for detection, which includes an ultraviolet ray of 4 nm. This is a characteristic means of the method for measuring the odorant concentration according to claim 3. The method for measuring the concentration of an odorant according to claim 1, 2 or 3, further comprising a preliminary step of obtaining an unodorized gas absorbance of the detection ultraviolet ray by the unodorized gas before the odorization process, The absorbance of the unodorized gas is subtracted from the absorbance of the post-odorizing gas obtained in one step to obtain the odorant absorbance, and in the second step, the odorant absorbance is converted into the post-odorizing gas. It is preferable to determine the odorant concentration in the above. This is,
It is a characteristic means of the method for measuring the odorant concentration according to claim 4.
【0005】さらに、上記の目的を達成するための請求
項5に関わる付臭剤濃度測定装置の特徴構成は、炭化水
素を主成分とする未付臭ガスに付臭剤を添加した構成の
付臭後ガスが流れる付臭後ガス流路に対して、前記付臭
後ガス流路内に、前記付臭剤に吸収されやすく、前記未
付臭ガスに吸収され難い検出用紫外線を照射する検出用
紫外線照射手段と、前記付臭後ガスを透過してくる前記
検出用紫外線を受光する受光手段とを備え、前記検出用
紫外線照射手段に於ける前記検出用紫外線の照射強度と
前記受光手段により検出される前記検出用紫外線の受光
強度とから、前記付臭後ガスの吸光度を求める付臭後ガ
ス吸光度導出手段を備え、前記付臭後ガス吸光度導出手
段により求まる前記付臭後ガスの吸光度を利用して前記
付臭剤の濃度を求める付臭剤濃度導出手段を備えたこと
にある。さらに、請求項5に係わる付臭剤濃度測定装置
において、前記検出用紫外線に対する付臭処理前の前記
未付臭ガスの吸光度を求める未付臭ガス吸光度導出機構
を備え、前記付臭剤濃度導出手段が、前記付臭後ガス吸
光度導出手段により求まる前記付臭後ガスの吸光度か
ら、前記未付臭ガス吸光度導出機構により求まる前記未
付臭ガス吸光度を減算して得られる付臭剤吸光度から前
記付臭剤の濃度を求めることが好ましい。これが、請求
項6に係わる付臭剤濃度測定装置の特徴構成である。そ
して、それらの作用・効果は次の通りである。Further, the characteristic configuration of the odorant concentration measuring apparatus according to claim 5 for achieving the above object is that the odorant is added to an unodorized gas containing hydrocarbon as a main component. With respect to the post-odor gas passage through which the post-odor gas flows, in the post-odor gas passage, a detection ultraviolet ray that is easily absorbed by the odorant and is difficult to be absorbed by the unodorized gas is detected. UV irradiating means, and a light receiving means for receiving the detection ultraviolet rays that permeate the odorized gas, and the irradiation intensity of the detection ultraviolet rays in the detection ultraviolet irradiating means and the light receiving means From the received light intensity of the detection ultraviolet ray to be detected, it is provided with a post-odor gas absorbance derivation means for determining the absorbance of the post-odor gas, and the absorbance of the post-odor gas obtained by the post-odor gas absorbance derivation means. Use to obtain the concentration of the odorant Lies in the fact that with the odorant concentration deriving means that. The odorant concentration measuring apparatus according to claim 5, further comprising an unodorized gas absorbance derivation mechanism that obtains the absorbance of the unodorized gas before the odorization process with respect to the ultraviolet ray for detection. The means, from the absorbance of the gas after odorization obtained by the odorant gas absorbance derivation means, from the odorant absorbance obtained by subtracting the unodorized gas absorbance obtained by the unodorized gas absorbance derivation mechanism It is preferable to determine the concentration of the odorant. This is a characteristic configuration of the odorant concentration measuring apparatus according to claim 6. The actions and effects thereof are as follows.
【0006】[0006]
【作用】請求項1に係わる付臭剤濃度の測定方法におい
ては、付臭剤濃度の測定に、所謂、紫外線吸収法が採用
される。ここで、未付臭ガスとしての炭化水素を主成分
とするガスと上記のような付臭剤とを混合して得られる
ガスを本願のように対象とする場合、未付臭ガスに吸収
され難く、付臭剤には吸収され易い波長の紫外線が存在
する。従って、このような特性の紫外線を、検出用紫外
線として採用して、測定に使用する。このような特定波
長の検出用紫外線が、測定対象の付臭後ガスに照射され
る。そして、付臭後ガスを透過してきた検出用紫外線を
受光し、照射強度と受光強度との関係から、付臭後ガス
の吸光度を求める。この工程が第1工程である。この吸
光度は、検出用紫外線の波長起因の特性により、付臭後
ガス中に含有される付臭剤濃度に比例したものとなる。
従って、第2工程において、この吸光度から、付臭剤濃
度を求めるのである。図2に、未付臭ガスの一例である
都市ガス(13Aガス)に付臭剤であるDMSを45.
8ppm添加した付臭後ガスの各波長の吸光度を示し
た。図上実線が夫々の波長における吸光度分布を示して
いる。一方、図3に、未付臭ガスの一例である都市ガス
(13Aガス)単独の場合の、各波長に於ける吸光度分
布を示している。図2と図3との比較により、例えば、
190nm〜220nmの波長域の紫外線が、付臭剤に
よって吸収されやすいとともに、未付臭ガスによって吸
収され難いものであることが判る。さらに、図4に、上
記の例における付臭剤濃度と図2に於ける特定波長の紫
外線の吸光度との関係を示した。この例では、検出用紫
外線として、波長195nmのもの、202nmのもの
を採用している例を示している。図からも明らかなよう
に、付臭剤濃度と吸光度とは一次近似関係を維持するこ
ととなっており、検出用紫外線の吸光度を求めることに
より、この吸光度から付臭剤濃度を求めることができる
ことが判る。ここで、付臭後ガスは高圧状態にあり、現
場での高圧都市ガス供給配管部位での、リアルタイムの
測定に適している。請求項2に係わる付臭剤濃度の測定
方法においては、付臭剤としてDMSを対象とする場合
は、検出用紫外線として波長195nmのもの、202
nmのものを採用する。図2に示すように、この付臭剤
にあっては、この波長の紫外線の吸収度が高い。従っ
て、得られる吸光度を絶対量として大きくでき、精度よ
く、良好な測定をおこなうことができる。請求項3に係
わる付臭剤濃度の測定方法においては、付臭剤としてT
BMを対象とする。検出用紫外線として波長202nm
のもの、204nmのものを採用する場合は、図5に示
すように、この付臭剤にあっては、この波長の紫外線の
吸収度が高い。従って、得られる吸光度を絶対量として
大きくでき、精度よく、良好な測定をおこなうことがで
きる。図5は、図2と同様に、未付臭ガスの一例である
都市ガス(13Aガス)に付臭剤であるTBMを44.
4ppm添加した付臭後ガスの各波長の吸光度を示し
た。図上実線が夫々の波長における吸光度分布を示して
いる。請求項4に係わる付臭剤濃度の測定方法において
は、請求項1に係わる付臭剤濃度の測定方法に於ける第
2工程をおこなう場合に、単純に付臭後ガスの吸光度か
ら付臭剤濃度を求める処理を行わず、一旦、予備工程を
経て未付臭ガス単独の未付臭ガス吸光度を求める。そし
て、第1工程で求められている付臭後ガスの吸光度か
ら、未付臭ガス吸光度を減算処理して、付臭剤のみに起
因する付臭剤吸光度を求める。そして、第2工程におい
て、この付臭剤吸光度から付臭剤濃度を求める。このよ
うにすると、未付臭ガスの状況に因らない、正確な付臭
剤濃度を得ることができる。In the method for measuring the odorant concentration according to the first aspect, the so-called ultraviolet absorption method is adopted for measuring the odorant concentration. Here, when a gas obtained by mixing a gas containing a hydrocarbon as an unodorized gas as a main component and an odorant as described above is targeted as in the present application, it is absorbed by the unodorized gas. It is difficult, and the odorant has ultraviolet rays with a wavelength that is easily absorbed. Therefore, the ultraviolet ray having such characteristics is adopted as the detecting ultraviolet ray and used for the measurement. The ultraviolet ray for detection having such a specific wavelength is irradiated to the odorized gas to be measured. Then, the detection ultraviolet ray that has passed through the post-odor gas is received, and the absorbance of the post-odor gas is obtained from the relationship between the irradiation intensity and the received intensity. This step is the first step. This absorbance becomes proportional to the concentration of the odorant contained in the gas after odorization due to the characteristics of the wavelength of the ultraviolet ray for detection.
Therefore, in the second step, the odorant concentration is obtained from this absorbance. FIG. 2 shows the city gas (13A gas), which is an example of an unodorized gas, and the odorant DMS 45.
The absorbance of each wavelength of the odorized gas added with 8 ppm was shown. Solid lines in the figure show the absorbance distributions at the respective wavelengths. On the other hand, FIG. 3 shows the absorbance distribution at each wavelength in the case of city gas (13A gas) alone, which is an example of unodorized gas. By comparing FIG. 2 and FIG. 3, for example,
It is understood that the ultraviolet rays in the wavelength range of 190 nm to 220 nm are easily absorbed by the odorant and are hardly absorbed by the unodorized gas. Further, FIG. 4 shows the relationship between the concentration of the odorant in the above example and the absorbance of ultraviolet rays of a specific wavelength in FIG. In this example, ultraviolet rays for detection having wavelengths of 195 nm and 202 nm are adopted. As is clear from the figure, the odorant concentration and the absorbance are supposed to maintain a first-order approximation relationship, and the odorant concentration can be determined from this absorbance by determining the absorbance of the detection ultraviolet light. I understand. Here, the gas after odorization is in a high pressure state, and is suitable for real-time measurement at the site of the high-pressure city gas supply piping on site. In the odorant concentration measuring method according to claim 2, when DMS is used as the odorant, the ultraviolet ray for detection has a wavelength of 195 nm, 202
nm is used. As shown in FIG. 2, this odorant has high absorption of ultraviolet rays of this wavelength. Therefore, the obtained absorbance can be increased as an absolute amount, and accurate and favorable measurement can be performed. In the method for measuring the concentration of an odorant according to claim 3, T is used as the odorant.
Target BM. Wavelength of 202nm as ultraviolet ray for detection
When the odorant of 204 nm is used, as shown in FIG. 5, this odorant has a high degree of absorption of ultraviolet rays of this wavelength. Therefore, the obtained absorbance can be increased as an absolute amount, and accurate and favorable measurement can be performed. Similar to FIG. 2, FIG. 5 shows that TBM, which is an odorant, is added to city gas (13A gas), which is an example of an unodorized gas, by adding 44.
The absorbance of each wavelength of the odorized gas added with 4 ppm was shown. Solid lines in the figure show the absorbance distributions at the respective wavelengths. In the method for measuring the concentration of an odorant according to claim 4, when the second step in the method for measuring the concentration of an odorant according to claim 1 is performed, the odorant is simply determined from the absorbance of the gas after odorization. Without performing the processing for obtaining the concentration, the absorbance of the unodorized gas alone for the unodorized gas is determined through a preliminary step. Then, the absorbance of the unodorized gas is subtracted from the absorbance of the post-odorizing gas obtained in the first step to obtain the odorant absorbance due to only the odorant. Then, in the second step, the odorant concentration is obtained from the odorant absorbance. By doing so, it is possible to obtain an accurate odorant concentration that does not depend on the situation of unodorized gas.
【0007】請求項5に係わる付臭剤濃度測定装置に
は、検出用紫外線照射手段、受光手段、付臭後ガス吸光
度導出手段、さらに、付臭剤濃度導出手段が備えられ
る。そして、測定対象の付臭後ガスに対して、検出用紫
外線照射手段より検出用紫外線を照射する。付臭後ガス
内を透過してきた検出用紫外線は受光手段手段に受光さ
れる。ここで、照射手段に於ける照射強度と受光手段に
よって受光される受光強度との関係から、付臭後ガス吸
光度導出手段により、測定対象の付臭後ガスの吸光度が
求められる。そして、この付臭後ガスの吸光度から、付
臭剤濃度導出手段により、付臭剤の濃度が導出される。
即ち、この装置は、上述の第1工程を検出用紫外線照射
手段、受光手段、付臭後ガス吸光度導出手段を備えるこ
とによっておこない、第2工程を付臭剤濃度導出手段で
実施する。さらに、請求項6に係わる付臭剤濃度測定装
置においては、前述の請求項4に係わる付臭剤濃度の測
定方法が実施される。即ち、未付臭ガス吸光度導出機構
により、付臭処理前の未付臭ガス単独状態に於ける検出
用紫外線の吸光度である未付臭ガス吸光度が求められ
る。そして、付臭後ガスに対して明らかとなっている付
臭後ガス吸光度からこの未付臭ガスのみに依存する未付
臭ガス吸光度を引くことにより、付臭剤に起因する吸光
度である付臭剤吸光度が求められ、この付臭剤吸光度か
ら付臭剤の濃度が付臭剤濃度導出手段によって求められ
る。この構成の場合は、ノイズと考えてよい未付臭ガス
による吸収の影響を除去した情報に基づいて、付臭剤の
濃度を正確に求めることができる。さらに、測定にあた
って、未付臭ガスと付臭剤とを、例えばガスクロマト手
法により分離して、濃度測定をおこなう必要はない。The odorant concentration measuring device according to a fifth aspect of the invention is provided with an ultraviolet ray detecting means for detection, a light receiving means, a post-odor gas absorption derivation means, and an odorant concentration derivation means. Then, the odorized gas to be measured is irradiated with the detection ultraviolet light from the detection ultraviolet irradiation means. The ultraviolet ray for detection that has passed through the gas after the odor is received by the light receiving means. Here, the absorbance of the post-odorizing gas to be measured is obtained by the post-odorizing gas absorbance deriving means from the relationship between the irradiation intensity of the irradiation means and the received light intensity of the light received by the light receiving means. Then, the odorant concentration is derived by the odorant concentration deriving means from the absorbance of the post-odorizing gas.
That is, in this apparatus, the above-mentioned first step is carried out by providing the detecting ultraviolet ray irradiating means, the light receiving means, and the post-odor gas absorption derivation means, and the second step is carried out by the odorant concentration derivation means. Furthermore, in the odorant concentration measuring device according to claim 6, the odorant concentration measuring method according to claim 4 is implemented. That is, the unodorized gas absorbance, which is the absorbance of the detection ultraviolet light in the unodorized gas alone state before the odorization process, is obtained by the unodorized gas absorbance derivation mechanism. Then, by subtracting the unodorized gas absorbance that depends only on this unodorized gas from the after-odorized gas absorbance that is known for the after-odorized gas, the odor that is the absorbance due to the odorant is added. The odorant absorbance is determined, and the odorant concentration is determined by the odorant concentration deriving means from the odorant absorbance. In the case of this configuration, the concentration of the odorant can be accurately obtained based on the information obtained by removing the influence of the absorption by the unodorized gas that may be considered as noise. Furthermore, in the measurement, it is not necessary to separate the unodorized gas and the odorant by, for example, a gas chromatographic method and measure the concentration.
【0008】[0008]
【発明の効果】従って、請求項1に係わる付臭剤濃度の
測定方法を採用することにより、例えば、LNGの気化
プラント内で、ガスが高圧状態にある供給配管内におい
ても、付臭剤濃度をリアルタイムベースで測定できるよ
うになった。さらに、本願においては、ガスによる紫外
線吸収を測定原理とするため、短い時間で精度よく連続
測定できるようになり、付臭剤濃度の管理を容易に行え
るようになった。さらに、測定にあたっては、測定用に
サンプルガスを抜いて、これを減圧して測定に使用する
必要がないため、サンプルガスの廃棄をおこなう必要も
なく、測定後、そのまま製品として、付臭後ガスを利用
することができる。請求項2に係わる付臭剤濃度の測定
方法においては、DMSが添加された付臭後ガスに於け
るDMS濃度を正確かつ迅速におこなうことができるよ
うになった。請求項3に係わる付臭剤濃度の測定方法に
おいては、TBMが添加された付臭後ガスに於けるTB
M濃度を正確かつ迅速におこなうことができるようにな
った。請求項4に係わる付臭剤濃度の測定方法において
は、付臭剤濃度の測定において問題となるノイズ成分で
ある未付臭ガスによる吸収を除去して、正確な付臭剤の
濃度測定をできるようになった。請求項5に係わる付臭
剤濃度測定装置は、請求項1に係わる測定方法を装置的
に実現するものであるため、装置としてほぼ同様の効果
を得られるようになった。請求項6に係わる付臭剤濃度
測定装置は、請求項4に係わる測定方法を装置的に実現
するものであるため、装置としてほぼ同様の効果を得ら
れるようになった。Therefore, by adopting the method for measuring the odorant concentration according to claim 1, for example, in the LNG vaporization plant, the odorant concentration can be obtained even in the supply pipe where the gas is in a high pressure state. Can be measured on a real-time basis. Further, in the present application, since the ultraviolet ray absorption by the gas is used as the measurement principle, it is possible to perform accurate continuous measurement in a short time, and it is possible to easily control the odorant concentration. Furthermore, in the measurement, it is not necessary to degas the sample gas for measurement and depressurize it for use in the measurement, so there is no need to dispose of the sample gas. Can be used. In the method for measuring the odorant concentration according to the second aspect, the DMS concentration in the post-odorizing gas to which DMS is added can be accurately and promptly measured. In the method for measuring the odorant concentration according to claim 3, TB in the odorized gas to which TBM is added
It has become possible to accurately and quickly determine the M concentration. In the method for measuring the concentration of an odorant according to claim 4, it is possible to accurately measure the concentration of the odorant by removing the absorption by the unodorized gas which is a noise component which is a problem in the measurement of the odorant concentration. It became so. Since the odorant concentration measuring device according to claim 5 realizes the measuring method according to claim 1 as a device, almost the same effect can be obtained as a device. Since the odorant concentration measuring device according to claim 6 implements the measuring method according to claim 4 in a device-like manner, it is possible to obtain substantially the same effect as the device.
【0009】[0009]
【実施例】本願の実施例を図面に基づいて説明する。図
1には、本願の付臭剤濃度測定装置1の使用状況が示さ
れている。同図は、都市部に供給される未付臭ガスであ
る都市ガス(具体的には13Aガス)を製造する都市ガ
ス製造工場に於ける、高圧状態にあるガス供給配管2を
示しており、付臭剤の添加装置3を備えている。従っ
て、付臭剤の添加装置3からガス供給配管2内に、付臭
剤が添加されて、ガスは付臭剤と未付臭ガスとの付臭後
ガスとなる。この付臭後ガスが流れる配管を付臭後ガス
流路20と呼ぶ。13Aガスの成分組成について説明す
ると、これは、メタン88%、エタン6%、プロパン4
%、ブタン2%程度の容量比で混合されたガスであり、
複数種の炭化水素ガスを混合して構成されている。さら
に、付臭剤としては、TBM、DMS、THT等が知ら
れているが、同図に示す場合は、前記二者が共に添加さ
れる場合を示している。一方、ガス供給配管2は、10
〜100kg/cm2程度の圧力状態に設定され、この
ガス供給配管2の下流側は、都市ガス消費地4につなが
っている。従って、付臭剤の濃度測定に要したサンプル
ガスも、そのまま消費地4へ送られる。Embodiments of the present application will be described with reference to the drawings. FIG. 1 shows a usage situation of the odorant concentration measuring device 1 of the present application. This figure shows the gas supply pipe 2 in a high pressure state in a city gas manufacturing plant that manufactures city gas (specifically, 13A gas) that is unodorized gas supplied to urban areas, An odorant addition device 3 is provided. Therefore, the odorant is added from the odorant addition device 3 into the gas supply pipe 2, and the gas becomes odorant gas and odorless gas after odorization. The pipe through which the post-odorizing gas flows is referred to as the post-odorizing gas passage 20. Explaining the composition of 13A gas, it is 88% methane, 6% ethane, 4% propane.
%, Butane is a gas mixed at a volume ratio of about 2%,
It is configured by mixing a plurality of types of hydrocarbon gas. Further, TBM, DMS, THT and the like are known as odorants, and the case shown in the same figure shows the case where the above two are added together. On the other hand, the gas supply pipe 2 has 10
The pressure is set to about 100 kg / cm 2, and the downstream side of the gas supply pipe 2 is connected to the city gas consumption area 4. Therefore, the sample gas required for measuring the concentration of the odorant is also sent to the consuming place 4 as it is.
【0010】同図に示す部位に装備される本願の付臭剤
濃度測定装置1の構成について、以下説明する。この付
臭剤濃度測定装置1は、ガス供給配管2内を流れる高圧
状態の付臭後ガスに添加されている付臭剤の濃度を測定
し、その測定濃度が上下の管理範囲を越えている場合
に、警報を発すると共に、前述の添加装置3に於ける付
臭剤の添加量を適切な方向に制御する役割を担ってい
る。付臭剤濃度測定装置1は、付臭後ガスに於ける検出
用紫外線に対する吸光量を検出する付臭後ガス吸光量検
出部1aと、付臭前の未付臭ガス単独の検出用紫外線に
対する吸光量を検出する未付臭ガス吸光量検出部1b
と、これらの検出部1a,1bから検出された吸光量よ
り、各ガスの吸光度を求めるとともに付臭剤起因の吸光
度を求めて、付臭剤の濃度を求める解析・表示部1cを
備えている。さらに、警報発生機構1d、添加装置3に
対する制御機構1eをも備えている。The configuration of the odorant concentration measuring device 1 of the present application installed in the portion shown in the figure will be described below. This odorant concentration measuring device 1 measures the concentration of the odorant added to the post-odor odorant gas under high pressure flowing in the gas supply pipe 2, and the measured concentration exceeds the upper and lower control ranges. In this case, it plays a role of issuing an alarm and controlling the addition amount of the odorant in the adding device 3 in an appropriate direction. The odorant concentration measuring device 1 includes a post-odor gas absorption amount detection unit 1a for detecting the absorption amount of the detection ultraviolet ray in the post-odor gas, and a detection ultraviolet ray of the unodorized gas alone before the odor. Unodorized gas absorption amount detection unit 1b for detecting absorption amount
And an analysis / display unit 1c for determining the concentration of the odorant by determining the absorbance of each gas from the amount of light detected by the detection units 1a and 1b and the absorbance due to the odorant. . Furthermore, it also has an alarm generation mechanism 1d and a control mechanism 1e for the addition device 3.
【0011】前述の付臭後ガス吸光量検出部1aは、付
臭剤と未付臭ガスの混合された付臭後ガスが流れる付臭
後ガス流路20内に、付臭剤に吸収されやすく、未付臭
ガスに吸収され難い検出用紫外線を照射する検出用紫外
線照射手段と、前記付臭後ガスを透過してくる前記検出
用紫外線を受光する受光手段とを備えている。この検出
用紫外線照射手段は、紫外線照射装置5と、この紫外線
照射装置5から照射される紫外線の内、特定の波長の紫
外線(この紫外線を検出用紫外線と呼ぶ)を付臭後ガス
に照射するための波長切替え用フィルタ6を備え、配管
特定部に検出用紫外線を透過・侵入させる透過窓7を備
えて構成されている。前記受光手段は、付臭後ガス内を
透過してくる前述の検出用紫外線を受光するためのもの
であり、前記透過窓7に対向して配設される受光窓8と
受光装置9を備えて構成されている。そして、検出用紫
外線の照射強度と受光強度とが、測定可能に構成されて
いる。The after-odor gas absorption amount detecting section 1a is absorbed by the odorant in the after-odor gas passage 20 in which the after-odor gas mixed with the odorant and the unodorized gas flows. It is provided with a detecting ultraviolet ray irradiating means for irradiating the detecting ultraviolet ray which is easy to be absorbed by the unodorized gas and a light receiving means for receiving the detecting ultraviolet ray passing through the post-odorizing gas. This detection ultraviolet irradiation means irradiates the ultraviolet irradiation device 5 and the ultraviolet ray having a specific wavelength (this ultraviolet ray is referred to as detection ultraviolet ray) among the ultraviolet rays emitted from the ultraviolet irradiation device 5 to the post-odor gas. Is provided with a wavelength switching filter 6 and a transmission window 7 that allows the detection ultraviolet light to pass through and enter the pipe specific portion. The light receiving means is for receiving the above-mentioned ultraviolet rays for detection which are transmitted through the gas after odorization, and is provided with a light receiving window 8 and a light receiving device 9 which are arranged so as to face the transmission window 7. Is configured. Then, the irradiation intensity and the received light intensity of the detection ultraviolet rays are configured to be measurable.
【0012】前述の未付臭ガス吸光量検出部1bは、概
略、前述の付臭後ガス吸光度検出部1aと同様に構成さ
れている。しかしながら、対象とするガスは付臭前の未
付臭ガスである。この部位では、当然、前述の付臭後ガ
ス吸光度検出部1aに照射される波長の検出用紫外線
が、波長切替え用フィルタ6の選択により、未付臭ガス
に対しても照射されるとともに受光される。そして、未
付臭ガスに対する、検出用紫外線の照射強度と受光強度
とが、測定可能に構成されている。The unodorized gas absorption amount detection unit 1b described above is generally constructed in the same manner as the post-odorization gas absorption detection unit 1a. However, the target gas is unodorized gas before odorization. At this portion, of course, the detection ultraviolet ray of the wavelength which is irradiated to the post-odorizing gas absorbance detecting section 1a is also irradiated to the unodorized gas and received by the selection of the wavelength switching filter 6. It Then, the irradiation intensity and the received light intensity of the detection ultraviolet ray with respect to the unodorized gas are configured to be measurable.
【0013】使用される検出用紫外線としては、その中
心波長が、195nm、202nm、204nmのもの
であり、波長選択は波長切替え用フィルタ6によりおこ
なわれる。さらに、その帯域幅は1nm程度に設定され
ている。この部位に於ける検出用紫外線の光路長は、1
0〜20cmに設定されている。The detection ultraviolet rays used have central wavelengths of 195 nm, 202 nm, and 204 nm, and the wavelength selection is performed by the wavelength switching filter 6. Further, its bandwidth is set to about 1 nm. The optical path length of the detecting ultraviolet ray at this part is 1
It is set to 0 to 20 cm.
【0014】解析・表示部1cは、上記の各部からの情
報が集まり解析される。この部位1cは、所謂、表示装
置10を備えたコンピュータ11で構成されており、付
臭後ガス吸光量検出部1a及び未付臭ガス吸光量検出部
1bからの情報夫々に対して、検出用紫外線照射手段に
於ける検出用紫外線の照射強度と、受光手段により検出
される検出用紫外線の受光強度とから、付臭後ガス及び
未付臭ガスの吸光度を、夫々求める付臭後ガス吸光度導
出手段及び未付臭ガス吸光度導出手段を備えている。こ
こで、吸光度AはI0を照射強度、Iを受光強度として
下記の式で定義される。 A=LOG10(I0/I)The analysis / display unit 1c collects and analyzes information from the above units. This part 1c is composed of a computer 11 provided with a so-called display device 10 for detecting information from the post-odor odor gas absorption amount detection unit 1a and the unodorized gas absorption amount detection unit 1b, respectively. Determining the absorbance of the odorized gas and the unodorized gas from the irradiation intensity of the detection ultraviolet ray in the ultraviolet ray irradiation means and the received light intensity of the detection ultraviolet ray detected by the light receiving means Means and means for deriving unabsorbed odor gas absorbance are provided. Here, the absorbance A is defined by the following equation, where I 0 is the irradiation intensity and I is the received light intensity. A = LOG 10 (I 0 / I)
【0015】検出用紫外線に対する付臭処理前の未付臭
ガスの吸光度を求める機構(前述の未付臭ガス吸光量検
出部1bと未付臭ガス吸光度導出手段とから構成され
る)を未付臭ガス吸光度導出機構と呼ぶ。A mechanism for obtaining the absorbance of the unodorized gas before the odorization process with respect to the ultraviolet rays for detection (composed of the unodorized gas absorbance detection unit 1b and the unodorized gas absorbance deriving means) is not attached. It is called the odor gas absorbance derivation mechanism.
【0016】さらに、この解析・表示部1cには、付臭
後ガス吸光度導出手段により求まる付臭後ガスの吸光度
から、未付臭ガス吸光度導出機構により求まる未付臭ガ
ス吸光度を減算して得られる付臭剤吸光度から付臭剤の
濃度を求める付臭剤濃度導出手段を備えている。この付
臭剤濃度導出手段には、先に説明した図4に示すよう
な、各付臭剤濃度と検出用紫外線に対する吸光度との関
係指標(実体上は一次関係式)が記憶されており、この
関係を利用して、吸光度から付臭剤濃度を求めることが
できる。この処理にあたっては、未付臭ガス吸光度が減
算された付臭後ガスの吸光度が使用される。2種の付臭
剤が共に混合されている場合の各付臭剤濃度の導出式
を、以下に示した。Further, this analysis / display unit 1c is obtained by subtracting the unodorized gas absorbance determined by the unodorized gas absorbance derivation mechanism from the absorbance of the unodorized gas absorbance determined by the after-odorization gas absorbance derivation means. An odorant concentration deriving means for obtaining the concentration of the odorant from the absorbance of the odorant is provided. The odorant concentration deriving means stores a relational index (actually, a linear relational expression) between each odorant concentration and the absorbance with respect to the ultraviolet ray for detection as shown in FIG. 4 described above. Using this relationship, the odorant concentration can be determined from the absorbance. In this process, the absorbance of the post-odorizing gas from which the non-odorizing gas absorbance is subtracted is used. The derivation formula of each odorant concentration when two types of odorants are mixed together is shown below.
【0017】[0017]
【数1】 ここで、この実施例においては、λ1、λ2の組み合わ
せとして、(195nm、202nm)の組み合わせ、
あるいは(202nm、204nm)の組み合わせを使
用する。[Equation 1] Here, in this embodiment, as a combination of λ1 and λ2, a combination of (195 nm, 202 nm),
Alternatively, a combination of (202 nm, 204 nm) is used.
【0018】以下、装置1の働きを、本願の付臭剤濃度
の測定方法とともに説明する。前述の添加装置3により
付臭剤の添加が行われている状態を下に説明する。従っ
て、この装置3の位置より上流側は未付臭ガスのみが存
在し、下流側が付臭後ガスとなっている。前述の未付臭
ガス吸光量検出部1b及び付臭後ガス吸光量検出部1a
において、検出用紫外線が、夫々の部位に流れるガスに
照射されて、それらの照射強度と受光強度が測定され
る。そして、夫々の部位1a,1bにおける照射強度と
受光強度との関係から、未付臭ガスの吸光度と付臭後ガ
スの吸光度とが求められる。ここで、付臭後ガスの吸光
度を求める工程を第1工程と呼ぶ。次に、求められた付
臭後ガスの吸光度から未付臭ガスの吸光度を減算し、付
臭剤吸光度を求める。そして、この付臭剤吸光度によ
り、先に説明した式及び図4に示されるような予め記憶
されている関係指標から付臭剤濃度を求める。ここで、
前記第1工程で求められた付臭後ガスの吸光度を使用し
て付臭後ガス中に於ける付臭剤濃度を求める工程を第2
工程と、付臭処理前の未付臭ガスによる検出用紫外線の
未付臭ガス吸光度を求める予備工程と呼ぶ。このように
して、付臭剤の濃度を測定することができる。The operation of the device 1 will be described below together with the method for measuring the odorant concentration of the present application. The state in which the odorant is added by the above-described addition device 3 will be described below. Therefore, only the odorless gas is present on the upstream side of the position of the device 3, and the post-odorizing gas is on the downstream side. The aforementioned unodorized gas absorption amount detection unit 1b and post-odor gas absorption amount detection unit 1a
At, the ultraviolet rays for detection are radiated to the gas flowing through the respective parts, and the irradiation intensity and the received light intensity thereof are measured. Then, the absorbance of the unodorized gas and the absorbance of the post-odorized gas are obtained from the relationship between the irradiation intensity and the received light intensity at the respective portions 1a and 1b. Here, the step of obtaining the absorbance of the odorized gas is called the first step. Next, the absorbance of the unodorized gas is subtracted from the obtained absorbance of the post-odorizing gas to obtain the odorant absorbance. Then, based on this odorant absorbance, the odorant concentration is obtained from the above-described formula and the previously stored relational index as shown in FIG. here,
A second step is a step of obtaining the odorant concentration in the post-odor gas by using the absorbance of the post-odor gas obtained in the first step.
It is called a step and a preliminary step of obtaining the unodorized gas absorbance of the detection ultraviolet ray by the unodorized gas before the odorization process. In this way, the concentration of the odorant can be measured.
【0019】以下、本願の付臭剤濃度の測定方法及び付
臭剤濃度測定装置1の作動を検証するために、発明者が
おこなった実験について説明する。 1 DMS吸収スペクトルの濃度依存性 この実験結果を、前述のように、図4に示した。吸収ス
ペクトルが195nmと202nmの両方とも、DMS
の濃度に比例して吸光度が増加しており、195nmで
の吸収度は202nmの場合の2倍の吸光度となってい
る。このように、吸光度と濃度の相関関係はよい比例関
係になっていることが確認された。従って、付臭剤にD
MSを含む場合には、波長195nmもしくは波長20
2nmの紫外線を含む検出用紫外線を使用することが好
ましいことが判る。An experiment conducted by the inventor in order to verify the operation of the odorant concentration measuring method and the odorant concentration measuring apparatus 1 of the present application will be described below. 1 Concentration dependence of DMS absorption spectrum The results of this experiment are shown in FIG. 4 as described above. The absorption spectra of both 195 nm and 202 nm are DMS.
The absorbance is increased in proportion to the concentration of the above, and the absorbance at 195 nm is twice the absorbance at 202 nm. Thus, it was confirmed that the correlation between the absorbance and the concentration had a good proportional relationship. Therefore, D
When MS is included, wavelength 195 nm or wavelength 20
It will be appreciated that it is preferable to use detection UV radiation, which includes 2 nm UV radiation.
【0020】2 TBM吸収スペクトルの濃度依存性 この実験結果を、前述のように、図6に示した。吸収度
がDMS195nmの1/2であるため、10ppm程
度の濃度ではばらつきが大きくなるものの、濃度と吸光
度との間には比例関係が見られ、濃度測定の応用が可能
である。従って、付臭剤にTBMを含む場合には、波長
202nmもしくは波長204nmの紫外線を含む検出
用紫外線を使用することが好ましいことが判る。2 Concentration dependence of TBM absorption spectrum The result of this experiment is shown in FIG. 6 as described above. Since the absorbance is ½ of DMS 195 nm, there is a large variation at a concentration of about 10 ppm, but there is a proportional relationship between the concentration and the absorbance, and the concentration measurement can be applied. Therefore, when TBM is included in the odorant, it can be seen that it is preferable to use detection ultraviolet rays including ultraviolet rays having a wavelength of 202 nm or 204 nm.
【0021】3 光路長の選択 付臭剤としてDMSを使用し、未付臭ガスが都市ガス
(13A)である場合に、本願の測定方法を採用する場
合に関する検出用紫外線の光路長を検討した。ここで、
付臭後ガスの圧力は40気圧を想定した。このような条
件下に於けるDMS濃度に依存した紫外線吸収率は、以
下のようにして求めることができる。3 Selection of Optical Path Length When DMS was used as the odorant and the unodorized gas was city gas (13A), the optical path length of the ultraviolet ray for detection was examined in the case of adopting the measuring method of the present application. . here,
The pressure of the gas after odorization was assumed to be 40 atm. The ultraviolet absorption rate depending on the DMS concentration under such a condition can be obtained as follows.
【0022】DMSの吸収度(YDMS )は実験値よりThe absorbance of DMS (Y DMS ) is based on the experimental value.
【数2】YDMS =P/2×0.0025×X×L/10 ここで、 P:ガス圧(気圧)、X:DMS濃度(ppm)、L:
光路長(cm) 13Aの吸収度(Y13A )は実験値より## EQU2 ## Y DMS = P / 2 × 0.0025 × X × L / 10 where P: gas pressure (atmospheric pressure), X: DMS concentration (ppm), L:
Optical path length (cm) 13A absorption (Y 13A )
【数3】Y13A =P/2×0.0057×L/10 となる。この時
付臭剤が添加されていない13Aガスの紫外線吸収率
(A13A )は、## EQU3 ## Y 13A = P / 2 × 0.0057 × L / 10. At this time, the ultraviolet absorption rate (A 13A ) of 13A gas to which no odorant is added is
【数4】A13A =1−10^(−Y13A)となる。次に、付
臭剤が添加されるとその時の吸収度(Ytotal )は、## EQU4 ## A 13A = 1-10̂ (-Y 13A ). Next, when the odorant is added, the absorption at that time (Y total ) is
【数5】Ytotal =YDMS +Y13A となり吸収率(A
total )は、[ Formula 5] Y total = Y DMS + Y 13 A , and the absorption rate (A
total ) is
【数6】Atotal =1−10^(−Ytotal)となる。よっ
て、付臭剤のみの吸収率(ADMS )は、## EQU6 ## A total = 1-10 ^ (-Y total ). Therefore, the absorption rate of only the odorant (A DMS ) is
【数7】 ADMS =Atotal −A13A =10^(−P/2×0.0025×X×L/10) −10^(−(P/2×0.0025×X×L/10+P/2×0.0057×L/10)) となる。従って、付臭剤のみの吸収率は、P=40(気
圧)の条件下で、L=5,10,20,40(cm)、
X=0〜10(ppm)について求めることができる。
この結果を図7に示した。結果、光路が長いと13Aに
よる吸収も大きくDMS添加後は吸収が飽和に近い状態
になりDMSの濃度差による吸収率変化は小さくなる。
逆に光路長が短いと13Aによる吸収も小さいのでDM
S濃度が高くなっても吸収は飽和することなくDMSの
濃度変化による吸収率の差は大きくなる。以上により付
臭剤濃度の管理範囲と送出ガス圧力とに応じた最適な光
路長を求めることができる。結果、光路長としては、付
臭剤濃度の変化に対して、吸収率の変化が大きい10〜
20cmが良好であることが判る。 〔別実施例〕本願の別実施例について以下に説明する。 (イ) 上記の実施例においては、主に付臭剤として、
DMS、TBMを対象とする場合について説明したが、
本願の方法は、THTを対象とする場合においても適応
可能である。さらに、上記の実施例においては、未付臭
ガスとして都市ガス(13A)を対象としたが、任意の
炭化水素ガスを混合したガスに関して適応可能である。
そして、このような未付臭ガスとして炭素数が4以下の
炭化水素ガスが使用され、付臭剤としてDMS、TB
M、THTから選択される1種以上の付臭剤を使用する
場合は、検出用紫外線として、その波長帯域が190n
m〜220nmの範囲にあるものを選択するのが好まし
い。この帯域においては、未付臭ガスによる検出用紫外
線の吸収が少なく、付臭剤による吸収が大きいために、
測定を正確に行えるためである。 (ロ) さらに、上記の実施例においては、付臭後ガス
の吸光度を求めるとともに、未付臭ガスの吸光度を求
め、さらに、これらの差としての付臭剤吸光度を求め
て、この値から付臭剤の濃度を求めているが、本願で使
用する検出用紫外線は、基本的には、未付臭ガスには吸
収され難いため、付臭後ガスの吸光度は付臭剤濃度のそ
れとほぼ同一とできる。従って、上記の減算をおこなう
ことなしに、直接、付臭後ガスの吸光度から付臭剤濃度
を求める構成を採用することもできる。この場合は、装
置構成を簡略化でき、経費も安くなる。このような例と
しては、DMSに対する波長195nm、202nm
で、帯域幅1nmの検出用紫外線を採用する場合を挙げ
ることができ、TBMに対して波長202nm、204
nmで、帯域幅1nmの検出用紫外線を採用する場合を
挙げることができる。帯域幅としてさらに、広いものを
採用する場合は、両者の吸光度を分離して検出する構造
が好ましく、実施例の構成を採用するほうが、精度的に
好ましい。 (ハ) 上記の実施例においては、付臭剤として2種の
付臭剤が添加される場合を示したが、1種のみが添加さ
れる場合、3種以上が添加される場合にあっても、波長
の異なった検出用紫外線を、付臭剤の数に対応して増加
することにより、各付臭剤の濃度を前記の計算式と同等
の手法により求めることができる。 (ニ) 上記の実施例においては、検出用紫外線に対す
る付臭処理前の未付臭ガスの吸光度を求める機構(未付
臭ガス吸光度導出機構)を、未付臭ガス吸光量検出部1
bと未付臭ガス吸光度導出手段で構成したが、このよう
な未付臭ガスの物性は、これを製造する際に厳しく管理
されているため、それが比較的一定している。従って、
このようなガスにあっては、その標準的な吸光度を記憶
装置に記憶させておいて、この記憶装置から適宜、吸光
度値を呼び出して、実際の付臭後ガスの吸光度から減算
する構成とすることも可能である。この場合は、未付臭
ガス吸光量検出部1b、未付臭ガス吸光度導出手段を備
える必要はなく、装置を簡略化することができる。 (ホ) 付臭剤吸光度あるいは付臭後ガスの吸光度か
ら、付臭剤の濃度を求める場合にあっては、上述のよう
に、図4、図6に示すような関係図を使用できる他、関
係数表、一次近似式等の近似式等を使用できる。要する
に、予め判明している関係指標を求めておき、これに基
づいて、第2工程で、付臭剤濃度を求めれば良い。 (へ) さらに、本願の付臭剤濃度測定装置は、高圧状
態にある現場に備える他、任意の場所に備えることがで
きる。従来、付臭剤濃度の測定は、減圧状態で行われて
きており、この場合は、本願の手法を取ることが可能で
はあるが、吸収が少なく、検出が比較的困難であるのに
対して、付臭後ガスが高圧状態にある場合は、付臭剤の
絶対量が多いため、この状態での測定が逆に容易であ
り、現場適応のしやすい好ましいシステムとなってい
る。## EQU00007 ## A DMS = A total -A 13A = 10 ^ (-P / 2 * 0.0025 * X * L / 10) -10 ^ (-(P / 2 * 0.0025 * X * L / 10 + P / 2 * 0.0057 × L / 10)). Therefore, the absorption rate of only the odorant is L = 5, 10, 20, 40 (cm) under the condition of P = 40 (atmospheric pressure),
It can be determined for X = 0 to 10 (ppm).
The result is shown in FIG. As a result, when the optical path is long, the absorption by 13A is large, and the absorption becomes close to saturation after the addition of DMS, and the change in the absorptance due to the DMS concentration difference becomes small.
On the contrary, if the optical path length is short, the absorption by 13A is also small, so DM
Even if the S concentration increases, the absorption does not saturate, and the difference in absorption rate due to the change in DMS concentration increases. As described above, the optimum optical path length can be obtained according to the control range of the odorant concentration and the delivery gas pressure. As a result, as the optical path length, the change in absorption rate is large with respect to the change in odorant concentration.
It turns out that 20 cm is good. [Other Embodiment] Another embodiment of the present application will be described below. (A) In the above examples, mainly as an odorant,
The case of targeting DMS and TBM has been described,
The method of the present application is applicable even when THT is targeted. Furthermore, although the city gas (13A) is used as the unodorized gas in the above-described embodiment, the invention can be applied to a gas mixed with any hydrocarbon gas.
A hydrocarbon gas having a carbon number of 4 or less is used as the unodorized gas, and DMS, TB is used as the odorant.
When one or more kinds of odorants selected from M and THT are used, the wavelength band thereof is 190 n as ultraviolet rays for detection.
It is preferable to select one in the range of m to 220 nm. In this band, the absorption of ultraviolet rays for detection by unodorized gas is small and the absorption by odorant is large,
This is because the measurement can be performed accurately. (B) Further, in the above-mentioned examples, the absorbance of the gas after odorization is determined, the absorbance of the unodorized gas is determined, and the absorbance of the odorant as the difference between them is determined, and the odorant absorbance is calculated from this value. Although the concentration of the odorant is sought, the ultraviolet ray for detection used in the present application is basically difficult to be absorbed by the unodorized gas, so the absorbance of the gas after odorization is almost the same as that of the odorant concentration. Can be Therefore, it is also possible to employ a configuration in which the odorant concentration is directly obtained from the absorbance of the odorized gas without performing the above subtraction. In this case, the device configuration can be simplified and the cost can be reduced. Examples of this are wavelengths 195 nm and 202 nm for DMS.
Then, there can be mentioned a case where the detection ultraviolet ray having a bandwidth of 1 nm is adopted.
An example is the case where detection ultraviolet light having a bandwidth of 1 nm is adopted. When a wider bandwidth is used, it is preferable to use a structure in which the absorbances of the both are separated and detected, and it is preferable to use the configuration of the embodiment in terms of accuracy. (C) In the above-mentioned examples, the case where two kinds of odorants are added as odorants is shown, but in the case where only one kind is added, and when three or more kinds are added, Also, the concentration of each odorant can be obtained by a method equivalent to the above-described calculation formula by increasing the number of detection ultraviolet rays having different wavelengths corresponding to the number of odorants. (D) In the above-described embodiment, the mechanism for obtaining the absorbance of the unodorized gas before the odorization process with respect to the ultraviolet ray for detection (the unodorized gas absorbance derivation mechanism) is the unodorized gas absorption amount detection unit 1.
b) and the unodorized gas absorbance derivation means, the physical properties of such unodorized gas are relatively constant because they are strictly controlled when they are manufactured. Therefore,
For such a gas, the standard absorbance is stored in a storage device, and the absorbance value is appropriately called from this storage device and subtracted from the actual absorbance of the odorized gas. It is also possible. In this case, it is not necessary to provide the unodorized gas absorption amount detection unit 1b and the unodorized gas absorbance derivation means, and the device can be simplified. (E) When obtaining the concentration of the odorant from the odorant absorbance or the odorant gas absorbance, as described above, the relationship diagrams as shown in FIGS. 4 and 6 can be used. A relational table, an approximation formula such as a linear approximation formula, etc. can be used. In short, it suffices to obtain a known relational index in advance and, based on this, obtain the odorant concentration in the second step. (V) Furthermore, the odorant concentration measuring device of the present application can be provided in an arbitrary place in addition to being installed at a site under high pressure. Conventionally, the measurement of the odorant concentration has been performed under reduced pressure, and in this case, although the method of the present application can be adopted, the absorption is small and the detection is relatively difficult. When the gas after odorization is in a high pressure state, the absolute amount of the odorant is large, so that measurement in this state is easy on the contrary, and the system is suitable for site adaptation.
【0023】尚、特許請求の範囲の項に図面との対照を
便利にするために符号を記すが、該記入により本発明は
添付図面の構成に限定されるものではない。It should be noted that although reference numerals are given in the claims for convenience of comparison with the drawings, the present invention is not limited to the configuration of the accompanying drawings by the entry.
【図1】本願の付臭剤濃度測定装置の使用状況を示す図FIG. 1 is a diagram showing a usage state of an odorant concentration measuring device of the present application.
【図2】DMSを添加した付臭後ガスの吸収スペクトル
を示す図FIG. 2 is a diagram showing an absorption spectrum of an odorized gas to which DMS is added.
【図3】未付臭ガスとしての13Aガスの吸収スペクト
ルを示す図FIG. 3 is a diagram showing an absorption spectrum of 13A gas as an unodorized gas.
【図4】DMSに於ける付臭剤濃度と吸光度の関係を示
す図FIG. 4 is a diagram showing a relationship between odorant concentration and absorbance in DMS.
【図5】TBMを添加した付臭後ガスの吸収スペクトル
を示す図FIG. 5 is a diagram showing an absorption spectrum of gas after odorization to which TBM is added.
【図6】TBMに於ける付臭剤濃度と吸光度の関係を示
す図FIG. 6 is a diagram showing the relationship between odorant concentration and absorbance in TBM.
【図7】光路長を変化させた場合のDMS濃度と吸収率
の関係を示す図FIG. 7 is a diagram showing the relationship between DMS concentration and absorptance when the optical path length is changed.
20 付臭後ガス流路 20 Gas passage after odor
Claims (6)
に、付臭剤を添加した構成の付臭後ガスに於ける付臭剤
濃度の測定方法であって、 前記付臭剤に吸収されやすく、前記未付臭ガスに吸収さ
れ難い検出用紫外線を、前記付臭後ガスに照射して、前
記付臭後ガスを透過してくる前記検出用紫外線を受光し
て、照射強度と受光強度との関係から前記付臭後ガスの
吸光度を求める第1工程と、 前記第1工程で求められた前記付臭後ガスの吸光度を使
用して前記付臭後ガス中に於ける前記付臭剤濃度を求め
る第2工程を備えた付臭剤濃度の測定方法。1. A method for measuring the concentration of an odorant in a gas after odorization, which comprises adding an odorant to an unodorized gas containing hydrocarbon gas as a main component. Ultraviolet rays for detection that are easily absorbed and are not easily absorbed by the unodorized gas are irradiated to the post-odor gas, and the detection ultraviolet rays that pass through the post-odor gas are received, and the irradiation intensity and A first step of obtaining the absorbance of the post-odorizing gas from the relationship with the received light intensity; and the above-mentioned step in the post-odorizing gas using the absorbance of the post-odorizing gas obtained in the first step. A method for measuring an odorant concentration, comprising a second step of obtaining an odorant concentration.
む場合に、波長195nmもしくは波長202nmの紫
外線を含む前記検出用紫外線を使用する請求項1記載の
付臭剤濃度の測定方法。2. The method for measuring the concentration of an odorant according to claim 1, wherein when the odorant contains dimethyl sulfide, the detection ultraviolet ray including the ultraviolet ray having a wavelength of 195 nm or a wavelength of 202 nm is used.
プタンを含む場合に、波長202nmもしくは波長20
4nmの紫外線を含む前記検出用紫外線を使用する請求
項1記載の付臭剤濃度の測定方法。3. A wavelength of 202 nm or a wavelength of 20 when the odorant contains tertiary butyl mercaptan.
The method for measuring the concentration of an odorant according to claim 1, wherein the detection ultraviolet ray containing 4 nm ultraviolet ray is used.
検出用紫外線の未付臭ガス吸光度を求める予備工程を備
え、 前記第1工程において得られる前記付臭後ガスの吸光度
より前記未付臭ガス吸光度を減算処理して付臭剤吸光度
を求め、前記第2工程において、前記付臭剤吸光度から
前記付臭後ガス中に於ける前記付臭剤濃度を求める請求
項1、2または3記載の付臭剤濃度の測定方法。4. A preliminary step for determining the absorbance of the unodorized gas of the detection ultraviolet ray by the unodorized gas before the odorization treatment is performed, wherein the unresolved gas is detected based on the absorbance of the unodorized gas obtained in the first step. The odorant absorbance is calculated by subtracting the odorant gas absorbance, and the odorant concentration in the post-odor gas is determined from the odorant absorbance in the second step. 3. The method for measuring the odorant concentration described in 3.
に付臭剤を添加した構成の付臭後ガスが流れる付臭後ガ
ス流路(20)に対して、 前記付臭後ガス流路(20)内に、前記付臭剤に吸収さ
れやすく、前記未付臭ガスに吸収され難い検出用紫外線
を照射する検出用紫外線照射手段と、前記付臭後ガスを
透過してくる前記検出用紫外線を受光する受光手段とを
備え、 前記検出用紫外線照射手段に於ける前記検出用紫外線の
照射強度と前記受光手段により検出される前記検出用紫
外線の受光強度とから、前記付臭後ガスの吸光度を求め
る付臭後ガス吸光度導出手段を備え、 前記付臭後ガス吸光度導出手段により求まる前記付臭後
ガスの吸光度を利用して前記付臭剤の濃度を求める付臭
剤濃度導出手段を備えた付臭剤濃度測定装置。5. The post-odorizing gas flow path (20), in which the post-odorizing gas flows (20), wherein the post-odorizing gas has a structure in which an odorant is added to an unodorized gas containing hydrocarbon gas as a main component, In the flow path (20), a detection ultraviolet ray irradiating means for irradiating the detection ultraviolet ray which is easily absorbed by the odorant and is hard to be absorbed by the unodorized gas, and the odorous gas is transmitted. A light receiving unit for receiving the detection ultraviolet light, and from the irradiation intensity of the detection ultraviolet light in the detection ultraviolet irradiation unit and the light reception intensity of the detection ultraviolet light detected by the light receiving unit, after the odor An odorant concentration deriving means for determining the concentration of the odorant using the after-odor gas absorbance deriving means for obtaining the gas absorbance after the odor addition Odorant concentration measuring device equipped with.
前記未付臭ガスの吸光度を求める未付臭ガス吸光度導出
機構を備え、 前記付臭剤濃度導出手段が、前記付臭後ガス吸光度導出
手段により求まる前記付臭後ガスの吸光度から、前記未
付臭ガス吸光度導出機構により求まる前記未付臭ガス吸
光度を減算して得られる付臭剤吸光度から前記付臭剤の
濃度を求める請求項5記載の付臭剤濃度測定装置。6. An unodorized gas absorbance derivation mechanism for obtaining the absorbance of the unodorized gas before the odorization process to the detection ultraviolet rays, wherein the odorant concentration derivation means derives the post-odor gas absorbance. 6. The concentration of the odorant is determined from the odorant absorbance obtained by subtracting the unodorized gas absorbance determined by the unodorized gas absorbance derivation mechanism from the odorized gas absorbance determined by the means. The odorant concentration measuring device described.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8853695A JPH08285766A (en) | 1995-04-14 | 1995-04-14 | Method and apparatus for measuring concentration of odorant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8853695A JPH08285766A (en) | 1995-04-14 | 1995-04-14 | Method and apparatus for measuring concentration of odorant |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08285766A true JPH08285766A (en) | 1996-11-01 |
Family
ID=13945570
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8853695A Pending JPH08285766A (en) | 1995-04-14 | 1995-04-14 | Method and apparatus for measuring concentration of odorant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08285766A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5844124A (en) * | 1996-10-09 | 1998-12-01 | Osaka Gas Co., Ltd. | Method and apparatus for measuring odorant concentration and oderant adding system |
WO2010050255A1 (en) * | 2008-10-29 | 2010-05-06 | 三菱重工業株式会社 | Method and apparatus for measuring concentration |
JP5579945B1 (en) * | 2014-03-10 | 2014-08-27 | 青梅ガス株式会社 | Monitoring method and monitoring system for dropping state of gas odorant |
WO2017056123A1 (en) * | 2015-09-28 | 2017-04-06 | Automa - S.R.L. | Gas odorization analysis device and method. |
-
1995
- 1995-04-14 JP JP8853695A patent/JPH08285766A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5844124A (en) * | 1996-10-09 | 1998-12-01 | Osaka Gas Co., Ltd. | Method and apparatus for measuring odorant concentration and oderant adding system |
WO2010050255A1 (en) * | 2008-10-29 | 2010-05-06 | 三菱重工業株式会社 | Method and apparatus for measuring concentration |
JP2010107317A (en) * | 2008-10-29 | 2010-05-13 | Mitsubishi Heavy Ind Ltd | Concentration measurement method and apparatus |
US8237926B2 (en) | 2008-10-29 | 2012-08-07 | Mitsubishi Heavy Industries, Ltd. | Method and apparatus for measuring density |
JP5579945B1 (en) * | 2014-03-10 | 2014-08-27 | 青梅ガス株式会社 | Monitoring method and monitoring system for dropping state of gas odorant |
WO2017056123A1 (en) * | 2015-09-28 | 2017-04-06 | Automa - S.R.L. | Gas odorization analysis device and method. |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10241096B2 (en) | Non-methane total hydrocarbons analysis apparatus and method for the same | |
CA2683802C (en) | Reactive gas detection in complex backgrounds | |
CA2419794A1 (en) | Method and apparatus for performing rapid isotopic analysis via laser spectroscopy | |
CN104819958B (en) | Method and device for automatically eliminating water vapor interference in Fourier transform infrared spectroscopy gas detection | |
Oehlschlaeger et al. | Thermal decomposition of toluene: Overall rate and branching ratio | |
US9347875B2 (en) | Gas analyzing system | |
NO339321B1 (en) | Apparatus and apparatus for quantifying liquids in wells with gas capacitors | |
AU2011358621A1 (en) | Method and apparatus to use multiple spectroscopic envelopes to determine components with greater accuracy and dynamic range | |
RU2441219C1 (en) | Method of determining component composition of natural gas in real time | |
Plunkett et al. | Time-resolved analysis of cigarette combustion gases using a dual infrared tunable diode laser system | |
US9927357B2 (en) | Process gas analyzer and method for analyzing a process gas | |
Dillon et al. | Temperature-dependent rate coefficients for the reactions of the hydroxyl radical with the atmospheric biogenics isoprene, alpha-pinene and delta-3-carene | |
JPH08285766A (en) | Method and apparatus for measuring concentration of odorant | |
Inman et al. | Application of tunable diode laser absorption spectroscopy to trace moisture measurements in gases | |
JP3817517B2 (en) | Non-dispersive infrared gas measurement method using optical filter | |
CN110036271A (en) | Gas analyzing apparatus and analysis method for gases | |
Bacsik et al. | FTIR analysis of gaseous compounds in the mainstream smoke of regular and light cigarettes | |
JPH10115588A (en) | Odorant addition system and control method for concentration of odorant | |
Nakayama et al. | Measurements of aerosol optical properties in central Tokyo during summertime using cavity ring-down spectroscopy: Comparison with conventional techniques | |
JPH0567171B2 (en) | ||
CN102656440B (en) | Method for measuring the concentration of at least one gas component in a measuring gas | |
Dunkhorst et al. | Characterization of highly concentrated organic aerosols by optical extinction in the mid infrared regime: Application to e-cigarettes | |
JPH10115587A (en) | Measuring method for concentration of odorant | |
US20220026354A1 (en) | Laser-based system for substance detection | |
RU2212029C1 (en) | Way of analysis of liquid biological medium in process of monitoring |